Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling

Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memor...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 221; p. 111206
Main Authors Zhang, Jing, Tan, Tingyi, Jiang, Yuhao, Tan, Congming, Hu, Liangliang, Xiong, Daowen, Ding, Yikang, Huang, Guowei, Qin, Junjie, Tian, Yin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model’s classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load. •MBSincNex is a lightweight and interpretable model that efficiently extracts EEG temporal-spatial-frequency features, providing cognitive physiological insights and feature visualization.•Inspired by cognitive mechanisms, the model employs multi-band and multi-scale Sinc convolution to detect cross-frequency coupling features, which play a functional role in WM across multiple brain areas.•By incorporating dilation convolution, MBSincNex broadens the receptive field, enhancing the perception of global information. During training, it combines center loss and cross-entropy loss to achieve compact intra-class features and highly discriminative inter-class features.•TA performance comparison across different stages of WM tasks highlights the critical role of early stages in WM functionality. Furthermore, classification based on WM load labels derived from behavioral responses reveals that behavioral responses do not accurately reflect cognitive load levels.
AbstractList Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model’s classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load. •MBSincNex is a lightweight and interpretable model that efficiently extracts EEG temporal-spatial-frequency features, providing cognitive physiological insights and feature visualization.•Inspired by cognitive mechanisms, the model employs multi-band and multi-scale Sinc convolution to detect cross-frequency coupling features, which play a functional role in WM across multiple brain areas.•By incorporating dilation convolution, MBSincNex broadens the receptive field, enhancing the perception of global information. During training, it combines center loss and cross-entropy loss to achieve compact intra-class features and highly discriminative inter-class features.•TA performance comparison across different stages of WM tasks highlights the critical role of early stages in WM functionality. Furthermore, classification based on WM load labels derived from behavioral responses reveals that behavioral responses do not accurately reflect cognitive load levels.
Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.
Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research. Deep learning models have demonstrated remarkable potential in identifying the intensity of working memory load. However, existing neural networks based on electroencephalogram (EEG) decoding primarily focus on temporal and spatial characteristics while neglecting frequency characteristics. Drawing inspiration from the role of cross-frequency coupling in the hippocampal region, which plays a crucial role in advanced cognitive processes such as working memory, this study proposes a Multi-Band Multi-Scale Hybrid Sinc Convolutional Neural Network (MBSincNex). This model integrates multi-frequency and multi-scale Sinc convolution to facilitate time-frequency conversion and extract time-frequency information from multiple rhythms and regions of the EEG data with the aim of effectively model the cross-frequency coupling across different cognitive domains. Due to its unique structural design, the proposed model proficiently extracts features in temporal, frequency, and spatial domains while its feature extraction capability is validated through post-hoc interpretability techniques. On our collected three-class working memory dataset, the proposed model achieved higher classification accuracy compared to other state-of-the-art methods. Furthermore, by analyzing the model's classification performance during different stages of working memory processes, this study emphasizes the significance of the encoding phase and confirms that behavioral response does not accurately reflect cognitive load.
ArticleNumber 111206
Author Tan, Tingyi
Zhang, Jing
Qin, Junjie
Tian, Yin
Hu, Liangliang
Tan, Congming
Ding, Yikang
Huang, Guowei
Jiang, Yuhao
Xiong, Daowen
Author_xml – sequence: 1
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 2
  givenname: Tingyi
  surname: Tan
  fullname: Tan, Tingyi
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 3
  givenname: Yuhao
  surname: Jiang
  fullname: Jiang, Yuhao
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 4
  givenname: Congming
  surname: Tan
  fullname: Tan, Congming
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 5
  givenname: Liangliang
  surname: Hu
  fullname: Hu, Liangliang
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 6
  givenname: Daowen
  surname: Xiong
  fullname: Xiong, Daowen
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 7
  givenname: Yikang
  surname: Ding
  fullname: Ding, Yikang
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 8
  givenname: Guowei
  surname: Huang
  fullname: Huang, Guowei
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 9
  givenname: Junjie
  surname: Qin
  fullname: Qin, Junjie
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 10
  givenname: Yin
  surname: Tian
  fullname: Tian, Yin
  email: tianyin@cqupt.edu.cn
  organization: School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39824230$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUtFAR3S78BRRx4pLF33G4QaGlUiUuII7GsV9W3jrxYidI-fe4m1IhTj3ZHs-b997MBTob4wgIvSF4RzCR7w67Lhk_JsjdHMKOYip2hBCK5TO0IaphNW14c4Y2mElSt5Thc3SR8wFjLJWQL9A5axXlBd-gnz9iuvPjvh5giGmpQjSucmCjK2A1RAeh8mM--gSu6pbq1LmycT_6ycex6kwuH-ViU8y57hP8mmG0S6HMx1A0XqLnvQkZXj2cW_T96vO3yy_17dfrm8sPt7UVGE81NExI3IvOMmFaLoziRmGqVFfequHMNrZRpLPSALdEto5xaoA2fSPAUMK26GbVddEc9DH5waRFR-P1CYhpr02avA2gGTZWEFDCipZL3LWEK2gIU4oDuDLBFr1dtY4plnXypAefLYRgRohz1owI2UolJS_U1w_UuRvAPTb-63AhvF8JJ4MS9I8UgvV9nPqg_41T38ep1zhL8ae1GIpzvz0kna0v9oIrediprOafJvPxPxlbovHWhDtYniryB7zexbg
Cites_doi 10.1109/TNSRE.2019.2913400
10.1002/hbm.23730
10.1109/TNSRE.2018.2884641
10.1109/TBME.2011.2172210
10.1073/pnas.0911531107
10.1038/nature14539
10.1109/CVPR.2017.195
10.3389/fnhum.2017.00437
10.1016/j.cub.2022.03.045
10.1016/j.bspc.2023.105475
10.1088/1741-2552/aace8c
10.1109/SPMB.2017.8257015
10.1016/j.brainres.2008.11.063
10.1016/j.neunet.2019.02.009
10.1523/JNEUROSCI.1163-19.2019
10.1162/jocn_a_01324
10.1109/TBME.2022.3193277
10.1016/j.cub.2010.01.057
10.1109/CVPR.2018.00474
10.1016/S0165-0173(98)00056-3
10.1109/SMC42975.2020.9283028
10.1038/s41467-019-12057-0
10.1109/VECIMS.2009.5068903
10.1126/science.1128115
10.1162/jocn_a_00029
10.1109/NER.2013.6695876
10.1016/j.neunet.2020.05.032
10.1109/SLT.2018.8639585
10.1109/TNSRE.2019.2936997
10.1016/j.brainres.2006.08.034
10.1109/MSP.2012.2205597
10.1016/j.neuron.2016.02.028
10.1080/09658211.2019.1620287
10.1109/CAC48633.2019.8996981
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.brainresbull.2025.111206
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-2747
ExternalDocumentID oai_doaj_org_article_30ac51e85c59460b9148e713884eedbc
39824230
10_1016_j_brainresbull_2025_111206
S0361923025000188
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
Z5R
ZGI
~G-
6I.
AACTN
AAFTH
AFCTW
BNPGV
RIG
SSH
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c500t-e73560f5bc35a945a84a80288b35a8743c7c781bc6ae4c169d342ae27f75ea213
IEDL.DBID DOA
ISSN 0361-9230
1873-2747
IngestDate Wed Aug 27 01:29:28 EDT 2025
Fri Jul 11 10:34:06 EDT 2025
Mon Jul 21 05:33:44 EDT 2025
Tue Aug 05 11:57:01 EDT 2025
Sun Apr 06 06:53:51 EDT 2025
Tue Aug 26 16:34:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cross-frequency coupling
Delayed matching-to-sample
EEG decoding
Sinc convolution layer
Working memory
Interpretability
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-e73560f5bc35a945a84a80288b35a8743c7c781bc6ae4c169d342ae27f75ea213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/30ac51e85c59460b9148e713884eedbc
PMID 39824230
PQID 3156968664
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_30ac51e85c59460b9148e713884eedbc
proquest_miscellaneous_3156968664
pubmed_primary_39824230
crossref_primary_10_1016_j_brainresbull_2025_111206
elsevier_sciencedirect_doi_10_1016_j_brainresbull_2025_111206
elsevier_clinicalkey_doi_10_1016_j_brainresbull_2025_111206
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain research bulletin
PublicationTitleAlternate Brain Res Bull
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References (pp. 250-254). IEEE.
T. Wang, E. Dong, S. Du and C. Jia, A Shallow Convolutional Neural Network for Classifying MI-EEG
pp. 1-16 Aug. 2016.
Liu, Yang, Yu, Wang, Wu (bib22) 2022; 70
Schmidt, Ruiz, Kilavik, Lundqvist, Starr, Aron (bib34) 2019; 39
K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps.
B. Wan, Y. Liu, D. Ming, H. Qi, Y. Wang, & R. Zhang, (2009, May). Feature recognition of multi-class imaginary movements in brain-computer interface. In
Zhang, Wang, Chen, You, Zhang (bib43) 2019; 27
Tian, Zhang, Jiang, Li, Li (bib39) 2019; 27
Axmacher, Henseler, Jensen, Weinreich, Elger, Fell (bib1) 2010; 107
(pp. 4510-4520).
Lundqvist, Rose, Herman, Brincat, Buschman, Miller (bib25) 2016; 90
Barachant, Bonnet, Congedo, Jutten (bib3) 2011; 59
(pp. 1021-1028). IEEE.
I. Loshchilov and F. Hutter, 2016. Sgdr: Stochastic gradient descent with warm restarts.
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen, Hämäläinen (bib12) 2013; 7
pp. 1-7, Aug. 2017b.
(pp. 2958-2965). IEEE.
S. Ioffe & C. Szegedy (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib20) 2018; 15
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib33) 2017; 38
Chen, Teng, Chen, Pan, Geyer (bib8) 2024; 87
Berggren, Eimer (bib5) 2018; 30
T.M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cavigelli & L. Benini, (2020, October). EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In
(pp. 1251-1258).
Klimesch (bib19) 1999; 29
Ratcliffe, Shapiro, Staresina (bib28) 2022; 32
Zhang, Wang, Zhang, Chen (bib42) 2018; 27
Barachant, Bonnet, Congedo, Jutten (bib2) 2011; 59
Mitra (bib26) 2001
M. Ravanelli, & Y. Bengio, (2018, December). Speaker recognition from raw waveform with sincnet. In
Fuentemilla, Penny, Cashdollar, Bunzeck, Düzel (bib11) 2010; 20
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (bib14) 2012; 29
Shucard, Tekok-Kilic, Shiels, Shucard (bib35) 2009; 1254
Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, Berger, Barbaro, Knight (bib7) 2006; 313
R.N. Duan, J.Y. Zhu, & B.L. Lu, (2013, November). Differential entropy feature for EEG-based emotion classification. In
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov & L.C. Chen (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In
Rabiner, Schafer (bib27) 2010
Zhao, Tang, Si, Feng (bib44) 2019; 114
Lundqvist, Herman, Lansner (bib24) 2011; 23
pp. 1-8 Dec. 2013.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15
Hangzhou, China, 2019, pp. 5837-5841.
Kingma, Ba (bib18) 2014
Román-López, Caballero-Sánchez, Cisneros-Luna, Franco-Rodríguez, Méndez-Díaz, Prospéro-García, Ruiz-Contreras (bib30) 2019; 27
LeCun, Bengio, Hinton (bib21) 2015; 521
Jin, Xu, Daly, Zhao, Wang, Cichocki (bib17) 2024
(pp. 448-456).
Borra, Fantozzi, Magosso (bib6) 2020; 129
Berger, Griesmayr, Minarik (bib4) 2019; 10
F. Chollet, (2017). Xception: Deep learning with DepthWise convolutions. In
(pp. 81-84). IEEE.
Tian, Zhang, Xu, Zhang, Yang, Zheng, Shi (bib38) 2017; 11
Guo, Duan, Li, Paller (bib13) 2006; 1118
R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter and T. Ball, "Deep learning with convolutional neural networks for decoding and visualization of EEG pathology,"
Ratcliffe (10.1016/j.brainresbull.2025.111206_bib28) 2022; 32
Zhang (10.1016/j.brainresbull.2025.111206_bib42) 2018; 27
10.1016/j.brainresbull.2025.111206_bib41
Liu (10.1016/j.brainresbull.2025.111206_bib22) 2022; 70
Mitra (10.1016/j.brainresbull.2025.111206_bib26) 2001
Shucard (10.1016/j.brainresbull.2025.111206_bib35) 2009; 1254
10.1016/j.brainresbull.2025.111206_bib40
Gramfort (10.1016/j.brainresbull.2025.111206_bib12) 2013; 7
LeCun (10.1016/j.brainresbull.2025.111206_bib21) 2015; 521
Schirrmeister (10.1016/j.brainresbull.2025.111206_bib33) 2017; 38
Berger (10.1016/j.brainresbull.2025.111206_bib4) 2019; 10
Tian (10.1016/j.brainresbull.2025.111206_bib38) 2017; 11
Zhang (10.1016/j.brainresbull.2025.111206_bib43) 2019; 27
Chen (10.1016/j.brainresbull.2025.111206_bib8) 2024; 87
Fuentemilla (10.1016/j.brainresbull.2025.111206_bib11) 2010; 20
Barachant (10.1016/j.brainresbull.2025.111206_bib2) 2011; 59
10.1016/j.brainresbull.2025.111206_bib16
10.1016/j.brainresbull.2025.111206_bib36
10.1016/j.brainresbull.2025.111206_bib15
Klimesch (10.1016/j.brainresbull.2025.111206_bib19) 1999; 29
Zhao (10.1016/j.brainresbull.2025.111206_bib44) 2019; 114
10.1016/j.brainresbull.2025.111206_bib10
10.1016/j.brainresbull.2025.111206_bib32
Berggren (10.1016/j.brainresbull.2025.111206_bib5) 2018; 30
Barachant (10.1016/j.brainresbull.2025.111206_bib3) 2011; 59
Hinton (10.1016/j.brainresbull.2025.111206_bib14) 2012; 29
Lundqvist (10.1016/j.brainresbull.2025.111206_bib24) 2011; 23
10.1016/j.brainresbull.2025.111206_bib31
Schmidt (10.1016/j.brainresbull.2025.111206_bib34) 2019; 39
Borra (10.1016/j.brainresbull.2025.111206_bib6) 2020; 129
Axmacher (10.1016/j.brainresbull.2025.111206_bib1) 2010; 107
Canolty (10.1016/j.brainresbull.2025.111206_bib7) 2006; 313
Rabiner (10.1016/j.brainresbull.2025.111206_bib27) 2010
Lawhern (10.1016/j.brainresbull.2025.111206_bib20) 2018; 15
Lundqvist (10.1016/j.brainresbull.2025.111206_bib25) 2016; 90
Srivastava (10.1016/j.brainresbull.2025.111206_bib37) 2014; 15
Jin (10.1016/j.brainresbull.2025.111206_bib17) 2024
Tian (10.1016/j.brainresbull.2025.111206_bib39) 2019; 27
10.1016/j.brainresbull.2025.111206_bib29
10.1016/j.brainresbull.2025.111206_bib9
Guo (10.1016/j.brainresbull.2025.111206_bib13) 2006; 1118
Román-López (10.1016/j.brainresbull.2025.111206_bib30) 2019; 27
Kingma (10.1016/j.brainresbull.2025.111206_bib18) 2014
10.1016/j.brainresbull.2025.111206_bib23
References_xml – volume: 39
  start-page: 8231
  year: 2019
  end-page: 8238
  ident: bib34
  article-title: Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function
  publication-title: J. Neurosci.
– reference: (pp. 250-254). IEEE.
– volume: 27
  start-page: 31
  year: 2018
  end-page: 42
  ident: bib42
  article-title: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib14
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag.
– start-page: 1
  year: 2024
  end-page: 12
  ident: bib17
  article-title: MOCNN: a multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Trans. Cybern.
– reference: T. Wang, E. Dong, S. Du and C. Jia, A Shallow Convolutional Neural Network for Classifying MI-EEG,
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib33
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 87
  start-page: 1
  year: 2024
  end-page: 12
  ident: bib8
  article-title: Toward reliable signals decoding for electroencephalogram: a benchmark study to EEGNeX
  publication-title: Biomed. Signal Process. Control
– reference: R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter and T. Ball, "Deep learning with convolutional neural networks for decoding and visualization of EEG pathology,"
– reference: M. Ravanelli, & Y. Bengio, (2018, December). Speaker recognition from raw waveform with sincnet. In
– volume: 90
  start-page: 152
  year: 2016
  end-page: 164
  ident: bib25
  article-title: Gamma and beta bursts underlie working memory
  publication-title: Neuron
– volume: 11
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib38
  article-title: Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task
  publication-title: Front. Hum. Neurosci.
– year: 2001
  ident: bib26
  article-title: Digital signal processing: a computer-based approach
– reference: F. Chollet, (2017). Xception: Deep learning with DepthWise convolutions. In
– volume: 313
  start-page: 1626
  year: 2006
  end-page: 1628
  ident: bib7
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
– start-page: 1
  year: 2014
  end-page: 13
  ident: bib18
  article-title: Adam: A Method for Stochastic Optimization
  publication-title: CoRR
– volume: 32
  start-page: 2121
  year: 2022
  end-page: 2129
  ident: bib28
  article-title: Fronto-medial theta coordinates posterior maintenance of working memory content
  publication-title: Curr. Biol.
– reference: T.M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cavigelli & L. Benini, (2020, October). EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In
– volume: 20
  start-page: 606
  year: 2010
  end-page: 612
  ident: bib11
  article-title: Theta-coupled periodic replay in working memory
  publication-title: Curr. Biol.
– reference: (pp. 448-456).
– reference: K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps.
– volume: 70
  start-page: 436
  year: 2022
  end-page: 445
  ident: bib22
  article-title: FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: bib19
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
– year: 2010
  ident: bib27
  article-title: Theory and applications of digital speech processing
– reference: B. Wan, Y. Liu, D. Ming, H. Qi, Y. Wang, & R. Zhang, (2009, May). Feature recognition of multi-class imaginary movements in brain-computer interface. In
– volume: 59
  start-page: 920
  year: 2011
  end-page: 928
  ident: bib3
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– reference: S. Ioffe & C. Szegedy (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
– volume: 59
  start-page: 920
  year: 2011
  end-page: 928
  ident: bib2
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  year: 2019
  ident: bib4
  article-title: Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory
  publication-title: Nat. Commun.
– reference: , pp. 1-16 Aug. 2016.
– reference: R.N. Duan, J.Y. Zhu, & B.L. Lu, (2013, November). Differential entropy feature for EEG-based emotion classification. In
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib21
  article-title: Deep learning
  publication-title: Nature
– reference: (pp. 1021-1028). IEEE.
– reference: (pp. 81-84). IEEE.
– volume: 23
  start-page: 3008
  year: 2011
  end-page: 3020
  ident: bib24
  article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model
  publication-title: J. Cogn. Neurosci.
– volume: 1118
  start-page: 142
  year: 2006
  end-page: 154
  ident: bib13
  article-title: Distinguishing source memory and item memory: brain potentials at encoding and retrieval
  publication-title: Brain Res.
– volume: 15
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib20
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– reference: (pp. 4510-4520).
– volume: 107
  start-page: 3228
  year: 2010
  end-page: 3233
  ident: bib1
  article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus
  publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.
– volume: 129
  start-page: 55
  year: 2020
  end-page: 74
  ident: bib6
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination
  publication-title: Neural Netw.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib12
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neuroinf.
– reference: (pp. 2958-2965). IEEE.
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov & L.C. Chen (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In
– volume: 27
  start-page: 1149
  year: 2019
  end-page: 1159
  ident: bib43
  article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: pp. 1-7, Aug. 2017b.
– volume: 30
  start-page: 1902
  year: 2018
  end-page: 1915
  ident: bib5
  article-title: Visual working memory load disrupts template-guided attentional selection during visual search
  publication-title: J. Cogn. Neurosci.
– volume: 114
  start-page: 67
  year: 2019
  end-page: 77
  ident: bib44
  article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data
  publication-title: Neural Netw.
– reference: , Hangzhou, China, 2019, pp. 5837-5841.
– reference: (pp. 1251-1258).
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 1254
  start-page: 49
  year: 2009
  end-page: 62
  ident: bib35
  article-title: Stage and load effects on ERP topography during verbal and spatial working memory
  publication-title: Brain Res.
– reference: , pp. 1-8 Dec. 2013.
– volume: 27
  start-page: 1985
  year: 2019
  end-page: 1993
  ident: bib39
  article-title: A fusion feature for enhancing the performance of classification in working memory load with single-trial detection
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  start-page: 1063
  year: 2019
  end-page: 1078
  ident: bib30
  article-title: Brain electrical activity from encoding to retrieval while maintaining and manipulating information in working memory
  publication-title: Memory
– reference: I. Loshchilov and F. Hutter, 2016. Sgdr: Stochastic gradient descent with warm restarts.
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.brainresbull.2025.111206_bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 1149
  issue: 6
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib43
  article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2913400
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.brainresbull.2025.111206_bib12
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neuroinf.
– ident: 10.1016/j.brainresbull.2025.111206_bib16
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.brainresbull.2025.111206_bib33
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 27
  start-page: 31
  issue: 1
  year: 2018
  ident: 10.1016/j.brainresbull.2025.111206_bib42
  article-title: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2884641
– volume: 59
  start-page: 920
  issue: 4
  year: 2011
  ident: 10.1016/j.brainresbull.2025.111206_bib3
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 107
  start-page: 3228
  issue: 7
  year: 2010
  ident: 10.1016/j.brainresbull.2025.111206_bib1
  article-title: Cross-frequency coupling supports multi-item working memory in the human hippocampus
  publication-title: Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.
  doi: 10.1073/pnas.0911531107
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.brainresbull.2025.111206_bib21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.brainresbull.2025.111206_bib9
  doi: 10.1109/CVPR.2017.195
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.brainresbull.2025.111206_bib38
  article-title: Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00437
– volume: 32
  start-page: 2121
  issue: 10
  year: 2022
  ident: 10.1016/j.brainresbull.2025.111206_bib28
  article-title: Fronto-medial theta coordinates posterior maintenance of working memory content
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2022.03.045
– start-page: 1
  year: 2014
  ident: 10.1016/j.brainresbull.2025.111206_bib18
  article-title: Adam: A Method for Stochastic Optimization
  publication-title: CoRR
– volume: 87
  start-page: 1
  year: 2024
  ident: 10.1016/j.brainresbull.2025.111206_bib8
  article-title: Toward reliable signals decoding for electroencephalogram: a benchmark study to EEGNeX
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105475
– volume: 15
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.brainresbull.2025.111206_bib20
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: 10.1016/j.brainresbull.2025.111206_bib36
– ident: 10.1016/j.brainresbull.2025.111206_bib32
  doi: 10.1109/SPMB.2017.8257015
– volume: 1254
  start-page: 49
  year: 2009
  ident: 10.1016/j.brainresbull.2025.111206_bib35
  article-title: Stage and load effects on ERP topography during verbal and spatial working memory
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.11.063
– volume: 114
  start-page: 67
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib44
  article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.02.009
– volume: 39
  start-page: 8231
  issue: 42
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib34
  article-title: Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1163-19.2019
– volume: 30
  start-page: 1902
  issue: 12
  year: 2018
  ident: 10.1016/j.brainresbull.2025.111206_bib5
  article-title: Visual working memory load disrupts template-guided attentional selection during visual search
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01324
– volume: 70
  start-page: 436
  issue: 2
  year: 2022
  ident: 10.1016/j.brainresbull.2025.111206_bib22
  article-title: FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3193277
– volume: 20
  start-page: 606
  issue: 7
  year: 2010
  ident: 10.1016/j.brainresbull.2025.111206_bib11
  article-title: Theta-coupled periodic replay in working memory
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.01.057
– ident: 10.1016/j.brainresbull.2025.111206_bib23
– ident: 10.1016/j.brainresbull.2025.111206_bib31
  doi: 10.1109/CVPR.2018.00474
– volume: 29
  start-page: 169
  issue: 2-3
  year: 1999
  ident: 10.1016/j.brainresbull.2025.111206_bib19
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– year: 2001
  ident: 10.1016/j.brainresbull.2025.111206_bib26
– ident: 10.1016/j.brainresbull.2025.111206_bib15
  doi: 10.1109/SMC42975.2020.9283028
– start-page: 1
  year: 2024
  ident: 10.1016/j.brainresbull.2025.111206_bib17
  article-title: MOCNN: a multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Trans. Cybern.
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib4
  article-title: Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12057-0
– ident: 10.1016/j.brainresbull.2025.111206_bib40
  doi: 10.1109/VECIMS.2009.5068903
– volume: 59
  start-page: 920
  issue: 4
  year: 2011
  ident: 10.1016/j.brainresbull.2025.111206_bib2
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 313
  start-page: 1626
  issue: 5793
  year: 2006
  ident: 10.1016/j.brainresbull.2025.111206_bib7
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
  doi: 10.1126/science.1128115
– volume: 23
  start-page: 3008
  issue: 10
  year: 2011
  ident: 10.1016/j.brainresbull.2025.111206_bib24
  article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00029
– ident: 10.1016/j.brainresbull.2025.111206_bib10
  doi: 10.1109/NER.2013.6695876
– year: 2010
  ident: 10.1016/j.brainresbull.2025.111206_bib27
– volume: 129
  start-page: 55
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111206_bib6
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.032
– ident: 10.1016/j.brainresbull.2025.111206_bib29
  doi: 10.1109/SLT.2018.8639585
– volume: 27
  start-page: 1985
  issue: 10
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib39
  article-title: A fusion feature for enhancing the performance of classification in working memory load with single-trial detection
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2936997
– volume: 1118
  start-page: 142
  issue: 1
  year: 2006
  ident: 10.1016/j.brainresbull.2025.111206_bib13
  article-title: Distinguishing source memory and item memory: brain potentials at encoding and retrieval
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.08.034
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.brainresbull.2025.111206_bib14
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 90
  start-page: 152
  issue: 1
  year: 2016
  ident: 10.1016/j.brainresbull.2025.111206_bib25
  article-title: Gamma and beta bursts underlie working memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.028
– volume: 27
  start-page: 1063
  issue: 8
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111206_bib30
  article-title: Brain electrical activity from encoding to retrieval while maintaining and manipulating information in working memory
  publication-title: Memory
  doi: 10.1080/09658211.2019.1620287
– ident: 10.1016/j.brainresbull.2025.111206_bib41
  doi: 10.1109/CAC48633.2019.8996981
SSID ssj0006856
Score 2.443846
Snippet Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources....
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 111206
SubjectTerms Brain - physiology
Cognition - physiology
Cross-frequency coupling
Delayed matching-to-sample
EEG decoding
Electroencephalography - methods
Humans
Interpretability
Memory, Short-Term - physiology
Models, Neurological
Neural Networks, Computer
Sinc convolution layer
Working memory
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp15QW0rZPpArVdzcTeJHHFUcKAKhSuUCSNyMX0FblQRtdw974bcz4zgLHCoh9RZbduLY45lv7M8eQr5y5xSv6oL5uhRMtE3BrIiChVDIwvnGqYBLA7_O1Oml-HklrzbI0XgWBmmVWfcPOj1p65wzzb05vZvNpuegexGeoBHH0HJ44FeIGqX82_0jzUNpmfcrS4alx4tHE8fLYRgGcGsduHvgK1YSNUiF0Y-eGKl0l_8zW_UvLJps0slrspXBJD0c2vuGbMTuLdk-7MCRvl3RfZronWndfJtc52Vxdovc2hX909tAAzifaLxoCohDZx3uu8dA3YqmRtPMLuo7iuYuUHhITWbtfOBgr6DIEk_13rwjlyfHF0enLIdXYB56bMFizQHutNJ5Lm0jpNXCaoAb2kFaA7Lwta8B1Xplo_ClagIXlY1V3dYy2qrkO2Sz67u4Syiuprax8CoI0Ly-1Ba3W0sL2iKWttUTwsf-NHfDLRpmpJf9Nk9HweAomGEUJuQHdv26Bt6EnTL6-Y3JomB4Yb0so5ZeNvBR14B_F8Hz1lqA-Xd-Qr6PA2fGw6agHuFFsxc14WBd-5lYvrj-l1FWDMxb3IyxXeyXfw0Hx7lRWikxIe8HIVr_KG80wtziw39-_SN5hamBZP6JbC7my_gZMNTC7aVJ8gDeQBsg
  priority: 102
  providerName: Elsevier
Title Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0361923025000188
https://dx.doi.org/10.1016/j.brainresbull.2025.111206
https://www.ncbi.nlm.nih.gov/pubmed/39824230
https://www.proquest.com/docview/3156968664
https://doaj.org/article/30ac51e85c59460b9148e713884eedbc
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagvXBBQFtYHitXQtxcnPgRR4jDgqgWED21Um_Gr6BWbbYqu4e98NuZsZPVckD0wC2J4mgyHs98Mx7PEPJaeK9F3XAWmkoy2bWcOZkki5Er7kPrdcTQwLcTPT-TX87V-VarL8wJK-WBC-PeCu6CqpJRQbVSc98Cfk_gWRkjQb37gNoXbN7oTA06WBulxxKjOZvLY8MFcGA9OHbgFdYKdUWNfY62zFGu2v-HVfob6szW5_gReTjARjor5D4m91L_hOzNenCZr9f0Dc2JnDlCvke-DwFwdo1ZtGt6tXCRRnAz0UzR3PqGXvS4w54i9WuaiaZDHtGip2jYIoWLTDLrbku29RpeWeH53R_75Oz40-nHORsaKbCgOF-y1AgANp3yQSjXSuWMdAaAhfFwbwBDhCY0gF-DdkmGSrdRyNqluukalVxdiQOy0y_69IxQjJt2iQcdJejYUBmHG6uVA72QKteZCREjP-1NqZdhx0SyS7s9CxZnwZZZmJAPyPrNCKx5nR-AJNhBEuy_JGFC3o0TZ8djpaAI4UMXdyLh_Wb0AD4KqLjz-MNRViysUNx2cX1arH5aAS5yq43WckKeFiHa_KhoDQJa_vx_MOAFeYAElZzyl2RnebtKrwAyLf2U3D_6VU3J7uzz1_nJNK-V32_LGBc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAXBBTolpeREDdrk_gRR4jDUlFtabsXWqk3YztOtYgm1bJ72H_fGcdZtQekStwSJ44dP775xh7PEPKJO6d4UWbMl7lgoqkyZkUQrK4zmTlfOVXj0sDZXM0uxI9LeblDDoezMGhWmbC_x_SI1illklpzcrNYTH4C9iI9QSGOoeX0I7KL3qnkiOxOj09m8y0gKy3TlmXOMMPgezSaeTmMxACarQOND9TFQiKIFBgA6Y6ciu7874mrf9HRKJaOnpGniU_SaV_l52QntC_I3rQFXfp6Qz_TaOEZl873yK-0Ms6u0bx2Q_90tqY16J8ov2iMiUMXLW69h5q6DY2VpsnAqGspSryawkWsMmuWvRn2Bl5Z48Heq5fk4uj7-eGMpQgLzEOjrVgoOTCeRjrPpa2EtFpYDYxDO7jXQC586Usgtl7ZIHyuqpqLwoaibEoZbJHzV2TUdm3YJxQXVJuQeVULAF-fa4s7rrkFwAi5bfSY8KE9zU3vSMMMFma_zd1eMNgLpu-FMfmGTb_Ngc6wY0K3vDJpNBieWS_zoKWXFRTqKlDxAijfWgtgAM6PyZeh48xw3hQQEj60eFAVvm5z3xuZD87_cRgrBqYu7sfYNnTrv4aD7lwprZQYk9f9INr-KK80Mt3s4D9L_0Aez87PTs3p8fzkDXmCT3qb87dktFquwzugVCv3Pk2ZW2g6H18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working-memory+load+decoding+model+inspired+by+brain+cognition+based+on+cross-frequency+coupling&rft.jtitle=Brain+research+bulletin&rft.au=Zhang%2C+Jing&rft.au=Tan%2C+Tingyi&rft.au=Jiang%2C+Yuhao&rft.au=Tan%2C+Congming&rft.date=2025-02-01&rft.eissn=1873-2747&rft.volume=221&rft.spage=111206&rft_id=info:doi/10.1016%2Fj.brainresbull.2025.111206&rft_id=info%3Apmid%2F39824230&rft.externalDocID=39824230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-9230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-9230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-9230&client=summon