Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine

We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in term...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 98; pp. 160 - 172
Main Authors Edwie, Felinia, Chung, Tai-Shung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 19.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm−2h−1 to 20kgm−2h−1 for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm3 solution to 34kgperm3 for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion. [Display omitted] •Simultaneous productions of pure water and salt crystal via SMDC hybrid technology.•Increasing feed temperature increases productions of pure water and salt crystals.•Increasing feed temperature increases scaling and membrane wetting.•Critical flux is strongly affected by Reynolds number.•Salt crystallization at a higher feed temperature is dominated by nucleation.
AbstractList We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm−2h−1 to 20kgm−2h−1 for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm3 solution to 34kgperm3 for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion. [Display omitted] •Simultaneous productions of pure water and salt crystal via SMDC hybrid technology.•Increasing feed temperature increases productions of pure water and salt crystals.•Increasing feed temperature increases scaling and membrane wetting.•Critical flux is strongly affected by Reynolds number.•Salt crystallization at a higher feed temperature is dominated by nucleation.
We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm⁻²h⁻¹ to 20kgm⁻²h⁻¹ for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm³ solution to 34kgperm³ for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion.
Author Edwie, Felinia
Chung, Tai-Shung
Author_xml – sequence: 1
  givenname: Felinia
  surname: Edwie
  fullname: Edwie, Felinia
– sequence: 2
  givenname: Tai-Shung
  surname: Chung
  fullname: Chung, Tai-Shung
  email: chencts@nus.edu.sg
BookMark eNp9kM1uEzEUhS1UJNLCA7DCy7KY4Xpm7BmLFUr5k4pYlK4tx75THHnGwXYipSvegTfsk9RJEAsWXd17rXOOfL5zcjaHGQl5zaBmwMS7dW0w1Q2wtgZeAwzPyIINfVt1HfAzsgAAWTUc5AtyntK6nH3PYEF2V7hDHzYTzpmGkSY3bX3WM4ZtohNOq1h2al3KznudXZgffv8xcZ-y9t7dH1_o5c23q-VbmtH8nIMPd3s6hkhzRJ3_5eq8jTqjpavoZnxJno_aJ3z1d16Q208ffyy_VNffP39dfriuDAfIlUXRiY4JbhgbJI5MWgG26btG824cxIhgy7KSomG8lbCStm0lbwfoOQ62by_I5Sl3E8OvLaasJpcMlirHhoqJvgEBjHVF2p-kJoaUIo7KuHzsl6N2XjFQB9JqrQppdSCtgKtCujjZf85NdJOO-yc9b06eUQel76JL6vamCEptaKTsD19_f1Jg4bNzGFUyDmeD1kU0Wdngnsh_BKB5pD4
CitedBy_id crossref_primary_10_1016_j_desal_2016_03_010
crossref_primary_10_1016_j_desal_2018_01_009
crossref_primary_10_1016_j_seppur_2019_02_050
crossref_primary_10_1016_j_memsci_2018_09_003
crossref_primary_10_1016_j_envres_2023_116577
crossref_primary_10_1016_j_memsci_2023_121838
crossref_primary_10_1021_acs_estlett_9b00354
crossref_primary_10_3389_frmst_2023_1247276
crossref_primary_10_1016_j_memsci_2023_122249
crossref_primary_10_1080_15422119_2018_1470537
crossref_primary_10_1016_j_watres_2021_117794
crossref_primary_10_3390_membranes10010019
crossref_primary_10_3390_membranes13060597
crossref_primary_10_1016_j_desal_2020_114894
crossref_primary_10_1016_j_rser_2015_12_087
crossref_primary_10_1016_j_watres_2019_01_036
crossref_primary_10_3390_pr9020243
crossref_primary_10_1016_j_memsci_2020_118813
crossref_primary_10_1016_j_resconrec_2020_105273
crossref_primary_10_1016_j_seppur_2020_118191
crossref_primary_10_1590_0104_6632_20160333s20150133
crossref_primary_10_1021_acs_iecr_7b02818
crossref_primary_10_1007_s12649_024_02777_w
crossref_primary_10_1016_j_memsci_2020_118931
crossref_primary_10_1016_j_cej_2023_144169
crossref_primary_10_1080_01496395_2018_1553980
crossref_primary_10_1002_cben_202100034
crossref_primary_10_1016_j_cherd_2023_11_027
crossref_primary_10_1016_j_colsurfa_2022_128918
crossref_primary_10_1016_j_memsci_2019_05_074
crossref_primary_10_1016_j_memsci_2016_01_033
crossref_primary_10_1021_acsestengg_0c00025
crossref_primary_10_1016_j_egyr_2024_09_052
crossref_primary_10_1016_j_desal_2016_07_043
crossref_primary_10_1016_j_desal_2024_117539
crossref_primary_10_1016_j_seppur_2024_128533
crossref_primary_10_1016_j_desal_2016_07_045
crossref_primary_10_3390_membranes13030317
crossref_primary_10_1016_j_memsci_2015_09_010
crossref_primary_10_1016_j_seppur_2022_121989
crossref_primary_10_1021_ie504695p
crossref_primary_10_1038_s41545_022_00153_6
crossref_primary_10_1080_19443994_2016_1173381
crossref_primary_10_1016_j_coche_2024_101079
crossref_primary_10_1016_j_memsci_2017_07_016
crossref_primary_10_1007_s11705_017_1649_8
crossref_primary_10_1016_j_cep_2017_11_017
crossref_primary_10_1016_j_apenergy_2018_09_196
crossref_primary_10_1016_j_desal_2023_117151
crossref_primary_10_1016_j_memsci_2017_07_013
crossref_primary_10_1016_j_desal_2013_10_020
crossref_primary_10_1016_j_memsci_2014_07_017
crossref_primary_10_1016_j_desal_2018_01_027
crossref_primary_10_5004_dwt_2020_25155
crossref_primary_10_1016_j_chemosphere_2019_124641
crossref_primary_10_3390_membranes11030175
crossref_primary_10_3390_ma17153629
crossref_primary_10_1016_j_desal_2022_115727
crossref_primary_10_1002_jctb_5225
crossref_primary_10_3390_membranes13010035
crossref_primary_10_1021_acs_estlett_1c00483
crossref_primary_10_1016_j_desal_2014_06_031
crossref_primary_10_3390_w13243480
crossref_primary_10_1080_19443994_2014_922499
crossref_primary_10_1186_s12302_021_00520_z
crossref_primary_10_3390_membranes10070158
crossref_primary_10_1016_j_desal_2015_01_038
crossref_primary_10_1016_j_desal_2021_115315
crossref_primary_10_1016_j_desal_2016_07_021
crossref_primary_10_1016_j_desal_2017_02_021
crossref_primary_10_1016_j_memsci_2014_09_016
crossref_primary_10_1016_j_memsci_2021_119673
crossref_primary_10_3390_membranes12060573
crossref_primary_10_1016_j_apenergy_2019_113698
crossref_primary_10_61186_jrr_2308_1018
crossref_primary_10_3390_cryst6040033
crossref_primary_10_1016_j_desal_2016_11_022
crossref_primary_10_3390_en16083447
crossref_primary_10_3390_membranes14010025
crossref_primary_10_1016_j_desal_2014_10_005
crossref_primary_10_1016_j_memsci_2016_02_051
crossref_primary_10_1016_j_seppur_2016_06_028
crossref_primary_10_1016_j_memsci_2015_07_037
crossref_primary_10_1016_j_cjche_2019_04_004
crossref_primary_10_1016_j_memsci_2024_123259
crossref_primary_10_1016_j_seppur_2021_119637
crossref_primary_10_3389_fceng_2022_1066027
crossref_primary_10_1002_aic_16459
crossref_primary_10_1016_j_chemosphere_2017_01_070
crossref_primary_10_1016_j_memsci_2018_08_001
crossref_primary_10_1007_s11696_018_0628_y
crossref_primary_10_1039_C9EW00157C
crossref_primary_10_1039_C9EW01055F
crossref_primary_10_1515_revce_2017_0066
crossref_primary_10_1016_j_cep_2023_109385
crossref_primary_10_1016_j_applthermaleng_2016_07_131
crossref_primary_10_1016_j_clet_2021_100091
crossref_primary_10_5004_dwt_2017_11465
crossref_primary_10_1016_j_seppur_2018_09_072
crossref_primary_10_1016_j_desal_2023_116903
crossref_primary_10_1021_acs_energyfuels_0c03415
crossref_primary_10_1016_j_desal_2017_10_024
crossref_primary_10_1016_j_memsci_2019_03_089
crossref_primary_10_5004_dwt_2022_28844
crossref_primary_10_1016_j_watres_2023_120807
crossref_primary_10_1016_j_seppur_2024_129023
crossref_primary_10_1016_j_desal_2019_02_001
crossref_primary_10_1016_j_desal_2017_06_024
crossref_primary_10_1016_j_apenergy_2017_11_043
crossref_primary_10_1016_j_ces_2015_05_030
crossref_primary_10_1016_j_memsci_2021_119735
crossref_primary_10_1007_s11356_023_31327_5
crossref_primary_10_1016_j_watres_2018_03_058
crossref_primary_10_1016_j_desal_2015_08_014
crossref_primary_10_1016_j_memsci_2018_10_034
crossref_primary_10_1016_j_rineng_2024_103417
crossref_primary_10_3390_en15041454
crossref_primary_10_1016_j_desal_2023_116936
crossref_primary_10_1016_j_desal_2020_114353
crossref_primary_10_1016_j_desal_2017_10_037
crossref_primary_10_1016_j_desal_2015_02_031
crossref_primary_10_1002_aic_15069
crossref_primary_10_1007_s13197_020_04749_z
crossref_primary_10_1016_j_seppur_2022_122029
crossref_primary_10_1016_j_desal_2017_03_022
crossref_primary_10_2478_pjct_2018_0040
crossref_primary_10_1016_j_cep_2019_107567
crossref_primary_10_1016_j_desal_2020_114928
crossref_primary_10_1039_C5EW00127G
crossref_primary_10_1016_j_scitotenv_2021_150692
crossref_primary_10_1002_aic_15581
crossref_primary_10_1016_j_memsci_2025_124021
crossref_primary_10_1007_s11696_016_0059_6
crossref_primary_10_3390_membranes14040087
crossref_primary_10_1016_j_seppur_2020_117666
crossref_primary_10_3390_membranes12040423
crossref_primary_10_1021_acs_iecr_5b03807
crossref_primary_10_1016_j_memsci_2022_121289
crossref_primary_10_1016_j_reactfunctpolym_2014_09_023
crossref_primary_10_1016_j_desal_2021_115512
crossref_primary_10_1016_j_desal_2021_114942
crossref_primary_10_1016_j_desal_2022_116229
crossref_primary_10_1016_j_jclepro_2022_130586
crossref_primary_10_1021_acs_est_3c04450
crossref_primary_10_2166_wst_2015_277
crossref_primary_10_1016_j_watres_2025_123146
crossref_primary_10_1016_j_watres_2017_11_017
crossref_primary_10_1016_j_desal_2020_114887
crossref_primary_10_1016_j_desal_2020_114886
crossref_primary_10_1016_j_jhazmat_2020_124160
crossref_primary_10_1016_j_memsci_2023_121909
crossref_primary_10_1016_j_desal_2020_114643
crossref_primary_10_1016_j_desal_2021_115115
crossref_primary_10_1016_j_memsci_2020_117832
Cites_doi 10.1016/j.memsci.2007.12.054
10.5004/dwt.2010.1079
10.1080/01496390600674950
10.1016/j.seppur.2009.01.005
10.1021/ie000906d
10.1016/j.seppur.2009.11.004
10.1016/j.desal.2006.02.021
10.1080/01496390600552347
10.1016/j.memsci.2012.07.025
10.1016/j.desal.2011.03.054
10.1016/j.memsci.2006.05.040
10.1021/ie010553y
10.1021/ie8009704
10.1016/j.ces.2011.10.024
10.1081/SS-120014442
10.1016/j.memsci.2006.03.014
10.1016/S0376-7388(99)00326-9
10.1080/00986448008935918
10.1016/j.memsci.2006.10.011
10.1016/j.desal.2007.03.009
10.1016/S0376-7388(02)00498-2
10.1016/j.memsci.2008.08.001
10.1021/ie0609968
10.1016/S0040-6090(99)00197-2
10.1016/j.memsci.2012.05.016
10.1016/j.memsci.2006.08.002
10.1021/cg020014b
10.1021/ie030871s
10.1016/j.desal.2008.06.020
10.1016/j.memsci.2012.07.001
10.1016/j.watres.2011.08.012
10.1016/j.memsci.2004.09.051
10.1205/cherd.05171
10.1016/j.desal.2005.02.039
10.1021/i260076a001
10.1016/j.desal.2005.04.123
10.1016/0011-9164(91)85047-X
10.1016/0376-7388(94)00281-3
10.2113/0540057
10.1016/S0011-9164(02)01069-X
10.1016/j.desal.2012.07.018
10.1016/j.watres.2012.04.042
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ces.2013.05.008
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
EndPage 172
ExternalDocumentID 10_1016_j_ces_2013_05_008
US201500029977
S0009250913003291
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
ABPIF
ABPTK
ABTAH
ADMUD
AI.
AIDUJ
ASPBG
AVWKF
AZFZN
BBWZM
FBQ
FEDTE
FGOYB
G8K
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
T9H
VH1
WUQ
XFK
Y6R
ZY4
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c500t-de6464165c1189ef19d60d2742a54f86fe0d54fb96215390b9d339538075e8d73
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Mon Jul 21 10:13:02 EDT 2025
Tue Jul 01 03:13:55 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Wed Dec 27 19:14:30 EST 2023
Fri Feb 23 02:32:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Saturated brine
Scaling
Polarizations
Simultaneous membrane distillation–crystallization
Crystal size distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-de6464165c1189ef19d60d2742a54f86fe0d54fb96215390b9d339538075e8d73
Notes http://dx.doi.org/10.1016/j.ces.2013.05.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/88762
PQID 1672060114
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_1672060114
crossref_citationtrail_10_1016_j_ces_2013_05_008
crossref_primary_10_1016_j_ces_2013_05_008
fao_agris_US201500029977
elsevier_sciencedirect_doi_10_1016_j_ces_2013_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-19
PublicationDateYYYYMMDD 2013-07-19
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-19
  day: 19
PublicationDecade 2010
PublicationTitle Chemical engineering science
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yun, Ma, Zhang, Fane, Li (bib46) 2006; 188
Khayet, Matsuura (bib23) 2001; 40
Chen, Yang, Wang, Fane (bib5) 2013; 308
Sharqawy, Lienhard, Zubair (bib35) 2010; 16
De Yoreo, Vekilov (bib7) 2003; 54
Curcio, Criscuoli, Drioli (bib6) 2001; 40
Teoh, Bonyadi, Chung (bib39) 2008; 311
Gryta (bib17) 2002; 37
Wang, Teoh, Chung (bib45) 2011; 45
Hogan, Sudjito Fane, Momson (bib21) 1991; 81
Tun, Groth (bib41) 2011; 238
Gryta (bib18) 2006; 41
Garside, Shah (bib15) 1980; 19
Macedonio, Curcio, Drioli (bib28) 2007; 203
Ong, Chung (bib31) 2012; 421–422
Fakatselis (bib12) 2002; 2
Charcosset (bib4) 2009; 245
Mullin (bib30) 2001
Garcia-Payo, Izquierdo-Gil, Fernandez-Pineda (bib13) 2000; 169
Ji, Curcio, Al Obaidani, Di Profio, Fontananova, Drioli (bib22) 2010; 71
Shaffer, Yip, Gilron, Elimelech (bib34) 2012; 415–416
Phattaranawik, Jiraratananon, Fane (bib33) 2003; 212
Edwie, Chung (bib9) 2012; 421–422
Khayet, Matsuura (bib24) 2011
Palacio, Prádanos, Calvo, Hernández (bib32) 1999; 348
Teoh, Chung (bib38) 2009; 66
Drioli, Curcio, Di Profio, Macedonio, Cirscuoli (bib8) 2006; 84
Global water intelligence and water desalination report, 2010. Desalination Markets.
Gryta (bib20) 2008; 325
Edwie, Teoh, Chung (bib10) 2012; 68
Gryta (bib19) 2007; 287
.
Suk, Matsuura (bib37) 2006; 41
Bouguecha, Dhahbi (bib3) 2003; 152
Lattemann, Höpner (bib26) 2008; 220
Alklaibi, Lior (bib1) 2006; 282
El-Bourawi, Ding, Ma, Khayet (bib11) 2006; 285
Tomaszewska, Gryta, Morawski (bib40) 1995; 102
Wang, Chung (bib44) 2012; 46
Bodell, B.R., 1963. Silicone rubber vapor diffusion in saline water distillation. US Patents 285,032.
Latorre (bib25) 2005; 182
Mariah, Buckley, Brouckaert, Curcio, Drioli, Jaganyi, Ramjugernath (bib29) 2006; 280
Song, Li, Sirkar, Gilron (bib36) 2007; 46
Tun, Fane, Matheickal, Sheikholeslami (bib42) 2005; 257
Wang, Foo, Chung (bib43) 2009; 48
Garside, Davey (bib14) 1980; 4
Li, Sirkar (bib27) 2004; 43
Tun (10.1016/j.ces.2013.05.008_bib41) 2011; 238
Ji (10.1016/j.ces.2013.05.008_bib22) 2010; 71
Edwie (10.1016/j.ces.2013.05.008_bib10) 2012; 68
El-Bourawi (10.1016/j.ces.2013.05.008_bib11) 2006; 285
Tomaszewska (10.1016/j.ces.2013.05.008_bib40) 1995; 102
Khayet (10.1016/j.ces.2013.05.008_bib24) 2011
Lattemann (10.1016/j.ces.2013.05.008_bib26) 2008; 220
Tun (10.1016/j.ces.2013.05.008_bib42) 2005; 257
Wang (10.1016/j.ces.2013.05.008_bib44) 2012; 46
Bouguecha (10.1016/j.ces.2013.05.008_bib3) 2003; 152
Palacio (10.1016/j.ces.2013.05.008_bib32) 1999; 348
Garcia-Payo (10.1016/j.ces.2013.05.008_bib13) 2000; 169
Sharqawy (10.1016/j.ces.2013.05.008_bib35) 2010; 16
10.1016/j.ces.2013.05.008_bib2
Shaffer (10.1016/j.ces.2013.05.008_bib34) 2012; 415–416
Wang (10.1016/j.ces.2013.05.008_bib45) 2011; 45
Fakatselis (10.1016/j.ces.2013.05.008_bib12) 2002; 2
Alklaibi (10.1016/j.ces.2013.05.008_bib1) 2006; 282
Song (10.1016/j.ces.2013.05.008_bib36) 2007; 46
Teoh (10.1016/j.ces.2013.05.008_bib39) 2008; 311
Latorre (10.1016/j.ces.2013.05.008_bib25) 2005; 182
Garside (10.1016/j.ces.2013.05.008_bib14) 1980; 4
10.1016/j.ces.2013.05.008_bib16
Suk (10.1016/j.ces.2013.05.008_bib37) 2006; 41
De Yoreo (10.1016/j.ces.2013.05.008_bib7) 2003; 54
Li (10.1016/j.ces.2013.05.008_bib27) 2004; 43
Mullin (10.1016/j.ces.2013.05.008_bib30) 2001
Curcio (10.1016/j.ces.2013.05.008_bib6) 2001; 40
Phattaranawik (10.1016/j.ces.2013.05.008_bib33) 2003; 212
Teoh (10.1016/j.ces.2013.05.008_bib38) 2009; 66
Ong (10.1016/j.ces.2013.05.008_bib31) 2012; 421–422
Gryta (10.1016/j.ces.2013.05.008_bib20) 2008; 325
Drioli (10.1016/j.ces.2013.05.008_bib8) 2006; 84
Garside (10.1016/j.ces.2013.05.008_bib15) 1980; 19
Hogan (10.1016/j.ces.2013.05.008_bib21) 1991; 81
Charcosset (10.1016/j.ces.2013.05.008_bib4) 2009; 245
Edwie (10.1016/j.ces.2013.05.008_bib9) 2012; 421–422
Macedonio (10.1016/j.ces.2013.05.008_bib28) 2007; 203
Gryta (10.1016/j.ces.2013.05.008_bib17) 2002; 37
Gryta (10.1016/j.ces.2013.05.008_bib19) 2007; 287
Mariah (10.1016/j.ces.2013.05.008_bib29) 2006; 280
Gryta (10.1016/j.ces.2013.05.008_bib18) 2006; 41
Wang (10.1016/j.ces.2013.05.008_bib43) 2009; 48
Yun (10.1016/j.ces.2013.05.008_bib46) 2006; 188
Chen (10.1016/j.ces.2013.05.008_bib5) 2013; 308
Khayet (10.1016/j.ces.2013.05.008_bib23) 2001; 40
References_xml – volume: 152
  start-page: 237
  year: 2003
  end-page: 244
  ident: bib3
  article-title: Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination
  publication-title: Desalination
– volume: 308
  start-page: 47
  year: 2013
  end-page: 55
  ident: bib5
  article-title: Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation
  publication-title: Desalination
– volume: 220
  start-page: 1
  year: 2008
  end-page: 15
  ident: bib26
  article-title: Environmental impact and impact assessment of seawater desalination
  publication-title: Desalination
– volume: 81
  start-page: 8l
  year: 1991
  end-page: 90
  ident: bib21
  article-title: Desalination by solar heated membrane distillation
  publication-title: Desalination
– volume: 71
  start-page: 76
  year: 2010
  end-page: 82
  ident: bib22
  article-title: Membrane distillation–crystallization of seawater reverse osmosis brines
  publication-title: Sep. Purif. Technol.
– volume: 287
  start-page: 67
  year: 2007
  end-page: 78
  ident: bib19
  article-title: Influence of polypropylene membrane surface porosity on the performance of membrane distillation process
  publication-title: J. Membr. Sci.
– volume: 238
  start-page: 187
  year: 2011
  end-page: 192
  ident: bib41
  article-title: Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent
  publication-title: Desalination
– volume: 421–422
  start-page: 271
  year: 2012
  end-page: 282
  ident: bib31
  article-title: High performance dual-layer hollow fiber fabricated via novel immiscibility induced phase separation (I
  publication-title: J. Membr. Sci.
– volume: 66
  start-page: 229
  year: 2009
  end-page: 236
  ident: bib38
  article-title: Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes
  publication-title: Sep. Pur. Technol.
– volume: 282
  start-page: 362
  year: 2006
  end-page: 369
  ident: bib1
  article-title: Heat and mass transfer resistance analysis of membrane distillation
  publication-title: J. Membr. Sci.
– volume: 415–416
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib34
  article-title: Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy
  publication-title: J. Membr. Sci.
– reference: Bodell, B.R., 1963. Silicone rubber vapor diffusion in saline water distillation. US Patents 285,032.
– volume: 43
  start-page: 5300
  year: 2004
  end-page: 5309
  ident: bib27
  article-title: Novel membrane and device for direct contact membrane distillation-based desalination process
  publication-title: Ind. Eng. Chem. Res.
– volume: 203
  start-page: 260
  year: 2007
  end-page: 276
  ident: bib28
  article-title: Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study
  publication-title: Desalination
– volume: 257
  start-page: 144
  year: 2005
  end-page: 155
  ident: bib42
  article-title: Membrane distillation crystallization of concentrated salts—flux and crystal formation
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 393
  year: 1980
  end-page: 424
  ident: bib14
  article-title: Invited review secondary contact nucleation: kinetics, growth and scale-up
  publication-title: Chem. Eng. Commun.
– volume: 19
  start-page: 509
  year: 1980
  end-page: 514
  ident: bib15
  article-title: Crystallization kinetics from MSMPR crystallizers
  publication-title: Ind. Eng. Chem. Process. Des. Dev.
– volume: 40
  start-page: 2679
  year: 2001
  end-page: 2684
  ident: bib6
  article-title: Membrane crystallizers
  publication-title: Ind. Eng. Chem. Res.
– volume: 54
  start-page: 57
  year: 2003
  end-page: 93
  ident: bib7
  article-title: Principles of crystal nucleation and growth
  publication-title: Rev. Min. Geochem.
– volume: 48
  start-page: 4474
  year: 2009
  end-page: 4483
  ident: bib43
  article-title: Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation
  publication-title: Ind. Eng. Chem. Res.
– volume: 182
  start-page: 517
  year: 2005
  end-page: 524
  ident: bib25
  article-title: Environmental impact of brine disposal on
  publication-title: Desalination
– volume: 280
  start-page: 937
  year: 2006
  end-page: 947
  ident: bib29
  article-title: Membrane distillation of concentrated brines-role of water activities in the evaluation of driving force
  publication-title: J. Membr. Sci.
– volume: 46
  start-page: 4037
  year: 2012
  end-page: 4052
  ident: bib44
  article-title: Freeze Desalination–Membrane Distillation (FD–MD) hybrid process: a new technology for seawater desalination
  publication-title: Wat. Res.
– volume: 68
  start-page: 567
  year: 2012
  end-page: 578
  ident: bib10
  article-title: Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance
  publication-title: Chem. Eng. Sci.
– volume: 16
  start-page: 354
  year: 2010
  end-page: 380
  ident: bib35
  article-title: Thermophysical properties of seawater: a review of existing correlations and data
  publication-title: Desalin. Water Treat.
– volume: 212
  start-page: 177
  year: 2003
  end-page: 193
  ident: bib33
  article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation
  publication-title: J. Membr. Sci.
– year: 2011
  ident: bib24
  article-title: Membrane Distillation: Principles and Applications
– volume: 421–422
  start-page: 111
  year: 2012
  end-page: 123
  ident: bib9
  article-title: Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization
  publication-title: J. Membr. Sci.
– volume: 37
  start-page: 3535
  year: 2002
  end-page: 3558
  ident: bib17
  article-title: Concentration of NaCl solution by membrane distillation integrated with crystallization
  publication-title: Sep. Sci. Technol.
– volume: 188
  start-page: 251
  year: 2006
  end-page: 262
  ident: bib46
  article-title: Direct contact membrane distillation mechanism for high concentration NaCl solutions
  publication-title: Desalination
– volume: 325
  start-page: 383
  year: 2008
  end-page: 394
  ident: bib20
  article-title: Fouling in direct contact membrane distillation process
  publication-title: J. Membr. Sci.
– reference: Global water intelligence and water desalination report, 2010. Desalination Markets.
– volume: 245
  start-page: 214
  year: 2009
  end-page: 231
  ident: bib4
  article-title: A review of membrane processes and renewable energies for desalination
  publication-title: Desalination
– volume: 348
  start-page: 22
  year: 1999
  end-page: 29
  ident: bib32
  article-title: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization
  publication-title: Thin Solid Films
– volume: 102
  start-page: 113
  year: 1995
  end-page: 122
  ident: bib40
  article-title: Study on the concentration of acids by membrane distillation
  publication-title: J. Membr. Sci.
– volume: 46
  start-page: 2307
  year: 2007
  end-page: 2323
  ident: bib36
  article-title: Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model
  publication-title: Ind. Eng. Chem. Res.
– volume: 41
  start-page: 595
  year: 2006
  end-page: 626
  ident: bib37
  article-title: Membrane-based hybrid processes: a review
  publication-title: Sep. Sci. Technol.
– volume: 40
  start-page: 5710
  year: 2001
  end-page: 5718
  ident: bib23
  article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation
  publication-title: Ind. Eng. Chem. Res.
– volume: 285
  start-page: 4
  year: 2006
  end-page: 29
  ident: bib11
  article-title: A framework for better understanding membrane distillation separation process (Review)
  publication-title: J. Membr. Sci.
– reference: .
– volume: 45
  start-page: 5489
  year: 2011
  end-page: 5500
  ident: bib45
  article-title: Morphological architecture of dual-layer hollow fiber for direct contact membrane distillation
  publication-title: Wat. Res.
– volume: 84
  start-page: 209
  year: 2006
  end-page: 220
  ident: bib8
  article-title: Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination energy, exergy and costs analysis
  publication-title: Chem. Eng. Res. Design
– volume: 2
  start-page: 375
  year: 2002
  end-page: 379
  ident: bib12
  article-title: Residence time optimization in continuous crystallizers
  publication-title: Crys. growth Design
– volume: 169
  start-page: 61
  year: 2000
  end-page: 80
  ident: bib13
  article-title: Air gap membrane distillation of aqueous alcohol solutions
  publication-title: J. Membr. Sci.
– volume: 41
  start-page: 1789
  year: 2006
  end-page: 1798
  ident: bib18
  article-title: Water purification by membrane distillation process
  publication-title: Sep. Sci. Technol.
– year: 2001
  ident: bib30
  publication-title: Crystallization
– volume: 311
  start-page: 371
  year: 2008
  end-page: 379
  ident: bib39
  article-title: Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process
  publication-title: J. Membr. Sci.
– volume: 311
  start-page: 371
  year: 2008
  ident: 10.1016/j.ces.2013.05.008_bib39
  article-title: Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.12.054
– ident: 10.1016/j.ces.2013.05.008_bib16
– volume: 16
  start-page: 354
  year: 2010
  ident: 10.1016/j.ces.2013.05.008_bib35
  article-title: Thermophysical properties of seawater: a review of existing correlations and data
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2010.1079
– volume: 41
  start-page: 1789
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib18
  article-title: Water purification by membrane distillation process
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390600674950
– volume: 66
  start-page: 229
  year: 2009
  ident: 10.1016/j.ces.2013.05.008_bib38
  article-title: Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes
  publication-title: Sep. Pur. Technol.
  doi: 10.1016/j.seppur.2009.01.005
– volume: 40
  start-page: 2679
  year: 2001
  ident: 10.1016/j.ces.2013.05.008_bib6
  article-title: Membrane crystallizers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000906d
– volume: 71
  start-page: 76
  year: 2010
  ident: 10.1016/j.ces.2013.05.008_bib22
  article-title: Membrane distillation–crystallization of seawater reverse osmosis brines
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.11.004
– year: 2011
  ident: 10.1016/j.ces.2013.05.008_bib24
– volume: 203
  start-page: 260
  year: 2007
  ident: 10.1016/j.ces.2013.05.008_bib28
  article-title: Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.02.021
– volume: 41
  start-page: 595
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib37
  article-title: Membrane-based hybrid processes: a review
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390600552347
– volume: 421–422
  start-page: 271
  year: 2012
  ident: 10.1016/j.ces.2013.05.008_bib31
  article-title: High performance dual-layer hollow fiber fabricated via novel immiscibility induced phase separation (I2PS) process for dehydration of ethanol
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.07.025
– volume: 238
  start-page: 187
  year: 2011
  ident: 10.1016/j.ces.2013.05.008_bib41
  article-title: Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.03.054
– volume: 282
  start-page: 362
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib1
  article-title: Heat and mass transfer resistance analysis of membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.05.040
– volume: 40
  start-page: 5710
  year: 2001
  ident: 10.1016/j.ces.2013.05.008_bib23
  article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010553y
– volume: 48
  start-page: 4474
  year: 2009
  ident: 10.1016/j.ces.2013.05.008_bib43
  article-title: Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8009704
– volume: 68
  start-page: 567
  year: 2012
  ident: 10.1016/j.ces.2013.05.008_bib10
  article-title: Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.10.024
– volume: 37
  start-page: 3535
  year: 2002
  ident: 10.1016/j.ces.2013.05.008_bib17
  article-title: Concentration of NaCl solution by membrane distillation integrated with crystallization
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-120014442
– volume: 280
  start-page: 937
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib29
  article-title: Membrane distillation of concentrated brines-role of water activities in the evaluation of driving force
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.03.014
– volume: 169
  start-page: 61
  year: 2000
  ident: 10.1016/j.ces.2013.05.008_bib13
  article-title: Air gap membrane distillation of aqueous alcohol solutions
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00326-9
– volume: 4
  start-page: 393
  year: 1980
  ident: 10.1016/j.ces.2013.05.008_bib14
  article-title: Invited review secondary contact nucleation: kinetics, growth and scale-up
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448008935918
– volume: 287
  start-page: 67
  year: 2007
  ident: 10.1016/j.ces.2013.05.008_bib19
  article-title: Influence of polypropylene membrane surface porosity on the performance of membrane distillation process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.10.011
– volume: 220
  start-page: 1
  year: 2008
  ident: 10.1016/j.ces.2013.05.008_bib26
  article-title: Environmental impact and impact assessment of seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.03.009
– volume: 212
  start-page: 177
  year: 2003
  ident: 10.1016/j.ces.2013.05.008_bib33
  article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00498-2
– volume: 325
  start-page: 383
  year: 2008
  ident: 10.1016/j.ces.2013.05.008_bib20
  article-title: Fouling in direct contact membrane distillation process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.08.001
– volume: 46
  start-page: 2307
  year: 2007
  ident: 10.1016/j.ces.2013.05.008_bib36
  article-title: Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0609968
– ident: 10.1016/j.ces.2013.05.008_bib2
– volume: 348
  start-page: 22
  year: 1999
  ident: 10.1016/j.ces.2013.05.008_bib32
  article-title: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00197-2
– year: 2001
  ident: 10.1016/j.ces.2013.05.008_bib30
– volume: 415–416
  start-page: 1
  year: 2012
  ident: 10.1016/j.ces.2013.05.008_bib34
  article-title: Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.05.016
– volume: 285
  start-page: 4
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib11
  article-title: A framework for better understanding membrane distillation separation process (Review)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.08.002
– volume: 2
  start-page: 375
  year: 2002
  ident: 10.1016/j.ces.2013.05.008_bib12
  article-title: Residence time optimization in continuous crystallizers
  publication-title: Crys. growth Design
  doi: 10.1021/cg020014b
– volume: 43
  start-page: 5300
  year: 2004
  ident: 10.1016/j.ces.2013.05.008_bib27
  article-title: Novel membrane and device for direct contact membrane distillation-based desalination process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030871s
– volume: 245
  start-page: 214
  year: 2009
  ident: 10.1016/j.ces.2013.05.008_bib4
  article-title: A review of membrane processes and renewable energies for desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.06.020
– volume: 421–422
  start-page: 111
  year: 2012
  ident: 10.1016/j.ces.2013.05.008_bib9
  article-title: Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.07.001
– volume: 45
  start-page: 5489
  year: 2011
  ident: 10.1016/j.ces.2013.05.008_bib45
  article-title: Morphological architecture of dual-layer hollow fiber for direct contact membrane distillation
  publication-title: Wat. Res.
  doi: 10.1016/j.watres.2011.08.012
– volume: 257
  start-page: 144
  year: 2005
  ident: 10.1016/j.ces.2013.05.008_bib42
  article-title: Membrane distillation crystallization of concentrated salts—flux and crystal formation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.09.051
– volume: 84
  start-page: 209
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib8
  article-title: Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination energy, exergy and costs analysis
  publication-title: Chem. Eng. Res. Design
  doi: 10.1205/cherd.05171
– volume: 182
  start-page: 517
  year: 2005
  ident: 10.1016/j.ces.2013.05.008_bib25
  article-title: Environmental impact of brine disposal on Posidonia seagrasses
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.02.039
– volume: 19
  start-page: 509
  year: 1980
  ident: 10.1016/j.ces.2013.05.008_bib15
  article-title: Crystallization kinetics from MSMPR crystallizers
  publication-title: Ind. Eng. Chem. Process. Des. Dev.
  doi: 10.1021/i260076a001
– volume: 188
  start-page: 251
  year: 2006
  ident: 10.1016/j.ces.2013.05.008_bib46
  article-title: Direct contact membrane distillation mechanism for high concentration NaCl solutions
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.04.123
– volume: 81
  start-page: 8l
  year: 1991
  ident: 10.1016/j.ces.2013.05.008_bib21
  article-title: Desalination by solar heated membrane distillation
  publication-title: Desalination
  doi: 10.1016/0011-9164(91)85047-X
– volume: 102
  start-page: 113
  year: 1995
  ident: 10.1016/j.ces.2013.05.008_bib40
  article-title: Study on the concentration of acids by membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00281-3
– volume: 54
  start-page: 57
  year: 2003
  ident: 10.1016/j.ces.2013.05.008_bib7
  article-title: Principles of crystal nucleation and growth
  publication-title: Rev. Min. Geochem.
  doi: 10.2113/0540057
– volume: 152
  start-page: 237
  year: 2003
  ident: 10.1016/j.ces.2013.05.008_bib3
  article-title: Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination⁎1
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)01069-X
– volume: 308
  start-page: 47
  year: 2013
  ident: 10.1016/j.ces.2013.05.008_bib5
  article-title: Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.07.018
– volume: 46
  start-page: 4037
  year: 2012
  ident: 10.1016/j.ces.2013.05.008_bib44
  article-title: Freeze Desalination–Membrane Distillation (FD–MD) hybrid process: a new technology for seawater desalination
  publication-title: Wat. Res.
  doi: 10.1016/j.watres.2012.04.042
SSID ssj0007710
Score 2.4853733
Snippet We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms chemical engineering
Crystal size distribution
crystallization
crystals
desalination
Polarizations
saline water
Saturated brine
Scaling
Simultaneous membrane distillation–crystallization
temperature
Title Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine
URI https://dx.doi.org/10.1016/j.ces.2013.05.008
https://www.proquest.com/docview/1672060114
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKucABsYqyyUgcACngJM7iY1VABQQXqNSbFcc2KmrTqhQkLoh_4A_5EmayFBCIA7ckchZl7Jln-80bQvZ0wlOI5IDcmLEOd7lxlC8CR3PmWyuMCjQu6F9dh-0Ov-gG3RppVbkwSKssfX_h03NvXV45Lv_m8ajXwxxfJjyMdz70TK_IYOcR9vKjl0-aRxS5rKqmhq2rnc2c4wVDEdldfi7eiRUmf49NMzYZ_vDVeQA6WyQLJXKkzeLjlkjNZMtk_oue4Ap5-kIBokNLH3rIF0wyA9N7OjADmBlnhmoc1v2CA_f--paOnwEh9vtlQibdv7k6aR3QyXTNnQKupVNCev5cVAMFkKqpwuTBVdI5O71ttZ2ysIKTBoxNHG1CHgISC1KYXghjXaFDpnHTNgm4jUNrmIYDJUIABL5gSmgfDIja9IGJdeSvkXo2zMw6odqgvI6X2NiHqaLisUrdBM5QFl6FsW4QVv1SmZaq41j8oi8retm9BCtItIJkgQQrNMjh9JZRIbnxV2Ne2Ul-6zcSQsJft62DTWVyB55Udm48XPfBDUpAww2yWxlawlDD_ZPCTtINIw_la1y-8b-3bpI5L6-mETmu2CL1yfjRbAOmmaidvNPukNnm-WX7-gPBTfWM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BPRQOqC1Fu0BbV2qltlLASZwfHzggKFoKywVW4ubGsY0WLVnELiAuiHfoo_SNeBJm8rOlouJQiVsSxfnx2DOf7c_fAHwymcgxkiNy49Z5whfW06GMPCN46Jy0OjI0od_djzs98eMoOpqC381eGKJV1r6_8umlt66vrNW1uXbW79MeXy4DinchtsxA-jWzctdeX-G4bbS-s4VG_hwE298PNztenVrAyyPOx56xsYgRi0Q5AmxpnS9NzA0tW2aRcGnsLDd4oGWMITGUXEsT4i-QOntkU5OE-NxpeCHwCqVNWL35wytJEp836dvo85ql1JJUhn2f6GRhqRZKKS3_HQynXTZ8FBzKiLf9CuZrqMo2qtp4DVO2eANzDwQMF-DyAeeIDR0b9YmgmBV2eDFip_YUh-KFZYb8yKAi3d3d_srPrxGSDgb1DlD25aC7tfmVjSeT_AyBNJsw4MvnkvwoomLDNO1WfAu9Z6nuRZgphoVtATOW9HyCzKUhjk21SHXuZ3hGOvQ6Tk0beFOlKq9lzinbxkA1fLYThVZQZAXFI4VWaMO3SZGzSuPjqZtFYyf1V0NVGIOeKtZCm6rsGF236h0ENNFEK6IIv9vwsTG0wr5NCzaVnZQfJwHp5fhi6f_e-gFedg67e2pvZ393GWaDMpVH4vlyBWbG5xf2HQKqsX5fNmAGP5-7x9wDzcwu8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+simultaneous+membrane+distillation%E2%80%93crystallization+%28SMDC%29+technology+for+treatment+of+saturated+brine&rft.jtitle=Chemical+engineering+science&rft.au=Edwie%2C+Felinia&rft.au=Chung%2C+Tai-Shung&rft.date=2013-07-19&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=98&rft.spage=160&rft.epage=172&rft_id=info:doi/10.1016%2Fj.ces.2013.05.008&rft.externalDocID=S0009250913003291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon