Genetic and Biochemical Characterization of a 2,4,6-Trichlorophenol Degradation Pathway in Ralstonia eutropha JMP134
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 184; no. 13; pp. 3492 - 3500 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.07.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | Ralstonia eutropha
JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH
2
)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (
tcpABC
) from JMP134 by using primers designed from conserved regions of FADH
2
-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that
tcpA
,
tcpB
, and
tcpC
encoded an FADH
2
-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The
tcpA
mutant failed to degrade 2,4,6-TCP, while both
tcpB
and
tcpC
mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of
tcpB
may have led to a polar effect on downstream
tcpC
, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH
2
was supplied by an
Escherichia coli
flavin reductase. TcpC produced in
E. coli
oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that
tcpB
may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown. Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown. Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH sub(2))-utilizing monooxygenase converted 2,4,6- TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH sub(2)-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH sub(2)-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH sub(2) was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown. |
Author | Tai Man Louie Christopher M. Webster Luying Xun |
AuthorAffiliation | School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234 |
AuthorAffiliation_xml | – name: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234 |
Author_xml | – sequence: 1 givenname: Tai Man surname: Louie fullname: Louie, Tai Man organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234 – sequence: 2 givenname: Christopher M. surname: Webster fullname: Webster, Christopher M. organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234 – sequence: 3 givenname: Luying surname: Xun fullname: Xun, Luying organization: School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12057943$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URNPCKyCLBatO8G0cewESCVCIiqhQWVuO5yTjaGKnHoeqPD2eJkDpBlaWfL5z_f8TdBRiAIQwJWNKmXo1n46pEmPKx1xoVvGakDEjhD1CI0rkpFKKsyM0Kj-00lTzY3TS92tCqBA1e4KOKSP1RAs-QvkcAmTvsA0NnvroWth4Zzs8a22yLkPyP2z2MeC4xBazM3Emq6vkXdvFFLcthNjhd7BKttljlza3N_YW-4C_2q7PMXiLYZcH2OL550vKxVP0eFli8OzwnqJvH95fzT5WF1_OP83eXlSuLJQrkAtwWinJiFaCgWSWClVTLZeWN7oG6pzURHNVjtJwveBSNrJRIFwDhEp-il7v6253iw00DkJOtjPb5Dc23Zpovfk7EnxrVvG7obymdV3yXx7yU7zeQZ_NxvcOus4GiLveTKgigij-T7CIVSt2N9GLB-A67lIoRzCMTYgsug1tn98f-_e8v1QrgNoDLsW-T7D8gxAzGMTMp0PPsocZDGIGg5jBICX1zYNU5_OdcuUAvvufAocNWr9qb3wCY_uNWS_u4_wnQzDLsg |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1128_AEM_01820_17 crossref_primary_10_1128_AEM_71_11_6538_6544_2005 crossref_primary_10_1074_jbc_M109_056135 crossref_primary_10_1128_JB_01697_07 crossref_primary_10_1021_acs_est_7b06647 crossref_primary_10_1016_j_envres_2021_112494 crossref_primary_10_1007_s10532_015_9743_4 crossref_primary_10_1016_j_jhazmat_2018_08_063 crossref_primary_10_1007_s10532_016_9762_9 crossref_primary_10_1007_s11274_007_9437_0 crossref_primary_10_1002_adsc_200505029 crossref_primary_10_1074_jbc_M500666200 crossref_primary_10_1584_jpestics_D17_089 crossref_primary_10_1016_j_watres_2021_116862 crossref_primary_10_1080_03601230600964159 crossref_primary_10_1007_s11104_012_1444_8 crossref_primary_10_1007_s00284_010_9640_3 crossref_primary_10_1080_03601234_2014_929865 crossref_primary_10_1128_AEM_01817_13 crossref_primary_10_1128_AEM_03042_15 crossref_primary_10_1016_j_chemosphere_2011_04_009 crossref_primary_10_1016_j_ibiod_2019_104811 crossref_primary_10_1128_genomeA_00202_12 crossref_primary_10_1016_j_ibiod_2015_12_006 crossref_primary_10_1111_j_1462_2920_2007_01370_x crossref_primary_10_1128_AEM_02467_17 crossref_primary_10_1021_acs_estlett_5b00254 crossref_primary_10_1007_s10532_018_9860_y crossref_primary_10_1016_j_envres_2021_111216 crossref_primary_10_1007_s00253_012_4139_4 crossref_primary_10_1111_j_1574_6976_2008_00122_x crossref_primary_10_1039_C8RA01643G crossref_primary_10_1021_acs_jafc_9b00173 crossref_primary_10_3390_ijms151120736 crossref_primary_10_1007_s12010_021_03645_2 crossref_primary_10_1074_jbc_M116_774448 crossref_primary_10_1007_s10532_006_9090_6 crossref_primary_10_1134_S0003683822060175 crossref_primary_10_3390_ijms13089769 crossref_primary_10_1128_JB_01849_06 crossref_primary_10_1016_j_jclepro_2017_12_212 crossref_primary_10_1007_s10532_013_9642_5 crossref_primary_10_1007_s11274_008_9923_z crossref_primary_10_1128_AEM_01610_17 crossref_primary_10_1016_j_jhazmat_2007_05_082 crossref_primary_10_1016_j_jenvman_2023_118254 crossref_primary_10_1128_AEM_02584_06 crossref_primary_10_1016_j_bbaexp_2004_08_003 crossref_primary_10_1016_j_biortech_2008_12_009 crossref_primary_10_1021_bi7006614 crossref_primary_10_1007_s10532_009_9313_8 crossref_primary_10_1128_AEM_01494_06 crossref_primary_10_3390_microorganisms12020389 crossref_primary_10_1016_j_jhazmat_2011_03_029 crossref_primary_10_1016_j_envint_2024_109074 crossref_primary_10_1007_s13205_016_0511_x crossref_primary_10_1016_j_biortech_2008_03_071 crossref_primary_10_1016_j_ecoenv_2021_112084 crossref_primary_10_3109_03602532_2011_552909 crossref_primary_10_1264_jsme2_20_160 crossref_primary_10_1002_pro_3525 crossref_primary_10_1080_19443994_2013_792139 crossref_primary_10_1080_09593330_2014_1002864 crossref_primary_10_1016_j_envpol_2019_113703 crossref_primary_10_1074_jbc_M512385200 crossref_primary_10_3390_biology7030042 crossref_primary_10_1007_s00253_019_09994_7 crossref_primary_10_1128_JB_186_15_4894_4902_2004 crossref_primary_10_1128_AEM_69_12_7108_7115_2003 crossref_primary_10_1007_s11783_017_0959_x crossref_primary_10_1128_JB_01944_07 crossref_primary_10_1590_1678_992x_2017_0071 crossref_primary_10_1007_s00253_010_2666_4 crossref_primary_10_1080_10889868_2012_751959 crossref_primary_10_1016_j_jbiosc_2011_01_016 crossref_primary_10_1111_1748_5967_12100 crossref_primary_10_1007_s00253_005_0232_2 crossref_primary_10_1016_j_jhazmat_2019_121787 crossref_primary_10_1016_j_biortech_2013_10_088 crossref_primary_10_1016_j_jenvman_2018_04_022 crossref_primary_10_1016_j_jhazmat_2013_06_030 crossref_primary_10_1007_s12257_016_0263_9 crossref_primary_10_1128_AEM_00171_09 crossref_primary_10_1016_j_soilbio_2005_02_001 crossref_primary_10_1155_2014_157974 crossref_primary_10_1016_j_biortech_2011_04_057 crossref_primary_10_1016_j_jhazmat_2023_132424 crossref_primary_10_1007_s10532_011_9476_y crossref_primary_10_1007_s00253_009_2251_x crossref_primary_10_1074_jbc_M206339200 crossref_primary_10_1021_bi050615e crossref_primary_10_1007_s11306_007_0093_z crossref_primary_10_1074_jbc_M312072200 crossref_primary_10_1016_j_copbio_2015_03_009 crossref_primary_10_1139_cjm_2013_0713 crossref_primary_10_1007_s00253_011_3696_2 crossref_primary_10_1007_s00253_006_0716_8 crossref_primary_10_1016_j_biortech_2009_10_080 crossref_primary_10_1007_s12038_016_9619_8 crossref_primary_10_1371_journal_pone_0142332 crossref_primary_10_1590_S0103_90162012000400003 crossref_primary_10_1016_j_copbio_2004_03_008 crossref_primary_10_1007_s40710_018_0333_4 crossref_primary_10_1128_JB_185_9_2786_2792_2003 crossref_primary_10_1016_j_scitotenv_2003_09_015 |
Cites_doi | 10.1128/JB.182.10.2869-2878.2000 10.1016/0003-2697(76)90527-3 10.1006/bbrc.1999.1805 10.1128/jb.178.9.2645-2649.1996 10.1016/S0021-9258(17)46671-3 10.1038/227680a0 10.1128/AEM.67.2.688-695.2001 10.1002/1521-4028(200008)40:4<243::AID-JOBM243>3.0.CO;2-D 10.1021/es00009a015 10.1128/AEM.66.4.1305-1310.2000 10.1271/bbb.63.859 10.1021/jf60165a037 10.1128/jb.178.1.111-120.1996 10.1099/00207713-46-1-23 10.1128/aem.61.7.2453-2460.1995 10.1128/AEM.66.2.481-486.2000 10.1128/jb.179.4.1112-1116.1997 10.1016/S0021-9258(18)45356-2 10.1128/JB.183.1.318-327.2001 10.1128/aem.61.9.3499-3502.1995 10.1111/j.1574-6968.1995.tb07449.x 10.1093/nar/30.1.276 10.1007/s007260170057 10.1128/aem.62.11.4276-4279.1996 10.1016/S0021-9258(17)31719-2 10.1128/JB.181.11.3452-3461.1999 10.1016/0014-5793(94)00528-1 10.1007/s002530050680 10.1128/JB.182.3.627-636.2000 10.1128/AEM.64.6.2086-2093.1998 10.1021/bi981841+ 10.1128/jb.177.1.229-234.1995 10.1128/aem.58.4.1276-1283.1992 10.1128/aem.46.5.1182-1186.1983 10.1074/jbc.274.38.26639 10.1128/AEM.65.11.4987-4994.1999 10.1093/nar/22.22.4673 10.1016/0922-338X(95)94198-Z 10.1128/aem.57.7.1920-1928.1991 10.1128/jb.171.11.5915-5921.1989 10.1021/es00155a012 10.1016/S0014-5793(99)01305-8 10.1128/JB.182.4.1144-1149.2000 10.1128/jb.179.21.6729-6735.1997 10.1016/S0045-6535(00)00090-4 10.1128/jb.178.7.2030-2036.1996 10.1128/JB.180.17.4667-4675.1998 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Jul 2002 Copyright © 2002, American Society for Microbiology 2002 |
Copyright_xml | – notice: Copyright American Society for Microbiology Jul 2002 – notice: Copyright © 2002, American Society for Microbiology 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.184.13.3492-3500.2002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 3500 |
ExternalDocumentID | PMC135155 128904441 12057943 10_1128_JB_184_13_3492_3500_2002 jb_184_13_3492 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV ADXHL AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-O P-S P2P PQQKQ QZG RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT VH1 W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM ABTAH CGR CUY CVF ECM EIF NPM PKN RHF UCJ VQA YIN 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c500t-e6bec9886209842e62a1485196fa3d95e1cc690938112d39b366d6d8e4cde0163 |
ISSN | 0021-9193 |
IngestDate | Thu Aug 21 13:40:14 EDT 2025 Fri Jul 11 04:35:31 EDT 2025 Fri Jul 11 15:36:02 EDT 2025 Mon Jun 30 08:38:18 EDT 2025 Wed Feb 19 02:34:05 EST 2025 Tue Jul 01 02:44:39 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed May 18 15:54:43 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c500t-e6bec9886209842e62a1485196fa3d95e1cc690938112d39b366d6d8e4cde0163 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: School of Molecular Biosciences, Science Hall 301, Washington State University, Pullman, WA 99164-4234. Phone: (509) 335-2787. Fax: (509) 335-1907. E-mail: xun@mail.wsu.edu |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/135155 |
PMID | 12057943 |
PQID | 227068325 |
PQPubID | 40724 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1128_JB_184_13_3492_3500_2002 highwire_asm_jb_184_13_3492 proquest_miscellaneous_71804083 pubmedcentral_primary_oai_pubmedcentral_nih_gov_135155 crossref_citationtrail_10_1128_JB_184_13_3492_3500_2002 pubmed_primary_12057943 proquest_miscellaneous_18458216 proquest_journals_227068325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-07-01 |
PublicationDateYYYYMMDD | 2002-07-01 |
PublicationDate_xml | – month: 07 year: 2002 text: 2002-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2002 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 (e_1_3_2_11_2) 1995; 127 e_1_3_2_28_2 (e_1_3_2_22_2) 1994; 347 (e_1_3_2_6_2) 1979; 69 (e_1_3_2_18_2) 1987; 262 e_1_3_2_41_2 e_1_3_2_20_2 (e_1_3_2_15_2) 1999; 274 e_1_3_2_24_2 e_1_3_2_47_2 (e_1_3_2_30_2) 1998; 37 e_1_3_2_9_2 (e_1_3_2_17_2) 2001; 20 (e_1_3_2_43_2) 1995; 80 (e_1_3_2_10_2) 1996; 46 (e_1_3_2_49_2) 1999; 266 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_52_2 (e_1_3_2_3_2) 1999; 100 e_1_3_2_14_2 (e_1_3_2_16_2) 1978; 27 e_1_3_2_35_2 e_1_3_2_50_2 (e_1_3_2_2_2) 1995; 29 (e_1_3_2_45_2) 1969; 17 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 (e_1_3_2_40_2) 1994; 269 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 (e_1_3_2_7_2) 1996; 45 (e_1_3_2_36_2) 1999; 63 (e_1_3_2_5_2) 2002; 30 e_1_3_2_8_2 e_1_3_2_19_2 (e_1_3_2_25_2) 1987; 21 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_34_2 (e_1_3_2_37_2) 1999; 459 e_1_3_2_4_2 e_1_3_2_13_2 (e_1_3_2_12_2) 1993; 268 (e_1_3_2_46_2) 2000; 41 (e_1_3_2_33_2) 1994; 26 (e_1_3_2_38_2) 2000; 40 |
References_xml | – ident: e_1_3_2_23_2 doi: 10.1128/JB.182.10.2869-2878.2000 – ident: e_1_3_2_9_2 doi: 10.1016/0003-2697(76)90527-3 – volume: 266 start-page: 322 year: 1999 ident: e_1_3_2_49_2 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.1805 – ident: e_1_3_2_48_2 doi: 10.1128/jb.178.9.2645-2649.1996 – volume: 268 start-page: 18604 year: 1993 ident: e_1_3_2_12_2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)46671-3 – ident: e_1_3_2_28_2 doi: 10.1038/227680a0 – ident: e_1_3_2_8_2 doi: 10.1128/AEM.67.2.688-695.2001 – volume: 40 start-page: 243 year: 2000 ident: e_1_3_2_38_2 publication-title: J. Basic Microbiol. doi: 10.1002/1521-4028(200008)40:4<243::AID-JOBM243>3.0.CO;2-D – volume: 29 start-page: 2252 year: 1995 ident: e_1_3_2_2_2 publication-title: Environ. Sci. Technol. doi: 10.1021/es00009a015 – ident: e_1_3_2_42_2 doi: 10.1128/AEM.66.4.1305-1310.2000 – volume: 26 start-page: 309 year: 1994 ident: e_1_3_2_33_2 publication-title: Arch. Environ. Contam. Toxicol. – volume: 63 start-page: 859 year: 1999 ident: e_1_3_2_36_2 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.63.859 – volume: 17 start-page: 1021 year: 1969 ident: e_1_3_2_45_2 publication-title: J. Agric. Food Chem. doi: 10.1021/jf60165a037 – ident: e_1_3_2_39_2 doi: 10.1128/jb.178.1.111-120.1996 – ident: e_1_3_2_41_2 – volume: 69 start-page: 1022 year: 1979 ident: e_1_3_2_6_2 publication-title: Phytopathology – volume: 46 start-page: 23 year: 1996 ident: e_1_3_2_10_2 publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-46-1-23 – ident: e_1_3_2_29_2 doi: 10.1128/aem.61.7.2453-2460.1995 – ident: e_1_3_2_50_2 doi: 10.1128/AEM.66.2.481-486.2000 – ident: e_1_3_2_47_2 doi: 10.1128/jb.179.4.1112-1116.1997 – volume: 262 start-page: 12325 year: 1987 ident: e_1_3_2_18_2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45356-2 – ident: e_1_3_2_14_2 doi: 10.1128/JB.183.1.318-327.2001 – ident: e_1_3_2_51_2 doi: 10.1128/aem.61.9.3499-3502.1995 – volume: 127 start-page: 51 year: 1995 ident: e_1_3_2_11_2 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1995.tb07449.x – volume: 30 start-page: 276 year: 2002 ident: e_1_3_2_5_2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.276 – volume: 20 start-page: 163 year: 2001 ident: e_1_3_2_17_2 publication-title: Amino Acids doi: 10.1007/s007260170057 – ident: e_1_3_2_13_2 doi: 10.1128/aem.62.11.4276-4279.1996 – volume: 269 start-page: 22823 year: 1994 ident: e_1_3_2_40_2 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31719-2 – ident: e_1_3_2_4_2 doi: 10.1128/JB.181.11.3452-3461.1999 – volume: 347 start-page: 163 year: 1994 ident: e_1_3_2_22_2 publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)00528-1 – volume: 45 start-page: 257 year: 1996 ident: e_1_3_2_7_2 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530050680 – ident: e_1_3_2_19_2 doi: 10.1128/JB.182.3.627-636.2000 – ident: e_1_3_2_21_2 doi: 10.1128/AEM.64.6.2086-2093.1998 – volume: 37 start-page: 14623 year: 1998 ident: e_1_3_2_30_2 publication-title: Biochemistry doi: 10.1021/bi981841+ – ident: e_1_3_2_53_2 doi: 10.1128/jb.177.1.229-234.1995 – ident: e_1_3_2_26_2 doi: 10.1128/aem.58.4.1276-1283.1992 – ident: e_1_3_2_24_2 doi: 10.1128/aem.46.5.1182-1186.1983 – volume: 274 start-page: 26639 year: 1999 ident: e_1_3_2_15_2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.38.26639 – ident: e_1_3_2_34_2 doi: 10.1128/AEM.65.11.4987-4994.1999 – ident: e_1_3_2_44_2 doi: 10.1093/nar/22.22.4673 – volume: 27 start-page: 39 year: 1978 ident: e_1_3_2_16_2 publication-title: Ecol. Bull. – volume: 80 start-page: 318 year: 1995 ident: e_1_3_2_43_2 publication-title: J. Ferment. Bioeng. doi: 10.1016/0922-338X(95)94198-Z – ident: e_1_3_2_31_2 doi: 10.1128/aem.57.7.1920-1928.1991 – ident: e_1_3_2_54_2 doi: 10.1128/jb.171.11.5915-5921.1989 – volume: 21 start-page: 96 year: 1987 ident: e_1_3_2_25_2 publication-title: Environ. Sci. Technol. doi: 10.1021/es00155a012 – ident: e_1_3_2_27_2 – volume: 459 start-page: 395 year: 1999 ident: e_1_3_2_37_2 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01305-8 – ident: e_1_3_2_20_2 doi: 10.1128/JB.182.4.1144-1149.2000 – volume: 100 start-page: 73 year: 1999 ident: e_1_3_2_3_2 publication-title: Microbios – ident: e_1_3_2_32_2 doi: 10.1128/jb.179.21.6729-6735.1997 – volume: 41 start-page: 1873 year: 2000 ident: e_1_3_2_46_2 publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00090-4 – ident: e_1_3_2_35_2 doi: 10.1128/jb.178.7.2030-2036.1996 – ident: e_1_3_2_52_2 doi: 10.1128/JB.180.17.4667-4675.1998 |
SSID | ssj0014452 |
Score | 2.0748293 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP).... Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP).... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3492 |
SubjectTerms | Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biodegradation, Environmental Chlorophenols - metabolism Cloning, Molecular Cupriavidus necator - genetics Cupriavidus necator - metabolism Escherichia coli - genetics Flavin-Adenine Dinucleotide - analogs & derivatives Flavin-Adenine Dinucleotide - metabolism FMN Reductase Genetics Maleates - metabolism Multigene Family Mutation NADH, NADPH Oxidoreductases - genetics NADH, NADPH Oxidoreductases - metabolism Oxygenases - genetics Oxygenases - metabolism Physiology and Metabolism Pollutants Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism |
Title | Genetic and Biochemical Characterization of a 2,4,6-Trichlorophenol Degradation Pathway in Ralstonia eutropha JMP134 |
URI | http://jb.asm.org/content/184/13/3492.abstract https://www.ncbi.nlm.nih.gov/pubmed/12057943 https://www.proquest.com/docview/227068325 https://www.proquest.com/docview/18458216 https://www.proquest.com/docview/71804083 https://pubmed.ncbi.nlm.nih.gov/PMC135155 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiDehPPbALXWId70b-0gioIoIqlAq5Wbt2mvFiDoVsYXa38cPY8ZrO5s2lUoPsSJ716_5PA975htCPvjCaG2M8EaJZl5gwswDK2c8mQmeJFnKEx9rh-ff5fFpMFuKZa_318laqko9TC731pXcRaqwDuSKVbL_Idlup7AC_oN8YQkShuWtZIyc0S3h6iTH3le2-H_asTBfdh6hGjC4nQH8pLcA5beCQB05BYo16D1kjLDNlZCzf_VH1dWAP-ACwDXM1cBUJQ5Wg9n8xG9eC173aLU95s6L-m_ryn4BWagcc22cL0FtTxCH32AwH7YDlpUtiqguWuPavpvY5rGWTjkA6iknA3WebxmmXM2MqSK-7ZY4NFYZI9cptjXa1daBC0vuKF8kWnQMORc1B-oeI8Gw8GE2GcK-hj4f4jwPR9cZK-4UEPf5WQ0en2HVbsC3ZrNLZjyZT7HNoRD3yH0GwQr20fi67BKNIGIVDWe9vcI2n4yFH286B6SybQ646y-1HNb74qGrab2On7R4TB41cKCfLFqfkJ4pnpIHtuXpxTNSNpilgFnqYJZexSxdZ1RRdhQcXcMrdfBKG7zSvKAdXmmLV2rx-pycfvm8mB57TecPL4FbUHpGgmqJQoi2AQIBM5IpCNsh2JCZ4mkkjJ8kMhpF4G76LOWR5lKmMg1NkKQGghj-ghwU68K8IjRjQrMwNKEROoiyUGeaj1Qg2ViKSPlpn4zb-xsnDS0-dmf5FdfhMQvj2SQGIcU-j1FIMQoJm7eyPvG7meeWGuYWcw5bEcZqcxb_1O442NpKNW7UzCZmbDySYHdFn7zvtoINwA97qjDraoO7wHp3efMI8EDBWoe8T15ajGzPuMFZn8gd9HQDkH9-d0uRr2oeeov613edeEgebnXGG3JQ_q7MW_DwS_2ufoD-AZ3G9y4 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+and+Biochemical+Characterization+of+a+2%2C4%2C6-Trichlorophenol+Degradation+Pathway+in+Ralstonia+eutropha+JMP134&rft.jtitle=Journal+of+bacteriology&rft.au=Louie%2C+Tai+Man&rft.au=Webster%2C+Christopher+M.&rft.au=Xun%2C+Luying&rft.date=2002-07-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=184&rft.issue=13&rft.spage=3492&rft.epage=3500&rft_id=info:doi/10.1128%2FJB.184.13.3492-3500.2002&rft_id=info%3Apmid%2F12057943&rft.externalDocID=PMC135155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |