Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine
We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in term...
Saved in:
Published in | Chemical engineering science Vol. 98; pp. 160 - 172 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
19.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm−2h−1 to 20kgm−2h−1 for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm3 solution to 34kgperm3 for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion.
[Display omitted]
•Simultaneous productions of pure water and salt crystal via SMDC hybrid technology.•Increasing feed temperature increases productions of pure water and salt crystals.•Increasing feed temperature increases scaling and membrane wetting.•Critical flux is strongly affected by Reynolds number.•Salt crystallization at a higher feed temperature is dominated by nucleation. |
---|---|
AbstractList | We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm−2h−1 to 20kgm−2h−1 for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm3 solution to 34kgperm3 for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion.
[Display omitted]
•Simultaneous productions of pure water and salt crystal via SMDC hybrid technology.•Increasing feed temperature increases productions of pure water and salt crystals.•Increasing feed temperature increases scaling and membrane wetting.•Critical flux is strongly affected by Reynolds number.•Salt crystallization at a higher feed temperature is dominated by nucleation. We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and salt crystal from the saturated brine solutions. The effects of feed temperature variation from 40°C to 70°C on the SMDC performance in terms of membrane flux and kinetics of NaCl crystallization have been investigated. Increasing feed temperature increases membrane flux but the flux declines rapidly with time at higher feed temperatures (60°C and 70°C) due to the occurrences of membrane scaling and wetting facilitated by salt oversaturation at the boundary layer. In order to prevent salt oversaturation, we have calculated the critical fluxes at different Reynolds numbers and crystallizer temperatures. For instance, the critical fluxes when the feed temperature is 70°C increase from 5kgm⁻²h⁻¹ to 20kgm⁻²h⁻¹ for the laminar and turbulent flows, respectively. By keeping the membrane flux lower than the critical flux, a stable membrane performance during a continuous SMDC operation over the period of 5000min has been achieved. Increasing feed temperature also increases the yield of NaCl crystals from 7.5kgperm³ solution to 34kgperm³ for feed temperatures of 40°C and 70°C after 200min operation, respectively. However, the average crystal sizes decrease from 87.40µm to 48.82µm with increasing feed temperatures from 40°C to 70°C due to a higher nucleation rate at a higher degree of supersaturation. Regardless of the feed temperature, the NaCl crystals are in a uniform cubical shape with the coefficient of variations which are in the range of 30–38% that implies a narrow dispersion. |
Author | Edwie, Felinia Chung, Tai-Shung |
Author_xml | – sequence: 1 givenname: Felinia surname: Edwie fullname: Edwie, Felinia – sequence: 2 givenname: Tai-Shung surname: Chung fullname: Chung, Tai-Shung email: chencts@nus.edu.sg |
BookMark | eNp9kM1uEzEUhS1UJNLCA7DCy7KY4Xpm7BmLFUr5k4pYlK4tx75THHnGwXYipSvegTfsk9RJEAsWXd17rXOOfL5zcjaHGQl5zaBmwMS7dW0w1Q2wtgZeAwzPyIINfVt1HfAzsgAAWTUc5AtyntK6nH3PYEF2V7hDHzYTzpmGkSY3bX3WM4ZtohNOq1h2al3KznudXZgffv8xcZ-y9t7dH1_o5c23q-VbmtH8nIMPd3s6hkhzRJ3_5eq8jTqjpavoZnxJno_aJ3z1d16Q208ffyy_VNffP39dfriuDAfIlUXRiY4JbhgbJI5MWgG26btG824cxIhgy7KSomG8lbCStm0lbwfoOQ62by_I5Sl3E8OvLaasJpcMlirHhoqJvgEBjHVF2p-kJoaUIo7KuHzsl6N2XjFQB9JqrQppdSCtgKtCujjZf85NdJOO-yc9b06eUQel76JL6vamCEptaKTsD19_f1Jg4bNzGFUyDmeD1kU0Wdngnsh_BKB5pD4 |
CitedBy_id | crossref_primary_10_1016_j_desal_2016_03_010 crossref_primary_10_1016_j_desal_2018_01_009 crossref_primary_10_1016_j_seppur_2019_02_050 crossref_primary_10_1016_j_memsci_2018_09_003 crossref_primary_10_1016_j_envres_2023_116577 crossref_primary_10_1016_j_memsci_2023_121838 crossref_primary_10_1021_acs_estlett_9b00354 crossref_primary_10_3389_frmst_2023_1247276 crossref_primary_10_1016_j_memsci_2023_122249 crossref_primary_10_1080_15422119_2018_1470537 crossref_primary_10_1016_j_watres_2021_117794 crossref_primary_10_3390_membranes10010019 crossref_primary_10_3390_membranes13060597 crossref_primary_10_1016_j_desal_2020_114894 crossref_primary_10_1016_j_rser_2015_12_087 crossref_primary_10_1016_j_watres_2019_01_036 crossref_primary_10_3390_pr9020243 crossref_primary_10_1016_j_memsci_2020_118813 crossref_primary_10_1016_j_resconrec_2020_105273 crossref_primary_10_1016_j_seppur_2020_118191 crossref_primary_10_1590_0104_6632_20160333s20150133 crossref_primary_10_1021_acs_iecr_7b02818 crossref_primary_10_1007_s12649_024_02777_w crossref_primary_10_1016_j_memsci_2020_118931 crossref_primary_10_1016_j_cej_2023_144169 crossref_primary_10_1080_01496395_2018_1553980 crossref_primary_10_1002_cben_202100034 crossref_primary_10_1016_j_cherd_2023_11_027 crossref_primary_10_1016_j_colsurfa_2022_128918 crossref_primary_10_1016_j_memsci_2019_05_074 crossref_primary_10_1016_j_memsci_2016_01_033 crossref_primary_10_1021_acsestengg_0c00025 crossref_primary_10_1016_j_egyr_2024_09_052 crossref_primary_10_1016_j_desal_2016_07_043 crossref_primary_10_1016_j_desal_2024_117539 crossref_primary_10_1016_j_seppur_2024_128533 crossref_primary_10_1016_j_desal_2016_07_045 crossref_primary_10_3390_membranes13030317 crossref_primary_10_1016_j_memsci_2015_09_010 crossref_primary_10_1016_j_seppur_2022_121989 crossref_primary_10_1021_ie504695p crossref_primary_10_1038_s41545_022_00153_6 crossref_primary_10_1080_19443994_2016_1173381 crossref_primary_10_1016_j_coche_2024_101079 crossref_primary_10_1016_j_memsci_2017_07_016 crossref_primary_10_1007_s11705_017_1649_8 crossref_primary_10_1016_j_cep_2017_11_017 crossref_primary_10_1016_j_apenergy_2018_09_196 crossref_primary_10_1016_j_desal_2023_117151 crossref_primary_10_1016_j_memsci_2017_07_013 crossref_primary_10_1016_j_desal_2013_10_020 crossref_primary_10_1016_j_memsci_2014_07_017 crossref_primary_10_1016_j_desal_2018_01_027 crossref_primary_10_5004_dwt_2020_25155 crossref_primary_10_1016_j_chemosphere_2019_124641 crossref_primary_10_3390_membranes11030175 crossref_primary_10_3390_ma17153629 crossref_primary_10_1016_j_desal_2022_115727 crossref_primary_10_1002_jctb_5225 crossref_primary_10_3390_membranes13010035 crossref_primary_10_1021_acs_estlett_1c00483 crossref_primary_10_1016_j_desal_2014_06_031 crossref_primary_10_3390_w13243480 crossref_primary_10_1080_19443994_2014_922499 crossref_primary_10_1186_s12302_021_00520_z crossref_primary_10_3390_membranes10070158 crossref_primary_10_1016_j_desal_2015_01_038 crossref_primary_10_1016_j_desal_2021_115315 crossref_primary_10_1016_j_desal_2016_07_021 crossref_primary_10_1016_j_desal_2017_02_021 crossref_primary_10_1016_j_memsci_2014_09_016 crossref_primary_10_1016_j_memsci_2021_119673 crossref_primary_10_3390_membranes12060573 crossref_primary_10_1016_j_apenergy_2019_113698 crossref_primary_10_61186_jrr_2308_1018 crossref_primary_10_3390_cryst6040033 crossref_primary_10_1016_j_desal_2016_11_022 crossref_primary_10_3390_en16083447 crossref_primary_10_3390_membranes14010025 crossref_primary_10_1016_j_desal_2014_10_005 crossref_primary_10_1016_j_memsci_2016_02_051 crossref_primary_10_1016_j_seppur_2016_06_028 crossref_primary_10_1016_j_memsci_2015_07_037 crossref_primary_10_1016_j_cjche_2019_04_004 crossref_primary_10_1016_j_memsci_2024_123259 crossref_primary_10_1016_j_seppur_2021_119637 crossref_primary_10_3389_fceng_2022_1066027 crossref_primary_10_1002_aic_16459 crossref_primary_10_1016_j_chemosphere_2017_01_070 crossref_primary_10_1016_j_memsci_2018_08_001 crossref_primary_10_1007_s11696_018_0628_y crossref_primary_10_1039_C9EW00157C crossref_primary_10_1039_C9EW01055F crossref_primary_10_1515_revce_2017_0066 crossref_primary_10_1016_j_cep_2023_109385 crossref_primary_10_1016_j_applthermaleng_2016_07_131 crossref_primary_10_1016_j_clet_2021_100091 crossref_primary_10_5004_dwt_2017_11465 crossref_primary_10_1016_j_seppur_2018_09_072 crossref_primary_10_1016_j_desal_2023_116903 crossref_primary_10_1021_acs_energyfuels_0c03415 crossref_primary_10_1016_j_desal_2017_10_024 crossref_primary_10_1016_j_memsci_2019_03_089 crossref_primary_10_5004_dwt_2022_28844 crossref_primary_10_1016_j_watres_2023_120807 crossref_primary_10_1016_j_seppur_2024_129023 crossref_primary_10_1016_j_desal_2019_02_001 crossref_primary_10_1016_j_desal_2017_06_024 crossref_primary_10_1016_j_apenergy_2017_11_043 crossref_primary_10_1016_j_ces_2015_05_030 crossref_primary_10_1016_j_memsci_2021_119735 crossref_primary_10_1007_s11356_023_31327_5 crossref_primary_10_1016_j_watres_2018_03_058 crossref_primary_10_1016_j_desal_2015_08_014 crossref_primary_10_1016_j_memsci_2018_10_034 crossref_primary_10_1016_j_rineng_2024_103417 crossref_primary_10_3390_en15041454 crossref_primary_10_1016_j_desal_2023_116936 crossref_primary_10_1016_j_desal_2020_114353 crossref_primary_10_1016_j_desal_2017_10_037 crossref_primary_10_1016_j_desal_2015_02_031 crossref_primary_10_1002_aic_15069 crossref_primary_10_1007_s13197_020_04749_z crossref_primary_10_1016_j_seppur_2022_122029 crossref_primary_10_1016_j_desal_2017_03_022 crossref_primary_10_2478_pjct_2018_0040 crossref_primary_10_1016_j_cep_2019_107567 crossref_primary_10_1016_j_desal_2020_114928 crossref_primary_10_1039_C5EW00127G crossref_primary_10_1016_j_scitotenv_2021_150692 crossref_primary_10_1002_aic_15581 crossref_primary_10_1016_j_memsci_2025_124021 crossref_primary_10_1007_s11696_016_0059_6 crossref_primary_10_3390_membranes14040087 crossref_primary_10_1016_j_seppur_2020_117666 crossref_primary_10_3390_membranes12040423 crossref_primary_10_1021_acs_iecr_5b03807 crossref_primary_10_1016_j_memsci_2022_121289 crossref_primary_10_1016_j_reactfunctpolym_2014_09_023 crossref_primary_10_1016_j_desal_2021_115512 crossref_primary_10_1016_j_desal_2021_114942 crossref_primary_10_1016_j_desal_2022_116229 crossref_primary_10_1016_j_jclepro_2022_130586 crossref_primary_10_1021_acs_est_3c04450 crossref_primary_10_2166_wst_2015_277 crossref_primary_10_1016_j_watres_2025_123146 crossref_primary_10_1016_j_watres_2017_11_017 crossref_primary_10_1016_j_desal_2020_114887 crossref_primary_10_1016_j_desal_2020_114886 crossref_primary_10_1016_j_jhazmat_2020_124160 crossref_primary_10_1016_j_memsci_2023_121909 crossref_primary_10_1016_j_desal_2020_114643 crossref_primary_10_1016_j_desal_2021_115115 crossref_primary_10_1016_j_memsci_2020_117832 |
Cites_doi | 10.1016/j.memsci.2007.12.054 10.5004/dwt.2010.1079 10.1080/01496390600674950 10.1016/j.seppur.2009.01.005 10.1021/ie000906d 10.1016/j.seppur.2009.11.004 10.1016/j.desal.2006.02.021 10.1080/01496390600552347 10.1016/j.memsci.2012.07.025 10.1016/j.desal.2011.03.054 10.1016/j.memsci.2006.05.040 10.1021/ie010553y 10.1021/ie8009704 10.1016/j.ces.2011.10.024 10.1081/SS-120014442 10.1016/j.memsci.2006.03.014 10.1016/S0376-7388(99)00326-9 10.1080/00986448008935918 10.1016/j.memsci.2006.10.011 10.1016/j.desal.2007.03.009 10.1016/S0376-7388(02)00498-2 10.1016/j.memsci.2008.08.001 10.1021/ie0609968 10.1016/S0040-6090(99)00197-2 10.1016/j.memsci.2012.05.016 10.1016/j.memsci.2006.08.002 10.1021/cg020014b 10.1021/ie030871s 10.1016/j.desal.2008.06.020 10.1016/j.memsci.2012.07.001 10.1016/j.watres.2011.08.012 10.1016/j.memsci.2004.09.051 10.1205/cherd.05171 10.1016/j.desal.2005.02.039 10.1021/i260076a001 10.1016/j.desal.2005.04.123 10.1016/0011-9164(91)85047-X 10.1016/0376-7388(94)00281-3 10.2113/0540057 10.1016/S0011-9164(02)01069-X 10.1016/j.desal.2012.07.018 10.1016/j.watres.2012.04.042 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | FBQ AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ces.2013.05.008 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4405 |
EndPage | 172 |
ExternalDocumentID | 10_1016_j_ces_2013_05_008 US201500029977 S0009250913003291 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK ABPIF ABPTK ABTAH ADMUD AI. AIDUJ ASPBG AVWKF AZFZN BBWZM FBQ FEDTE FGOYB G8K HVGLF HZ~ NDZJH R2- SC5 SEW T9H VH1 WUQ XFK Y6R ZY4 AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c500t-de6464165c1189ef19d60d2742a54f86fe0d54fb96215390b9d339538075e8d73 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Mon Jul 21 10:13:02 EDT 2025 Tue Jul 01 03:13:55 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Wed Dec 27 19:14:30 EST 2023 Fri Feb 23 02:32:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Saturated brine Scaling Polarizations Simultaneous membrane distillation–crystallization Crystal size distribution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-de6464165c1189ef19d60d2742a54f86fe0d54fb96215390b9d339538075e8d73 |
Notes | http://dx.doi.org/10.1016/j.ces.2013.05.008 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/88762 |
PQID | 1672060114 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1672060114 crossref_citationtrail_10_1016_j_ces_2013_05_008 crossref_primary_10_1016_j_ces_2013_05_008 fao_agris_US201500029977 elsevier_sciencedirect_doi_10_1016_j_ces_2013_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-19 |
PublicationDateYYYYMMDD | 2013-07-19 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yun, Ma, Zhang, Fane, Li (bib46) 2006; 188 Khayet, Matsuura (bib23) 2001; 40 Chen, Yang, Wang, Fane (bib5) 2013; 308 Sharqawy, Lienhard, Zubair (bib35) 2010; 16 De Yoreo, Vekilov (bib7) 2003; 54 Curcio, Criscuoli, Drioli (bib6) 2001; 40 Teoh, Bonyadi, Chung (bib39) 2008; 311 Gryta (bib17) 2002; 37 Wang, Teoh, Chung (bib45) 2011; 45 Hogan, Sudjito Fane, Momson (bib21) 1991; 81 Tun, Groth (bib41) 2011; 238 Gryta (bib18) 2006; 41 Garside, Shah (bib15) 1980; 19 Macedonio, Curcio, Drioli (bib28) 2007; 203 Ong, Chung (bib31) 2012; 421–422 Fakatselis (bib12) 2002; 2 Charcosset (bib4) 2009; 245 Mullin (bib30) 2001 Garcia-Payo, Izquierdo-Gil, Fernandez-Pineda (bib13) 2000; 169 Ji, Curcio, Al Obaidani, Di Profio, Fontananova, Drioli (bib22) 2010; 71 Shaffer, Yip, Gilron, Elimelech (bib34) 2012; 415–416 Phattaranawik, Jiraratananon, Fane (bib33) 2003; 212 Edwie, Chung (bib9) 2012; 421–422 Khayet, Matsuura (bib24) 2011 Palacio, Prádanos, Calvo, Hernández (bib32) 1999; 348 Teoh, Chung (bib38) 2009; 66 Drioli, Curcio, Di Profio, Macedonio, Cirscuoli (bib8) 2006; 84 Global water intelligence and water desalination report, 2010. Desalination Markets. Gryta (bib20) 2008; 325 Edwie, Teoh, Chung (bib10) 2012; 68 Gryta (bib19) 2007; 287 . Suk, Matsuura (bib37) 2006; 41 Bouguecha, Dhahbi (bib3) 2003; 152 Lattemann, Höpner (bib26) 2008; 220 Alklaibi, Lior (bib1) 2006; 282 El-Bourawi, Ding, Ma, Khayet (bib11) 2006; 285 Tomaszewska, Gryta, Morawski (bib40) 1995; 102 Wang, Chung (bib44) 2012; 46 Bodell, B.R., 1963. Silicone rubber vapor diffusion in saline water distillation. US Patents 285,032. Latorre (bib25) 2005; 182 Mariah, Buckley, Brouckaert, Curcio, Drioli, Jaganyi, Ramjugernath (bib29) 2006; 280 Song, Li, Sirkar, Gilron (bib36) 2007; 46 Tun, Fane, Matheickal, Sheikholeslami (bib42) 2005; 257 Wang, Foo, Chung (bib43) 2009; 48 Garside, Davey (bib14) 1980; 4 Li, Sirkar (bib27) 2004; 43 Tun (10.1016/j.ces.2013.05.008_bib41) 2011; 238 Ji (10.1016/j.ces.2013.05.008_bib22) 2010; 71 Edwie (10.1016/j.ces.2013.05.008_bib10) 2012; 68 El-Bourawi (10.1016/j.ces.2013.05.008_bib11) 2006; 285 Tomaszewska (10.1016/j.ces.2013.05.008_bib40) 1995; 102 Khayet (10.1016/j.ces.2013.05.008_bib24) 2011 Lattemann (10.1016/j.ces.2013.05.008_bib26) 2008; 220 Tun (10.1016/j.ces.2013.05.008_bib42) 2005; 257 Wang (10.1016/j.ces.2013.05.008_bib44) 2012; 46 Bouguecha (10.1016/j.ces.2013.05.008_bib3) 2003; 152 Palacio (10.1016/j.ces.2013.05.008_bib32) 1999; 348 Garcia-Payo (10.1016/j.ces.2013.05.008_bib13) 2000; 169 Sharqawy (10.1016/j.ces.2013.05.008_bib35) 2010; 16 10.1016/j.ces.2013.05.008_bib2 Shaffer (10.1016/j.ces.2013.05.008_bib34) 2012; 415–416 Wang (10.1016/j.ces.2013.05.008_bib45) 2011; 45 Fakatselis (10.1016/j.ces.2013.05.008_bib12) 2002; 2 Alklaibi (10.1016/j.ces.2013.05.008_bib1) 2006; 282 Song (10.1016/j.ces.2013.05.008_bib36) 2007; 46 Teoh (10.1016/j.ces.2013.05.008_bib39) 2008; 311 Latorre (10.1016/j.ces.2013.05.008_bib25) 2005; 182 Garside (10.1016/j.ces.2013.05.008_bib14) 1980; 4 10.1016/j.ces.2013.05.008_bib16 Suk (10.1016/j.ces.2013.05.008_bib37) 2006; 41 De Yoreo (10.1016/j.ces.2013.05.008_bib7) 2003; 54 Li (10.1016/j.ces.2013.05.008_bib27) 2004; 43 Mullin (10.1016/j.ces.2013.05.008_bib30) 2001 Curcio (10.1016/j.ces.2013.05.008_bib6) 2001; 40 Phattaranawik (10.1016/j.ces.2013.05.008_bib33) 2003; 212 Teoh (10.1016/j.ces.2013.05.008_bib38) 2009; 66 Ong (10.1016/j.ces.2013.05.008_bib31) 2012; 421–422 Gryta (10.1016/j.ces.2013.05.008_bib20) 2008; 325 Drioli (10.1016/j.ces.2013.05.008_bib8) 2006; 84 Garside (10.1016/j.ces.2013.05.008_bib15) 1980; 19 Hogan (10.1016/j.ces.2013.05.008_bib21) 1991; 81 Charcosset (10.1016/j.ces.2013.05.008_bib4) 2009; 245 Edwie (10.1016/j.ces.2013.05.008_bib9) 2012; 421–422 Macedonio (10.1016/j.ces.2013.05.008_bib28) 2007; 203 Gryta (10.1016/j.ces.2013.05.008_bib17) 2002; 37 Gryta (10.1016/j.ces.2013.05.008_bib19) 2007; 287 Mariah (10.1016/j.ces.2013.05.008_bib29) 2006; 280 Gryta (10.1016/j.ces.2013.05.008_bib18) 2006; 41 Wang (10.1016/j.ces.2013.05.008_bib43) 2009; 48 Yun (10.1016/j.ces.2013.05.008_bib46) 2006; 188 Chen (10.1016/j.ces.2013.05.008_bib5) 2013; 308 Khayet (10.1016/j.ces.2013.05.008_bib23) 2001; 40 |
References_xml | – volume: 152 start-page: 237 year: 2003 end-page: 244 ident: bib3 article-title: Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination publication-title: Desalination – volume: 308 start-page: 47 year: 2013 end-page: 55 ident: bib5 article-title: Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation publication-title: Desalination – volume: 220 start-page: 1 year: 2008 end-page: 15 ident: bib26 article-title: Environmental impact and impact assessment of seawater desalination publication-title: Desalination – volume: 81 start-page: 8l year: 1991 end-page: 90 ident: bib21 article-title: Desalination by solar heated membrane distillation publication-title: Desalination – volume: 71 start-page: 76 year: 2010 end-page: 82 ident: bib22 article-title: Membrane distillation–crystallization of seawater reverse osmosis brines publication-title: Sep. Purif. Technol. – volume: 287 start-page: 67 year: 2007 end-page: 78 ident: bib19 article-title: Influence of polypropylene membrane surface porosity on the performance of membrane distillation process publication-title: J. Membr. Sci. – volume: 238 start-page: 187 year: 2011 end-page: 192 ident: bib41 article-title: Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent publication-title: Desalination – volume: 421–422 start-page: 271 year: 2012 end-page: 282 ident: bib31 article-title: High performance dual-layer hollow fiber fabricated via novel immiscibility induced phase separation (I publication-title: J. Membr. Sci. – volume: 66 start-page: 229 year: 2009 end-page: 236 ident: bib38 article-title: Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes publication-title: Sep. Pur. Technol. – volume: 282 start-page: 362 year: 2006 end-page: 369 ident: bib1 article-title: Heat and mass transfer resistance analysis of membrane distillation publication-title: J. Membr. Sci. – volume: 415–416 start-page: 1 year: 2012 end-page: 8 ident: bib34 article-title: Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy publication-title: J. Membr. Sci. – reference: Bodell, B.R., 1963. Silicone rubber vapor diffusion in saline water distillation. US Patents 285,032. – volume: 43 start-page: 5300 year: 2004 end-page: 5309 ident: bib27 article-title: Novel membrane and device for direct contact membrane distillation-based desalination process publication-title: Ind. Eng. Chem. Res. – volume: 203 start-page: 260 year: 2007 end-page: 276 ident: bib28 article-title: Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study publication-title: Desalination – volume: 257 start-page: 144 year: 2005 end-page: 155 ident: bib42 article-title: Membrane distillation crystallization of concentrated salts—flux and crystal formation publication-title: J. Membr. Sci. – volume: 4 start-page: 393 year: 1980 end-page: 424 ident: bib14 article-title: Invited review secondary contact nucleation: kinetics, growth and scale-up publication-title: Chem. Eng. Commun. – volume: 19 start-page: 509 year: 1980 end-page: 514 ident: bib15 article-title: Crystallization kinetics from MSMPR crystallizers publication-title: Ind. Eng. Chem. Process. Des. Dev. – volume: 40 start-page: 2679 year: 2001 end-page: 2684 ident: bib6 article-title: Membrane crystallizers publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 57 year: 2003 end-page: 93 ident: bib7 article-title: Principles of crystal nucleation and growth publication-title: Rev. Min. Geochem. – volume: 48 start-page: 4474 year: 2009 end-page: 4483 ident: bib43 article-title: Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation publication-title: Ind. Eng. Chem. Res. – volume: 182 start-page: 517 year: 2005 end-page: 524 ident: bib25 article-title: Environmental impact of brine disposal on publication-title: Desalination – volume: 280 start-page: 937 year: 2006 end-page: 947 ident: bib29 article-title: Membrane distillation of concentrated brines-role of water activities in the evaluation of driving force publication-title: J. Membr. Sci. – volume: 46 start-page: 4037 year: 2012 end-page: 4052 ident: bib44 article-title: Freeze Desalination–Membrane Distillation (FD–MD) hybrid process: a new technology for seawater desalination publication-title: Wat. Res. – volume: 68 start-page: 567 year: 2012 end-page: 578 ident: bib10 article-title: Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance publication-title: Chem. Eng. Sci. – volume: 16 start-page: 354 year: 2010 end-page: 380 ident: bib35 article-title: Thermophysical properties of seawater: a review of existing correlations and data publication-title: Desalin. Water Treat. – volume: 212 start-page: 177 year: 2003 end-page: 193 ident: bib33 article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation publication-title: J. Membr. Sci. – year: 2011 ident: bib24 article-title: Membrane Distillation: Principles and Applications – volume: 421–422 start-page: 111 year: 2012 end-page: 123 ident: bib9 article-title: Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization publication-title: J. Membr. Sci. – volume: 37 start-page: 3535 year: 2002 end-page: 3558 ident: bib17 article-title: Concentration of NaCl solution by membrane distillation integrated with crystallization publication-title: Sep. Sci. Technol. – volume: 188 start-page: 251 year: 2006 end-page: 262 ident: bib46 article-title: Direct contact membrane distillation mechanism for high concentration NaCl solutions publication-title: Desalination – volume: 325 start-page: 383 year: 2008 end-page: 394 ident: bib20 article-title: Fouling in direct contact membrane distillation process publication-title: J. Membr. Sci. – reference: Global water intelligence and water desalination report, 2010. Desalination Markets. – volume: 245 start-page: 214 year: 2009 end-page: 231 ident: bib4 article-title: A review of membrane processes and renewable energies for desalination publication-title: Desalination – volume: 348 start-page: 22 year: 1999 end-page: 29 ident: bib32 article-title: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization publication-title: Thin Solid Films – volume: 102 start-page: 113 year: 1995 end-page: 122 ident: bib40 article-title: Study on the concentration of acids by membrane distillation publication-title: J. Membr. Sci. – volume: 46 start-page: 2307 year: 2007 end-page: 2323 ident: bib36 article-title: Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model publication-title: Ind. Eng. Chem. Res. – volume: 41 start-page: 595 year: 2006 end-page: 626 ident: bib37 article-title: Membrane-based hybrid processes: a review publication-title: Sep. Sci. Technol. – volume: 40 start-page: 5710 year: 2001 end-page: 5718 ident: bib23 article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation publication-title: Ind. Eng. Chem. Res. – volume: 285 start-page: 4 year: 2006 end-page: 29 ident: bib11 article-title: A framework for better understanding membrane distillation separation process (Review) publication-title: J. Membr. Sci. – reference: . – volume: 45 start-page: 5489 year: 2011 end-page: 5500 ident: bib45 article-title: Morphological architecture of dual-layer hollow fiber for direct contact membrane distillation publication-title: Wat. Res. – volume: 84 start-page: 209 year: 2006 end-page: 220 ident: bib8 article-title: Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination energy, exergy and costs analysis publication-title: Chem. Eng. Res. Design – volume: 2 start-page: 375 year: 2002 end-page: 379 ident: bib12 article-title: Residence time optimization in continuous crystallizers publication-title: Crys. growth Design – volume: 169 start-page: 61 year: 2000 end-page: 80 ident: bib13 article-title: Air gap membrane distillation of aqueous alcohol solutions publication-title: J. Membr. Sci. – volume: 41 start-page: 1789 year: 2006 end-page: 1798 ident: bib18 article-title: Water purification by membrane distillation process publication-title: Sep. Sci. Technol. – year: 2001 ident: bib30 publication-title: Crystallization – volume: 311 start-page: 371 year: 2008 end-page: 379 ident: bib39 article-title: Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process publication-title: J. Membr. Sci. – volume: 311 start-page: 371 year: 2008 ident: 10.1016/j.ces.2013.05.008_bib39 article-title: Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.12.054 – ident: 10.1016/j.ces.2013.05.008_bib16 – volume: 16 start-page: 354 year: 2010 ident: 10.1016/j.ces.2013.05.008_bib35 article-title: Thermophysical properties of seawater: a review of existing correlations and data publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2010.1079 – volume: 41 start-page: 1789 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib18 article-title: Water purification by membrane distillation process publication-title: Sep. Sci. Technol. doi: 10.1080/01496390600674950 – volume: 66 start-page: 229 year: 2009 ident: 10.1016/j.ces.2013.05.008_bib38 article-title: Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes publication-title: Sep. Pur. Technol. doi: 10.1016/j.seppur.2009.01.005 – volume: 40 start-page: 2679 year: 2001 ident: 10.1016/j.ces.2013.05.008_bib6 article-title: Membrane crystallizers publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000906d – volume: 71 start-page: 76 year: 2010 ident: 10.1016/j.ces.2013.05.008_bib22 article-title: Membrane distillation–crystallization of seawater reverse osmosis brines publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.11.004 – year: 2011 ident: 10.1016/j.ces.2013.05.008_bib24 – volume: 203 start-page: 260 year: 2007 ident: 10.1016/j.ces.2013.05.008_bib28 article-title: Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study publication-title: Desalination doi: 10.1016/j.desal.2006.02.021 – volume: 41 start-page: 595 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib37 article-title: Membrane-based hybrid processes: a review publication-title: Sep. Sci. Technol. doi: 10.1080/01496390600552347 – volume: 421–422 start-page: 271 year: 2012 ident: 10.1016/j.ces.2013.05.008_bib31 article-title: High performance dual-layer hollow fiber fabricated via novel immiscibility induced phase separation (I2PS) process for dehydration of ethanol publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.07.025 – volume: 238 start-page: 187 year: 2011 ident: 10.1016/j.ces.2013.05.008_bib41 article-title: Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent publication-title: Desalination doi: 10.1016/j.desal.2011.03.054 – volume: 282 start-page: 362 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib1 article-title: Heat and mass transfer resistance analysis of membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.05.040 – volume: 40 start-page: 5710 year: 2001 ident: 10.1016/j.ces.2013.05.008_bib23 article-title: Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010553y – volume: 48 start-page: 4474 year: 2009 ident: 10.1016/j.ces.2013.05.008_bib43 article-title: Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8009704 – volume: 68 start-page: 567 year: 2012 ident: 10.1016/j.ces.2013.05.008_bib10 article-title: Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.024 – volume: 37 start-page: 3535 year: 2002 ident: 10.1016/j.ces.2013.05.008_bib17 article-title: Concentration of NaCl solution by membrane distillation integrated with crystallization publication-title: Sep. Sci. Technol. doi: 10.1081/SS-120014442 – volume: 280 start-page: 937 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib29 article-title: Membrane distillation of concentrated brines-role of water activities in the evaluation of driving force publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.03.014 – volume: 169 start-page: 61 year: 2000 ident: 10.1016/j.ces.2013.05.008_bib13 article-title: Air gap membrane distillation of aqueous alcohol solutions publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00326-9 – volume: 4 start-page: 393 year: 1980 ident: 10.1016/j.ces.2013.05.008_bib14 article-title: Invited review secondary contact nucleation: kinetics, growth and scale-up publication-title: Chem. Eng. Commun. doi: 10.1080/00986448008935918 – volume: 287 start-page: 67 year: 2007 ident: 10.1016/j.ces.2013.05.008_bib19 article-title: Influence of polypropylene membrane surface porosity on the performance of membrane distillation process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.10.011 – volume: 220 start-page: 1 year: 2008 ident: 10.1016/j.ces.2013.05.008_bib26 article-title: Environmental impact and impact assessment of seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2007.03.009 – volume: 212 start-page: 177 year: 2003 ident: 10.1016/j.ces.2013.05.008_bib33 article-title: Heat transport and membrane distillation coefficients in direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00498-2 – volume: 325 start-page: 383 year: 2008 ident: 10.1016/j.ces.2013.05.008_bib20 article-title: Fouling in direct contact membrane distillation process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.08.001 – volume: 46 start-page: 2307 year: 2007 ident: 10.1016/j.ces.2013.05.008_bib36 article-title: Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0609968 – ident: 10.1016/j.ces.2013.05.008_bib2 – volume: 348 start-page: 22 year: 1999 ident: 10.1016/j.ces.2013.05.008_bib32 article-title: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00197-2 – year: 2001 ident: 10.1016/j.ces.2013.05.008_bib30 – volume: 415–416 start-page: 1 year: 2012 ident: 10.1016/j.ces.2013.05.008_bib34 article-title: Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.016 – volume: 285 start-page: 4 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib11 article-title: A framework for better understanding membrane distillation separation process (Review) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.08.002 – volume: 2 start-page: 375 year: 2002 ident: 10.1016/j.ces.2013.05.008_bib12 article-title: Residence time optimization in continuous crystallizers publication-title: Crys. growth Design doi: 10.1021/cg020014b – volume: 43 start-page: 5300 year: 2004 ident: 10.1016/j.ces.2013.05.008_bib27 article-title: Novel membrane and device for direct contact membrane distillation-based desalination process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030871s – volume: 245 start-page: 214 year: 2009 ident: 10.1016/j.ces.2013.05.008_bib4 article-title: A review of membrane processes and renewable energies for desalination publication-title: Desalination doi: 10.1016/j.desal.2008.06.020 – volume: 421–422 start-page: 111 year: 2012 ident: 10.1016/j.ces.2013.05.008_bib9 article-title: Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.07.001 – volume: 45 start-page: 5489 year: 2011 ident: 10.1016/j.ces.2013.05.008_bib45 article-title: Morphological architecture of dual-layer hollow fiber for direct contact membrane distillation publication-title: Wat. Res. doi: 10.1016/j.watres.2011.08.012 – volume: 257 start-page: 144 year: 2005 ident: 10.1016/j.ces.2013.05.008_bib42 article-title: Membrane distillation crystallization of concentrated salts—flux and crystal formation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.09.051 – volume: 84 start-page: 209 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib8 article-title: Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination energy, exergy and costs analysis publication-title: Chem. Eng. Res. Design doi: 10.1205/cherd.05171 – volume: 182 start-page: 517 year: 2005 ident: 10.1016/j.ces.2013.05.008_bib25 article-title: Environmental impact of brine disposal on Posidonia seagrasses publication-title: Desalination doi: 10.1016/j.desal.2005.02.039 – volume: 19 start-page: 509 year: 1980 ident: 10.1016/j.ces.2013.05.008_bib15 article-title: Crystallization kinetics from MSMPR crystallizers publication-title: Ind. Eng. Chem. Process. Des. Dev. doi: 10.1021/i260076a001 – volume: 188 start-page: 251 year: 2006 ident: 10.1016/j.ces.2013.05.008_bib46 article-title: Direct contact membrane distillation mechanism for high concentration NaCl solutions publication-title: Desalination doi: 10.1016/j.desal.2005.04.123 – volume: 81 start-page: 8l year: 1991 ident: 10.1016/j.ces.2013.05.008_bib21 article-title: Desalination by solar heated membrane distillation publication-title: Desalination doi: 10.1016/0011-9164(91)85047-X – volume: 102 start-page: 113 year: 1995 ident: 10.1016/j.ces.2013.05.008_bib40 article-title: Study on the concentration of acids by membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00281-3 – volume: 54 start-page: 57 year: 2003 ident: 10.1016/j.ces.2013.05.008_bib7 article-title: Principles of crystal nucleation and growth publication-title: Rev. Min. Geochem. doi: 10.2113/0540057 – volume: 152 start-page: 237 year: 2003 ident: 10.1016/j.ces.2013.05.008_bib3 article-title: Fluidised bed crystalliser and air gap membrane distillation as a solution to geothermal water desalination⁎1 publication-title: Desalination doi: 10.1016/S0011-9164(02)01069-X – volume: 308 start-page: 47 year: 2013 ident: 10.1016/j.ces.2013.05.008_bib5 article-title: Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation publication-title: Desalination doi: 10.1016/j.desal.2012.07.018 – volume: 46 start-page: 4037 year: 2012 ident: 10.1016/j.ces.2013.05.008_bib44 article-title: Freeze Desalination–Membrane Distillation (FD–MD) hybrid process: a new technology for seawater desalination publication-title: Wat. Res. doi: 10.1016/j.watres.2012.04.042 |
SSID | ssj0007710 |
Score | 2.4853733 |
Snippet | We have developed the simultaneous membrane distillation–crystallization (SMDC) hybrid desalination technology for the concurrent productions of pure water and... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160 |
SubjectTerms | chemical engineering Crystal size distribution crystallization crystals desalination Polarizations saline water Saturated brine Scaling Simultaneous membrane distillation–crystallization temperature |
Title | Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine |
URI | https://dx.doi.org/10.1016/j.ces.2013.05.008 https://www.proquest.com/docview/1672060114 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKucABsYqyyUgcACngJM7iY1VABQQXqNSbFcc2KmrTqhQkLoh_4A_5EmayFBCIA7ckchZl7Jln-80bQvZ0wlOI5IDcmLEOd7lxlC8CR3PmWyuMCjQu6F9dh-0Ov-gG3RppVbkwSKssfX_h03NvXV45Lv_m8ajXwxxfJjyMdz70TK_IYOcR9vKjl0-aRxS5rKqmhq2rnc2c4wVDEdldfi7eiRUmf49NMzYZ_vDVeQA6WyQLJXKkzeLjlkjNZMtk_oue4Ap5-kIBokNLH3rIF0wyA9N7OjADmBlnhmoc1v2CA_f--paOnwEh9vtlQibdv7k6aR3QyXTNnQKupVNCev5cVAMFkKqpwuTBVdI5O71ttZ2ysIKTBoxNHG1CHgISC1KYXghjXaFDpnHTNgm4jUNrmIYDJUIABL5gSmgfDIja9IGJdeSvkXo2zMw6odqgvI6X2NiHqaLisUrdBM5QFl6FsW4QVv1SmZaq41j8oi8retm9BCtItIJkgQQrNMjh9JZRIbnxV2Ne2Ul-6zcSQsJft62DTWVyB55Udm48XPfBDUpAww2yWxlawlDD_ZPCTtINIw_la1y-8b-3bpI5L6-mETmu2CL1yfjRbAOmmaidvNPukNnm-WX7-gPBTfWM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BPRQOqC1Fu0BbV2qltlLASZwfHzggKFoKywVW4ubGsY0WLVnELiAuiHfoo_SNeBJm8rOlouJQiVsSxfnx2DOf7c_fAHwymcgxkiNy49Z5whfW06GMPCN46Jy0OjI0od_djzs98eMoOpqC381eGKJV1r6_8umlt66vrNW1uXbW79MeXy4DinchtsxA-jWzctdeX-G4bbS-s4VG_hwE298PNztenVrAyyPOx56xsYgRi0Q5AmxpnS9NzA0tW2aRcGnsLDd4oGWMITGUXEsT4i-QOntkU5OE-NxpeCHwCqVNWL35wytJEp836dvo85ql1JJUhn2f6GRhqRZKKS3_HQynXTZ8FBzKiLf9CuZrqMo2qtp4DVO2eANzDwQMF-DyAeeIDR0b9YmgmBV2eDFip_YUh-KFZYb8yKAi3d3d_srPrxGSDgb1DlD25aC7tfmVjSeT_AyBNJsw4MvnkvwoomLDNO1WfAu9Z6nuRZgphoVtATOW9HyCzKUhjk21SHXuZ3hGOvQ6Tk0beFOlKq9lzinbxkA1fLYThVZQZAXFI4VWaMO3SZGzSuPjqZtFYyf1V0NVGIOeKtZCm6rsGF236h0ENNFEK6IIv9vwsTG0wr5NCzaVnZQfJwHp5fhi6f_e-gFedg67e2pvZ393GWaDMpVH4vlyBWbG5xf2HQKqsX5fNmAGP5-7x9wDzcwu8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+simultaneous+membrane+distillation%E2%80%93crystallization+%28SMDC%29+technology+for+treatment+of+saturated+brine&rft.jtitle=Chemical+engineering+science&rft.au=Edwie%2C+Felinia&rft.au=Chung%2C+Tai-Shung&rft.date=2013-07-19&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.eissn=1873-4405&rft.volume=98&rft.spage=160&rft.epage=172&rft_id=info:doi/10.1016%2Fj.ces.2013.05.008&rft.externalDocID=S0009250913003291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |