Random variables with moment-matching staircase density functions

•This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 64; pp. 196 - 213
Main Authors Crespo, Luis G., Kenny, Sean P., Giesy, Daniel P., Stanford, Bret K.
Format Journal Article
LanguageEnglish
Published Langley Research Center Elsevier Inc 01.12.2018
Elsevier
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the corresponding sampling error.•The versatility of the method is illustrated by modeling the dynamics of an aeroelastic structure subject to flutter. This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.
AbstractList This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.
This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.
•This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a finite range and fixed values for the first four moments.•This paper provides the means to estimate the above variables and to quantify the corresponding sampling error.•The versatility of the method is illustrated by modeling the dynamics of an aeroelastic structure subject to flutter. This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the first four moments. We present the feasibility conditions for the existence of any of such variables, and propose a class of variables that conforms to such constraints. This class is called staircase because the density of its members is a piecewise constant function. Convex optimization is used to calculate their distributions according to several optimality criteria, including maximal entropy and maximal log-likelihood. The flexibility and efficiency of staircases enable modeling phenomena having a possibly skewed and/or multimodal response at a low computational cost. Furthermore, we provide a means to account for the uncertainty in the distribution caused by estimating staircases from data. These ideas are illustrated by generating empirical staircase predictor models. We consider the case in which the predictor matches the sample moments exactly (a setting applicable to large datasets), as well as the case in which the predictor accounts for the sampling error in such moments (a setting applicable to sparse datasets). A predictor model for the dynamics of an aeroelastic airfoil subject to flutter instability is used as an example. The resulting predictor not only describes the system's response accurately, but also enables carrying out a risk analysis for safe flight.
Audience PUBLIC
Author Kenny, Sean P.
Stanford, Bret K.
Giesy, Daniel P.
Crespo, Luis G.
AuthorAffiliation a Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA
b Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA
AuthorAffiliation_xml – name: b Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA
– name: a Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA
Author_xml – sequence: 1
  givenname: Luis G.
  surname: Crespo
  fullname: Crespo, Luis G.
  email: luis.g.crespo@nasa.gov
  organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA
– sequence: 2
  givenname: Sean P.
  surname: Kenny
  fullname: Kenny, Sean P.
  organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA
– sequence: 3
  givenname: Daniel P.
  surname: Giesy
  fullname: Giesy, Daniel P.
  organization: Dynamic Systems and Controls Branch, NASA Langley Research Center, Hampton, VA 23681, USA
– sequence: 4
  givenname: Bret K.
  surname: Stanford
  fullname: Stanford, Bret K.
  organization: Aeroelasticity Branch, NASA Langley Research Center, Hampton, VA 23681, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32095032$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtr3DAQhUVJaZJtf0ChFENf-mJnLF8kUyiE0EsgUAgt9E3I0iirxZa2krwl_75aNg1JHvKkEec7w8ycU3LkvENC3tZQ1VD3Z5tKbueKQs0rYBXQ4QU5gQZYOUD7--hBfUxOY9wAQJd_r8hxQ2HooKEn5PxaOu3nYieDleOEsfhr07qY_YwulbNMam3dTRGTtEHJiIVGF226LcziVLLexdfkpZFTxDd374r8-vrl58X38urHt8uL86tSdQCpVFK1Ize1hpFz1UODw8iwH9H0rQY66tGA7jpDZea5xBoZ14aOCGYwyLtmRT4f-m6XcUat8nxBTmIb7CzDrfDSiseKs2tx43eCQTPQvO2KfLxrEPyfBWMSs40Kp0k69EsUtOnbjPK2yeiHJ-jGL8Hl9QStacOgg5Zl6v3Die5H-X_dDNQHQAUfY0Bzj9Qg9gmKjcgJin2CApjICWYPe-JRNsn9pfNSdnrW-e7gdDJKkfG4lwcA2vG2z_Kng4w5pJ3FIKKy6BRqG1Alob19pvk_UeTAAg
CitedBy_id crossref_primary_10_1016_j_strusafe_2024_102501
crossref_primary_10_2208_jscejj_23_15008
crossref_primary_10_1016_j_ymssp_2021_108195
crossref_primary_10_2208_jscejj_22_15005
crossref_primary_10_1016_j_strusafe_2024_102499
crossref_primary_10_1016_j_cma_2023_116428
crossref_primary_10_1016_j_strusafe_2022_102227
crossref_primary_10_2514_1_J061394
crossref_primary_10_1016_j_ymssp_2021_108522
crossref_primary_10_1016_j_strusafe_2018_05_002
Cites_doi 10.1137/07069821X
10.1146/annurev-fluid-122414-034441
10.1007/s00158-004-0384-1
10.1007/PL00007198
10.1137/S1052623401399903
10.1287/opre.51.4.543.16101
10.1198/016214502760047131
10.2514/3.44311
10.1016/j.strusafe.2018.05.002
10.1080/10920277.2017.1302805
10.1287/opre.43.5.807
10.1017/S0962492906370018
10.1007/s10957-010-9754-6
10.1111/j.1540-6261.1991.tb03776.x
10.1080/15732470500254618
10.1287/opre.50.2.358.424
ContentType Journal Article
Copyright 2018
Copyright Determination: GOV_PUBLIC_USE_PERMITTED
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018
– notice: Copyright Determination: GOV_PUBLIC_USE_PERMITTED
– notice: Copyright Elsevier BV Dec 2018
DBID CYE
CYI
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.apm.2018.07.029
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts

MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 213
ExternalDocumentID PMC7039250
32095032
10_1016_j_apm_2018_07_029
20190025846
S0307904X18303457
Genre Journal Article
GrantInformation STMD_776323
776323.04.07.03
GrantInformation_xml – fundername: Space Technology NASA
  grantid: 776323
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CYE
CYI
EFKBS
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AFXIZ
AGQPQ
AGRNS
APXCP
BNPGV
CITATION
SSH
NPM
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
J.O
JQ2
K1G
KYCEM
L7M
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
7X8
5PM
ID FETCH-LOGICAL-c500t-cac4b8f1d0b88c603e9b7e6bef64d02bdbf0d55f2ac508ae1e78df2be0f9fe853
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Thu Aug 21 14:13:17 EDT 2025
Fri Jul 11 09:59:24 EDT 2025
Fri Jul 25 03:08:27 EDT 2025
Mon Jul 21 06:05:12 EDT 2025
Tue Jul 01 04:23:56 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Fri Aug 15 15:18:39 EDT 2025
Fri Feb 23 02:45:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Probability
Risk
Uncertainty
Moments
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-cac4b8f1d0b88c603e9b7e6bef64d02bdbf0d55f2ac508ae1e78df2be0f9fe853
Notes LaRC
Langley Research Center
Report Number: NF1676L-26266
NF1676L-26266
ISSN: 0307-904X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ntrs.nasa.gov/citations/20190025846
PMID 32095032
PQID 2123705047
PQPubID 2045280
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7039250
proquest_miscellaneous_2364039843
proquest_journals_2123705047
pubmed_primary_32095032
crossref_primary_10_1016_j_apm_2018_07_029
crossref_citationtrail_10_1016_j_apm_2018_07_029
nasa_ntrs_20190025846
elsevier_sciencedirect_doi_10_1016_j_apm_2018_07_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Langley Research Center
PublicationPlace_xml – name: Langley Research Center
– name: England
– name: New York
PublicationTitle Applied Mathematical Modelling
PublicationTitleAlternate Appl Math Model
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier BV
References Grundy (bib0007) 1991; 46
Swiler, Adams, Eldred (bib0004) 2008
Popescu (bib0015) 2005; 30
McAndrew (bib0005) 2010
Silverman (bib0018) 1986
Campi, Garatti (bib0028) 2011; 148
Allen, Maute (bib0002) 2004; 27
Kendall, Stuart (bib0022) 1969
Bertsimas, Popescu (bib0006) 2002; 50
Smith (bib0009) 1995; 43
Crespo, Kenny, Giesy (bib0023) 2018; 75
Campi, Garatti (bib0021) 2008; 19
R. Sharma, R. Kumar, R. Saini, Kapoor, Complementary upper bounds for fourth central moment with extensions and applications
Eldred, Agarwal, Perez, Wojtkiewicz, Renaud (bib0003) 2007; 3
Fraley, Raftery (bib0019) 2002; 97
Simpson, Peplinski, Koch, Allen (bib0001) 2001; 17
Ghaoui, Oks, Oustry (bib0008) 2003; 51
Sharma, Devi, Kapoor, Barnett (bib0010) 2009; 1
Tian, Cox, Zuluaga (bib0016) 2017; 21
Hassig (bib0030) 1971; 8
Kumar (bib0012) 2002; 3
Crespo, Giesy, Kenny (bib0024) 2017
(2015).
J. Smith, Moment methods for decision analysis, Ph.D. Thesis, Stanford University(1990).
Bertsimas, Popescu (bib0014) 2005; 15
Nemirovski, Todd (bib0017) 2008; 1
Hodges, Pierce (bib0026) 2002
K. Roger, Airplane Math Modeling Methods for Active Control Design, Structural aspects of active control, AGARD Defense Technical Information Center DTIC AD A 045242 CP-228, Neuilly-Sur-Seine, France(1977) 4.1–4.11.
Hastie, Tibshirani, Friedman (bib0025) 2001
Theodorsen (bib0029) 1949
Beran, Stanford, Schrock (bib0027) 2017; 49
Crespo, Giesy, Kenny (bib0020) 2017
Ghaoui (10.1016/j.apm.2018.07.029_bib0008) 2003; 51
Sharma (10.1016/j.apm.2018.07.029_bib0010) 2009; 1
Kumar (10.1016/j.apm.2018.07.029_bib0012) 2002; 3
Eldred (10.1016/j.apm.2018.07.029_bib0003) 2007; 3
Crespo (10.1016/j.apm.2018.07.029_bib0023) 2018; 75
Smith (10.1016/j.apm.2018.07.029_bib0009) 1995; 43
10.1016/j.apm.2018.07.029_bib0031
10.1016/j.apm.2018.07.029_bib0011
Grundy (10.1016/j.apm.2018.07.029_bib0007) 1991; 46
10.1016/j.apm.2018.07.029_bib0013
Campi (10.1016/j.apm.2018.07.029_bib0028) 2011; 148
Fraley (10.1016/j.apm.2018.07.029_bib0019) 2002; 97
Silverman (10.1016/j.apm.2018.07.029_bib0018) 1986
Tian (10.1016/j.apm.2018.07.029_bib0016) 2017; 21
Crespo (10.1016/j.apm.2018.07.029_bib0024) 2017
Allen (10.1016/j.apm.2018.07.029_bib0002) 2004; 27
Popescu (10.1016/j.apm.2018.07.029_bib0015) 2005; 30
Theodorsen (10.1016/j.apm.2018.07.029_sbref0027) 1949
Hassig (10.1016/j.apm.2018.07.029_bib0030) 1971; 8
McAndrew (10.1016/j.apm.2018.07.029_bib0005) 2010
Hastie (10.1016/j.apm.2018.07.029_bib0025) 2001
Campi (10.1016/j.apm.2018.07.029_bib0021) 2008; 19
Simpson (10.1016/j.apm.2018.07.029_bib0001) 2001; 17
Swiler (10.1016/j.apm.2018.07.029_bib0004) 2008
Hodges (10.1016/j.apm.2018.07.029_bib0026) 2002
Nemirovski (10.1016/j.apm.2018.07.029_bib0017) 2008; 1
Crespo (10.1016/j.apm.2018.07.029_bib0020) 2017
Bertsimas (10.1016/j.apm.2018.07.029_bib0006) 2002; 50
Kendall (10.1016/j.apm.2018.07.029_bib0022) 1969
Bertsimas (10.1016/j.apm.2018.07.029_bib0014) 2005; 15
Beran (10.1016/j.apm.2018.07.029_bib0027) 2017; 49
References_xml – reference: R. Sharma, R. Kumar, R. Saini, Kapoor, Complementary upper bounds for fourth central moment with extensions and applications,
– year: 2010
  ident: bib0005
  article-title: Compact modeling: principles, techniques, and applications
  publication-title: Statistical Modeling using Backward Propagation of Variance
– volume: 3
  start-page: 1
  year: 2002
  end-page: 11
  ident: bib0012
  article-title: Moment inequalities of a random variable defined over a finite interval
  publication-title: J. Inequ. Pure Appl. Math.
– year: 2002
  ident: bib0026
  article-title: Introduction to Structural Dynamics and Aeroelasticity
– volume: 51
  start-page: 358
  year: 2003
  end-page: 374
  ident: bib0008
  article-title: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach
  publication-title: Oper. Res.
– volume: 148
  start-page: 257
  year: 2011
  end-page: 280
  ident: bib0028
  article-title: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality
  publication-title: J. Optim. Theory Appl.
– reference: J. Smith, Moment methods for decision analysis, Ph.D. Thesis, Stanford University(1990).
– year: 1949
  ident: bib0029
  article-title: General Theory of Aerodynamic Instability and the Mechanism of Flutter
– volume: 27
  start-page: 228
  year: 2004
  end-page: 242
  ident: bib0002
  article-title: Reliability-based design optimization of aeroelastic structures
  publication-title: Struct. Multidiscip. Optim.
– reference: (2015).
– volume: 8
  start-page: 885
  year: 1971
  end-page: 889
  ident: bib0030
  article-title: An approximate true damping solution of the flutter equation by determinant iteration
  publication-title: J. Aircraft
– volume: 19
  start-page: 1211
  year: 2008
  end-page: 1230
  ident: bib0021
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM J. Optim.
– volume: 30
  start-page: 1
  year: 2005
  end-page: 23
  ident: bib0015
  article-title: A semidefinite programming approach to optimal moment bounds for convex classes of distributions
  publication-title: Math. Oper. Res.
– volume: 1
  start-page: 83
  year: 2009
  end-page: 85
  ident: bib0010
  article-title: A brief note on some bounds connecting lower order moments for random variables defined on a finite interval
  publication-title: Int. J. Theor. Appl. Sci.
– volume: 49
  start-page: 361
  year: 2017
  end-page: 386
  ident: bib0027
  article-title: Uncertainty quantification in aeroelasticity
  publication-title: Ann. Rev. Fluid Mech.
– volume: 43
  start-page: 358
  year: 1995
  end-page: 374
  ident: bib0009
  article-title: Generalized chebyshev inequalities: theory and applications in decision analysis
  publication-title: Oper. Res.
– volume: 50
  start-page: 358
  year: 2002
  end-page: 374
  ident: bib0006
  article-title: On the relation between option and stock prices: an optimization approach
  publication-title: Oper. Res.
– year: 2017
  ident: bib0020
  article-title: On the calculation and shaping of staircase random variables
  publication-title: ESREL 2017, Portoroz, Slovenia
– volume: 97
  start-page: 611
  year: 2002
  end-page: 631
  ident: bib0019
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J. Am. Stat. Assoc.
– year: 2008
  ident: bib0004
  article-title: Model calibration under uncertainty: Matching distribution information
  publication-title: Proceedings of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
– year: 1969
  ident: bib0022
  article-title: The Advanced Theory of Statistics
– reference: K. Roger, Airplane Math Modeling Methods for Active Control Design, Structural aspects of active control, AGARD Defense Technical Information Center DTIC AD A 045242 CP-228, Neuilly-Sur-Seine, France(1977) 4.1–4.11.
– volume: 15
  start-page: 780
  year: 2005
  end-page: 804
  ident: bib0014
  article-title: Optimal inequalities in probability theory: a convex optimization approach
  publication-title: SIAM J. Optim.
– volume: 21
  start-page: 242
  year: 2017
  end-page: 266
  ident: bib0016
  article-title: Moment problem and its applications to risk assessment
  publication-title: North Am. Actuarial J.
– year: 1986
  ident: bib0018
  article-title: Density Estimation for Statistics and Data Analysis
– volume: 75
  start-page: 35
  year: 2018
  end-page: 44
  ident: bib0023
  article-title: Staircase predictor models for reliability and risk analysis
  publication-title: Structural Safety
– year: 2017
  ident: bib0024
  article-title: Random predictor models with a nonparametric staircase structure
  publication-title: ESREL 2017, Portoroz, Slovenia
– volume: 1
  start-page: 191
  year: 2008
  end-page: 234
  ident: bib0017
  article-title: An approximate true damping solution of the flutter equation by determinant iteration
  publication-title: Acta Numerica
– volume: 3
  start-page: 199
  year: 2007
  end-page: 213
  ident: bib0003
  article-title: Investigation of reliability method formulations in DAKOTA/UQ
  publication-title: Struct. Infrastruct. Eng. Maint. Manag. Life Cycle Des. Perform.
– volume: 46
  start-page: 343
  year: 1991
  end-page: 556
  ident: bib0007
  article-title: Option prices and the underlying asset’s return distribution
  publication-title: J. Finance
– year: 2001
  ident: bib0025
  article-title: The Elements of Statistical Learning
– volume: 17
  start-page: 129
  year: 2001
  end-page: 150
  ident: bib0001
  article-title: Metamodels for computer-based engineering design: survey and recommendations
  publication-title: Eng. Comput.
– volume: 19
  start-page: 1211
  issue: 3
  year: 2008
  ident: 10.1016/j.apm.2018.07.029_bib0021
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM J. Optim.
  doi: 10.1137/07069821X
– volume: 49
  start-page: 361
  issue: 1
  year: 2017
  ident: 10.1016/j.apm.2018.07.029_bib0027
  article-title: Uncertainty quantification in aeroelasticity
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034441
– volume: 27
  start-page: 228
  year: 2004
  ident: 10.1016/j.apm.2018.07.029_bib0002
  article-title: Reliability-based design optimization of aeroelastic structures
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0384-1
– ident: 10.1016/j.apm.2018.07.029_bib0011
– volume: 17
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.apm.2018.07.029_bib0001
  article-title: Metamodels for computer-based engineering design: survey and recommendations
  publication-title: Eng. Comput.
  doi: 10.1007/PL00007198
– year: 2010
  ident: 10.1016/j.apm.2018.07.029_bib0005
  article-title: Compact modeling: principles, techniques, and applications
– volume: 15
  start-page: 780
  issue: 3
  year: 2005
  ident: 10.1016/j.apm.2018.07.029_bib0014
  article-title: Optimal inequalities in probability theory: a convex optimization approach
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401399903
– year: 1986
  ident: 10.1016/j.apm.2018.07.029_bib0018
– volume: 51
  start-page: 358
  issue: 4
  year: 2003
  ident: 10.1016/j.apm.2018.07.029_bib0008
  article-title: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach
  publication-title: Oper. Res.
  doi: 10.1287/opre.51.4.543.16101
– ident: 10.1016/j.apm.2018.07.029_bib0013
– volume: 97
  start-page: 611
  issue: 458
  year: 2002
  ident: 10.1016/j.apm.2018.07.029_bib0019
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214502760047131
– volume: 8
  start-page: 885
  issue: 11
  year: 1971
  ident: 10.1016/j.apm.2018.07.029_bib0030
  article-title: An approximate true damping solution of the flutter equation by determinant iteration
  publication-title: J. Aircraft
  doi: 10.2514/3.44311
– volume: 1
  start-page: 83
  issue: 2
  year: 2009
  ident: 10.1016/j.apm.2018.07.029_bib0010
  article-title: A brief note on some bounds connecting lower order moments for random variables defined on a finite interval
  publication-title: Int. J. Theor. Appl. Sci.
– year: 1969
  ident: 10.1016/j.apm.2018.07.029_bib0022
– volume: 3
  start-page: 1
  issue: 3, Article 41
  year: 2002
  ident: 10.1016/j.apm.2018.07.029_bib0012
  article-title: Moment inequalities of a random variable defined over a finite interval
  publication-title: J. Inequ. Pure Appl. Math.
– year: 2002
  ident: 10.1016/j.apm.2018.07.029_bib0026
– volume: 30
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.apm.2018.07.029_bib0015
  article-title: A semidefinite programming approach to optimal moment bounds for convex classes of distributions
  publication-title: Math. Oper. Res.
– year: 2017
  ident: 10.1016/j.apm.2018.07.029_bib0020
  article-title: On the calculation and shaping of staircase random variables
– ident: 10.1016/j.apm.2018.07.029_bib0031
– year: 2001
  ident: 10.1016/j.apm.2018.07.029_bib0025
– year: 2008
  ident: 10.1016/j.apm.2018.07.029_bib0004
  article-title: Model calibration under uncertainty: Matching distribution information
– volume: 75
  start-page: 35
  year: 2018
  ident: 10.1016/j.apm.2018.07.029_bib0023
  article-title: Staircase predictor models for reliability and risk analysis
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2018.05.002
– year: 2017
  ident: 10.1016/j.apm.2018.07.029_bib0024
  article-title: Random predictor models with a nonparametric staircase structure
– volume: 21
  start-page: 242
  issue: 1
  year: 2017
  ident: 10.1016/j.apm.2018.07.029_bib0016
  article-title: Moment problem and its applications to risk assessment
  publication-title: North Am. Actuarial J.
  doi: 10.1080/10920277.2017.1302805
– volume: 43
  start-page: 358
  issue: 5
  year: 1995
  ident: 10.1016/j.apm.2018.07.029_bib0009
  article-title: Generalized chebyshev inequalities: theory and applications in decision analysis
  publication-title: Oper. Res.
  doi: 10.1287/opre.43.5.807
– volume: 1
  start-page: 191
  year: 2008
  ident: 10.1016/j.apm.2018.07.029_bib0017
  article-title: An approximate true damping solution of the flutter equation by determinant iteration
  publication-title: Acta Numerica
  doi: 10.1017/S0962492906370018
– volume: 148
  start-page: 257
  issue: 2
  year: 2011
  ident: 10.1016/j.apm.2018.07.029_bib0028
  article-title: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9754-6
– volume: 46
  start-page: 343
  issue: 3
  year: 1991
  ident: 10.1016/j.apm.2018.07.029_bib0007
  article-title: Option prices and the underlying asset’s return distribution
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.1991.tb03776.x
– year: 1949
  ident: 10.1016/j.apm.2018.07.029_sbref0027
– volume: 3
  start-page: 199
  issue: 3
  year: 2007
  ident: 10.1016/j.apm.2018.07.029_bib0003
  article-title: Investigation of reliability method formulations in DAKOTA/UQ
  publication-title: Struct. Infrastruct. Eng. Maint. Manag. Life Cycle Des. Perform.
  doi: 10.1080/15732470500254618
– volume: 50
  start-page: 358
  issue: 2
  year: 2002
  ident: 10.1016/j.apm.2018.07.029_bib0006
  article-title: On the relation between option and stock prices: an optimization approach
  publication-title: Oper. Res.
  doi: 10.1287/opre.50.2.358.424
SSID ssj0005904
ssj0012860
Score 2.2858508
Snippet •This paper proposes the means to model phenomena exhibiting a possibly skewed and multimodal response.•The approach is based on calculating variables having a...
This paper proposes a family of random variables for uncertainty modeling. The variables of interest have a bounded support set, and prescribed values for the...
SourceID pubmedcentral
proquest
pubmed
crossref
nasa
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Aeroelastic stability
Aeroelasticity
Computational geometry
Convex analysis
Convexity
Datasets
Density
Dynamic stability
Empirical analysis
Flutter
Mathematical models
Moments
Numerical Analysis
Optimality criteria
Optimization
Probability
Probability distribution
Random variables
Risk
Risk analysis
Sampling error
Staircases
Uncertainty
Title Random variables with moment-matching staircase density functions
URI https://dx.doi.org/10.1016/j.apm.2018.07.029
https://ntrs.nasa.gov/citations/20190025846
https://www.ncbi.nlm.nih.gov/pubmed/32095032
https://www.proquest.com/docview/2123705047
https://www.proquest.com/docview/2364039843
https://pubmed.ncbi.nlm.nih.gov/PMC7039250
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na1QxEA-lXvQgflR9WssTPAnPzSZ5L8lxLZbXSnuoLewt5BO32LdLdyt48W935n3RldKDxyQTSCaTmV-SmQkhH6Oknknli4o5WwhAsIXTtirAMsNukpyH9o-l07OqvhQn83K-Qw6HWBh0q-x1f6fTW23d10x6bk5Wi8XkO4qnpmIOQkm5KDGiXAiJUv75zx03D03FkAwRqYeXzdbHy64wGH2q2vydLcq81zbtNnZt74Og_3pS3jFNR8_I0x5T5rNu2M_JTmxekCenY0LW9UsyO7dNWF7nv-BojMFS6xwvYPNrzL8AJ1_Qx3gTlWMw1Y0Hw5YHdGzf_M7R7rWiuUcuj75eHNZF_3tC4UtKN4W3XjiVpoE6pXxFedROxsrFVIlAmQsu0VCWiVmgVzZOo1QhMRdp0imCFX8F81428Q3JARYpK6aeBgGnNYA4oCeYlyyxJKJTOiN04JvxfWpx_OHipxl8yK4MsNogqw2VBlidkU9jl1WXV-MhYjEshtkSDgN6_6Fue7hwBsayxnqNAA_wVkb2h5U0_Y6FdjDhkpZUyIx8GJthr-EDim3i8hZoeCUo10rwjLzuFn4cPGcAVilnGZFbIjESYB7v7ZZm8aPN5w1KVwMSfft_s3xHHmOpc7HZJ7ubm9v4HoDSxh20O-GAPJodf6vPoHQ8_wKli_OTuv4LJWsUhQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqcgAOiEeBgQKDBBekYbOZzCRz4FAB1ZZ2e4BW2lvIa8QiOrvqbEG98Kf4g9jzUhdVPSD1GidSYsf2l8SxAV4FyRyXyiU5tyYRiGATW5g8Qc-M2iTT1Dc1lqaH-eRYfJplsw340_-FobDKzva3Nr2x1l3LqOPmaDmfj77Q9iyYmOGmZKnIZBdZuR_Of-G5rX639wGF_Jrz3Y9H7ydJV1ogcRljq8QZJ6wqx55ZpVzO0lBYGXIbylx4xq23JfNZVnKD_ZUJ4yCVL7kNrCzKoKhUBNr9GwLNBZVNePv7QlxJwUSffZGm1z-lNkFlZkm_38eqSRjawNpLneFmZWpzGeb9N3Tzgi_cvQt3OhAb77R8ugcboboPt6dDBtj6Aex8NpVfnMQ_8SxOv7PqmG584xNK-IBHbXQAdPUV0--tU4eeNPYUSb86j8nRNrqwBcfXwtOHuO5FFR5DjDhMGTF2zAs8HiKmQsPEneQlL0WwqoiA9XzTrstlTiU1fug-aO27RlZrYrVmUiOrI3gzDFm2iTyu6ix6Yei13ajR0Vw1bIsEp3EuNbUXhCgR4EWw3UtSdyYC6YgZJMuYkBG8HMio3PRiY6qwOMM-aS5YWiiRRvCoFfww-ZQjOmYpj0CubYmhAyUOX6dU829NAnG08gVC3yf_t8oXcHNyND3QB3uH-0_hFlHa-J5t2FydnoVniNJW9nmjFTF8vW41_AsQXlCa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+variables+with+moment-matching+staircase+density+functions&rft.jtitle=Applied+mathematical+modelling&rft.au=Crespo%2C+Luis+G.&rft.au=Kenny%2C+Sean+P.&rft.au=Giesy%2C+Daniel+P.&rft.au=Stanford%2C+Bret+K.&rft.date=2018-12-01&rft.issn=0307-904X&rft.volume=64&rft.spage=196&rft.epage=213&rft_id=info:doi/10.1016%2Fj.apm.2018.07.029&rft_id=info%3Apmid%2F32095032&rft.externalDocID=PMC7039250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon