Genetic and Biochemical Characterization of a 2,4,6-Trichlorophenol Degradation Pathway in Ralstonia eutropha JMP134

Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 184; no. 13; pp. 3492 - 3500
Main Authors Louie, Tai Man, Webster, Christopher M., Xun, Luying
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
AbstractList Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH 2 )-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster ( tcpABC ) from JMP134 by using primers designed from conserved regions of FADH 2 -utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA , tcpB , and tcpC encoded an FADH 2 -utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC , and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH 2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate.
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH sub(2))-utilizing monooxygenase converted 2,4,6- TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH sub(2)-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH sub(2)-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH sub(2) was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Author Tai Man Louie
Christopher M. Webster
Luying Xun
AuthorAffiliation School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234
AuthorAffiliation_xml – name: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234
Author_xml – sequence: 1
  givenname: Tai Man
  surname: Louie
  fullname: Louie, Tai Man
  organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234
– sequence: 2
  givenname: Christopher M.
  surname: Webster
  fullname: Webster, Christopher M.
  organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234
– sequence: 3
  givenname: Luying
  surname: Xun
  fullname: Xun, Luying
  organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12057943$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNPCKyCLBatO8G0cewESCVCIiqhQWVuO5yTjaGKnHoeqPD2eJkDpBlaWfL5z_f8TdBRiAIQwJWNKmXo1n46pEmPKx1xoVvGakDEjhD1CI0rkpFKKsyM0Kj-00lTzY3TS92tCqBA1e4KOKSP1RAs-QvkcAmTvsA0NnvroWth4Zzs8a22yLkPyP2z2MeC4xBazM3Emq6vkXdvFFLcthNjhd7BKttljlza3N_YW-4C_2q7PMXiLYZcH2OL550vKxVP0eFli8OzwnqJvH95fzT5WF1_OP83eXlSuLJQrkAtwWinJiFaCgWSWClVTLZeWN7oG6pzURHNVjtJwveBSNrJRIFwDhEp-il7v6253iw00DkJOtjPb5Dc23Zpovfk7EnxrVvG7obymdV3yXx7yU7zeQZ_NxvcOus4GiLveTKgigij-T7CIVSt2N9GLB-A67lIoRzCMTYgsug1tn98f-_e8v1QrgNoDLsW-T7D8gxAzGMTMp0PPsocZDGIGg5jBICX1zYNU5_OdcuUAvvufAocNWr9qb3wCY_uNWS_u4_wnQzDLsg
CODEN JOBAAY
CitedBy_id crossref_primary_10_1128_AEM_01820_17
crossref_primary_10_1128_AEM_71_11_6538_6544_2005
crossref_primary_10_1074_jbc_M109_056135
crossref_primary_10_1128_JB_01697_07
crossref_primary_10_1021_acs_est_7b06647
crossref_primary_10_1016_j_envres_2021_112494
crossref_primary_10_1007_s10532_015_9743_4
crossref_primary_10_1016_j_jhazmat_2018_08_063
crossref_primary_10_1007_s10532_016_9762_9
crossref_primary_10_1007_s11274_007_9437_0
crossref_primary_10_1002_adsc_200505029
crossref_primary_10_1074_jbc_M500666200
crossref_primary_10_1584_jpestics_D17_089
crossref_primary_10_1016_j_watres_2021_116862
crossref_primary_10_1080_03601230600964159
crossref_primary_10_1007_s11104_012_1444_8
crossref_primary_10_1007_s00284_010_9640_3
crossref_primary_10_1080_03601234_2014_929865
crossref_primary_10_1128_AEM_01817_13
crossref_primary_10_1128_AEM_03042_15
crossref_primary_10_1016_j_chemosphere_2011_04_009
crossref_primary_10_1016_j_ibiod_2019_104811
crossref_primary_10_1128_genomeA_00202_12
crossref_primary_10_1016_j_ibiod_2015_12_006
crossref_primary_10_1111_j_1462_2920_2007_01370_x
crossref_primary_10_1128_AEM_02467_17
crossref_primary_10_1021_acs_estlett_5b00254
crossref_primary_10_1007_s10532_018_9860_y
crossref_primary_10_1016_j_envres_2021_111216
crossref_primary_10_1007_s00253_012_4139_4
crossref_primary_10_1111_j_1574_6976_2008_00122_x
crossref_primary_10_1039_C8RA01643G
crossref_primary_10_1021_acs_jafc_9b00173
crossref_primary_10_3390_ijms151120736
crossref_primary_10_1007_s12010_021_03645_2
crossref_primary_10_1074_jbc_M116_774448
crossref_primary_10_1007_s10532_006_9090_6
crossref_primary_10_1134_S0003683822060175
crossref_primary_10_3390_ijms13089769
crossref_primary_10_1128_JB_01849_06
crossref_primary_10_1016_j_jclepro_2017_12_212
crossref_primary_10_1007_s10532_013_9642_5
crossref_primary_10_1007_s11274_008_9923_z
crossref_primary_10_1128_AEM_01610_17
crossref_primary_10_1016_j_jhazmat_2007_05_082
crossref_primary_10_1016_j_jenvman_2023_118254
crossref_primary_10_1128_AEM_02584_06
crossref_primary_10_1016_j_bbaexp_2004_08_003
crossref_primary_10_1016_j_biortech_2008_12_009
crossref_primary_10_1021_bi7006614
crossref_primary_10_1007_s10532_009_9313_8
crossref_primary_10_1128_AEM_01494_06
crossref_primary_10_3390_microorganisms12020389
crossref_primary_10_1016_j_jhazmat_2011_03_029
crossref_primary_10_1016_j_envint_2024_109074
crossref_primary_10_1007_s13205_016_0511_x
crossref_primary_10_1016_j_biortech_2008_03_071
crossref_primary_10_1016_j_ecoenv_2021_112084
crossref_primary_10_3109_03602532_2011_552909
crossref_primary_10_1264_jsme2_20_160
crossref_primary_10_1002_pro_3525
crossref_primary_10_1080_19443994_2013_792139
crossref_primary_10_1080_09593330_2014_1002864
crossref_primary_10_1016_j_envpol_2019_113703
crossref_primary_10_1074_jbc_M512385200
crossref_primary_10_3390_biology7030042
crossref_primary_10_1007_s00253_019_09994_7
crossref_primary_10_1128_JB_186_15_4894_4902_2004
crossref_primary_10_1128_AEM_69_12_7108_7115_2003
crossref_primary_10_1007_s11783_017_0959_x
crossref_primary_10_1128_JB_01944_07
crossref_primary_10_1590_1678_992x_2017_0071
crossref_primary_10_1007_s00253_010_2666_4
crossref_primary_10_1080_10889868_2012_751959
crossref_primary_10_1016_j_jbiosc_2011_01_016
crossref_primary_10_1111_1748_5967_12100
crossref_primary_10_1007_s00253_005_0232_2
crossref_primary_10_1016_j_jhazmat_2019_121787
crossref_primary_10_1016_j_biortech_2013_10_088
crossref_primary_10_1016_j_jenvman_2018_04_022
crossref_primary_10_1016_j_jhazmat_2013_06_030
crossref_primary_10_1007_s12257_016_0263_9
crossref_primary_10_1128_AEM_00171_09
crossref_primary_10_1016_j_soilbio_2005_02_001
crossref_primary_10_1155_2014_157974
crossref_primary_10_1016_j_biortech_2011_04_057
crossref_primary_10_1016_j_jhazmat_2023_132424
crossref_primary_10_1007_s10532_011_9476_y
crossref_primary_10_1007_s00253_009_2251_x
crossref_primary_10_1074_jbc_M206339200
crossref_primary_10_1021_bi050615e
crossref_primary_10_1007_s11306_007_0093_z
crossref_primary_10_1074_jbc_M312072200
crossref_primary_10_1016_j_copbio_2015_03_009
crossref_primary_10_1139_cjm_2013_0713
crossref_primary_10_1007_s00253_011_3696_2
crossref_primary_10_1007_s00253_006_0716_8
crossref_primary_10_1016_j_biortech_2009_10_080
crossref_primary_10_1007_s12038_016_9619_8
crossref_primary_10_1371_journal_pone_0142332
crossref_primary_10_1590_S0103_90162012000400003
crossref_primary_10_1016_j_copbio_2004_03_008
crossref_primary_10_1007_s40710_018_0333_4
crossref_primary_10_1128_JB_185_9_2786_2792_2003
crossref_primary_10_1016_j_scitotenv_2003_09_015
Cites_doi 10.1128/JB.182.10.2869-2878.2000
10.1016/0003-2697(76)90527-3
10.1006/bbrc.1999.1805
10.1128/jb.178.9.2645-2649.1996
10.1016/S0021-9258(17)46671-3
10.1038/227680a0
10.1128/AEM.67.2.688-695.2001
10.1002/1521-4028(200008)40:4<243::AID-JOBM243>3.0.CO;2-D
10.1021/es00009a015
10.1128/AEM.66.4.1305-1310.2000
10.1271/bbb.63.859
10.1021/jf60165a037
10.1128/jb.178.1.111-120.1996
10.1099/00207713-46-1-23
10.1128/aem.61.7.2453-2460.1995
10.1128/AEM.66.2.481-486.2000
10.1128/jb.179.4.1112-1116.1997
10.1016/S0021-9258(18)45356-2
10.1128/JB.183.1.318-327.2001
10.1128/aem.61.9.3499-3502.1995
10.1111/j.1574-6968.1995.tb07449.x
10.1093/nar/30.1.276
10.1007/s007260170057
10.1128/aem.62.11.4276-4279.1996
10.1016/S0021-9258(17)31719-2
10.1128/JB.181.11.3452-3461.1999
10.1016/0014-5793(94)00528-1
10.1007/s002530050680
10.1128/JB.182.3.627-636.2000
10.1128/AEM.64.6.2086-2093.1998
10.1021/bi981841+
10.1128/jb.177.1.229-234.1995
10.1128/aem.58.4.1276-1283.1992
10.1128/aem.46.5.1182-1186.1983
10.1074/jbc.274.38.26639
10.1128/AEM.65.11.4987-4994.1999
10.1093/nar/22.22.4673
10.1016/0922-338X(95)94198-Z
10.1128/aem.57.7.1920-1928.1991
10.1128/jb.171.11.5915-5921.1989
10.1021/es00155a012
10.1016/S0014-5793(99)01305-8
10.1128/JB.182.4.1144-1149.2000
10.1128/jb.179.21.6729-6735.1997
10.1016/S0045-6535(00)00090-4
10.1128/jb.178.7.2030-2036.1996
10.1128/JB.180.17.4667-4675.1998
ContentType Journal Article
Copyright Copyright American Society for Microbiology Jul 2002
Copyright © 2002, American Society for Microbiology 2002
Copyright_xml – notice: Copyright American Society for Microbiology Jul 2002
– notice: Copyright © 2002, American Society for Microbiology 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.184.13.3492-3500.2002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef

Genetics Abstracts
MEDLINE
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1067-8832
1098-5530
EndPage 3500
ExternalDocumentID PMC135155
128904441
12057943
10_1128_JB_184_13_3492_3500_2002
jb_184_13_3492
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
ADXHL
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
UCJ
VQA
YIN
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c500t-e6bec9886209842e62a1485196fa3d95e1cc690938112d39b366d6d8e4cde0163
ISSN 0021-9193
IngestDate Thu Aug 21 13:40:14 EDT 2025
Fri Jul 11 04:35:31 EDT 2025
Fri Jul 11 15:36:02 EDT 2025
Mon Jun 30 08:38:18 EDT 2025
Wed Feb 19 02:34:05 EST 2025
Tue Jul 01 02:44:39 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Wed May 18 15:54:43 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-e6bec9886209842e62a1485196fa3d95e1cc690938112d39b366d6d8e4cde0163
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: School of Molecular Biosciences, Science Hall 301, Washington State University, Pullman, WA 99164-4234. Phone: (509) 335-2787. Fax: (509) 335-1907. E-mail: xun@mail.wsu.edu
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/135155
PMID 12057943
PQID 227068325
PQPubID 40724
PageCount 9
ParticipantIDs crossref_primary_10_1128_JB_184_13_3492_3500_2002
highwire_asm_jb_184_13_3492
proquest_miscellaneous_71804083
pubmedcentral_primary_oai_pubmedcentral_nih_gov_135155
crossref_citationtrail_10_1128_JB_184_13_3492_3500_2002
pubmed_primary_12057943
proquest_miscellaneous_18458216
proquest_journals_227068325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-07-01
PublicationDateYYYYMMDD 2002-07-01
PublicationDate_xml – month: 07
  year: 2002
  text: 2002-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2002
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
(e_1_3_2_11_2) 1995; 127
e_1_3_2_28_2
(e_1_3_2_22_2) 1994; 347
(e_1_3_2_6_2) 1979; 69
(e_1_3_2_18_2) 1987; 262
e_1_3_2_41_2
e_1_3_2_20_2
(e_1_3_2_15_2) 1999; 274
e_1_3_2_24_2
e_1_3_2_47_2
(e_1_3_2_30_2) 1998; 37
e_1_3_2_9_2
(e_1_3_2_17_2) 2001; 20
(e_1_3_2_43_2) 1995; 80
(e_1_3_2_10_2) 1996; 46
(e_1_3_2_49_2) 1999; 266
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_52_2
(e_1_3_2_3_2) 1999; 100
e_1_3_2_14_2
(e_1_3_2_16_2) 1978; 27
e_1_3_2_35_2
e_1_3_2_50_2
(e_1_3_2_2_2) 1995; 29
(e_1_3_2_45_2) 1969; 17
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
(e_1_3_2_40_2) 1994; 269
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
(e_1_3_2_7_2) 1996; 45
(e_1_3_2_36_2) 1999; 63
(e_1_3_2_5_2) 2002; 30
e_1_3_2_8_2
e_1_3_2_19_2
(e_1_3_2_25_2) 1987; 21
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_34_2
(e_1_3_2_37_2) 1999; 459
e_1_3_2_4_2
e_1_3_2_13_2
(e_1_3_2_12_2) 1993; 268
(e_1_3_2_46_2) 2000; 41
(e_1_3_2_33_2) 1994; 26
(e_1_3_2_38_2) 2000; 40
References_xml – ident: e_1_3_2_23_2
  doi: 10.1128/JB.182.10.2869-2878.2000
– ident: e_1_3_2_9_2
  doi: 10.1016/0003-2697(76)90527-3
– volume: 266
  start-page: 322
  year: 1999
  ident: e_1_3_2_49_2
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.1805
– ident: e_1_3_2_48_2
  doi: 10.1128/jb.178.9.2645-2649.1996
– volume: 268
  start-page: 18604
  year: 1993
  ident: e_1_3_2_12_2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)46671-3
– ident: e_1_3_2_28_2
  doi: 10.1038/227680a0
– ident: e_1_3_2_8_2
  doi: 10.1128/AEM.67.2.688-695.2001
– volume: 40
  start-page: 243
  year: 2000
  ident: e_1_3_2_38_2
  publication-title: J. Basic Microbiol.
  doi: 10.1002/1521-4028(200008)40:4<243::AID-JOBM243>3.0.CO;2-D
– volume: 29
  start-page: 2252
  year: 1995
  ident: e_1_3_2_2_2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00009a015
– ident: e_1_3_2_42_2
  doi: 10.1128/AEM.66.4.1305-1310.2000
– volume: 26
  start-page: 309
  year: 1994
  ident: e_1_3_2_33_2
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 63
  start-page: 859
  year: 1999
  ident: e_1_3_2_36_2
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.63.859
– volume: 17
  start-page: 1021
  year: 1969
  ident: e_1_3_2_45_2
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60165a037
– ident: e_1_3_2_39_2
  doi: 10.1128/jb.178.1.111-120.1996
– ident: e_1_3_2_41_2
– volume: 69
  start-page: 1022
  year: 1979
  ident: e_1_3_2_6_2
  publication-title: Phytopathology
– volume: 46
  start-page: 23
  year: 1996
  ident: e_1_3_2_10_2
  publication-title: Int. J. Syst. Bacteriol.
  doi: 10.1099/00207713-46-1-23
– ident: e_1_3_2_29_2
  doi: 10.1128/aem.61.7.2453-2460.1995
– ident: e_1_3_2_50_2
  doi: 10.1128/AEM.66.2.481-486.2000
– ident: e_1_3_2_47_2
  doi: 10.1128/jb.179.4.1112-1116.1997
– volume: 262
  start-page: 12325
  year: 1987
  ident: e_1_3_2_18_2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45356-2
– ident: e_1_3_2_14_2
  doi: 10.1128/JB.183.1.318-327.2001
– ident: e_1_3_2_51_2
  doi: 10.1128/aem.61.9.3499-3502.1995
– volume: 127
  start-page: 51
  year: 1995
  ident: e_1_3_2_11_2
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1995.tb07449.x
– volume: 30
  start-page: 276
  year: 2002
  ident: e_1_3_2_5_2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.276
– volume: 20
  start-page: 163
  year: 2001
  ident: e_1_3_2_17_2
  publication-title: Amino Acids
  doi: 10.1007/s007260170057
– ident: e_1_3_2_13_2
  doi: 10.1128/aem.62.11.4276-4279.1996
– volume: 269
  start-page: 22823
  year: 1994
  ident: e_1_3_2_40_2
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31719-2
– ident: e_1_3_2_4_2
  doi: 10.1128/JB.181.11.3452-3461.1999
– volume: 347
  start-page: 163
  year: 1994
  ident: e_1_3_2_22_2
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(94)00528-1
– volume: 45
  start-page: 257
  year: 1996
  ident: e_1_3_2_7_2
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530050680
– ident: e_1_3_2_19_2
  doi: 10.1128/JB.182.3.627-636.2000
– ident: e_1_3_2_21_2
  doi: 10.1128/AEM.64.6.2086-2093.1998
– volume: 37
  start-page: 14623
  year: 1998
  ident: e_1_3_2_30_2
  publication-title: Biochemistry
  doi: 10.1021/bi981841+
– ident: e_1_3_2_53_2
  doi: 10.1128/jb.177.1.229-234.1995
– ident: e_1_3_2_26_2
  doi: 10.1128/aem.58.4.1276-1283.1992
– ident: e_1_3_2_24_2
  doi: 10.1128/aem.46.5.1182-1186.1983
– volume: 274
  start-page: 26639
  year: 1999
  ident: e_1_3_2_15_2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.26639
– ident: e_1_3_2_34_2
  doi: 10.1128/AEM.65.11.4987-4994.1999
– ident: e_1_3_2_44_2
  doi: 10.1093/nar/22.22.4673
– volume: 27
  start-page: 39
  year: 1978
  ident: e_1_3_2_16_2
  publication-title: Ecol. Bull.
– volume: 80
  start-page: 318
  year: 1995
  ident: e_1_3_2_43_2
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/0922-338X(95)94198-Z
– ident: e_1_3_2_31_2
  doi: 10.1128/aem.57.7.1920-1928.1991
– ident: e_1_3_2_54_2
  doi: 10.1128/jb.171.11.5915-5921.1989
– volume: 21
  start-page: 96
  year: 1987
  ident: e_1_3_2_25_2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00155a012
– ident: e_1_3_2_27_2
– volume: 459
  start-page: 395
  year: 1999
  ident: e_1_3_2_37_2
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)01305-8
– ident: e_1_3_2_20_2
  doi: 10.1128/JB.182.4.1144-1149.2000
– volume: 100
  start-page: 73
  year: 1999
  ident: e_1_3_2_3_2
  publication-title: Microbios
– ident: e_1_3_2_32_2
  doi: 10.1128/jb.179.21.6729-6735.1997
– volume: 41
  start-page: 1873
  year: 2000
  ident: e_1_3_2_46_2
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00090-4
– ident: e_1_3_2_35_2
  doi: 10.1128/jb.178.7.2030-2036.1996
– ident: e_1_3_2_52_2
  doi: 10.1128/JB.180.17.4667-4675.1998
SSID ssj0014452
Score 2.0748293
Snippet Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP)....
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP)....
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3492
SubjectTerms Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biodegradation, Environmental
Chlorophenols - metabolism
Cloning, Molecular
Cupriavidus necator - genetics
Cupriavidus necator - metabolism
Escherichia coli - genetics
Flavin-Adenine Dinucleotide - analogs & derivatives
Flavin-Adenine Dinucleotide - metabolism
FMN Reductase
Genetics
Maleates - metabolism
Multigene Family
Mutation
NADH, NADPH Oxidoreductases - genetics
NADH, NADPH Oxidoreductases - metabolism
Oxygenases - genetics
Oxygenases - metabolism
Physiology and Metabolism
Pollutants
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Title Genetic and Biochemical Characterization of a 2,4,6-Trichlorophenol Degradation Pathway in Ralstonia eutropha JMP134
URI http://jb.asm.org/content/184/13/3492.abstract
https://www.ncbi.nlm.nih.gov/pubmed/12057943
https://www.proquest.com/docview/227068325
https://www.proquest.com/docview/18458216
https://www.proquest.com/docview/71804083
https://pubmed.ncbi.nlm.nih.gov/PMC135155
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDehPPbALXWId70b-0gioIoIqlAq5Wbt2mvFiDoVsYXa38cPY8ZrO5s2lUoPsSJ716_5PA975htCPvjCaG2M8EaJZl5gwswDK2c8mQmeJFnKEx9rh-ff5fFpMFuKZa_318laqko9TC731pXcRaqwDuSKVbL_Idlup7AC_oN8YQkShuWtZIyc0S3h6iTH3le2-H_asTBfdh6hGjC4nQH8pLcA5beCQB05BYo16D1kjLDNlZCzf_VH1dWAP-ACwDXM1cBUJQ5Wg9n8xG9eC173aLU95s6L-m_ryn4BWagcc22cL0FtTxCH32AwH7YDlpUtiqguWuPavpvY5rGWTjkA6iknA3WebxmmXM2MqSK-7ZY4NFYZI9cptjXa1daBC0vuKF8kWnQMORc1B-oeI8Gw8GE2GcK-hj4f4jwPR9cZK-4UEPf5WQ0en2HVbsC3ZrNLZjyZT7HNoRD3yH0GwQr20fi67BKNIGIVDWe9vcI2n4yFH286B6SybQ646y-1HNb74qGrab2On7R4TB41cKCfLFqfkJ4pnpIHtuXpxTNSNpilgFnqYJZexSxdZ1RRdhQcXcMrdfBKG7zSvKAdXmmLV2rx-pycfvm8mB57TecPL4FbUHpGgmqJQoi2AQIBM5IpCNsh2JCZ4mkkjJ8kMhpF4G76LOWR5lKmMg1NkKQGghj-ghwU68K8IjRjQrMwNKEROoiyUGeaj1Qg2ViKSPlpn4zb-xsnDS0-dmf5FdfhMQvj2SQGIcU-j1FIMQoJm7eyPvG7meeWGuYWcw5bEcZqcxb_1O442NpKNW7UzCZmbDySYHdFn7zvtoINwA97qjDraoO7wHp3efMI8EDBWoe8T15ajGzPuMFZn8gd9HQDkH9-d0uRr2oeeov613edeEgebnXGG3JQ_q7MW_DwS_2ufoD-AZ3G9y4
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+and+Biochemical+Characterization+of+a+2%2C4%2C6-Trichlorophenol+Degradation+Pathway+in+Ralstonia+eutropha+JMP134&rft.jtitle=Journal+of+bacteriology&rft.au=Louie%2C+Tai+Man&rft.au=Webster%2C+Christopher+M.&rft.au=Xun%2C+Luying&rft.date=2002-07-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=184&rft.issue=13&rft.spage=3492&rft.epage=3500&rft_id=info:doi/10.1128%2FJB.184.13.3492-3500.2002&rft_id=info%3Apmid%2F12057943&rft.externalDocID=PMC135155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon