Causal inference with recurrent and competing events
Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, comp...
Saved in:
Published in | Lifetime data analysis Vol. 30; no. 1; pp. 59 - 118 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial. |
---|---|
AbstractList | Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial. Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial.Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial. Abstract Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a formal framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands based on subject matter knowledge. Furthermore, using results on counting processes, we show that our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous time counterparts in the limit of fine discretizations of time. We propose estimators and establish their consistency for the various identifying functionals. Finally, we use the proposed estimators to compute the effect of blood pressure lowering treatment on the recurrence of acute kidney injury using data from the Systolic Blood Pressure Intervention Trial. |
Author | Stensrud, Mats J. Ryalen, Pål C. Young, Jessica G. Janvin, Matias |
Author_xml | – sequence: 1 givenname: Matias orcidid: 0000-0003-1985-3831 surname: Janvin fullname: Janvin, Matias email: matias.janvin@epfl.ch organization: Department of Mathematics, École Polytechnique Fédérale de Lausanne – sequence: 2 givenname: Jessica G. surname: Young fullname: Young, Jessica G. organization: Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Department of Epidemiology, Harvard T.H. Chan School of Public Health, CAUSALab, Harvard T.H. Chan School of Public Health – sequence: 3 givenname: Pål C. surname: Ryalen fullname: Ryalen, Pål C. organization: Department of Biostatistics, University of Oslo – sequence: 4 givenname: Mats J. surname: Stensrud fullname: Stensrud, Mats J. organization: Department of Mathematics, École Polytechnique Fédérale de Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37173588$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuFDEQtFAQecAPcEAjceEy0J4ev04IrUhAisQFzpbH9mwczdqLPRPE3-NhszxyyMWvrqoud52Tk5iiJ-QlhbcUQLwrFJRkLXTYgmKqb-UTckaZ6FrV9eqknlFCK6SAU3Jeyi1UkuLqGTlFQQUyKc9IvzFLMVMT4uizj9Y3P8J802Rvl1zvc2Oia2za7f0c4rbxd_WtPCdPRzMV_-J-vyDfLj9-3Xxqr79cfd58uG4tA5jbYeAA6Hhv3eBwpAN1TjjuWO-p5XxwgvsBB2o9pwYRjbVgOotmZOA4Srwg7w-6-2XYeWdr72wmvc9hZ_JPnUzQ_1diuNHbdKcpCN73DKtCc1CwOZT6Ax1TNrUsWbeu0K-QN_dNcvq--DLrXSjWT5OJPi1Fd5Ii40BFV6GvH0Bv05JjHYHuFChkFJBV1Kt_Xf-xexx6BcijqVRK9qO2YTZzSOsnwlSN6TVffchX13z173z1Su0eUI_qj5LwQCoVHLc-_7X9COsXMZq2mA |
CitedBy_id | crossref_primary_10_1007_s40264_023_01380_7 crossref_primary_10_1016_j_maturitas_2024_107936 crossref_primary_10_1093_biomtc_ujae145 |
Cites_doi | 10.1080/01621459.2022.2071276 10.1093/biostatistics/kxaa008 10.1016/0270-0255(86)90088-6 10.1007/978-3-662-05265-5 10.1007/s10985-019-09462-4 10.1002/14651858.CD012572.pub2 10.1097/EDE.0000000000001165 10.1007/s10985-015-9335-y 10.1093/biostatistics/5.1.129 10.1111/j.0006-341X.2000.00554.x 10.1007/s10985-020-09501-5 10.1001/jama.2020.1267 10.1111/biom.13523 10.1111/j.0006-341X.2002.00021.x 10.1002/sim.8336 10.1007/s10985-021-09530-8 10.1093/biomet/asy035 10.1080/19466315.2021.1895883 10.1093/aje/kwaa092 10.2307/2529721 10.1093/oso/9780199754649.003.0011 10.1002/sim.7907 10.1111/biom.13559 10.1007/978-1-4757-1229-2_14 10.2307/2530374 10.1002/sim.9398 10.1080/01621459.1952.10483446 10.1007/s10985-018-9449-0 10.1007/s10985-019-09468-y 10.1073/pnas.72.1.20 10.1080/01621459.2020.1765783 10.1093/eurheartj/ehs277 10.1017/CBO9780511803161 10.1111/j.0006-341X.2000.00779.x 10.1111/j.1541-0420.2007.00847_2.x 10.1515/1557-4679.1391 10.1097/00001648-200009000-00012 10.1097/00001648-199203000-00013 10.1097/EDE.0000000000001357 10.1093/biomet/82.4.805 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I 10.1007/978-0-387-68560-1 10.1002/sim.2712 10.2202/1557-4679.1367 10.1056/NEJMoa1511939 10.1002/sim.5864 10.1002/sim.8471 10.1515/jci-2016-0006 10.1097/EDE.0b013e3181c1ea43 10.7551/mitpress/1754.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 2023. The Author(s). The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess The Author(s) 2023, corrected publication 2023 |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess – notice: The Author(s) 2023, corrected publication 2023 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7WY 7WZ 7X7 7XB 87Z 88C 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V M0C M0S M0T M1P M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 3HK 5PM |
DOI | 10.1007/s10985-023-09594-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database (via ProQuest SciTech Premium Collection) Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Economics Mathematics Statistics |
EISSN | 1572-9249 |
EndPage | 118 |
ExternalDocumentID | PMC10764453 10852_108043 37173588 10_1007_s10985_023_09594_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: None |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 44B 53G 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EBU EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV KOW L6V LAK LLZTM M0C M0T M1P M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z81 Z83 Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK K9. L.- PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 3HK AAEOY AEARS 5PM |
ID | FETCH-LOGICAL-c500t-bb6003d64cdbd3f1b1dd7d6d54e1c66bd76eb3b1ce61a333acc0a2c3af50d6383 |
IEDL.DBID | 8FG |
ISSN | 1380-7870 1572-9249 |
IngestDate | Thu Aug 21 18:42:23 EDT 2025 Tue Dec 24 02:50:42 EST 2024 Mon Jul 21 09:23:49 EDT 2025 Sat Aug 23 13:17:22 EDT 2025 Mon Jul 21 05:34:24 EDT 2025 Tue Jul 01 01:43:34 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 21 02:40:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Causal inference Event history analysis Competing events Separable effects Recurrent events |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-bb6003d64cdbd3f1b1dd7d6d54e1c66bd76eb3b1ce61a333acc0a2c3af50d6383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1985-3831 |
OpenAccessLink | https://doi.org/10.1007/s10985-023-09594-8 |
PMID | 37173588 |
PQID | 2909351035 |
PQPubID | 26261 |
PageCount | 60 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764453 cristin_nora_10852_108043 proquest_miscellaneous_2813560172 proquest_journals_2909351035 pubmed_primary_37173588 crossref_citationtrail_10_1007_s10985_023_09594_8 crossref_primary_10_1007_s10985_023_09594_8 springer_journals_10_1007_s10985_023_09594_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data |
PublicationTitle | Lifetime data analysis |
PublicationTitleAbbrev | Lifetime Data Anal |
PublicationTitleAlternate | Lifetime Data Anal |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin HernánMABrumbackBRobinsJMMarginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive menEpidemiology2000115561570 Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, pp 411–20 Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med 39(8):1199–1236 ZhengWvan der LaanMLongitudinal mediation analysis with time-varying mediators and exposures, with application to survival outcomesJ Causal Inference2017524328877 Fritsch A, Schlömer P, Mendolia F, Mütze T, Jahn-Eimermacher A (2021) Efficiency comparison of analysis methods for recurrent event and time-to-first event endpoints in the presence of terminal events–application to clinical trials in chronic heart failure. Stat Biopharm Res 0(0):1–12 Robins JM, Richardson TS (2011) Alternative graphical causal models and the identification of direct effects. In: Causality and psychopathology. Oxford University Press, Oxford CookRJLawlessJFMarginal analysis of recurrent events and a terminating eventStat Med1997168911924 GailMA review and critique of some models used in competing risk analysisBiometrics1975311209383684 Wei J , Mütze T, Jahn-Eimermacher A, Roger J (2021) Properties of two while-alive estimands for recurrent events and their potential estimators. Stat Biopharm Res 0(0):1–11 YoungJGStensrudMJIdentified versus interesting causal effects in fertility trials and other settings with competing or truncation eventsEpidemiology2021324569572 Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155 Tchetgen TchetgenEJInverse odds ratio-weighted estimation for causal mediation analysisStat Med20133226456745803118376 RyalenPCStensrudMJRøyslandKTransforming cumulative hazard estimatesBiometrika20181059059163877873 MittintyMNVansteelandtSLongitudinal mediation analysis using natural effect modelsAm J Epidemiol20201891114271435 RobinsJMRotnitzkyAJewellNPDietzKFarewellVTRecovery of information and adjustment for dependent censoring using surrogate markersAIDS epidemiology: methodological issues1992BostonBirkhäuser297331 HernánMAThe hazards of hazard ratiosEpidemiology (Cambridge, Mass.)201021113152575940 European Medicines Agency (2020) Qualification opinion of clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analysis RyalenPCStensrudMJRøyslandKThe additive hazard estimator is consistent for continuous-time marginal structural modelsLifetime Data Anal20192546116384015374 SarvetALWanisKNStensrudMJHernánMAA graphical description of partial exchangeabilityEpidemiology2020313365368 RobinsJMFinkelsteinDMCorrecting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank testsBiometrics2000563779788 GhoshDLinDYNonparametric analysis of recurrent events and deathBiometrics20005625545621795021 VansteelandtSLinderMVandenbergheSSteenJMadsenJMediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confoundingStat Med20193824482848404022831 Brian ClaggettLTianHFSolomonSDWeiL-JQuantifying the totality of treatment effect with multiple event-time observations in the presence of a terminal event from a comparative clinical studyStat Med20183725358935983869120 Schmidli H, Roger JH, Akacha M (2021) On behalf of the recurrent event qualification opinion consortium. Estimands for recurrent event endpoints in the presence of a terminal event. Stat Biopharma Res 1–29 Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA (2020) Separable effects for causal inference in the presence of competing events. J Am Stat Assoc 1–9 MartinussenTVansteelandtSAndersenPKSubtleties in the interpretation of hazard contrastsLifetime Data Anal20202648338554148449 Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, Young JG (2021a) A generalized theory of separable effects in competing event settings. Lifetime Data Anal Martinussen T, Stensrud MJ (2021) Estimation of separable direct and indirect effects in continuous time. Biometrics AnkerSDMcMurrayJJVTime to move on from ‘time-to-first’: should all events be included in the analysis of clinical trials?Eur Heart J2012332227642765 DawidPDidelezVImagine a can opener-the magic of principal stratum analysisInt J Biostat2012812925323 CookRJLawlessJFThe statistical analysis of recurrent events2007New YorkSpringer TsiatisAA nonidentifiability aspect of the problem of competing risksProc Natl Acad Sci19757212022356425 HorvitzDGThompsonDJA generalization of sampling without replacement from a finite universeJ Am Stat Assoc19524726066368553460 AndersenPKAngstJRavnHModeling marginal features in studies of recurrent events in the presence of a terminal eventLifetime Data Anal20192546816954015377 StensrudMJYoungJGMartinussenTDiscussion on “causal mediation of semicompeting risks” by Yen-Tsung HuangBiometrics202177411601164 Robins JM, Richardson TS, Shpitser I (2020) An interventionist approach to mediation analysis. arXiv:2008.06019 BruntonLLKnollmannBCHilal-DandanRGoodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine201813New YorkMcGraw-Hill Education LLC Reeve E, Jordan V, Thompson W, Sawan M, Todd A, Gammie TM, Hopper I, Hilmer SN, Gnjidic D (2020) Withdrawal of antihypertensive drugs in older people. Cochrane Datab Syst Rev 6 StensrudMJHernánMAWhy test for proportional hazards?JAMA20203231414011402 StensrudMJDukesOTranslating questions to estimands in randomized clinical trials with intercurrent eventsStat Med20224116321132284444895 AalenOOCookRJRøyslandKDoes cox analysis of a randomized survival study yield a causal treatment effect?Lifetime Data Anal20152145795933397507 AalenOOØrnulfBorganGjessingHKSurvival and event history analysis. Statistics for biology and health2008New YorkSpringer HajekJGodambeVPSprottDAComment on “An essay on the logical foundations of survey sampling by D. Basu”Foundations of statistical inference1971TorontoHolt, Rinehart and Winston of Canada RotnitzkyARobinsJMSemiparametric regression estimation in the presence of dependent censoringBiometrika19958248058201380816 Prentice RL, Kalbfleisch JD, Peterson JAV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 541–554 RobinsJRotnitzkyAVansteelandtSTen HaveTXieYuMurphySDiscussions on “Principal stratification designs to estimate input data missing due to death"Biometrics20076336506582395698 SPRINT Research GroupA randomized trial of intensive versus standard blood-pressure controlN Engl J Med20153732221032116 ChenBECookRJTests for multivariate recurrent events in the presence of a terminal eventBiostatistics200451129143 FrangakisCERubinDBPrincipal stratification in causal inferenceBiometrics200258121291891039 RobinsJA new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effectMath Model19867913931512877758 Stensrud MJ, Robins JM, Sarvet A, Tchetgen Tchetgen EJ, Young JG (2022) Conditional separable effects. J Am J Am Stat Assoc 1–13 Richardson TS, Robins JM (2013b) Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality PearlJCausality: models, reasoning, and inference20092CambridgeCambridge University Press Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and search. Adaptive computation and machine learning, 2nd edn. MIT Press, Cambridge PutterHFioccoMGeskusRBTutorial in biostatistics: competing risks and multi-state modelsStat Med20072611238924302368422 Richardson TS, Robins JM (2013a) Single world intervention graphs: a primer YanxunXScharfsteinDMüllerPDanielsMA Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risksBiostatistics202223134494366034 JoffeMPrincipal stratification and attribution prohibition: good ideas taken too farInt J Biostat2011711222753569 DidelezVDefining causal mediation with a longitudinal mediator and a survival outcomeLifetime Data Anal20192545936104015373 9594_CR44 9594_CR40 9594_CR49 JM Robins (9594_CR34) 2000; 56 D Ghosh (9594_CR16) 2000; 56 9594_CR45 RJ Cook (9594_CR8) 1997; 16 JM Robins (9594_CR37) 1992 W Zheng (9594_CR60) 2017; 5 J Hajek (9594_CR17) 1971 M Joffe (9594_CR22) 2011; 7 MJ Stensrud (9594_CR51) 2021; 77 A Rotnitzky (9594_CR38) 1995; 82 MJ Stensrud (9594_CR47) 2022; 41 M Gail (9594_CR15) 1975; 31 9594_CR30 9594_CR31 9594_CR32 J Robins (9594_CR39) 2007; 63 S Vansteelandt (9594_CR55) 2019; 38 MA Hernán (9594_CR19) 2000; 11 EJ Tchetgen Tchetgen (9594_CR53) 2013; 32 9594_CR35 9594_CR36 SPRINT Research Group (9594_CR46) 2015; 373 L Brian Claggett (9594_CR7) 2018; 37 PK Andersen (9594_CR3) 2019; 25 H Putter (9594_CR29) 2007; 26 MJ Stensrud (9594_CR48) 2020; 323 LL Brunton (9594_CR5) 2018 AL Sarvet (9594_CR43) 2020; 31 9594_CR21 X Yanxun (9594_CR57) 2022; 23 PC Ryalen (9594_CR42) 2019; 25 9594_CR28 BE Chen (9594_CR6) 2004; 5 9594_CR23 JG Young (9594_CR58) 2021; 32 9594_CR26 J Robins (9594_CR33) 1986; 7 T Martinussen (9594_CR24) 2020; 26 MA Hernán (9594_CR18) 2010; 21 RJ Cook (9594_CR9) 2007 J Pearl (9594_CR27) 2009 OO Aalen (9594_CR1) 2008 9594_CR52 CE Frangakis (9594_CR13) 2002; 58 9594_CR50 9594_CR12 DG Horvitz (9594_CR20) 1952; 47 9594_CR56 SD Anker (9594_CR4) 2012; 33 9594_CR14 9594_CR59 OO Aalen (9594_CR2) 2015; 21 V Didelez (9594_CR11) 2019; 25 MN Mittinty (9594_CR25) 2020; 189 PC Ryalen (9594_CR41) 2018; 105 P Dawid (9594_CR10) 2012; 8 A Tsiatis (9594_CR54) 1975; 72 |
References_xml | – reference: DidelezVDefining causal mediation with a longitudinal mediator and a survival outcomeLifetime Data Anal20192545936104015373 – reference: StensrudMJYoungJGMartinussenTDiscussion on “causal mediation of semicompeting risks” by Yen-Tsung HuangBiometrics202177411601164 – reference: Fritsch A, Schlömer P, Mendolia F, Mütze T, Jahn-Eimermacher A (2021) Efficiency comparison of analysis methods for recurrent event and time-to-first event endpoints in the presence of terminal events–application to clinical trials in chronic heart failure. Stat Biopharm Res 0(0):1–12 – reference: Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA (2020) Separable effects for causal inference in the presence of competing events. J Am Stat Assoc 1–9 – reference: RobinsJMFinkelsteinDMCorrecting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank testsBiometrics2000563779788 – reference: HernánMAThe hazards of hazard ratiosEpidemiology (Cambridge, Mass.)201021113152575940 – reference: TsiatisAA nonidentifiability aspect of the problem of competing risksProc Natl Acad Sci19757212022356425 – reference: RotnitzkyARobinsJMSemiparametric regression estimation in the presence of dependent censoringBiometrika19958248058201380816 – reference: Stensrud MJ, Robins JM, Sarvet A, Tchetgen Tchetgen EJ, Young JG (2022) Conditional separable effects. J Am J Am Stat Assoc 1–13 – reference: RobinsJRotnitzkyAVansteelandtSTen HaveTXieYuMurphySDiscussions on “Principal stratification designs to estimate input data missing due to death"Biometrics20076336506582395698 – reference: SarvetALWanisKNStensrudMJHernánMAA graphical description of partial exchangeabilityEpidemiology2020313365368 – reference: PutterHFioccoMGeskusRBTutorial in biostatistics: competing risks and multi-state modelsStat Med20072611238924302368422 – reference: CookRJLawlessJFThe statistical analysis of recurrent events2007New YorkSpringer – reference: Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin – reference: Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med 39(8):1199–1236 – reference: GailMA review and critique of some models used in competing risk analysisBiometrics1975311209383684 – reference: Schmidli H, Roger JH, Akacha M (2021) On behalf of the recurrent event qualification opinion consortium. Estimands for recurrent event endpoints in the presence of a terminal event. Stat Biopharma Res 1–29 – reference: ChenBECookRJTests for multivariate recurrent events in the presence of a terminal eventBiostatistics200451129143 – reference: MartinussenTVansteelandtSAndersenPKSubtleties in the interpretation of hazard contrastsLifetime Data Anal20202648338554148449 – reference: Wei J , Mütze T, Jahn-Eimermacher A, Roger J (2021) Properties of two while-alive estimands for recurrent events and their potential estimators. Stat Biopharm Res 0(0):1–11 – reference: AnkerSDMcMurrayJJVTime to move on from ‘time-to-first’: should all events be included in the analysis of clinical trials?Eur Heart J2012332227642765 – reference: Robins JM, Richardson TS (2011) Alternative graphical causal models and the identification of direct effects. In: Causality and psychopathology. Oxford University Press, Oxford – reference: Martinussen T, Stensrud MJ (2021) Estimation of separable direct and indirect effects in continuous time. Biometrics – reference: Reeve E, Jordan V, Thompson W, Sawan M, Todd A, Gammie TM, Hopper I, Hilmer SN, Gnjidic D (2020) Withdrawal of antihypertensive drugs in older people. Cochrane Datab Syst Rev 6 – reference: RyalenPCStensrudMJRøyslandKTransforming cumulative hazard estimatesBiometrika20181059059163877873 – reference: Richardson TS, Robins JM (2013a) Single world intervention graphs: a primer – reference: HajekJGodambeVPSprottDAComment on “An essay on the logical foundations of survey sampling by D. Basu”Foundations of statistical inference1971TorontoHolt, Rinehart and Winston of Canada – reference: HernánMABrumbackBRobinsJMMarginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive menEpidemiology2000115561570 – reference: PearlJCausality: models, reasoning, and inference20092CambridgeCambridge University Press – reference: Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, Young JG (2021a) A generalized theory of separable effects in competing event settings. Lifetime Data Anal – reference: YanxunXScharfsteinDMüllerPDanielsMA Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risksBiostatistics202223134494366034 – reference: Brian ClaggettLTianHFSolomonSDWeiL-JQuantifying the totality of treatment effect with multiple event-time observations in the presence of a terminal event from a comparative clinical studyStat Med20183725358935983869120 – reference: FrangakisCERubinDBPrincipal stratification in causal inferenceBiometrics200258121291891039 – reference: StensrudMJDukesOTranslating questions to estimands in randomized clinical trials with intercurrent eventsStat Med20224116321132284444895 – reference: Prentice RL, Kalbfleisch JD, Peterson JAV, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 541–554 – reference: Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155 – reference: ZhengWvan der LaanMLongitudinal mediation analysis with time-varying mediators and exposures, with application to survival outcomesJ Causal Inference2017524328877 – reference: HorvitzDGThompsonDJA generalization of sampling without replacement from a finite universeJ Am Stat Assoc19524726066368553460 – reference: BruntonLLKnollmannBCHilal-DandanRGoodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine201813New YorkMcGraw-Hill Education LLC – reference: DawidPDidelezVImagine a can opener-the magic of principal stratum analysisInt J Biostat2012812925323 – reference: AalenOOØrnulfBorganGjessingHKSurvival and event history analysis. Statistics for biology and health2008New YorkSpringer – reference: AalenOOCookRJRøyslandKDoes cox analysis of a randomized survival study yield a causal treatment effect?Lifetime Data Anal20152145795933397507 – reference: MittintyMNVansteelandtSLongitudinal mediation analysis using natural effect modelsAm J Epidemiol20201891114271435 – reference: RobinsJMRotnitzkyAJewellNPDietzKFarewellVTRecovery of information and adjustment for dependent censoring using surrogate markersAIDS epidemiology: methodological issues1992BostonBirkhäuser297331 – reference: YoungJGStensrudMJIdentified versus interesting causal effects in fertility trials and other settings with competing or truncation eventsEpidemiology2021324569572 – reference: JoffeMPrincipal stratification and attribution prohibition: good ideas taken too farInt J Biostat2011711222753569 – reference: StensrudMJHernánMAWhy test for proportional hazards?JAMA20203231414011402 – reference: Tchetgen TchetgenEJInverse odds ratio-weighted estimation for causal mediation analysisStat Med20133226456745803118376 – reference: Richardson TS, Robins JM (2013b) Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality – reference: RobinsJA new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effectMath Model19867913931512877758 – reference: AndersenPKAngstJRavnHModeling marginal features in studies of recurrent events in the presence of a terminal eventLifetime Data Anal20192546816954015377 – reference: Pearl J (2001) Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, pp 411–20 – reference: GhoshDLinDYNonparametric analysis of recurrent events and deathBiometrics20005625545621795021 – reference: CookRJLawlessJFMarginal analysis of recurrent events and a terminating eventStat Med1997168911924 – reference: VansteelandtSLinderMVandenbergheSSteenJMadsenJMediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confoundingStat Med20193824482848404022831 – reference: RyalenPCStensrudMJRøyslandKThe additive hazard estimator is consistent for continuous-time marginal structural modelsLifetime Data Anal20192546116384015374 – reference: Robins JM, Richardson TS, Shpitser I (2020) An interventionist approach to mediation analysis. arXiv:2008.06019 – reference: SPRINT Research GroupA randomized trial of intensive versus standard blood-pressure controlN Engl J Med20153732221032116 – reference: Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and search. Adaptive computation and machine learning, 2nd edn. MIT Press, Cambridge – reference: European Medicines Agency (2020) Qualification opinion of clinically interpretable treatment effect measures based on recurrent event endpoints that allow for efficient statistical analysis – ident: 9594_CR52 doi: 10.1080/01621459.2022.2071276 – volume: 23 start-page: 34 issue: 1 year: 2022 ident: 9594_CR57 publication-title: Biostatistics doi: 10.1093/biostatistics/kxaa008 – volume: 7 start-page: 1393 issue: 9 year: 1986 ident: 9594_CR33 publication-title: Math Model doi: 10.1016/0270-0255(86)90088-6 – volume-title: The statistical analysis of recurrent events year: 2007 ident: 9594_CR9 – ident: 9594_CR21 doi: 10.1007/978-3-662-05265-5 – volume: 25 start-page: 681 issue: 4 year: 2019 ident: 9594_CR3 publication-title: Lifetime Data Anal doi: 10.1007/s10985-019-09462-4 – ident: 9594_CR31 – ident: 9594_CR30 doi: 10.1002/14651858.CD012572.pub2 – volume: 31 start-page: 365 issue: 3 year: 2020 ident: 9594_CR43 publication-title: Epidemiology doi: 10.1097/EDE.0000000000001165 – volume: 21 start-page: 579 issue: 4 year: 2015 ident: 9594_CR2 publication-title: Lifetime Data Anal doi: 10.1007/s10985-015-9335-y – volume: 5 start-page: 129 issue: 1 year: 2004 ident: 9594_CR6 publication-title: Biostatistics doi: 10.1093/biostatistics/5.1.129 – volume: 56 start-page: 554 issue: 2 year: 2000 ident: 9594_CR16 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00554.x – volume: 26 start-page: 833 issue: 4 year: 2020 ident: 9594_CR24 publication-title: Lifetime Data Anal doi: 10.1007/s10985-020-09501-5 – volume: 323 start-page: 1401 issue: 14 year: 2020 ident: 9594_CR48 publication-title: JAMA doi: 10.1001/jama.2020.1267 – ident: 9594_CR12 – volume: 77 start-page: 1160 issue: 4 year: 2021 ident: 9594_CR51 publication-title: Biometrics doi: 10.1111/biom.13523 – volume: 58 start-page: 21 issue: 1 year: 2002 ident: 9594_CR13 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00021.x – volume: 38 start-page: 4828 issue: 24 year: 2019 ident: 9594_CR55 publication-title: Stat Med doi: 10.1002/sim.8336 – ident: 9594_CR50 doi: 10.1007/s10985-021-09530-8 – volume: 105 start-page: 905 year: 2018 ident: 9594_CR41 publication-title: Biometrika doi: 10.1093/biomet/asy035 – ident: 9594_CR44 doi: 10.1080/19466315.2021.1895883 – volume: 189 start-page: 1427 issue: 11 year: 2020 ident: 9594_CR25 publication-title: Am J Epidemiol doi: 10.1093/aje/kwaa092 – volume: 31 start-page: 209 issue: 1 year: 1975 ident: 9594_CR15 publication-title: Biometrics doi: 10.2307/2529721 – ident: 9594_CR36 doi: 10.1093/oso/9780199754649.003.0011 – ident: 9594_CR40 – volume: 37 start-page: 3589 issue: 25 year: 2018 ident: 9594_CR7 publication-title: Stat Med doi: 10.1002/sim.7907 – ident: 9594_CR23 doi: 10.1111/biom.13559 – start-page: 297 volume-title: AIDS epidemiology: methodological issues year: 1992 ident: 9594_CR37 doi: 10.1007/978-1-4757-1229-2_14 – ident: 9594_CR28 doi: 10.2307/2530374 – volume: 41 start-page: 3211 issue: 16 year: 2022 ident: 9594_CR47 publication-title: Stat Med doi: 10.1002/sim.9398 – volume: 47 start-page: 663 issue: 260 year: 1952 ident: 9594_CR20 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1952.10483446 – volume: 25 start-page: 593 issue: 4 year: 2019 ident: 9594_CR11 publication-title: Lifetime Data Anal doi: 10.1007/s10985-018-9449-0 – volume-title: Goodman and Gilman’s: the pharmacological basis of therapeutics. McGraw-Hill’s Access Medicine year: 2018 ident: 9594_CR5 – volume: 25 start-page: 611 issue: 4 year: 2019 ident: 9594_CR42 publication-title: Lifetime Data Anal doi: 10.1007/s10985-019-09468-y – volume: 72 start-page: 20 issue: 1 year: 1975 ident: 9594_CR54 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.72.1.20 – ident: 9594_CR49 doi: 10.1080/01621459.2020.1765783 – ident: 9594_CR32 – volume: 33 start-page: 2764 issue: 22 year: 2012 ident: 9594_CR4 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehs277 – volume-title: Causality: models, reasoning, and inference year: 2009 ident: 9594_CR27 doi: 10.1017/CBO9780511803161 – volume: 56 start-page: 779 issue: 3 year: 2000 ident: 9594_CR34 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00779.x – volume: 63 start-page: 650 issue: 3 year: 2007 ident: 9594_CR39 publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00847_2.x – volume: 8 start-page: 1 year: 2012 ident: 9594_CR10 publication-title: Int J Biostat doi: 10.1515/1557-4679.1391 – volume: 11 start-page: 561 issue: 5 year: 2000 ident: 9594_CR19 publication-title: Epidemiology doi: 10.1097/00001648-200009000-00012 – ident: 9594_CR26 – ident: 9594_CR35 doi: 10.1097/00001648-199203000-00013 – volume: 32 start-page: 569 issue: 4 year: 2021 ident: 9594_CR58 publication-title: Epidemiology doi: 10.1097/EDE.0000000000001357 – volume: 82 start-page: 805 issue: 4 year: 1995 ident: 9594_CR38 publication-title: Biometrika doi: 10.1093/biomet/82.4.805 – volume: 16 start-page: 911 issue: 8 year: 1997 ident: 9594_CR8 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I – volume-title: Survival and event history analysis. Statistics for biology and health year: 2008 ident: 9594_CR1 doi: 10.1007/978-0-387-68560-1 – volume: 26 start-page: 2389 issue: 11 year: 2007 ident: 9594_CR29 publication-title: Stat Med doi: 10.1002/sim.2712 – ident: 9594_CR14 – volume: 7 start-page: 1 issue: 1 year: 2011 ident: 9594_CR22 publication-title: Int J Biostat doi: 10.2202/1557-4679.1367 – ident: 9594_CR56 – volume-title: Foundations of statistical inference year: 1971 ident: 9594_CR17 – volume: 373 start-page: 2103 issue: 22 year: 2015 ident: 9594_CR46 publication-title: N Engl J Med doi: 10.1056/NEJMoa1511939 – volume: 32 start-page: 4567 issue: 26 year: 2013 ident: 9594_CR53 publication-title: Stat Med doi: 10.1002/sim.5864 – ident: 9594_CR59 doi: 10.1002/sim.8471 – volume: 5 start-page: 2 year: 2017 ident: 9594_CR60 publication-title: J Causal Inference doi: 10.1515/jci-2016-0006 – volume: 21 start-page: 13 issue: 1 year: 2010 ident: 9594_CR18 publication-title: Epidemiology (Cambridge, Mass.) doi: 10.1097/EDE.0b013e3181c1ea43 – ident: 9594_CR45 doi: 10.7551/mitpress/1754.001.0001 |
SSID | ssj0007969 |
Score | 2.3815026 |
Snippet | Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are... Abstract Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers... |
SourceID | pubmedcentral cristin proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 59 |
SubjectTerms | Blood pressure Causality Economics Estimators Finance Graph theory Graphs Health Sciences Health services Humans Inference Insurance Management Mathematics and Statistics Medical research Medicine Models, Statistical Operations Research/Decision Theory Pressure effects Quality Control Reliability Research Design Safety and Risk Sports injuries Statistics Statistics for Business Statistics for Life Sciences |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sgtUH0Wttt9qygm9tINkkm-xjOSpSOJ8q-LZsPpYKZRXv7v93Jvshp7bQxyXZbJLJbH4zk_kF4DwWVhvlWhZb7pjyvGKNLxwzUXMVhY-GUzby4qq8vFY_b_TNQJNDuTDP4veU4lZZyiGWjDxWitk3sKOFNHRNw7ycT39dU6Xr64S0dELO8CFB5vU2EOz6pEPd5nb0AmO-PCr5LF6atqGLQzgY8GP-vRf4EWzFbgZvx_Ti5Qz2FxMRKz7tLobY-Qz2CFf2tMzvQM2b9RLbuR3z_XJyyOYP5H0nvqa86ULuE6bGbuSJ5mn5Hq4vfvyaX7LhAgXmNecr5hzCGRlK5YMLshVOhGBCGTRJoSxdMCXa0g4lUopGStl4z5vCy6bVPKBiymPY7u66-BHylheVqryzDvGH9bpqA9oiXsSI9lxsiwyyYUbrDtcu8Y7qIrGPKpmBGOe49gPzOF2A8ad-4kwmCdUooTpJqLYZfJ3eue95N_5Z-3QUXT3o4LIuKgryCi51BmdTMWoPhUSaLt6tsY4VkmxSgwP40Et6-pykAwraYuN2Yw1MFYiZe7Oku_2dGLrRpkacqXHk38bl8tSvvw_j0_9VP4G9AiFW7xA6he3Vwzp-Roi0cl-SbjwC4jYFWw priority: 102 providerName: Springer Nature |
Title | Causal inference with recurrent and competing events |
URI | https://link.springer.com/article/10.1007/s10985-023-09594-8 https://www.ncbi.nlm.nih.gov/pubmed/37173588 https://www.proquest.com/docview/2909351035 https://www.proquest.com/docview/2813560172 http://hdl.handle.net/10852/108043 https://pubmed.ncbi.nlm.nih.gov/PMC10764453 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9jIeEIyvsFEFiTewsOM4dp5QidpNoE0IUak8RfFHxCSUjqX9_3fnuKnKxF5SKXGSOuezf3e--x0h732mpcpNS33LDM0tK2ljM0OVlyz33HrFMBv58qq4WORfl3IZHW59DKvczolhonYriz7yT1mJW3acCfn55i_FqlG4uxpLaByQIw4rDYZ06fn5OBOrMpS040Jj1JxiMWkmps6VGnOTBUVPWE41AGAb9KrbX6Lu4c774ZP_7KGGpWn-lDyJmDKdDoPgGXnkuxPy-HIkZO1PyDGCyoGT-TnJq2bTww3X22S_FL2x6S263pGsKW06l9oAqOF9aeB46l-QxXz2s7qgsXoCtZKxNTUGsIxwRW6dcaLlhjunXOEkiqAojFMFGNIGxFHwRgjRWMuazIqmlcyBVoqX5LBbdf41SVuWlXlpjTYAPrSVZevAELHcezDmfJslJImfru5g4CLpqMwC9WguEsK3H7O2kXYcq1_8qXeEySiKGkRRB1HUOiEfxntuBtKNB1ufbWVURwXs691wSci78TKoDu6HNJ1fbaCN5gINUgUdeDWIdHydwOgEqeHhek_YYwOk5d6_0l3_DvTcYFADyJTQ84_bcbH7X__vxpuHu3FKjjPAU4P354wcrm83_i3gobWZkAO1VHDUFZ8EBZiQo-n5r28z-P0yu_r-A85WRQXHRTa9Axs-DBk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqA9ICiPBgoECU4Q4fiROAeEUGHZ0m5PrdRbiB8RlVC2NLtC_Cl-IzPOY7VU9NZznMT2zNjfjD3fALzyXKtcmjrxNTOJtKxIKstNknvFpE-tzxllI8-Os-mp_Hqmzjbgz5ALQ9cqhzUxLNRubilG_o4XdGSXMqE-XPxMqGoUna4OJTQ6tTj0v3-hy9a-P_iE8n3N-eTzyf406asKJFYxtkiMwT1euExaZ5yoU5M6l7vMKepalhmXZ-hgGuxmllZCiMpaVnErqloxh9oq8Lu34LYUuJNTZvrky7jy50UooZcKTbf0ctYn6fSpeoWmXGiRUORNJhoBtw123KxviVdw7tXrmv-c2YatcHIP7vYYNv7YKd192PDNDmzPRgLYdge2CMR2HNAPQO5XyxZfOB-SC2OK_saXFOoncqi4alxsA4DH_8WBU6p9CKc3Mq-PYLOZN34X4prxQhbWaINgR1tV1A4dH5t6j86jr3kEUT91ZYOGQiSnigeqUykiSIfJLG1Pc07VNn6UK4JmEkWJoiiDKEodwZvxnYuO5OPa1nuDjMre4NtypZ4RvBwfo6nS-UvV-PkS2-hUkAOc4wAedyIdfyfoNoTS-HG9JuyxAdGArz9pzr8HOnB04BHUKhz520EvVv36_zCeXD-MF3BnejI7Ko8Ojg-fwhZHLNdFnvZgc3G59M8Qiy3M82AAMXy7aYv7C75lRFk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFyQFBegQJBghNYdew4dg4IoS2rltKKA5V6C_EjohLKlu6uEH-NX8eM81gtFb31HMevmbFnxjPfALwKwiid24aFhluWO16y2gnLdFA8D5kLmlM28tFxsX-SfzpVpxvwZ8iFobDK4UyMB7WfOfKR74qSnuwyLtVu04dFfNmbvj__yaiCFL20DuU0OhY5DL9_ofk2f3ewh7R-LcT049fJPusrDDCnOF8wa_G-l77InbdeNpnNvNe-8IqmWRTW6wKNTYtTLrJaSlk7x2vhZN0o7pFzJfZ7A25qqQ3JmJmswkt0GcvpZdJQxJ7mfcJOn7ZXGsqLloy8cDkzqHy7KNPt-vV4See9HLr5z_ttvBand-FOr8-mHzoGvAcbod2G20cjGOx8G7ZIoe3woO9DPqmXc_zhbEg0TMkTnF6Q25-AotK69amLyjyOl0Z8qfkDOLmWfX0Im-2sDY8hbbgo89JZY1HxMU6VjUcjyGUhoCEZGpFA0m9d1aLQEOCpEhH2NJcJZMNmVq6HPKfKGz-qFVgzkaJCUlSRFJVJ4M34z3kH-HFl652BRlUv_PNqxaoJvBw_o9jSW0zdhtkS25hMkjGscQGPOpKOw0mKjFAGOzdrxB4bECT4-pf27HuEBkdjHhVchSt_O_DFal7_X8aTq5fxAm6hrFWfD44Pn8KWQLWuc0LtwObiYhmeoVq2sM8j_6fw7boF7i-Gv0ha |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+inference+with+recurrent+and+competing+events&rft.jtitle=Lifetime+data+analysis&rft.au=Janvin%2C+Matias&rft.au=Young%2C+Jessica+G&rft.au=Ryalen%2C+P%C3%A5l+C&rft.au=Stensrud%2C+Mats+J&rft.date=2024-01-01&rft.issn=1572-9249&rft.eissn=1572-9249&rft.volume=30&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1007%2Fs10985-023-09594-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon |