Random variables with moment-matching staircase density functions
•This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the...
Saved in:
Published in | Applied Mathematical Modelling Vol. 64; pp. 196 - 213 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Langley Research Center
Elsevier Inc
01.12.2018
Elsevier Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the corresponding sampling error.•The versatility of the method is illustrated by modeling the dynamics of an aeroelastic structure subject to flutter.
This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight. |
---|---|
AbstractList | This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight. This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight. •This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the corresponding sampling error.•The versatility of the method is illustrated by modeling the dynamics of an aeroelastic structure subject to flutter. This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight. |
Audience | PUBLIC |
Author | Kenny, Sean P. Stanford, Bret K. Giesy, Daniel P. Crespo, Luis G. |
AuthorAffiliation | a Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA b Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA |
AuthorAffiliation_xml | – name: b Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA – name: a Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA |
Author_xml | – sequence: 1 givenname: Luis G. surname: Crespo fullname: Crespo, Luis G. email: luis.g.crespo@nasa.gov organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA – sequence: 2 givenname: Sean P. surname: Kenny fullname: Kenny, Sean P. organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA – sequence: 3 givenname: Daniel P. surname: Giesy fullname: Giesy, Daniel P. organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA – sequence: 4 givenname: Bret K. surname: Stanford fullname: Stanford, Bret K. organization: Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32095032$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtr3DAQhUVJaZJtf0ChFENf-mJnLF8kUyiE0EsgUAgt9E3I0iirxZa2krwl_75aNg1JHvKkEec7w8ycU3LkvENC3tZQ1VD3Z5tKbueKQs0rYBXQ4QU5gQZYOUD7--hBfUxOY9wAQJd_r8hxQ2HooKEn5PxaOu3nYieDleOEsfhr07qY_YwulbNMam3dTRGTtEHJiIVGF226LcziVLLexdfkpZFTxDd374r8-vrl58X38urHt8uL86tSdQCpVFK1Ize1hpFz1UODw8iwH9H0rQY66tGA7jpDZea5xBoZ14aOCGYwyLtmRT4f-m6XcUat8nxBTmIb7CzDrfDSiseKs2tx43eCQTPQvO2KfLxrEPyfBWMSs40Kp0k69EsUtOnbjPK2yeiHJ-jGL8Hl9QStacOgg5Zl6v3Die5H-X_dDNQHQAUfY0Bzj9Qg9gmKjcgJin2CApjICWYPe-JRNsn9pfNSdnrW-e7gdDJKkfG4lwcA2vG2z_Kng4w5pJ3FIKKy6BRqG1Alob19pvk_UeTAAg |
CitedBy_id | crossref_primary_10_1016_j_strusafe_2024_102501 crossref_primary_10_2208_jscejj_23_15008 crossref_primary_10_1016_j_ymssp_2021_108195 crossref_primary_10_2208_jscejj_22_15005 crossref_primary_10_1016_j_strusafe_2024_102499 crossref_primary_10_1016_j_cma_2023_116428 crossref_primary_10_1016_j_strusafe_2022_102227 crossref_primary_10_2514_1_J061394 crossref_primary_10_1016_j_ymssp_2021_108522 crossref_primary_10_1016_j_strusafe_2018_05_002 |
Cites_doi | 10.1137/07069821X 10.1146/annurev-fluid-122414-034441 10.1007/s00158-004-0384-1 10.1007/PL00007198 10.1137/S1052623401399903 10.1287/opre.51.4.543.16101 10.1198/016214502760047131 10.2514/3.44311 10.1016/j.strusafe.2018.05.002 10.1080/10920277.2017.1302805 10.1287/opre.43.5.807 10.1017/S0962492906370018 10.1007/s10957-010-9754-6 10.1111/j.1540-6261.1991.tb03776.x 10.1080/15732470500254618 10.1287/opre.50.2.358.424 |
ContentType | Journal Article |
Copyright | 2018 Copyright Determination: GOV_PUBLIC_USE_PERMITTED Copyright Elsevier BV Dec 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Determination: GOV_PUBLIC_USE_PERMITTED – notice: Copyright Elsevier BV Dec 2018 |
DBID | CYE CYI AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1016/j.apm.2018.07.029 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 213 |
ExternalDocumentID | PMC7039250 32095032 10_1016_j_apm_2018_07_029 20190025846 S0307904X18303457 |
Genre | Journal Article |
GrantInformation | STMD_776323 776323.04.07.03 |
GrantInformation_xml | – fundername: Space Technology NASA grantid: 776323 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO ABJNI ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CYE CYI EFKBS AAYXX ABWVN ACRPL ADNMO AFJKZ AFXIZ AGQPQ AGRNS APXCP BNPGV CITATION SSH NPM -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF J.O JQ2 K1G KYCEM L7M L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ 7X8 5PM |
ID | FETCH-LOGICAL-c500t-cac4b8f1d0b88c603e9b7e6bef64d02bdbf0d55f2ac508ae1e78df2be0f9fe853 |
IEDL.DBID | .~1 |
ISSN | 0307-904X 1088-8691 |
IngestDate | Thu Aug 21 14:13:17 EDT 2025 Fri Jul 11 09:59:24 EDT 2025 Fri Jul 25 03:08:27 EDT 2025 Mon Jul 21 06:05:12 EDT 2025 Tue Jul 01 04:23:56 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Fri Aug 15 15:18:39 EDT 2025 Fri Feb 23 02:45:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Probability Risk Uncertainty Moments Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-cac4b8f1d0b88c603e9b7e6bef64d02bdbf0d55f2ac508ae1e78df2be0f9fe853 |
Notes | LaRC Langley Research Center Report Number: NF1676L-26266 NF1676L-26266 ISSN: 0307-904X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://ntrs.nasa.gov/citations/20190025846 |
PMID | 32095032 |
PQID | 2123705047 |
PQPubID | 2045280 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039250 proquest_miscellaneous_2364039843 proquest_journals_2123705047 pubmed_primary_32095032 crossref_primary_10_1016_j_apm_2018_07_029 crossref_citationtrail_10_1016_j_apm_2018_07_029 nasa_ntrs_20190025846 elsevier_sciencedirect_doi_10_1016_j_apm_2018_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Langley Research Center |
PublicationPlace_xml | – name: Langley Research Center – name: England – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationTitleAlternate | Appl Math Model |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
References | Grundy (bib0007) 1991; 46 Swiler, Adams, Eldred (bib0004) 2008 Popescu (bib0015) 2005; 30 McAndrew (bib0005) 2010 Silverman (bib0018) 1986 Campi, Garatti (bib0028) 2011; 148 Allen, Maute (bib0002) 2004; 27 Kendall, Stuart (bib0022) 1969 Bertsimas, Popescu (bib0006) 2002; 50 Smith (bib0009) 1995; 43 Crespo, Kenny, Giesy (bib0023) 2018; 75 Campi, Garatti (bib0021) 2008; 19 R. Sharma, R. Kumar, R. Saini, Kapoor, Complementary upper bounds for fourth central moment with extensions and applications Eldred, Agarwal, Perez, Wojtkiewicz, Renaud (bib0003) 2007; 3 Fraley, Raftery (bib0019) 2002; 97 Simpson, Peplinski, Koch, Allen (bib0001) 2001; 17 Ghaoui, Oks, Oustry (bib0008) 2003; 51 Sharma, Devi, Kapoor, Barnett (bib0010) 2009; 1 Tian, Cox, Zuluaga (bib0016) 2017; 21 Hassig (bib0030) 1971; 8 Kumar (bib0012) 2002; 3 Crespo, Giesy, Kenny (bib0024) 2017 (2015). J. Smith, Moment methods for decision analysis, Ph.D. Thesis, Stanford University(1990). Bertsimas, Popescu (bib0014) 2005; 15 Nemirovski, Todd (bib0017) 2008; 1 Hodges, Pierce (bib0026) 2002 K. Roger, Airplane Math Modeling Methods for Active Control Design, Structural aspects of active control, AGARD Defense Technical Information Center DTIC AD A 045242 CP-228, Neuilly-Sur-Seine, France(1977) 4.1–4.11. Hastie, Tibshirani, Friedman (bib0025) 2001 Theodorsen (bib0029) 1949 Beran, Stanford, Schrock (bib0027) 2017; 49 Crespo, Giesy, Kenny (bib0020) 2017 Ghaoui (10.1016/j.apm.2018.07.029_bib0008) 2003; 51 Sharma (10.1016/j.apm.2018.07.029_bib0010) 2009; 1 Kumar (10.1016/j.apm.2018.07.029_bib0012) 2002; 3 Eldred (10.1016/j.apm.2018.07.029_bib0003) 2007; 3 Crespo (10.1016/j.apm.2018.07.029_bib0023) 2018; 75 Smith (10.1016/j.apm.2018.07.029_bib0009) 1995; 43 10.1016/j.apm.2018.07.029_bib0031 10.1016/j.apm.2018.07.029_bib0011 Grundy (10.1016/j.apm.2018.07.029_bib0007) 1991; 46 10.1016/j.apm.2018.07.029_bib0013 Campi (10.1016/j.apm.2018.07.029_bib0028) 2011; 148 Fraley (10.1016/j.apm.2018.07.029_bib0019) 2002; 97 Silverman (10.1016/j.apm.2018.07.029_bib0018) 1986 Tian (10.1016/j.apm.2018.07.029_bib0016) 2017; 21 Crespo (10.1016/j.apm.2018.07.029_bib0024) 2017 Allen (10.1016/j.apm.2018.07.029_bib0002) 2004; 27 Popescu (10.1016/j.apm.2018.07.029_bib0015) 2005; 30 Theodorsen (10.1016/j.apm.2018.07.029_sbref0027) 1949 Hassig (10.1016/j.apm.2018.07.029_bib0030) 1971; 8 McAndrew (10.1016/j.apm.2018.07.029_bib0005) 2010 Hastie (10.1016/j.apm.2018.07.029_bib0025) 2001 Campi (10.1016/j.apm.2018.07.029_bib0021) 2008; 19 Simpson (10.1016/j.apm.2018.07.029_bib0001) 2001; 17 Swiler (10.1016/j.apm.2018.07.029_bib0004) 2008 Hodges (10.1016/j.apm.2018.07.029_bib0026) 2002 Nemirovski (10.1016/j.apm.2018.07.029_bib0017) 2008; 1 Crespo (10.1016/j.apm.2018.07.029_bib0020) 2017 Bertsimas (10.1016/j.apm.2018.07.029_bib0006) 2002; 50 Kendall (10.1016/j.apm.2018.07.029_bib0022) 1969 Bertsimas (10.1016/j.apm.2018.07.029_bib0014) 2005; 15 Beran (10.1016/j.apm.2018.07.029_bib0027) 2017; 49 |
References_xml | – reference: R. Sharma, R. Kumar, R. Saini, Kapoor, Complementary upper bounds for fourth central moment with extensions and applications, – year: 2010 ident: bib0005 article-title: Compact modeling: principles, techniques, and applications publication-title: Statistical Modeling using Backward Propagation of Variance – volume: 3 start-page: 1 year: 2002 end-page: 11 ident: bib0012 article-title: Moment inequalities of a random variable defined over a finite interval publication-title: J. Inequ. Pure Appl. Math. – year: 2002 ident: bib0026 article-title: Introduction to Structural Dynamics and Aeroelasticity – volume: 51 start-page: 358 year: 2003 end-page: 374 ident: bib0008 article-title: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach publication-title: Oper. Res. – volume: 148 start-page: 257 year: 2011 end-page: 280 ident: bib0028 article-title: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality publication-title: J. Optim. Theory Appl. – reference: J. Smith, Moment methods for decision analysis, Ph.D. Thesis, Stanford University(1990). – year: 1949 ident: bib0029 article-title: General Theory of Aerodynamic Instability and the Mechanism of Flutter – volume: 27 start-page: 228 year: 2004 end-page: 242 ident: bib0002 article-title: Reliability-based design optimization of aeroelastic structures publication-title: Struct. Multidiscip. Optim. – reference: (2015). – volume: 8 start-page: 885 year: 1971 end-page: 889 ident: bib0030 article-title: An approximate true damping solution of the flutter equation by determinant iteration publication-title: J. Aircraft – volume: 19 start-page: 1211 year: 2008 end-page: 1230 ident: bib0021 article-title: The exact feasibility of randomized solutions of uncertain convex programs publication-title: SIAM J. Optim. – volume: 30 start-page: 1 year: 2005 end-page: 23 ident: bib0015 article-title: A semidefinite programming approach to optimal moment bounds for convex classes of distributions publication-title: Math. Oper. Res. – volume: 1 start-page: 83 year: 2009 end-page: 85 ident: bib0010 article-title: A brief note on some bounds connecting lower order moments for random variables defined on a finite interval publication-title: Int. J. Theor. Appl. Sci. – volume: 49 start-page: 361 year: 2017 end-page: 386 ident: bib0027 article-title: Uncertainty quantification in aeroelasticity publication-title: Ann. Rev. Fluid Mech. – volume: 43 start-page: 358 year: 1995 end-page: 374 ident: bib0009 article-title: Generalized chebyshev inequalities: theory and applications in decision analysis publication-title: Oper. Res. – volume: 50 start-page: 358 year: 2002 end-page: 374 ident: bib0006 article-title: On the relation between option and stock prices: an optimization approach publication-title: Oper. Res. – year: 2017 ident: bib0020 article-title: On the calculation and shaping of staircase random variables publication-title: ESREL 2017, Portoroz, Slovenia – volume: 97 start-page: 611 year: 2002 end-page: 631 ident: bib0019 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J. Am. Stat. Assoc. – year: 2008 ident: bib0004 article-title: Model calibration under uncertainty: Matching distribution information publication-title: Proceedings of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference – year: 1969 ident: bib0022 article-title: The Advanced Theory of Statistics – reference: K. Roger, Airplane Math Modeling Methods for Active Control Design, Structural aspects of active control, AGARD Defense Technical Information Center DTIC AD A 045242 CP-228, Neuilly-Sur-Seine, France(1977) 4.1–4.11. – volume: 15 start-page: 780 year: 2005 end-page: 804 ident: bib0014 article-title: Optimal inequalities in probability theory: a convex optimization approach publication-title: SIAM J. Optim. – volume: 21 start-page: 242 year: 2017 end-page: 266 ident: bib0016 article-title: Moment problem and its applications to risk assessment publication-title: North Am. Actuarial J. – year: 1986 ident: bib0018 article-title: Density Estimation for Statistics and Data Analysis – volume: 75 start-page: 35 year: 2018 end-page: 44 ident: bib0023 article-title: Staircase predictor models for reliability and risk analysis publication-title: Structural Safety – year: 2017 ident: bib0024 article-title: Random predictor models with a nonparametric staircase structure publication-title: ESREL 2017, Portoroz, Slovenia – volume: 1 start-page: 191 year: 2008 end-page: 234 ident: bib0017 article-title: An approximate true damping solution of the flutter equation by determinant iteration publication-title: Acta Numerica – volume: 3 start-page: 199 year: 2007 end-page: 213 ident: bib0003 article-title: Investigation of reliability method formulations in DAKOTA/UQ publication-title: Struct. Infrastruct. Eng. Maint. Manag. Life Cycle Des. Perform. – volume: 46 start-page: 343 year: 1991 end-page: 556 ident: bib0007 article-title: Option prices and the underlying asset’s return distribution publication-title: J. Finance – year: 2001 ident: bib0025 article-title: The Elements of Statistical Learning – volume: 17 start-page: 129 year: 2001 end-page: 150 ident: bib0001 article-title: Metamodels for computer-based engineering design: survey and recommendations publication-title: Eng. Comput. – volume: 19 start-page: 1211 issue: 3 year: 2008 ident: 10.1016/j.apm.2018.07.029_bib0021 article-title: The exact feasibility of randomized solutions of uncertain convex programs publication-title: SIAM J. Optim. doi: 10.1137/07069821X – volume: 49 start-page: 361 issue: 1 year: 2017 ident: 10.1016/j.apm.2018.07.029_bib0027 article-title: Uncertainty quantification in aeroelasticity publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034441 – volume: 27 start-page: 228 year: 2004 ident: 10.1016/j.apm.2018.07.029_bib0002 article-title: Reliability-based design optimization of aeroelastic structures publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-004-0384-1 – ident: 10.1016/j.apm.2018.07.029_bib0011 – volume: 17 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.apm.2018.07.029_bib0001 article-title: Metamodels for computer-based engineering design: survey and recommendations publication-title: Eng. Comput. doi: 10.1007/PL00007198 – year: 2010 ident: 10.1016/j.apm.2018.07.029_bib0005 article-title: Compact modeling: principles, techniques, and applications – volume: 15 start-page: 780 issue: 3 year: 2005 ident: 10.1016/j.apm.2018.07.029_bib0014 article-title: Optimal inequalities in probability theory: a convex optimization approach publication-title: SIAM J. Optim. doi: 10.1137/S1052623401399903 – year: 1986 ident: 10.1016/j.apm.2018.07.029_bib0018 – volume: 51 start-page: 358 issue: 4 year: 2003 ident: 10.1016/j.apm.2018.07.029_bib0008 article-title: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach publication-title: Oper. Res. doi: 10.1287/opre.51.4.543.16101 – ident: 10.1016/j.apm.2018.07.029_bib0013 – volume: 97 start-page: 611 issue: 458 year: 2002 ident: 10.1016/j.apm.2018.07.029_bib0019 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214502760047131 – volume: 8 start-page: 885 issue: 11 year: 1971 ident: 10.1016/j.apm.2018.07.029_bib0030 article-title: An approximate true damping solution of the flutter equation by determinant iteration publication-title: J. Aircraft doi: 10.2514/3.44311 – volume: 1 start-page: 83 issue: 2 year: 2009 ident: 10.1016/j.apm.2018.07.029_bib0010 article-title: A brief note on some bounds connecting lower order moments for random variables defined on a finite interval publication-title: Int. J. Theor. Appl. Sci. – year: 1969 ident: 10.1016/j.apm.2018.07.029_bib0022 – volume: 3 start-page: 1 issue: 3, Article 41 year: 2002 ident: 10.1016/j.apm.2018.07.029_bib0012 article-title: Moment inequalities of a random variable defined over a finite interval publication-title: J. Inequ. Pure Appl. Math. – year: 2002 ident: 10.1016/j.apm.2018.07.029_bib0026 – volume: 30 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.apm.2018.07.029_bib0015 article-title: A semidefinite programming approach to optimal moment bounds for convex classes of distributions publication-title: Math. Oper. Res. – year: 2017 ident: 10.1016/j.apm.2018.07.029_bib0020 article-title: On the calculation and shaping of staircase random variables – ident: 10.1016/j.apm.2018.07.029_bib0031 – year: 2001 ident: 10.1016/j.apm.2018.07.029_bib0025 – year: 2008 ident: 10.1016/j.apm.2018.07.029_bib0004 article-title: Model calibration under uncertainty: Matching distribution information – volume: 75 start-page: 35 year: 2018 ident: 10.1016/j.apm.2018.07.029_bib0023 article-title: Staircase predictor models for reliability and risk analysis publication-title: Structural Safety doi: 10.1016/j.strusafe.2018.05.002 – year: 2017 ident: 10.1016/j.apm.2018.07.029_bib0024 article-title: Random predictor models with a nonparametric staircase structure – volume: 21 start-page: 242 issue: 1 year: 2017 ident: 10.1016/j.apm.2018.07.029_bib0016 article-title: Moment problem and its applications to risk assessment publication-title: North Am. Actuarial J. doi: 10.1080/10920277.2017.1302805 – volume: 43 start-page: 358 issue: 5 year: 1995 ident: 10.1016/j.apm.2018.07.029_bib0009 article-title: Generalized chebyshev inequalities: theory and applications in decision analysis publication-title: Oper. Res. doi: 10.1287/opre.43.5.807 – volume: 1 start-page: 191 year: 2008 ident: 10.1016/j.apm.2018.07.029_bib0017 article-title: An approximate true damping solution of the flutter equation by determinant iteration publication-title: Acta Numerica doi: 10.1017/S0962492906370018 – volume: 148 start-page: 257 issue: 2 year: 2011 ident: 10.1016/j.apm.2018.07.029_bib0028 article-title: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9754-6 – volume: 46 start-page: 343 issue: 3 year: 1991 ident: 10.1016/j.apm.2018.07.029_bib0007 article-title: Option prices and the underlying asset’s return distribution publication-title: J. Finance doi: 10.1111/j.1540-6261.1991.tb03776.x – year: 1949 ident: 10.1016/j.apm.2018.07.029_sbref0027 – volume: 3 start-page: 199 issue: 3 year: 2007 ident: 10.1016/j.apm.2018.07.029_bib0003 article-title: Investigation of reliability method formulations in DAKOTA/UQ publication-title: Struct. Infrastruct. Eng. Maint. Manag. Life Cycle Des. Perform. doi: 10.1080/15732470500254618 – volume: 50 start-page: 358 issue: 2 year: 2002 ident: 10.1016/j.apm.2018.07.029_bib0006 article-title: On the relation between option and stock prices: an optimization approach publication-title: Oper. Res. doi: 10.1287/opre.50.2.358.424 |
SSID | ssj0005904 ssj0012860 |
Score | 2.2858508 |
Snippet | •This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a... This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the... |
SourceID | pubmedcentral proquest pubmed crossref nasa elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | Aeroelastic stability Aeroelasticity Computational geometry Convex analysis Convexity Datasets Density Dynamic stability Empirical analysis Flutter Mathematical models Moments Numerical Analysis Optimality criteria Optimization Probability Probability distribution Random variables Risk Risk analysis Sampling error Staircases Uncertainty |
Title | Random variables with moment-matching staircase density functions |
URI | https://dx.doi.org/10.1016/j.apm.2018.07.029 https://ntrs.nasa.gov/citations/20190025846 https://www.ncbi.nlm.nih.gov/pubmed/32095032 https://www.proquest.com/docview/2123705047 https://www.proquest.com/docview/2364039843 https://pubmed.ncbi.nlm.nih.gov/PMC7039250 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na1QxEA-lXvQgflR9WssTPAnPzSZ5L8lxLZbXSnuoLewt5BO32LdLdyt48W935n3RldKDxyQTSCaTmV-SmQkhH6Oknknli4o5WwhAsIXTtirAMsNukpyH9o-l07OqvhQn83K-Qw6HWBh0q-x1f6fTW23d10x6bk5Wi8XkO4qnpmIOQkm5KDGiXAiJUv75zx03D03FkAwRqYeXzdbHy64wGH2q2vydLcq81zbtNnZt74Og_3pS3jFNR8_I0x5T5rNu2M_JTmxekCenY0LW9UsyO7dNWF7nv-BojMFS6xwvYPNrzL8AJ1_Qx3gTlWMw1Y0Hw5YHdGzf_M7R7rWiuUcuj75eHNZF_3tC4UtKN4W3XjiVpoE6pXxFedROxsrFVIlAmQsu0VCWiVmgVzZOo1QhMRdp0imCFX8F81428Q3JARYpK6aeBgGnNYA4oCeYlyyxJKJTOiN04JvxfWpx_OHipxl8yK4MsNogqw2VBlidkU9jl1WXV-MhYjEshtkSDgN6_6Fue7hwBsayxnqNAA_wVkb2h5U0_Y6FdjDhkpZUyIx8GJthr-EDim3i8hZoeCUo10rwjLzuFn4cPGcAVilnGZFbIjESYB7v7ZZm8aPN5w1KVwMSfft_s3xHHmOpc7HZJ7ubm9v4HoDSxh20O-GAPJodf6vPoHQ8_wKli_OTuv4LJWsUhQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqcgAOiEeBgQKDBBekYbOZzCRz4FAB1ZZ2e4BW2lvIa8QiOrvqbEG98Kf4g9jzUhdVPSD1GidSYsf2l8SxAV4FyRyXyiU5tyYRiGATW5g8Qc-M2iTT1Dc1lqaH-eRYfJplsw340_-FobDKzva3Nr2x1l3LqOPmaDmfj77Q9iyYmOGmZKnIZBdZuR_Of-G5rX639wGF_Jrz3Y9H7ydJV1ogcRljq8QZJ6wqx55ZpVzO0lBYGXIbylx4xq23JfNZVnKD_ZUJ4yCVL7kNrCzKoKhUBNr9GwLNBZVNePv7QlxJwUSffZGm1z-lNkFlZkm_38eqSRjawNpLneFmZWpzGeb9N3Tzgi_cvQt3OhAb77R8ugcboboPt6dDBtj6Aex8NpVfnMQ_8SxOv7PqmG584xNK-IBHbXQAdPUV0--tU4eeNPYUSb86j8nRNrqwBcfXwtOHuO5FFR5DjDhMGTF2zAs8HiKmQsPEneQlL0WwqoiA9XzTrstlTiU1fug-aO27RlZrYrVmUiOrI3gzDFm2iTyu6ix6Yei13ajR0Vw1bIsEp3EuNbUXhCgR4EWw3UtSdyYC6YgZJMuYkBG8HMio3PRiY6qwOMM-aS5YWiiRRvCoFfww-ZQjOmYpj0CubYmhAyUOX6dU829NAnG08gVC3yf_t8oXcHNyND3QB3uH-0_hFlHa-J5t2FydnoVniNJW9nmjFTF8vW41_AsQXlCa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+variables+with+moment-matching+staircase+density+functions&rft.jtitle=Applied+mathematical+modelling&rft.au=Crespo%2C+Luis+G.&rft.au=Kenny%2C+Sean+P.&rft.au=Giesy%2C+Daniel+P.&rft.au=Stanford%2C+Bret+K.&rft.date=2018-12-01&rft.issn=0307-904X&rft.volume=64&rft.spage=196&rft.epage=213&rft_id=info:doi/10.1016%2Fj.apm.2018.07.029&rft_id=info%3Apmid%2F32095032&rft.externalDocID=PMC7039250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |