Causal inference with recurrent and competing events

Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, comp...

Full description

Saved in:
Bibliographic Details
Published inLifetime data analysis Vol. 30; no. 1; pp. 59 - 118
Main Authors Janvin, Matias, Young, Jessica G., Ryalen, Pål C., Stensrud, Mats J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.
AbstractList Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.
Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.
Abstract Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.
Author Stensrud, Mats J.
Ryalen, Pål C.
Young, Jessica G.
Janvin, Matias
Author_xml – sequence: 1
  givenname: Matias
  orcidid: 0000-0003-1985-3831
  surname: Janvin
  fullname: Janvin, Matias
  email: matias.janvin@epfl.ch
  organization: Department of Mathematics, École Polytechnique Fédérale de Lausanne
– sequence: 2
  givenname: Jessica G.
  surname: Young
  fullname: Young, Jessica G.
  organization: Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Department of Epidemiology, Harvard T.H. Chan School of Public Health, CAUSALab, Harvard T.H. Chan School of Public Health
– sequence: 3
  givenname: Pål C.
  surname: Ryalen
  fullname: Ryalen, Pål C.
  organization: Department of Biostatistics, University of Oslo
– sequence: 4
  givenname: Mats J.
  surname: Stensrud
  fullname: Stensrud, Mats J.
  organization: Department of Mathematics, École Polytechnique Fédérale de Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37173588$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQecAPcEAjceEy0J4ev04IrUhAisQFzpbH9mwczdqLPRPE3-NhszxyyMWvrqoud52Tk5iiJ-QlhbcUQLwrFJRkLXTYgmKqb-UTckaZ6FrV9eqknlFCK6SAU3Jeyi1UkuLqGTlFQQUyKc9IvzFLMVMT4uizj9Y3P8J802Rvl1zvc2Oia2za7f0c4rbxd_WtPCdPRzMV_-J-vyDfLj9-3Xxqr79cfd58uG4tA5jbYeAA6Hhv3eBwpAN1TjjuWO-p5XxwgvsBB2o9pwYRjbVgOotmZOA4Srwg7w-6-2XYeWdr72wmvc9hZ_JPnUzQ_1diuNHbdKcpCN73DKtCc1CwOZT6Ax1TNrUsWbeu0K-QN_dNcvq--DLrXSjWT5OJPi1Fd5Ii40BFV6GvH0Bv05JjHYHuFChkFJBV1Kt_Xf-xexx6BcijqVRK9qO2YTZzSOsnwlSN6TVffchX13z173z1Su0eUI_qj5LwQCoVHLc-_7X9COsXMZq2mA
CitedBy_id crossref_primary_10_1007_s40264_023_01380_7
crossref_primary_10_1016_j_maturitas_2024_107936
crossref_primary_10_1093_biomtc_ujae145
Cites_doi 10.1080/01621459.2022.2071276
10.1093/biostatistics/kxaa008
10.1016/0270-0255(86)90088-6
10.1007/978-3-662-05265-5
10.1007/s10985-019-09462-4
10.1002/14651858.CD012572.pub2
10.1097/EDE.0000000000001165
10.1007/s10985-015-9335-y
10.1093/biostatistics/5.1.129
10.1111/j.0006-341X.2000.00554.x
10.1007/s10985-020-09501-5
10.1001/jama.2020.1267
10.1111/biom.13523
10.1111/j.0006-341X.2002.00021.x
10.1002/sim.8336
10.1007/s10985-021-09530-8
10.1093/biomet/asy035
10.1080/19466315.2021.1895883
10.1093/aje/kwaa092
10.2307/2529721
10.1093/oso/9780199754649.003.0011
10.1002/sim.7907
10.1111/biom.13559
10.1007/978-1-4757-1229-2_14
10.2307/2530374
10.1002/sim.9398
10.1080/01621459.1952.10483446
10.1007/s10985-018-9449-0
10.1007/s10985-019-09468-y
10.1073/pnas.72.1.20
10.1080/01621459.2020.1765783
10.1093/eurheartj/ehs277
10.1017/CBO9780511803161
10.1111/j.0006-341X.2000.00779.x
10.1111/j.1541-0420.2007.00847_2.x
10.1515/1557-4679.1391
10.1097/00001648-200009000-00012
10.1097/00001648-199203000-00013
10.1097/EDE.0000000000001357
10.1093/biomet/82.4.805
10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
10.1007/978-0-387-68560-1
10.1002/sim.2712
10.2202/1557-4679.1367
10.1056/NEJMoa1511939
10.1002/sim.5864
10.1002/sim.8471
10.1515/jci-2016-0006
10.1097/EDE.0b013e3181c1ea43
10.7551/mitpress/1754.001.0001
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
The Author(s) 2023, corrected publication 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
– notice: The Author(s) 2023, corrected publication 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
M0C
M0S
M0T
M1P
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
3HK
5PM
DOI 10.1007/s10985-023-09594-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


ProQuest Business Collection (Alumni Edition)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Mathematics
Statistics
EISSN 1572-9249
EndPage 118
ExternalDocumentID PMC10764453
10852_108043
37173588
10_1007_s10985_023_09594_8
Genre Journal Article
GrantInformation_xml – fundername: None
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EBU
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0T
M1P
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z81
Z83
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
3HK
AAEOY
AEARS
5PM
ID FETCH-LOGICAL-c500t-bb6003d64cdbd3f1b1dd7d6d54e1c66bd76eb3b1ce61a333acc0a2c3af50d6383
IEDL.DBID 8FG
ISSN 1380-7870
1572-9249
IngestDate Thu Aug 21 18:42:23 EDT 2025
Tue Dec 24 02:50:42 EST 2024
Mon Jul 21 09:23:49 EDT 2025
Sat Aug 23 13:17:22 EDT 2025
Mon Jul 21 05:34:24 EDT 2025
Tue Jul 01 01:43:34 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Fri Feb 21 02:40:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Causal inference
Event history analysis
Competing events
Separable effects
Recurrent events
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-bb6003d64cdbd3f1b1dd7d6d54e1c66bd76eb3b1ce61a333acc0a2c3af50d6383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1985-3831
OpenAccessLink https://doi.org/10.1007/s10985-023-09594-8
PMID 37173588
PQID 2909351035
PQPubID 26261
PageCount 60
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764453
cristin_nora_10852_108043
proquest_miscellaneous_2813560172
proquest_journals_2909351035
pubmed_primary_37173588
crossref_citationtrail_10_1007_s10985_023_09594_8
crossref_primary_10_1007_s10985_023_09594_8
springer_journals_10_1007_s10985_023_09594_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data
PublicationTitle Lifetime data analysis
PublicationTitleAbbrev Lifetime Data Anal
PublicationTitleAlternate Lifetime Data Anal
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin
HernánMABrumbackBRobinsJMMarginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive menEpidemiology2000115561570
Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, pp 411–20
Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med 39(8):1199–1236
ZhengWvan der LaanMLongitudinal mediation analysis with time-varying mediators and exposures, with application to survival outcomesJ Causal Inference2017524328877
Fritsch A, Schlömer P, Mendolia F, Mütze T, Jahn-Eimermacher A (2021) Efficiency comparison of analysis methods for recurrent event and time-to-first event endpoints in the presence of terminal events–application to clinical trials in chronic heart failure. Stat Biopharm Res 0(0):1–12
Robins JM, Richardson TS (2011) Alternative graphical causal models and the identification of direct effects. In: Causality and psychopathology. Oxford University Press, Oxford
CookRJLawlessJFMarginal analysis of recurrent events and a terminating eventStat Med1997168911924
GailMA review and critique of some models used in competing risk analysisBiometrics1975311209383684
Wei J , Mütze T, Jahn-Eimermacher A, Roger J (2021) Properties of two while-alive estimands for recurrent events and their potential estimators. Stat Biopharm Res 0(0):1–11
YoungJGStensrudMJIdentified versus interesting causal effects in fertility trials and other settings with competing or truncation eventsEpidemiology2021324569572
Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155
Tchetgen TchetgenEJInverse odds ratio-weighted estimation for causal mediation analysisStat Med20133226456745803118376
RyalenPCStensrudMJRøyslandKTransforming cumulative hazard estimatesBiometrika20181059059163877873
MittintyMNVansteelandtSLongitudinal mediation analysis using natural effect modelsAm J Epidemiol20201891114271435
RobinsJMRotnitzkyAJewellNPDietzKFarewellVTRecovery of information and adjustment for dependent censoring using surrogate markersAIDS epidemiology: methodological issues1992BostonBirkhäuser297331
HernánMAThe hazards of hazard ratiosEpidemiology (Cambridge, Mass.)201021113152575940
European Medicines Agency (2020) Qualification opinion of clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analysis
RyalenPCStensrudMJRøyslandKThe additive hazard estimator is consistent for continuous-time marginal structural modelsLifetime Data Anal20192546116384015374
SarvetALWanisKNStensrudMJHernánMAA graphical description of partial exchangeabilityEpidemiology2020313365368
RobinsJMFinkelsteinDMCorrecting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank testsBiometrics2000563779788
GhoshDLinDYNonparametric analysis of recurrent events and deathBiometrics20005625545621795021
VansteelandtSLinderMVandenbergheSSteenJMadsenJMediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confoundingStat Med20193824482848404022831
Brian ClaggettLTianHFSolomonSDWeiL-JQuantifying the totality of treatment effect with multiple event-time observations in the presence of a terminal event from a comparative clinical studyStat Med20183725358935983869120
Schmidli H, Roger JH, Akacha M (2021) On behalf of the recurrent event qualification opinion consortium. Estimands for recurrent event endpoints in the presence of a terminal event. Stat Biopharma Res 1–29
Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA (2020) Separable effects for causal inference in the presence of competing events. J Am Stat Assoc 1–9
MartinussenTVansteelandtSAndersenPKSubtleties in the interpretation of hazard contrastsLifetime Data Anal20202648338554148449
Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, Young JG (2021a) A generalized theory of separable effects in competing event settings. Lifetime Data Anal
Martinussen T, Stensrud MJ (2021) Estimation of separable direct and indirect effects in continuous time. Biometrics
AnkerSDMcMurrayJJVTime to move on from ‘time-to-first’: should all events be included in the analysis of clinical trials?Eur Heart J2012332227642765
DawidPDidelezVImagine a can opener-the magic of principal stratum analysisInt J Biostat2012812925323
CookRJLawlessJFThe statistical analysis of recurrent events2007New YorkSpringer
TsiatisAA nonidentifiability aspect of the problem of competing risksProc Natl Acad Sci19757212022356425
HorvitzDGThompsonDJA generalization of sampling without replacement from a finite universeJ Am Stat Assoc19524726066368553460
AndersenPKAngstJRavnHModeling marginal features in studies of recurrent events in the presence of a terminal eventLifetime Data Anal20192546816954015377
StensrudMJYoungJGMartinussenTDiscussion on “causal mediation of semicompeting risks” by Yen-Tsung HuangBiometrics202177411601164
Robins JM, Richardson TS, Shpitser I (2020) An interventionist approach to mediation analysis. arXiv:2008.06019
BruntonLLKnollmannBCHilal-DandanRGoodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine201813New YorkMcGraw-Hill Education LLC
Reeve E, Jordan V, Thompson W, Sawan M, Todd A, Gammie TM, Hopper I, Hilmer SN, Gnjidic D (2020) Withdrawal of antihypertensive drugs in older people. Cochrane Datab Syst Rev 6
StensrudMJHernánMAWhy test for proportional hazards?JAMA20203231414011402
StensrudMJDukesOTranslating questions to estimands in randomized clinical trials with intercurrent eventsStat Med20224116321132284444895
AalenOOCookRJRøyslandKDoes cox analysis of a randomized survival study yield a causal treatment effect?Lifetime Data Anal20152145795933397507
AalenOOØrnulfBorganGjessingHKSurvival and event history analysis. Statistics for biology and health2008New YorkSpringer
HajekJGodambeVPSprottDAComment on “An essay on the logical foundations of survey sampling by D. Basu”Foundations of statistical inference1971TorontoHolt, Rinehart and Winston of Canada
RotnitzkyARobinsJMSemiparametric regression estimation in the presence of dependent censoringBiometrika19958248058201380816
Prentice RL, Kalbfleisch JD, Peterson JAV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 541–554
RobinsJRotnitzkyAVansteelandtSTen HaveTXieYuMurphySDiscussions on “Principal stratification designs to estimate input data missing due to death"Biometrics20076336506582395698
SPRINT Research GroupA randomized trial of intensive versus standard blood-pressure controlN Engl J Med20153732221032116
ChenBECookRJTests for multivariate recurrent events in the presence of a terminal eventBiostatistics200451129143
FrangakisCERubinDBPrincipal stratification in causal inferenceBiometrics200258121291891039
RobinsJA new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effectMath Model19867913931512877758
Stensrud MJ, Robins JM, Sarvet A, Tchetgen Tchetgen EJ, Young JG (2022) Conditional separable effects. J Am J Am Stat Assoc 1–13
Richardson TS, Robins JM (2013b) Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality
PearlJCausality: models, reasoning, and inference20092CambridgeCambridge University Press
Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and search. Adaptive computation and machine learning, 2nd edn. MIT Press, Cambridge
PutterHFioccoMGeskusRBTutorial in biostatistics: competing risks and multi-state modelsStat Med20072611238924302368422
Richardson TS, Robins JM (2013a) Single world intervention graphs: a primer
YanxunXScharfsteinDMüllerPDanielsMA Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risksBiostatistics202223134494366034
JoffeMPrincipal stratification and attribution prohibition: good ideas taken too farInt J Biostat2011711222753569
DidelezVDefining causal mediation with a longitudinal mediator and a survival outcomeLifetime Data Anal20192545936104015373
9594_CR44
9594_CR40
9594_CR49
JM Robins (9594_CR34) 2000; 56
D Ghosh (9594_CR16) 2000; 56
9594_CR45
RJ Cook (9594_CR8) 1997; 16
JM Robins (9594_CR37) 1992
W Zheng (9594_CR60) 2017; 5
J Hajek (9594_CR17) 1971
M Joffe (9594_CR22) 2011; 7
MJ Stensrud (9594_CR51) 2021; 77
A Rotnitzky (9594_CR38) 1995; 82
MJ Stensrud (9594_CR47) 2022; 41
M Gail (9594_CR15) 1975; 31
9594_CR30
9594_CR31
9594_CR32
J Robins (9594_CR39) 2007; 63
S Vansteelandt (9594_CR55) 2019; 38
MA Hernán (9594_CR19) 2000; 11
EJ Tchetgen Tchetgen (9594_CR53) 2013; 32
9594_CR35
9594_CR36
SPRINT Research Group (9594_CR46) 2015; 373
L Brian Claggett (9594_CR7) 2018; 37
PK Andersen (9594_CR3) 2019; 25
H Putter (9594_CR29) 2007; 26
MJ Stensrud (9594_CR48) 2020; 323
LL Brunton (9594_CR5) 2018
AL Sarvet (9594_CR43) 2020; 31
9594_CR21
X Yanxun (9594_CR57) 2022; 23
PC Ryalen (9594_CR42) 2019; 25
9594_CR28
BE Chen (9594_CR6) 2004; 5
9594_CR23
JG Young (9594_CR58) 2021; 32
9594_CR26
J Robins (9594_CR33) 1986; 7
T Martinussen (9594_CR24) 2020; 26
MA Hernán (9594_CR18) 2010; 21
RJ Cook (9594_CR9) 2007
J Pearl (9594_CR27) 2009
OO Aalen (9594_CR1) 2008
9594_CR52
CE Frangakis (9594_CR13) 2002; 58
9594_CR50
9594_CR12
DG Horvitz (9594_CR20) 1952; 47
9594_CR56
SD Anker (9594_CR4) 2012; 33
9594_CR14
9594_CR59
OO Aalen (9594_CR2) 2015; 21
V Didelez (9594_CR11) 2019; 25
MN Mittinty (9594_CR25) 2020; 189
PC Ryalen (9594_CR41) 2018; 105
P Dawid (9594_CR10) 2012; 8
A Tsiatis (9594_CR54) 1975; 72
References_xml – reference: DidelezVDefining causal mediation with a longitudinal mediator and a survival outcomeLifetime Data Anal20192545936104015373
– reference: StensrudMJYoungJGMartinussenTDiscussion on “causal mediation of semicompeting risks” by Yen-Tsung HuangBiometrics202177411601164
– reference: Fritsch A, Schlömer P, Mendolia F, Mütze T, Jahn-Eimermacher A (2021) Efficiency comparison of analysis methods for recurrent event and time-to-first event endpoints in the presence of terminal events–application to clinical trials in chronic heart failure. Stat Biopharm Res 0(0):1–12
– reference: Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA (2020) Separable effects for causal inference in the presence of competing events. J Am Stat Assoc 1–9
– reference: RobinsJMFinkelsteinDMCorrecting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank testsBiometrics2000563779788
– reference: HernánMAThe hazards of hazard ratiosEpidemiology (Cambridge, Mass.)201021113152575940
– reference: TsiatisAA nonidentifiability aspect of the problem of competing risksProc Natl Acad Sci19757212022356425
– reference: RotnitzkyARobinsJMSemiparametric regression estimation in the presence of dependent censoringBiometrika19958248058201380816
– reference: Stensrud MJ, Robins JM, Sarvet A, Tchetgen Tchetgen EJ, Young JG (2022) Conditional separable effects. J Am J Am Stat Assoc 1–13
– reference: RobinsJRotnitzkyAVansteelandtSTen HaveTXieYuMurphySDiscussions on “Principal stratification designs to estimate input data missing due to death"Biometrics20076336506582395698
– reference: SarvetALWanisKNStensrudMJHernánMAA graphical description of partial exchangeabilityEpidemiology2020313365368
– reference: PutterHFioccoMGeskusRBTutorial in biostatistics: competing risks and multi-state modelsStat Med20072611238924302368422
– reference: CookRJLawlessJFThe statistical analysis of recurrent events2007New YorkSpringer
– reference: Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin
– reference: Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med 39(8):1199–1236
– reference: GailMA review and critique of some models used in competing risk analysisBiometrics1975311209383684
– reference: Schmidli H, Roger JH, Akacha M (2021) On behalf of the recurrent event qualification opinion consortium. Estimands for recurrent event endpoints in the presence of a terminal event. Stat Biopharma Res 1–29
– reference: ChenBECookRJTests for multivariate recurrent events in the presence of a terminal eventBiostatistics200451129143
– reference: MartinussenTVansteelandtSAndersenPKSubtleties in the interpretation of hazard contrastsLifetime Data Anal20202648338554148449
– reference: Wei J , Mütze T, Jahn-Eimermacher A, Roger J (2021) Properties of two while-alive estimands for recurrent events and their potential estimators. Stat Biopharm Res 0(0):1–11
– reference: AnkerSDMcMurrayJJVTime to move on from ‘time-to-first’: should all events be included in the analysis of clinical trials?Eur Heart J2012332227642765
– reference: Robins JM, Richardson TS (2011) Alternative graphical causal models and the identification of direct effects. In: Causality and psychopathology. Oxford University Press, Oxford
– reference: Martinussen T, Stensrud MJ (2021) Estimation of separable direct and indirect effects in continuous time. Biometrics
– reference: Reeve E, Jordan V, Thompson W, Sawan M, Todd A, Gammie TM, Hopper I, Hilmer SN, Gnjidic D (2020) Withdrawal of antihypertensive drugs in older people. Cochrane Datab Syst Rev 6
– reference: RyalenPCStensrudMJRøyslandKTransforming cumulative hazard estimatesBiometrika20181059059163877873
– reference: Richardson TS, Robins JM (2013a) Single world intervention graphs: a primer
– reference: HajekJGodambeVPSprottDAComment on “An essay on the logical foundations of survey sampling by D. Basu”Foundations of statistical inference1971TorontoHolt, Rinehart and Winston of Canada
– reference: HernánMABrumbackBRobinsJMMarginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive menEpidemiology2000115561570
– reference: PearlJCausality: models, reasoning, and inference20092CambridgeCambridge University Press
– reference: Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, Young JG (2021a) A generalized theory of separable effects in competing event settings. Lifetime Data Anal
– reference: YanxunXScharfsteinDMüllerPDanielsMA Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risksBiostatistics202223134494366034
– reference: Brian ClaggettLTianHFSolomonSDWeiL-JQuantifying the totality of treatment effect with multiple event-time observations in the presence of a terminal event from a comparative clinical studyStat Med20183725358935983869120
– reference: FrangakisCERubinDBPrincipal stratification in causal inferenceBiometrics200258121291891039
– reference: StensrudMJDukesOTranslating questions to estimands in randomized clinical trials with intercurrent eventsStat Med20224116321132284444895
– reference: Prentice RL, Kalbfleisch JD, Peterson JAV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 541–554
– reference: Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155
– reference: ZhengWvan der LaanMLongitudinal mediation analysis with time-varying mediators and exposures, with application to survival outcomesJ Causal Inference2017524328877
– reference: HorvitzDGThompsonDJA generalization of sampling without replacement from a finite universeJ Am Stat Assoc19524726066368553460
– reference: BruntonLLKnollmannBCHilal-DandanRGoodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine201813New YorkMcGraw-Hill Education LLC
– reference: DawidPDidelezVImagine a can opener-the magic of principal stratum analysisInt J Biostat2012812925323
– reference: AalenOOØrnulfBorganGjessingHKSurvival and event history analysis. Statistics for biology and health2008New YorkSpringer
– reference: AalenOOCookRJRøyslandKDoes cox analysis of a randomized survival study yield a causal treatment effect?Lifetime Data Anal20152145795933397507
– reference: MittintyMNVansteelandtSLongitudinal mediation analysis using natural effect modelsAm J Epidemiol20201891114271435
– reference: RobinsJMRotnitzkyAJewellNPDietzKFarewellVTRecovery of information and adjustment for dependent censoring using surrogate markersAIDS epidemiology: methodological issues1992BostonBirkhäuser297331
– reference: YoungJGStensrudMJIdentified versus interesting causal effects in fertility trials and other settings with competing or truncation eventsEpidemiology2021324569572
– reference: JoffeMPrincipal stratification and attribution prohibition: good ideas taken too farInt J Biostat2011711222753569
– reference: StensrudMJHernánMAWhy test for proportional hazards?JAMA20203231414011402
– reference: Tchetgen TchetgenEJInverse odds ratio-weighted estimation for causal mediation analysisStat Med20133226456745803118376
– reference: Richardson TS, Robins JM (2013b) Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality
– reference: RobinsJA new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effectMath Model19867913931512877758
– reference: AndersenPKAngstJRavnHModeling marginal features in studies of recurrent events in the presence of a terminal eventLifetime Data Anal20192546816954015377
– reference: Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, pp 411–20
– reference: GhoshDLinDYNonparametric analysis of recurrent events and deathBiometrics20005625545621795021
– reference: CookRJLawlessJFMarginal analysis of recurrent events and a terminating eventStat Med1997168911924
– reference: VansteelandtSLinderMVandenbergheSSteenJMadsenJMediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confoundingStat Med20193824482848404022831
– reference: RyalenPCStensrudMJRøyslandKThe additive hazard estimator is consistent for continuous-time marginal structural modelsLifetime Data Anal20192546116384015374
– reference: Robins JM, Richardson TS, Shpitser I (2020) An interventionist approach to mediation analysis. arXiv:2008.06019
– reference: SPRINT Research GroupA randomized trial of intensive versus standard blood-pressure controlN Engl J Med20153732221032116
– reference: Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and search. Adaptive computation and machine learning, 2nd edn. MIT Press, Cambridge
– reference: European Medicines Agency (2020) Qualification opinion of clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analysis
– ident: 9594_CR52
  doi: 10.1080/01621459.2022.2071276
– volume: 23
  start-page: 34
  issue: 1
  year: 2022
  ident: 9594_CR57
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxaa008
– volume: 7
  start-page: 1393
  issue: 9
  year: 1986
  ident: 9594_CR33
  publication-title: Math Model
  doi: 10.1016/0270-0255(86)90088-6
– volume-title: The statistical analysis of recurrent events
  year: 2007
  ident: 9594_CR9
– ident: 9594_CR21
  doi: 10.1007/978-3-662-05265-5
– volume: 25
  start-page: 681
  issue: 4
  year: 2019
  ident: 9594_CR3
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-019-09462-4
– ident: 9594_CR31
– ident: 9594_CR30
  doi: 10.1002/14651858.CD012572.pub2
– volume: 31
  start-page: 365
  issue: 3
  year: 2020
  ident: 9594_CR43
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000001165
– volume: 21
  start-page: 579
  issue: 4
  year: 2015
  ident: 9594_CR2
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-015-9335-y
– volume: 5
  start-page: 129
  issue: 1
  year: 2004
  ident: 9594_CR6
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/5.1.129
– volume: 56
  start-page: 554
  issue: 2
  year: 2000
  ident: 9594_CR16
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00554.x
– volume: 26
  start-page: 833
  issue: 4
  year: 2020
  ident: 9594_CR24
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-020-09501-5
– volume: 323
  start-page: 1401
  issue: 14
  year: 2020
  ident: 9594_CR48
  publication-title: JAMA
  doi: 10.1001/jama.2020.1267
– ident: 9594_CR12
– volume: 77
  start-page: 1160
  issue: 4
  year: 2021
  ident: 9594_CR51
  publication-title: Biometrics
  doi: 10.1111/biom.13523
– volume: 58
  start-page: 21
  issue: 1
  year: 2002
  ident: 9594_CR13
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00021.x
– volume: 38
  start-page: 4828
  issue: 24
  year: 2019
  ident: 9594_CR55
  publication-title: Stat Med
  doi: 10.1002/sim.8336
– ident: 9594_CR50
  doi: 10.1007/s10985-021-09530-8
– volume: 105
  start-page: 905
  year: 2018
  ident: 9594_CR41
  publication-title: Biometrika
  doi: 10.1093/biomet/asy035
– ident: 9594_CR44
  doi: 10.1080/19466315.2021.1895883
– volume: 189
  start-page: 1427
  issue: 11
  year: 2020
  ident: 9594_CR25
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwaa092
– volume: 31
  start-page: 209
  issue: 1
  year: 1975
  ident: 9594_CR15
  publication-title: Biometrics
  doi: 10.2307/2529721
– ident: 9594_CR36
  doi: 10.1093/oso/9780199754649.003.0011
– ident: 9594_CR40
– volume: 37
  start-page: 3589
  issue: 25
  year: 2018
  ident: 9594_CR7
  publication-title: Stat Med
  doi: 10.1002/sim.7907
– ident: 9594_CR23
  doi: 10.1111/biom.13559
– start-page: 297
  volume-title: AIDS epidemiology: methodological issues
  year: 1992
  ident: 9594_CR37
  doi: 10.1007/978-1-4757-1229-2_14
– ident: 9594_CR28
  doi: 10.2307/2530374
– volume: 41
  start-page: 3211
  issue: 16
  year: 2022
  ident: 9594_CR47
  publication-title: Stat Med
  doi: 10.1002/sim.9398
– volume: 47
  start-page: 663
  issue: 260
  year: 1952
  ident: 9594_CR20
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1952.10483446
– volume: 25
  start-page: 593
  issue: 4
  year: 2019
  ident: 9594_CR11
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-018-9449-0
– volume-title: Goodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine
  year: 2018
  ident: 9594_CR5
– volume: 25
  start-page: 611
  issue: 4
  year: 2019
  ident: 9594_CR42
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-019-09468-y
– volume: 72
  start-page: 20
  issue: 1
  year: 1975
  ident: 9594_CR54
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.72.1.20
– ident: 9594_CR49
  doi: 10.1080/01621459.2020.1765783
– ident: 9594_CR32
– volume: 33
  start-page: 2764
  issue: 22
  year: 2012
  ident: 9594_CR4
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehs277
– volume-title: Causality: models, reasoning, and inference
  year: 2009
  ident: 9594_CR27
  doi: 10.1017/CBO9780511803161
– volume: 56
  start-page: 779
  issue: 3
  year: 2000
  ident: 9594_CR34
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00779.x
– volume: 63
  start-page: 650
  issue: 3
  year: 2007
  ident: 9594_CR39
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00847_2.x
– volume: 8
  start-page: 1
  year: 2012
  ident: 9594_CR10
  publication-title: Int J Biostat
  doi: 10.1515/1557-4679.1391
– volume: 11
  start-page: 561
  issue: 5
  year: 2000
  ident: 9594_CR19
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00012
– ident: 9594_CR26
– ident: 9594_CR35
  doi: 10.1097/00001648-199203000-00013
– volume: 32
  start-page: 569
  issue: 4
  year: 2021
  ident: 9594_CR58
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000001357
– volume: 82
  start-page: 805
  issue: 4
  year: 1995
  ident: 9594_CR38
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.805
– volume: 16
  start-page: 911
  issue: 8
  year: 1997
  ident: 9594_CR8
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
– volume-title: Survival and event history analysis. Statistics for biology and health
  year: 2008
  ident: 9594_CR1
  doi: 10.1007/978-0-387-68560-1
– volume: 26
  start-page: 2389
  issue: 11
  year: 2007
  ident: 9594_CR29
  publication-title: Stat Med
  doi: 10.1002/sim.2712
– ident: 9594_CR14
– volume: 7
  start-page: 1
  issue: 1
  year: 2011
  ident: 9594_CR22
  publication-title: Int J Biostat
  doi: 10.2202/1557-4679.1367
– ident: 9594_CR56
– volume-title: Foundations of statistical inference
  year: 1971
  ident: 9594_CR17
– volume: 373
  start-page: 2103
  issue: 22
  year: 2015
  ident: 9594_CR46
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1511939
– volume: 32
  start-page: 4567
  issue: 26
  year: 2013
  ident: 9594_CR53
  publication-title: Stat Med
  doi: 10.1002/sim.5864
– ident: 9594_CR59
  doi: 10.1002/sim.8471
– volume: 5
  start-page: 2
  year: 2017
  ident: 9594_CR60
  publication-title: J Causal Inference
  doi: 10.1515/jci-2016-0006
– volume: 21
  start-page: 13
  issue: 1
  year: 2010
  ident: 9594_CR18
  publication-title: Epidemiology (Cambridge, Mass.)
  doi: 10.1097/EDE.0b013e3181c1ea43
– ident: 9594_CR45
  doi: 10.7551/mitpress/1754.001.0001
SSID ssj0007969
Score 2.3815026
Snippet Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are...
Abstract Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers...
SourceID pubmedcentral
cristin
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms Blood pressure
Causality
Economics
Estimators
Finance
Graph theory
Graphs
Health Sciences
Health services
Humans
Inference
Insurance
Management
Mathematics and Statistics
Medical research
Medicine
Models, Statistical
Operations Research/Decision Theory
Pressure effects
Quality Control
Reliability
Research Design
Safety and Risk
Sports injuries
Statistics
Statistics for Business
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sgtUH0Wttt9qygm9tINkkm-xjOSpSOJ8q-LZsPpYKZRXv7v93Jvshp7bQxyXZbJLJbH4zk_kF4DwWVhvlWhZb7pjyvGKNLxwzUXMVhY-GUzby4qq8vFY_b_TNQJNDuTDP4veU4lZZyiGWjDxWitk3sKOFNHRNw7ycT39dU6Xr64S0dELO8CFB5vU2EOz6pEPd5nb0AmO-PCr5LF6atqGLQzgY8GP-vRf4EWzFbgZvx_Ti5Qz2FxMRKz7tLobY-Qz2CFf2tMzvQM2b9RLbuR3z_XJyyOYP5H0nvqa86ULuE6bGbuSJ5mn5Hq4vfvyaX7LhAgXmNecr5hzCGRlK5YMLshVOhGBCGTRJoSxdMCXa0g4lUopGStl4z5vCy6bVPKBiymPY7u66-BHylheVqryzDvGH9bpqA9oiXsSI9lxsiwyyYUbrDtcu8Y7qIrGPKpmBGOe49gPzOF2A8ad-4kwmCdUooTpJqLYZfJ3eue95N_5Z-3QUXT3o4LIuKgryCi51BmdTMWoPhUSaLt6tsY4VkmxSgwP40Et6-pykAwraYuN2Yw1MFYiZe7Oku_2dGLrRpkacqXHk38bl8tSvvw_j0_9VP4G9AiFW7xA6he3Vwzp-Roi0cl-SbjwC4jYFWw
  priority: 102
  providerName: Springer Nature
Title Causal inference with recurrent and competing events
URI https://link.springer.com/article/10.1007/s10985-023-09594-8
https://www.ncbi.nlm.nih.gov/pubmed/37173588
https://www.proquest.com/docview/2909351035
https://www.proquest.com/docview/2813560172
http://hdl.handle.net/10852/108043
https://pubmed.ncbi.nlm.nih.gov/PMC10764453
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9jIeEIyvsFEFiTewsOM4dp5QidpNoE0IUak8RfFHxCSUjqX9_3fnuKnKxF5SKXGSOuezf3e--x0h732mpcpNS33LDM0tK2ljM0OVlyz33HrFMBv58qq4WORfl3IZHW59DKvczolhonYriz7yT1mJW3acCfn55i_FqlG4uxpLaByQIw4rDYZ06fn5OBOrMpS040Jj1JxiMWkmps6VGnOTBUVPWE41AGAb9KrbX6Lu4c774ZP_7KGGpWn-lDyJmDKdDoPgGXnkuxPy-HIkZO1PyDGCyoGT-TnJq2bTww3X22S_FL2x6S263pGsKW06l9oAqOF9aeB46l-QxXz2s7qgsXoCtZKxNTUGsIxwRW6dcaLlhjunXOEkiqAojFMFGNIGxFHwRgjRWMuazIqmlcyBVoqX5LBbdf41SVuWlXlpjTYAPrSVZevAELHcezDmfJslJImfru5g4CLpqMwC9WguEsK3H7O2kXYcq1_8qXeEySiKGkRRB1HUOiEfxntuBtKNB1ufbWVURwXs691wSci78TKoDu6HNJ1fbaCN5gINUgUdeDWIdHydwOgEqeHhek_YYwOk5d6_0l3_DvTcYFADyJTQ84_bcbH7X__vxpuHu3FKjjPAU4P354wcrm83_i3gobWZkAO1VHDUFZ8EBZiQo-n5r28z-P0yu_r-A85WRQXHRTa9Axs-DBk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqA9ICiPBgoECU4Q4fiROAeEUGHZ0m5PrdRbiB8RlVC2NLtC_Cl-IzPOY7VU9NZznMT2zNjfjD3fALzyXKtcmjrxNTOJtKxIKstNknvFpE-tzxllI8-Os-mp_Hqmzjbgz5ALQ9cqhzUxLNRubilG_o4XdGSXMqE-XPxMqGoUna4OJTQ6tTj0v3-hy9a-P_iE8n3N-eTzyf406asKJFYxtkiMwT1euExaZ5yoU5M6l7vMKepalhmXZ-hgGuxmllZCiMpaVnErqloxh9oq8Lu34LYUuJNTZvrky7jy50UooZcKTbf0ctYn6fSpeoWmXGiRUORNJhoBtw123KxviVdw7tXrmv-c2YatcHIP7vYYNv7YKd192PDNDmzPRgLYdge2CMR2HNAPQO5XyxZfOB-SC2OK_saXFOoncqi4alxsA4DH_8WBU6p9CKc3Mq-PYLOZN34X4prxQhbWaINgR1tV1A4dH5t6j86jr3kEUT91ZYOGQiSnigeqUykiSIfJLG1Pc07VNn6UK4JmEkWJoiiDKEodwZvxnYuO5OPa1nuDjMre4NtypZ4RvBwfo6nS-UvV-PkS2-hUkAOc4wAedyIdfyfoNoTS-HG9JuyxAdGArz9pzr8HOnB04BHUKhz520EvVv36_zCeXD-MF3BnejI7Ko8Ojg-fwhZHLNdFnvZgc3G59M8Qiy3M82AAMXy7aYv7C75lRFk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFyQFBegQJBghNYdew4dg4IoS2rltKKA5V6C_EjohLKlu6uEH-NX8eM81gtFb31HMevmbFnxjPfALwKwiid24aFhluWO16y2gnLdFA8D5kLmlM28tFxsX-SfzpVpxvwZ8iFobDK4UyMB7WfOfKR74qSnuwyLtVu04dFfNmbvj__yaiCFL20DuU0OhY5DL9_ofk2f3ewh7R-LcT049fJPusrDDCnOF8wa_G-l77InbdeNpnNvNe-8IqmWRTW6wKNTYtTLrJaSlk7x2vhZN0o7pFzJfZ7A25qqQ3JmJmswkt0GcvpZdJQxJ7mfcJOn7ZXGsqLloy8cDkzqHy7KNPt-vV4See9HLr5z_ttvBand-FOr8-mHzoGvAcbod2G20cjGOx8G7ZIoe3woO9DPqmXc_zhbEg0TMkTnF6Q25-AotK69amLyjyOl0Z8qfkDOLmWfX0Im-2sDY8hbbgo89JZY1HxMU6VjUcjyGUhoCEZGpFA0m9d1aLQEOCpEhH2NJcJZMNmVq6HPKfKGz-qFVgzkaJCUlSRFJVJ4M34z3kH-HFl652BRlUv_PNqxaoJvBw_o9jSW0zdhtkS25hMkjGscQGPOpKOw0mKjFAGOzdrxB4bECT4-pf27HuEBkdjHhVchSt_O_DFal7_X8aTq5fxAm6hrFWfD44Pn8KWQLWuc0LtwObiYhmeoVq2sM8j_6fw7boF7i-Gv0ha
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+inference+with+recurrent+and+competing+events&rft.jtitle=Lifetime+data+analysis&rft.au=Janvin%2C+Matias&rft.au=Young%2C+Jessica+G&rft.au=Ryalen%2C+P%C3%A5l+C&rft.au=Stensrud%2C+Mats+J&rft.date=2024-01-01&rft.issn=1572-9249&rft.eissn=1572-9249&rft.volume=30&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1007%2Fs10985-023-09594-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon