Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling
Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memor...
Saved in:
Published in | Brain research bulletin Vol. 221; p. 111206 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model’s classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.
•MBSincNex is a lightweight and interpretable model that efficiently extracts EEG temporal-spatial-frequency features, providing cognitive physiological insights and feature visualization.•Inspired by cognitive mechanisms, the model employs multi-band and multi-scale Sinc convolution to detect cross-frequency coupling features, which play a functional role in WM across multiple brain areas.•By incorporating dilation convolution, MBSincNex broadens the receptive field, enhancing the perception of global information. During training, it combines center loss and cross-entropy loss to achieve compact intra-class features and highly discriminative inter-class features.•TA performance comparison across different stages of WM tasks highlights the critical role of early stages in WM functionality. Furthermore, classification based on WM load labels derived from behavioral responses reveals that behavioral responses do not accurately reflect cognitive load levels. |
---|---|
AbstractList | Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model’s classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.
•MBSincNex is a lightweight and interpretable model that efficiently extracts EEG temporal-spatial-frequency features, providing cognitive physiological insights and feature visualization.•Inspired by cognitive mechanisms, the model employs multi-band and multi-scale Sinc convolution to detect cross-frequency coupling features, which play a functional role in WM across multiple brain areas.•By incorporating dilation convolution, MBSincNex broadens the receptive field, enhancing the perception of global information. During training, it combines center loss and cross-entropy loss to achieve compact intra-class features and highly discriminative inter-class features.•TA performance comparison across different stages of WM tasks highlights the critical role of early stages in WM functionality. Furthermore, classification based on WM load labels derived from behavioral responses reveals that behavioral responses do not accurately reflect cognitive load levels. Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load. Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load. |
ArticleNumber | 111206 |
Author | Tan, Tingyi Zhang, Jing Qin, Junjie Tian, Yin Hu, Liangliang Tan, Congming Ding, Yikang Huang, Guowei Jiang, Yuhao Xiong, Daowen |
Author_xml | – sequence: 1 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 2 givenname: Tingyi surname: Tan fullname: Tan, Tingyi organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 3 givenname: Yuhao surname: Jiang fullname: Jiang, Yuhao organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 4 givenname: Congming surname: Tan fullname: Tan, Congming organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 5 givenname: Liangliang surname: Hu fullname: Hu, Liangliang organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 6 givenname: Daowen surname: Xiong fullname: Xiong, Daowen organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 7 givenname: Yikang surname: Ding fullname: Ding, Yikang organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 8 givenname: Guowei surname: Huang fullname: Huang, Guowei organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 9 givenname: Junjie surname: Qin fullname: Qin, Junjie organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 10 givenname: Yin surname: Tian fullname: Tian, Yin email: tianyin@cqupt.edu.cn organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39824230$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1v1DAUtFAR3S78BRRx4pLF33G4QaGlUiUuII7GsV9W3jrxYidI-fe4m1IhTj3ZHs-b997MBTob4wgIvSF4RzCR7w67Lhk_JsjdHMKOYip2hBCK5TO0IaphNW14c4Y2mElSt5Thc3SR8wFjLJWQL9A5axXlBd-gnz9iuvPjvh5giGmpQjSucmCjK2A1RAeh8mM--gSu6pbq1LmycT_6ycex6kwuH-ViU8y57hP8mmG0S6HMx1A0XqLnvQkZXj2cW_T96vO3yy_17dfrm8sPt7UVGE81NExI3IvOMmFaLoziRmGqVFfequHMNrZRpLPSALdEto5xaoA2fSPAUMK26GbVddEc9DH5waRFR-P1CYhpr02avA2gGTZWEFDCipZL3LWEK2gIU4oDuDLBFr1dtY4plnXypAefLYRgRohz1owI2UolJS_U1w_UuRvAPTb-63AhvF8JJ4MS9I8UgvV9nPqg_41T38ep1zhL8ae1GIpzvz0kna0v9oIrediprOafJvPxPxlbovHWhDtYniryB7zexbg |
Cites_doi | 10.1109/TNSRE.2019.2913400 10.1002/hbm.23730 10.1109/TNSRE.2018.2884641 10.1109/TBME.2011.2172210 10.1073/pnas.0911531107 10.1038/nature14539 10.1109/CVPR.2017.195 10.3389/fnhum.2017.00437 10.1016/j.cub.2022.03.045 10.1016/j.bspc.2023.105475 10.1088/1741-2552/aace8c 10.1109/SPMB.2017.8257015 10.1016/j.brainres.2008.11.063 10.1016/j.neunet.2019.02.009 10.1523/JNEUROSCI.1163-19.2019 10.1162/jocn_a_01324 10.1109/TBME.2022.3193277 10.1016/j.cub.2010.01.057 10.1109/CVPR.2018.00474 10.1016/S0165-0173(98)00056-3 10.1109/SMC42975.2020.9283028 10.1038/s41467-019-12057-0 10.1109/VECIMS.2009.5068903 10.1126/science.1128115 10.1162/jocn_a_00029 10.1109/NER.2013.6695876 10.1016/j.neunet.2020.05.032 10.1109/SLT.2018.8639585 10.1109/TNSRE.2019.2936997 10.1016/j.brainres.2006.08.034 10.1109/MSP.2012.2205597 10.1016/j.neuron.2016.02.028 10.1080/09658211.2019.1620287 10.1109/CAC48633.2019.8996981 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.brainresbull.2025.111206 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-2747 |
ExternalDocumentID | oai_doaj_org_article_30ac51e85c59460b9148e713884eedbc 39824230 10_1016_j_brainresbull_2025_111206 S0361923025000188 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ Z5R ZGI ~G- 6I. AACTN AAFTH AFCTW BNPGV RIG SSH AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c500t-e73560f5bc35a945a84a80288b35a8743c7c781bc6ae4c169d342ae27f75ea213 |
IEDL.DBID | DOA |
ISSN | 0361-9230 1873-2747 |
IngestDate | Wed Aug 27 01:29:28 EDT 2025 Fri Jul 11 10:34:06 EDT 2025 Mon Jul 21 05:33:44 EDT 2025 Tue Aug 05 11:57:01 EDT 2025 Sun Apr 06 06:53:51 EDT 2025 Tue Aug 26 16:34:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cross-frequency coupling Delayed matching-to-sample EEG decoding Sinc convolution layer Working memory Interpretability |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-e73560f5bc35a945a84a80288b35a8743c7c781bc6ae4c169d342ae27f75ea213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/30ac51e85c59460b9148e713884eedbc |
PMID | 39824230 |
PQID | 3156968664 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_30ac51e85c59460b9148e713884eedbc proquest_miscellaneous_3156968664 pubmed_primary_39824230 crossref_primary_10_1016_j_brainresbull_2025_111206 elsevier_sciencedirect_doi_10_1016_j_brainresbull_2025_111206 elsevier_clinicalkey_doi_10_1016_j_brainresbull_2025_111206 |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain research bulletin |
PublicationTitleAlternate | Brain Res Bull |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | (pp. 250-254). IEEE. T. Wang, E. Dong, S. Du and C. Jia, A Shallow Convolutional Neural Network for Classifying MI-EEG pp. 1-16 Aug. 2016. Liu, Yang, Yu, Wang, Wu (bib22) 2022; 70 Schmidt, Ruiz, Kilavik, Lundqvist, Starr, Aron (bib34) 2019; 39 K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps. B. Wan, Y. Liu, D. Ming, H. Qi, Y. Wang, & R. Zhang, (2009, May). Feature recognition of multi-class imaginary movements in brain-computer interface. In Zhang, Wang, Chen, You, Zhang (bib43) 2019; 27 Tian, Zhang, Jiang, Li, Li (bib39) 2019; 27 Axmacher, Henseler, Jensen, Weinreich, Elger, Fell (bib1) 2010; 107 (pp. 4510-4520). Lundqvist, Rose, Herman, Brincat, Buschman, Miller (bib25) 2016; 90 Barachant, Bonnet, Congedo, Jutten (bib3) 2011; 59 (pp. 1021-1028). IEEE. I. Loshchilov and F. Hutter, 2016. Sgdr: Stochastic gradient descent with warm restarts. Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen, Hämäläinen (bib12) 2013; 7 pp. 1-7, Aug. 2017b. (pp. 2958-2965). IEEE. S. Ioffe & C. Szegedy (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib20) 2018; 15 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib33) 2017; 38 Chen, Teng, Chen, Pan, Geyer (bib8) 2024; 87 Berggren, Eimer (bib5) 2018; 30 T.M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cavigelli & L. Benini, (2020, October). EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In (pp. 1251-1258). Klimesch (bib19) 1999; 29 Ratcliffe, Shapiro, Staresina (bib28) 2022; 32 Zhang, Wang, Zhang, Chen (bib42) 2018; 27 Barachant, Bonnet, Congedo, Jutten (bib2) 2011; 59 Mitra (bib26) 2001 M. Ravanelli, & Y. Bengio, (2018, December). Speaker recognition from raw waveform with sincnet. In Fuentemilla, Penny, Cashdollar, Bunzeck, Düzel (bib11) 2010; 20 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (bib14) 2012; 29 Shucard, Tekok-Kilic, Shiels, Shucard (bib35) 2009; 1254 Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, Berger, Barbaro, Knight (bib7) 2006; 313 R.N. Duan, J.Y. Zhu, & B.L. Lu, (2013, November). Differential entropy feature for EEG-based emotion classification. In M. Sandler, A. Howard, M. Zhu, A. Zhmoginov & L.C. Chen (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Rabiner, Schafer (bib27) 2010 Zhao, Tang, Si, Feng (bib44) 2019; 114 Lundqvist, Herman, Lansner (bib24) 2011; 23 pp. 1-8 Dec. 2013. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15 Hangzhou, China, 2019, pp. 5837-5841. Kingma, Ba (bib18) 2014 Román-López, Caballero-Sánchez, Cisneros-Luna, Franco-Rodríguez, Méndez-Díaz, Prospéro-García, Ruiz-Contreras (bib30) 2019; 27 LeCun, Bengio, Hinton (bib21) 2015; 521 Jin, Xu, Daly, Zhao, Wang, Cichocki (bib17) 2024 (pp. 448-456). Borra, Fantozzi, Magosso (bib6) 2020; 129 Berger, Griesmayr, Minarik (bib4) 2019; 10 F. Chollet, (2017). Xception: Deep learning with DepthWise convolutions. In (pp. 81-84). IEEE. Tian, Zhang, Xu, Zhang, Yang, Zheng, Shi (bib38) 2017; 11 Guo, Duan, Li, Paller (bib13) 2006; 1118 R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter and T. Ball, "Deep learning with convolutional neural networks for decoding and visualization of EEG pathology," Ratcliffe (10.1016/j.brainresbull.2025.111206_bib28) 2022; 32 Zhang (10.1016/j.brainresbull.2025.111206_bib42) 2018; 27 10.1016/j.brainresbull.2025.111206_bib41 Liu (10.1016/j.brainresbull.2025.111206_bib22) 2022; 70 Mitra (10.1016/j.brainresbull.2025.111206_bib26) 2001 Shucard (10.1016/j.brainresbull.2025.111206_bib35) 2009; 1254 10.1016/j.brainresbull.2025.111206_bib40 Gramfort (10.1016/j.brainresbull.2025.111206_bib12) 2013; 7 LeCun (10.1016/j.brainresbull.2025.111206_bib21) 2015; 521 Schirrmeister (10.1016/j.brainresbull.2025.111206_bib33) 2017; 38 Berger (10.1016/j.brainresbull.2025.111206_bib4) 2019; 10 Tian (10.1016/j.brainresbull.2025.111206_bib38) 2017; 11 Zhang (10.1016/j.brainresbull.2025.111206_bib43) 2019; 27 Chen (10.1016/j.brainresbull.2025.111206_bib8) 2024; 87 Fuentemilla (10.1016/j.brainresbull.2025.111206_bib11) 2010; 20 Barachant (10.1016/j.brainresbull.2025.111206_bib2) 2011; 59 10.1016/j.brainresbull.2025.111206_bib16 10.1016/j.brainresbull.2025.111206_bib36 10.1016/j.brainresbull.2025.111206_bib15 Klimesch (10.1016/j.brainresbull.2025.111206_bib19) 1999; 29 Zhao (10.1016/j.brainresbull.2025.111206_bib44) 2019; 114 10.1016/j.brainresbull.2025.111206_bib10 10.1016/j.brainresbull.2025.111206_bib32 Berggren (10.1016/j.brainresbull.2025.111206_bib5) 2018; 30 Barachant (10.1016/j.brainresbull.2025.111206_bib3) 2011; 59 Hinton (10.1016/j.brainresbull.2025.111206_bib14) 2012; 29 Lundqvist (10.1016/j.brainresbull.2025.111206_bib24) 2011; 23 10.1016/j.brainresbull.2025.111206_bib31 Schmidt (10.1016/j.brainresbull.2025.111206_bib34) 2019; 39 Borra (10.1016/j.brainresbull.2025.111206_bib6) 2020; 129 Axmacher (10.1016/j.brainresbull.2025.111206_bib1) 2010; 107 Canolty (10.1016/j.brainresbull.2025.111206_bib7) 2006; 313 Rabiner (10.1016/j.brainresbull.2025.111206_bib27) 2010 Lawhern (10.1016/j.brainresbull.2025.111206_bib20) 2018; 15 Lundqvist (10.1016/j.brainresbull.2025.111206_bib25) 2016; 90 Srivastava (10.1016/j.brainresbull.2025.111206_bib37) 2014; 15 Jin (10.1016/j.brainresbull.2025.111206_bib17) 2024 Tian (10.1016/j.brainresbull.2025.111206_bib39) 2019; 27 10.1016/j.brainresbull.2025.111206_bib29 10.1016/j.brainresbull.2025.111206_bib9 Guo (10.1016/j.brainresbull.2025.111206_bib13) 2006; 1118 Román-López (10.1016/j.brainresbull.2025.111206_bib30) 2019; 27 Kingma (10.1016/j.brainresbull.2025.111206_bib18) 2014 10.1016/j.brainresbull.2025.111206_bib23 |
References_xml | – volume: 39 start-page: 8231 year: 2019 end-page: 8238 ident: bib34 article-title: Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function publication-title: J. Neurosci. – reference: (pp. 250-254). IEEE. – volume: 27 start-page: 31 year: 2018 end-page: 42 ident: bib42 article-title: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib14 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag. – start-page: 1 year: 2024 end-page: 12 ident: bib17 article-title: MOCNN: a multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Trans. Cybern. – reference: T. Wang, E. Dong, S. Du and C. Jia, A Shallow Convolutional Neural Network for Classifying MI-EEG, – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib33 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 87 start-page: 1 year: 2024 end-page: 12 ident: bib8 article-title: Toward reliable signals decoding for electroencephalogram: a benchmark study to EEGNeX publication-title: Biomed. Signal Process. Control – reference: R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter and T. Ball, "Deep learning with convolutional neural networks for decoding and visualization of EEG pathology," – reference: M. Ravanelli, & Y. Bengio, (2018, December). Speaker recognition from raw waveform with sincnet. In – volume: 90 start-page: 152 year: 2016 end-page: 164 ident: bib25 article-title: Gamma and beta bursts underlie working memory publication-title: Neuron – volume: 11 start-page: 1 year: 2017 end-page: 12 ident: bib38 article-title: Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task publication-title: Front. Hum. Neurosci. – year: 2001 ident: bib26 article-title: Digital signal processing: a computer-based approach – reference: F. Chollet, (2017). Xception: Deep learning with DepthWise convolutions. In – volume: 313 start-page: 1626 year: 2006 end-page: 1628 ident: bib7 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science – start-page: 1 year: 2014 end-page: 13 ident: bib18 article-title: Adam: A Method for Stochastic Optimization publication-title: CoRR – volume: 32 start-page: 2121 year: 2022 end-page: 2129 ident: bib28 article-title: Fronto-medial theta coordinates posterior maintenance of working memory content publication-title: Curr. Biol. – reference: T.M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cavigelli & L. Benini, (2020, October). EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In – volume: 20 start-page: 606 year: 2010 end-page: 612 ident: bib11 article-title: Theta-coupled periodic replay in working memory publication-title: Curr. Biol. – reference: (pp. 448-456). – reference: K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps. – volume: 70 start-page: 436 year: 2022 end-page: 445 ident: bib22 article-title: FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: bib19 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. – year: 2010 ident: bib27 article-title: Theory and applications of digital speech processing – reference: B. Wan, Y. Liu, D. Ming, H. Qi, Y. Wang, & R. Zhang, (2009, May). Feature recognition of multi-class imaginary movements in brain-computer interface. In – volume: 59 start-page: 920 year: 2011 end-page: 928 ident: bib3 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – reference: S. Ioffe & C. Szegedy (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In – volume: 59 start-page: 920 year: 2011 end-page: 928 ident: bib2 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – volume: 10 year: 2019 ident: bib4 article-title: Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory publication-title: Nat. Commun. – reference: , pp. 1-16 Aug. 2016. – reference: R.N. Duan, J.Y. Zhu, & B.L. Lu, (2013, November). Differential entropy feature for EEG-based emotion classification. In – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib21 article-title: Deep learning publication-title: Nature – reference: (pp. 1021-1028). IEEE. – reference: (pp. 81-84). IEEE. – volume: 23 start-page: 3008 year: 2011 end-page: 3020 ident: bib24 article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model publication-title: J. Cogn. Neurosci. – volume: 1118 start-page: 142 year: 2006 end-page: 154 ident: bib13 article-title: Distinguishing source memory and item memory: brain potentials at encoding and retrieval publication-title: Brain Res. – volume: 15 start-page: 1 year: 2018 end-page: 17 ident: bib20 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – reference: (pp. 4510-4520). – volume: 107 start-page: 3228 year: 2010 end-page: 3233 ident: bib1 article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. – volume: 129 start-page: 55 year: 2020 end-page: 74 ident: bib6 article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination publication-title: Neural Netw. – volume: 7 start-page: 1 year: 2013 end-page: 13 ident: bib12 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neuroinf. – reference: (pp. 2958-2965). IEEE. – reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov & L.C. Chen (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In – volume: 27 start-page: 1149 year: 2019 end-page: 1159 ident: bib43 article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: pp. 1-7, Aug. 2017b. – volume: 30 start-page: 1902 year: 2018 end-page: 1915 ident: bib5 article-title: Visual working memory load disrupts template-guided attentional selection during visual search publication-title: J. Cogn. Neurosci. – volume: 114 start-page: 67 year: 2019 end-page: 77 ident: bib44 article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data publication-title: Neural Netw. – reference: , Hangzhou, China, 2019, pp. 5837-5841. – reference: (pp. 1251-1258). – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib37 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 1254 start-page: 49 year: 2009 end-page: 62 ident: bib35 article-title: Stage and load effects on ERP topography during verbal and spatial working memory publication-title: Brain Res. – reference: , pp. 1-8 Dec. 2013. – volume: 27 start-page: 1985 year: 2019 end-page: 1993 ident: bib39 article-title: A fusion feature for enhancing the performance of classification in working memory load with single-trial detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 27 start-page: 1063 year: 2019 end-page: 1078 ident: bib30 article-title: Brain electrical activity from encoding to retrieval while maintaining and manipulating information in working memory publication-title: Memory – reference: I. Loshchilov and F. Hutter, 2016. Sgdr: Stochastic gradient descent with warm restarts. – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.brainresbull.2025.111206_bib37 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 1149 issue: 6 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib43 article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2913400 – volume: 7 start-page: 1 year: 2013 ident: 10.1016/j.brainresbull.2025.111206_bib12 article-title: MEG and EEG data analysis with MNE-Python publication-title: Front. Neuroinf. – ident: 10.1016/j.brainresbull.2025.111206_bib16 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.brainresbull.2025.111206_bib33 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 27 start-page: 31 issue: 1 year: 2018 ident: 10.1016/j.brainresbull.2025.111206_bib42 article-title: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2884641 – volume: 59 start-page: 920 issue: 4 year: 2011 ident: 10.1016/j.brainresbull.2025.111206_bib3 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 107 start-page: 3228 issue: 7 year: 2010 ident: 10.1016/j.brainresbull.2025.111206_bib1 article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. doi: 10.1073/pnas.0911531107 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.brainresbull.2025.111206_bib21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.brainresbull.2025.111206_bib9 doi: 10.1109/CVPR.2017.195 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.brainresbull.2025.111206_bib38 article-title: Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00437 – volume: 32 start-page: 2121 issue: 10 year: 2022 ident: 10.1016/j.brainresbull.2025.111206_bib28 article-title: Fronto-medial theta coordinates posterior maintenance of working memory content publication-title: Curr. Biol. doi: 10.1016/j.cub.2022.03.045 – start-page: 1 year: 2014 ident: 10.1016/j.brainresbull.2025.111206_bib18 article-title: Adam: A Method for Stochastic Optimization publication-title: CoRR – volume: 87 start-page: 1 year: 2024 ident: 10.1016/j.brainresbull.2025.111206_bib8 article-title: Toward reliable signals decoding for electroencephalogram: a benchmark study to EEGNeX publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105475 – volume: 15 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.brainresbull.2025.111206_bib20 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: 10.1016/j.brainresbull.2025.111206_bib36 – ident: 10.1016/j.brainresbull.2025.111206_bib32 doi: 10.1109/SPMB.2017.8257015 – volume: 1254 start-page: 49 year: 2009 ident: 10.1016/j.brainresbull.2025.111206_bib35 article-title: Stage and load effects on ERP topography during verbal and spatial working memory publication-title: Brain Res. doi: 10.1016/j.brainres.2008.11.063 – volume: 114 start-page: 67 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib44 article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.02.009 – volume: 39 start-page: 8231 issue: 42 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib34 article-title: Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1163-19.2019 – volume: 30 start-page: 1902 issue: 12 year: 2018 ident: 10.1016/j.brainresbull.2025.111206_bib5 article-title: Visual working memory load disrupts template-guided attentional selection during visual search publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01324 – volume: 70 start-page: 436 issue: 2 year: 2022 ident: 10.1016/j.brainresbull.2025.111206_bib22 article-title: FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3193277 – volume: 20 start-page: 606 issue: 7 year: 2010 ident: 10.1016/j.brainresbull.2025.111206_bib11 article-title: Theta-coupled periodic replay in working memory publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.01.057 – ident: 10.1016/j.brainresbull.2025.111206_bib23 – ident: 10.1016/j.brainresbull.2025.111206_bib31 doi: 10.1109/CVPR.2018.00474 – volume: 29 start-page: 169 issue: 2-3 year: 1999 ident: 10.1016/j.brainresbull.2025.111206_bib19 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – year: 2001 ident: 10.1016/j.brainresbull.2025.111206_bib26 – ident: 10.1016/j.brainresbull.2025.111206_bib15 doi: 10.1109/SMC42975.2020.9283028 – start-page: 1 year: 2024 ident: 10.1016/j.brainresbull.2025.111206_bib17 article-title: MOCNN: a multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Trans. Cybern. – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib4 article-title: Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory publication-title: Nat. Commun. doi: 10.1038/s41467-019-12057-0 – ident: 10.1016/j.brainresbull.2025.111206_bib40 doi: 10.1109/VECIMS.2009.5068903 – volume: 59 start-page: 920 issue: 4 year: 2011 ident: 10.1016/j.brainresbull.2025.111206_bib2 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 313 start-page: 1626 issue: 5793 year: 2006 ident: 10.1016/j.brainresbull.2025.111206_bib7 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science doi: 10.1126/science.1128115 – volume: 23 start-page: 3008 issue: 10 year: 2011 ident: 10.1016/j.brainresbull.2025.111206_bib24 article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00029 – ident: 10.1016/j.brainresbull.2025.111206_bib10 doi: 10.1109/NER.2013.6695876 – year: 2010 ident: 10.1016/j.brainresbull.2025.111206_bib27 – volume: 129 start-page: 55 year: 2020 ident: 10.1016/j.brainresbull.2025.111206_bib6 article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.05.032 – ident: 10.1016/j.brainresbull.2025.111206_bib29 doi: 10.1109/SLT.2018.8639585 – volume: 27 start-page: 1985 issue: 10 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib39 article-title: A fusion feature for enhancing the performance of classification in working memory load with single-trial detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2936997 – volume: 1118 start-page: 142 issue: 1 year: 2006 ident: 10.1016/j.brainresbull.2025.111206_bib13 article-title: Distinguishing source memory and item memory: brain potentials at encoding and retrieval publication-title: Brain Res. doi: 10.1016/j.brainres.2006.08.034 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.brainresbull.2025.111206_bib14 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2012.2205597 – volume: 90 start-page: 152 issue: 1 year: 2016 ident: 10.1016/j.brainresbull.2025.111206_bib25 article-title: Gamma and beta bursts underlie working memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.028 – volume: 27 start-page: 1063 issue: 8 year: 2019 ident: 10.1016/j.brainresbull.2025.111206_bib30 article-title: Brain electrical activity from encoding to retrieval while maintaining and manipulating information in working memory publication-title: Memory doi: 10.1080/09658211.2019.1620287 – ident: 10.1016/j.brainresbull.2025.111206_bib41 doi: 10.1109/CAC48633.2019.8996981 |
SSID | ssj0006856 |
Score | 2.443846 |
Snippet | Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources.... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 111206 |
SubjectTerms | Brain - physiology Cognition - physiology Cross-frequency coupling Delayed matching-to-sample EEG decoding Electroencephalography - methods Humans Interpretability Memory, Short-Term - physiology Models, Neurological Neural Networks, Computer Sinc convolution layer Working memory |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp15QW0rZPpArVdzcTeJHHFUcKAKhSuUCSNyMX0FblQRtdw974bcz4zgLHCoh9RZbduLY45lv7M8eQr5y5xSv6oL5uhRMtE3BrIiChVDIwvnGqYBLA7_O1Oml-HklrzbI0XgWBmmVWfcPOj1p65wzzb05vZvNpuegexGeoBHH0HJ44FeIGqX82_0jzUNpmfcrS4alx4tHE8fLYRgGcGsduHvgK1YSNUiF0Y-eGKl0l_8zW_UvLJps0slrspXBJD0c2vuGbMTuLdk-7MCRvl3RfZronWndfJtc52Vxdovc2hX909tAAzifaLxoCohDZx3uu8dA3YqmRtPMLuo7iuYuUHhITWbtfOBgr6DIEk_13rwjlyfHF0enLIdXYB56bMFizQHutNJ5Lm0jpNXCaoAb2kFaA7Lwta8B1Xplo_ClagIXlY1V3dYy2qrkO2Sz67u4Syiuprax8CoI0Ly-1Ba3W0sL2iKWttUTwsf-NHfDLRpmpJf9Nk9HweAomGEUJuQHdv26Bt6EnTL6-Y3JomB4Yb0so5ZeNvBR14B_F8Hz1lqA-Xd-Qr6PA2fGw6agHuFFsxc14WBd-5lYvrj-l1FWDMxb3IyxXeyXfw0Hx7lRWikxIe8HIVr_KG80wtziw39-_SN5hamBZP6JbC7my_gZMNTC7aVJ8gDeQBsg priority: 102 providerName: Elsevier |
Title | Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0361923025000188 https://dx.doi.org/10.1016/j.brainresbull.2025.111206 https://www.ncbi.nlm.nih.gov/pubmed/39824230 https://www.proquest.com/docview/3156968664 https://doaj.org/article/30ac51e85c59460b9148e713884eedbc |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagvXBBQFtYHitXQtxcnPgRR4jDgqgWED21Um_Gr6BWbbYqu4e98NuZsZPVckD0wC2J4mgyHs98Mx7PEPJaeK9F3XAWmkoy2bWcOZkki5Er7kPrdcTQwLcTPT-TX87V-VarL8wJK-WBC-PeCu6CqpJRQbVSc98Cfk_gWRkjQb37gNoXbN7oTA06WBulxxKjOZvLY8MFcGA9OHbgFdYKdUWNfY62zFGu2v-HVfob6szW5_gReTjARjor5D4m91L_hOzNenCZr9f0Dc2JnDlCvke-DwFwdo1ZtGt6tXCRRnAz0UzR3PqGXvS4w54i9WuaiaZDHtGip2jYIoWLTDLrbku29RpeWeH53R_75Oz40-nHORsaKbCgOF-y1AgANp3yQSjXSuWMdAaAhfFwbwBDhCY0gF-DdkmGSrdRyNqluukalVxdiQOy0y_69IxQjJt2iQcdJejYUBmHG6uVA72QKteZCREjP-1NqZdhx0SyS7s9CxZnwZZZmJAPyPrNCKx5nR-AJNhBEuy_JGFC3o0TZ8djpaAI4UMXdyLh_Wb0AD4KqLjz-MNRViysUNx2cX1arH5aAS5yq43WckKeFiHa_KhoDQJa_vx_MOAFeYAElZzyl2RnebtKrwAyLf2U3D_6VU3J7uzz1_nJNK-V32_LGBc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAXBBTolpeREDdrk_gRR4jDUlFtabsXWqk3YztOtYgm1bJ72H_fGcdZtQekStwSJ44dP775xh7PEPKJO6d4UWbMl7lgoqkyZkUQrK4zmTlfOVXj0sDZXM0uxI9LeblDDoezMGhWmbC_x_SI1illklpzcrNYTH4C9iI9QSGOoeX0I7KL3qnkiOxOj09m8y0gKy3TlmXOMMPgezSaeTmMxACarQOND9TFQiKIFBgA6Y6ciu7874mrf9HRKJaOnpGniU_SaV_l52QntC_I3rQFXfp6Qz_TaOEZl873yK-0Ms6u0bx2Q_90tqY16J8ov2iMiUMXLW69h5q6DY2VpsnAqGspSryawkWsMmuWvRn2Bl5Z48Heq5fk4uj7-eGMpQgLzEOjrVgoOTCeRjrPpa2EtFpYDYxDO7jXQC586Usgtl7ZIHyuqpqLwoaibEoZbJHzV2TUdm3YJxQXVJuQeVULAF-fa4s7rrkFwAi5bfSY8KE9zU3vSMMMFma_zd1eMNgLpu-FMfmGTb_Ngc6wY0K3vDJpNBieWS_zoKWXFRTqKlDxAijfWgtgAM6PyZeh48xw3hQQEj60eFAVvm5z3xuZD87_cRgrBqYu7sfYNnTrv4aD7lwprZQYk9f9INr-KK80Mt3s4D9L_0Aez87PTs3p8fzkDXmCT3qb87dktFquwzugVCv3Pk2ZW2g6H18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working-memory+load+decoding+model+inspired+by+brain+cognition+based+on+cross-frequency+coupling&rft.jtitle=Brain+research+bulletin&rft.au=Zhang%2C+Jing&rft.au=Tan%2C+Tingyi&rft.au=Jiang%2C+Yuhao&rft.au=Tan%2C+Congming&rft.date=2025-02-01&rft.eissn=1873-2747&rft.volume=221&rft.spage=111206&rft_id=info:doi/10.1016%2Fj.brainresbull.2025.111206&rft_id=info%3Apmid%2F39824230&rft.externalDocID=39824230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-9230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-9230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-9230&client=summon |