Characterization of varietal effects on the acidity and pH of grape berries for selection of varieties better adapted to climate change

Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from a loss of typicity and terroir expression because of climate change impact on berry components at harvest, including wine acidity, with total...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1439114
Main Authors Plantevin, Marc, Merpault, Yoann, Lecourt, Julien, Destrac-Irvine, Agnès, Dijsktra, Lucile, van Leeuwen, Cornelis
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers 10.10.2024
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from a loss of typicity and terroir expression because of climate change impact on berry components at harvest, including wine acidity, with total acidity decreasing and pH increasing. Such changes can have a major impact on wine stability and quality. One important option for adaptation is the selection of grapevine varieties better adapted to warmer and drier conditions. Weekly measurement of tartaric acid, malic acid, pH and titratable acidity from veraison until maturity were carried out on 51 varieties over seven years in two experimental plots. Varietal differences were shown for the rate of malic acid degradation during the ripening period, with some varieties metabolizing malic acid faster per unit of thermal time than others. Some varietal differences were also noticed regarding tartaric acid modulation, which can occur under exceptionally high temperatures. Differences in the dynamics of pH evolution in grape must over the growing season were evaluated and varieties characterized with regard to organic acids (tartaric acid and malic acid), inorganic compounds (cations) as well as pH levels and stability. This multi-trait approach allows the selection of grapevine varieties based on parameters linked to their acidity, which is of particular importance in the context of climate change.
AbstractList Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from a loss of typicity and terroir expression because of climate change impact on berry components at harvest, including wine acidity, with total acidity decreasing and pH increasing. Such changes can have a major impact on wine stability and quality. One important option for adaptation is the selection of grapevine varieties better adapted to warmer and drier conditions. Weekly measurement of tartaric acid, malic acid, pH and titratable acidity from veraison until maturity were carried out on 51 varieties over seven years in two experimental plots. Varietal differences were shown for the rate of malic acid degradation during the ripening period, with some varieties metabolizing malic acid faster per unit of thermal time than others. Some varietal differences were also noticed regarding tartaric acid modulation, which can occur under exceptionally high temperatures. Differences in the dynamics of pH evolution in grape must over the growing season were evaluated and varieties characterized with regard to organic acids (tartaric acid and malic acid), inorganic compounds (cations) as well as pH levels and stability. This multi-trait approach allows the selection of grapevine varieties based on parameters linked to their acidity, which is of particular importance in the context of climate change.
Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from a loss of typicity and terroir expression because of climate change impact on berry components at harvest, including wine acidity, with total acidity decreasing and pH increasing. Such changes can have a major impact on wine stability and quality. One important option for adaptation is the selection of grapevine varieties better adapted to warmer and drier conditions. Weekly measurement of tartaric acid, malic acid, pH and titratable acidity from veraison until maturity were carried out on 51 varieties over seven years in two experimental plots. Varietal differences were shown for the rate of malic acid degradation during the ripening period, with some varieties metabolizing malic acid faster per unit of thermal time than others. Some varietal differences were also noticed regarding tartaric acid modulation, which can occur under exceptionally high temperatures. Differences in the dynamics of pH evolution in grape must over the growing season were evaluated and varieties characterized with regard to organic acids (tartaric acid and malic acid), inorganic compounds (cations) as well as pH levels and stability. This multi-trait approach allows the selection of grapevine varieties based on parameters linked to their acidity, which is of particular importance in the context of climate change.Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from a loss of typicity and terroir expression because of climate change impact on berry components at harvest, including wine acidity, with total acidity decreasing and pH increasing. Such changes can have a major impact on wine stability and quality. One important option for adaptation is the selection of grapevine varieties better adapted to warmer and drier conditions. Weekly measurement of tartaric acid, malic acid, pH and titratable acidity from veraison until maturity were carried out on 51 varieties over seven years in two experimental plots. Varietal differences were shown for the rate of malic acid degradation during the ripening period, with some varieties metabolizing malic acid faster per unit of thermal time than others. Some varietal differences were also noticed regarding tartaric acid modulation, which can occur under exceptionally high temperatures. Differences in the dynamics of pH evolution in grape must over the growing season were evaluated and varieties characterized with regard to organic acids (tartaric acid and malic acid), inorganic compounds (cations) as well as pH levels and stability. This multi-trait approach allows the selection of grapevine varieties based on parameters linked to their acidity, which is of particular importance in the context of climate change.
Author Lecourt, Julien
van Leeuwen, Cornelis
Plantevin, Marc
Merpault, Yoann
Destrac-Irvine, Agnès
Dijsktra, Lucile
AuthorAffiliation 2 Château La Tour Carnet , Saint-Laurent-Médoc , France
1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV , Villenave d’Ornon , France
3 Pôle Scientifique, Bernard Margez Grands Vignobles , Bordeaux , France
AuthorAffiliation_xml – name: 1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV , Villenave d’Ornon , France
– name: 2 Château La Tour Carnet , Saint-Laurent-Médoc , France
– name: 3 Pôle Scientifique, Bernard Margez Grands Vignobles , Bordeaux , France
Author_xml – sequence: 1
  givenname: Marc
  surname: Plantevin
  fullname: Plantevin, Marc
– sequence: 2
  givenname: Yoann
  surname: Merpault
  fullname: Merpault, Yoann
– sequence: 3
  givenname: Julien
  surname: Lecourt
  fullname: Lecourt, Julien
– sequence: 4
  givenname: Agnès
  surname: Destrac-Irvine
  fullname: Destrac-Irvine, Agnès
– sequence: 5
  givenname: Lucile
  surname: Dijsktra
  fullname: Dijsktra, Lucile
– sequence: 6
  givenname: Cornelis
  surname: van Leeuwen
  fullname: van Leeuwen, Cornelis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39450078$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-05039398$$DView record in HAL
BookMark eNp9UsFuEzEQXaEiWko_gAvyEQ4J9trxrk-oioBUisQFJG7W2J5NXG3Wi-1GKj_Ab-NtQtX0gC8ezbz3ZkbzXldnQxiwqt4yOue8VR-7sU_zmtZizgRXjIkX1QWTUsyErH-ePYnPq6uUbml5C0qVal5V51yJEjftRfVnuYUINmP0vyH7MJDQkT1Ejxl6gl2HNidS0nmLBKx3Pt8TGBwZVxNyE2FEYjAWQiJdiCRhXygnQlPJYC49CDgYMzqSA7G930FGYrcwbPBN9bKDPuHV8b-sfnz5_H25mq2_fb1ZXq9ntgycZ9B2iiukzjTCgDOGNsbVrRMMastFLU3bWWYWQjZMUEeVgIaKmgojLW9owy-rm4OuC3Crx1hmiPc6gNcPiRA3GmL2tkdtjIEyL4KRIDpuoRU1uprLjjpluCxanw5a453ZobM45Aj9iehpZfBbvQl7XY6llOSiKHw4KGyf8VbXaz3lysl4Wbjds4J9f-wWw687TFnvfLLY9zBguEuas5oulGRsgr57Otij8r-zFwA7AGwMKUXsHiGM6sldenKXntylj-4qnOYZx_r8YJmym-__w_wLyU3XYg
CitedBy_id crossref_primary_10_3390_app15052485
Cites_doi 10.20870/oeno-one.2019.53.4.2224
10.3390/agronomy9090514
10.5344/ajev.1980.31.2.182
10.1111/ajgw.12051
10.1016/S0031-9422(00)84372-1
10.5344/ajev.2015.15029
10.1007/978-1-4757-6255-6
10.20870/IVES-TR.2019.2586
10.1016/j.foodchem.2022.134385
10.1007/978-94-017-2308-4_2
10.1073/pnas.0510864103
10.1017/jwe.2016.4
10.1104/pp.41.6.923
10.3389/fpls.2020.00123
10.1016/0308-8146(91)90041-L
10.1111/j.1755-0238.2003.tb00265.x
10.1104/pp.118.3.957
10.1007/978-3-319-97946-5_7
10.4267/climatologie.323
10.1002/fes3.14
10.1007/s00484-013-0715-2
10.1016/j.jas.2016.03.003
10.1186/s12870-016-0850-0
10.20870/oeno-one.2022.56.3.5455
10.20870/oeno-one.2022.56.2.5434
10.1111/ajgw.12344
10.1016/j.foodchem.2010.03.076
10.20870/oeno-one.2020.54.4.3787
10.1021/jf020412m
10.5344/ajev.2000.51.4.347
10.20870/oeno-one.2023.57.2.7399
10.1104/pp.33.2.155
10.3390/ijms221910398
10.1111/j.1755-0238.2001.tb00198.x
10.3390/app10093092
10.1016/S0031-9422(00)88177-7
10.5424/sjar/2010082-1186
10.3389/fpls.2021.643024
10.1021/jf0605446
10.1104/pp.56.3.370
10.5344/ajev.2000.51.4.352
10.1017/jwe.2015.21
10.1038/s43017-024-00521-5
10.1111/ajgw.12544
10.21548/31-2-1407
10.1016/j.scienta.2017.03.002
10.1016/j.foodres.2010.05.001
10.3389/fpls.2017.01629
10.1038/s41558-017-0016-6
ContentType Journal Article
Copyright Copyright © 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen.
Attribution
Copyright © 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen
Copyright_xml – notice: Copyright © 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen.
– notice: Attribution
– notice: Copyright © 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fpls.2024.1439114
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_bbbaadaeab6a4f3ca842ed236f0d9b36
PMC11499634
oai_HAL_hal_05039398v1
39450078
10_3389_fpls_2024_1439114
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c500t-a8f939e0db74badbb07bd28d41a2c3426b8fc1b5467140d094a704204b6c37073
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:28:48 EDT 2025
Thu Aug 21 18:30:45 EDT 2025
Fri Aug 29 06:30:06 EDT 2025
Thu Jul 10 18:01:52 EDT 2025
Thu Apr 03 07:02:40 EDT 2025
Tue Jul 01 01:39:54 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tartaric acid
grapevine
Vitis Vinifera
varietal traits
pH
malic acid
inorganic cations
climate change
Language English
License Copyright © 2024 Plantevin, Merpault, Lecourt, Destrac-Irvine, Dijsktra and van Leeuwen.
Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-a8f939e0db74badbb07bd28d41a2c3426b8fc1b5467140d094a704204b6c37073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Alain Deloire, Montpellier SupAgro, France
Stefania Savoi, University of Turin, Italy
Edited by: Claudio Bonghi, University of Padua, Italy
ORCID 0000-0002-9428-0167
0000-0002-3750-4566
0000-0003-1699-1059
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2024.1439114
PMID 39450078
PQID 3120596111
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bbbaadaeab6a4f3ca842ed236f0d9b36
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11499634
hal_primary_oai_HAL_hal_05039398v1
proquest_miscellaneous_3120596111
pubmed_primary_39450078
crossref_primary_10_3389_fpls_2024_1439114
crossref_citationtrail_10_3389_fpls_2024_1439114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2024
Publisher Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers
– name: Frontiers Media S.A
References Barbe (B2) 2002; 50
Dienes-Nagy (B20) 2012; 44
Kliewer (B29) 1966; 41
Saito (B47) 1969; 8
Mpelasoka (B36) 2003; 9
Rienth (B41) 2016; 16
Ruffner (B45) 1982; 21
Garnier (B25) 2016; 74
Ribéreau-Gayon (B40) 2012
van Leeuwen (B55) 2024; 5
Barnuud (B3) 2014; 58
Mira de Orduña (B33) 2010; 43
Villette (B56) 2020; 11
Carbonneau (B10) 2015
Volschenk (B57) 2006; 27
Ruffner (B44) 1982; 21
Walker (B58) 1998; 118
Destrac-Irvine (B19) 2019
Plantevin (B39) 2022; 56
Bondada (B6) 2017; 219
van Leeuwen (B52) 2016; 11
Clingeleffer (B12) 2022; 28
Dartiguenave (B15) 2000; 51
Moreno (B35) 2012
Bigard (B5) 2019; 53
van Leeuwen (B54) 2023; 57
Santos (B48) 2020; 10
Correa-Gorospe (B14) 1991; 41
Boulton (B7) 1980; 31
Boulton (B8) 1999
Fraga (B23) 2012; 1
Dartiguenave (B16) 2000; 51
Monder (B34) 2021; 22
Sabir (B46) 2010; 8
Loewus (B32) 1958; 33
van Leeuwen (B53) 2019; 9
Koundouras (B30) 2006; 54
Rösti (B43) 2018; 24
Cinquanta (B11) 2015; 66
Shahood (B49) 2020; 54
Etchebarne (B22) 2010; 31
Batista (B4) 2010; 122
Terrier (B51) 2001
Delrot (B18) 2020
Zhao (B60) 2023; 403
Jackson (B27) 2008
Rogiers (B42) 2017; 8
Keller (B28) 2010
Takimoto (B50) 1976; 15
Adelsheim (B1) 2016; 11
Gancel (B24) 2022; 56
Neethling (B37) 2011; 8
Peynaud (B38) 1947; 93
Burbidge (B9) 2021; 12
Conde (B13) 2007; 1
Hunter (B26) 2001; 7
Duchêne (B21) 2014; 20
DeBolt (B17) 2006; 103
Wolkovich (B59) 2018; 8
Lakso (B31) 1975; 56
References_xml – volume: 53
  year: 2019
  ident: B5
  article-title: The kinetics of grape ripening revisited through berry density sorting
  publication-title: OENO One
  doi: 10.20870/oeno-one.2019.53.4.2224
– volume-title: The Science of Grapevines—1st Edition
  year: 2010
  ident: B28
– volume: 9
  year: 2019
  ident: B53
  article-title: An update on the impact of climate change in viticulture and potential adaptations
  publication-title: Agronomy
  doi: 10.3390/agronomy9090514
– volume: 31
  start-page: 182
  year: 1980
  ident: B7
  article-title: The general relationship between potassium, sodium and pH in grape juice and wine
  publication-title: Am. J. Enology Viticulture
  doi: 10.5344/ajev.1980.31.2.182
– volume: 20
  start-page: 91
  year: 2014
  ident: B21
  article-title: Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12051
– volume: 15
  start-page: 927
  year: 1976
  ident: B50
  article-title: Diurnal change of tartrate dissimilation during the ripening of grapes
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)84372-1
– volume: 66
  start-page: 502
  year: 2015
  ident: B11
  article-title: Rapid assessment of gray mold (Botrytis cinerea) infection in grapes with a biosensor system
  publication-title: Am. J. Enology Viticulture
  doi: 10.5344/ajev.2015.15029
– volume-title: Principles and Practices of Winemaking
  year: 1999
  ident: B8
  doi: 10.1007/978-1-4757-6255-6
– year: 2019
  ident: B19
  article-title: Measuring the phenology to more effectively manage the vineyard: This technical sheet was realized within the framework of the Inra project ‘Perphéclim’, financed the métaprogramme national Inra ACCAF ‘Adaptation of agriculture and forestry to climate change’. Original language of the article: French
  publication-title: IVES Tech. Reviews Vine Wine
  doi: 10.20870/IVES-TR.2019.2586
– volume: 403
  year: 2023
  ident: B60
  article-title: Investigating the role of tartaric acid in wine astringency
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134385
– start-page: 35
  volume-title: Molecular biology & biotechnology of the grapevine
  year: 2001
  ident: B51
  article-title: Grape berry acidity
  doi: 10.1007/978-94-017-2308-4_2
– volume: 103
  start-page: 5608
  year: 2006
  ident: B17
  article-title: L-Tartaric acid synthesis from vitamin C in higher plants
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0510864103
– volume: 11
  start-page: 5
  year: 2016
  ident: B1
  article-title: Climate change: Field reports from leading winemakers
  publication-title: J. Wine Economics
  doi: 10.1017/jwe.2016.4
– volume: 41
  start-page: 923
  year: 1966
  ident: B29
  article-title: Sugars and organic acids of vitis vinifera
  publication-title: Plant Physiol.
  doi: 10.1104/pp.41.6.923
– volume: 11
  year: 2020
  ident: B56
  article-title: Grapevine potassium nutrition and fruit quality in the context of climate change
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00123
– volume: 41
  start-page: 135
  year: 1991
  ident: B14
  article-title: Characterization of the proteic and the phenolic fraction in tartaric sediments from wines
  publication-title: Food Chem.
  doi: 10.1016/0308-8146(91)90041-L
– volume: 9
  start-page: 154
  year: 2003
  ident: B36
  article-title: A review of potassium nutrition in grapevines with special emphasis on berry accumulation
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2003.tb00265.x
– volume: 118
  start-page: 957
  year: 1998
  ident: B58
  article-title: The role of cytosolic potassium and pH in the growth of barley roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.3.957
– volume-title: Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change
  year: 2020
  ident: B18
  doi: 10.1007/978-3-319-97946-5_7
– volume: 8
  start-page: 79
  year: 2011
  ident: B37
  article-title: Évolution du climat et de la composition des raisins des principaux cépages cultivés dans le Val de Loire
  publication-title: Climatologie
  doi: 10.4267/climatologie.323
– volume: 1
  year: 2007
  ident: B13
  article-title: Biochemical changes throughout grape berry development and fruit and wine quality
  publication-title: Food
– volume: 1
  start-page: 94
  year: 2012
  ident: B23
  article-title: An overview of climate change impacts on European viticulture
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.14
– volume: 58
  start-page: 1207
  year: 2014
  ident: B3
  article-title: Berry composition and climate: Responses and empirical models
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-013-0715-2
– volume: 74
  start-page: 195
  year: 2016
  ident: B25
  article-title: Prehistoric wine-making at Dikili Tash (Northern Greece): Integrating residue analysis and archaeobotany
  publication-title: J. Archaeological Sci.
  doi: 10.1016/j.jas.2016.03.003
– start-page: 704 p
  volume-title: Traité d’œnologie
  year: 2012
  ident: B40
– volume: 16
  start-page: 164
  year: 2016
  ident: B41
  article-title: Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0850-0
– volume: 56
  start-page: 137
  year: 2022
  ident: B24
  article-title: Solubility, acidifying power and sensory properties of fumaric acid in water, hydro-alcoholic solutions, musts and wines compared to tartaric, Malic, lactic and citric acids
  publication-title: OENO One
  doi: 10.20870/oeno-one.2022.56.3.5455
– volume: 56
  start-page: 239
  year: 2022
  ident: B39
  article-title: Using δ13C and hydroscapes for discriminating cultivar specific drought responses
  publication-title: OENO One
  doi: 10.20870/oeno-one.2022.56.2.5434
– volume: 93
  year: 1947
  ident: B38
  article-title: Contribution a l'etude biochimique de la maturation du raisin et de la composition des vins
  publication-title: Imp. G. Sautai et Fils, Lille
– volume: 24
  start-page: 421
  year: 2018
  ident: B43
  article-title: Effect of drying on tartaric acid and Malic acid in Shiraz and Merlot berries
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12344
– volume: 21
  start-page: 346
  year: 1982
  ident: B45
  article-title: Metabolism of tartaric and Malic acids in Vitis: A review Part B
  publication-title: Vitis
– volume: 122
  start-page: 1067
  year: 2010
  ident: B4
  article-title: Protein haze formation in wines revisited. The stabilising effect of organic acids
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.03.076
– volume: 54
  start-page: 1077
  year: 2020
  ident: B49
  article-title: First quantitative assessment of growth, sugar accumulation and malate breakdown in a single ripening berry
  publication-title: OENO One
  doi: 10.20870/oeno-one.2020.54.4.3787
– volume: 50
  start-page: 6408
  year: 2002
  ident: B2
  article-title: Gluconic acid, its lactones, and SO2 binding phenomena in musts from botrytized grapes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf020412m
– volume: 51
  start-page: 347
  year: 2000
  ident: B15
  article-title: Changes in the buffering capacity of model solutions of 40 m M tartaric or Malic acids in relation to amino acids
  publication-title: Am. J. Enology Viticulture
  doi: 10.5344/ajev.2000.51.4.347
– volume: 57
  start-page: 505
  year: 2023
  ident: B54
  article-title: An operational model for capturing grape ripening dynamics to support harvest decisions
  publication-title: OENO One
  doi: 10.20870/oeno-one.2023.57.2.7399
– volume: 27
  start-page: 123
  year: 2006
  ident: B57
  article-title: Malic Acid in Wine: Origin, Function and Metabolism during Vinification
  publication-title: South Afr. J. Enology Viticulture
– start-page: 592 p
  volume-title: Traité de la vigne: Physiologie, terroir, culture
  year: 2015
  ident: B10
– volume: 33
  start-page: 155
  year: 1958
  ident: B32
  article-title: Observations on the incorporation of C14 into tartaric acid and the labeling pattern of D-glucose from an excised grape leaf administered L-ascorbic acid-6-C14. 12
  publication-title: Plant Physiol.
  doi: 10.1104/pp.33.2.155
– volume: 22
  year: 2021
  ident: B34
  article-title: Adjustment of K+ Fluxes and grapevine defense in the face of climate change
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms221910398
– volume: 7
  start-page: 118
  year: 2001
  ident: B26
  article-title: Assimilate transport in grapevines -effect of phloem disruption
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2001.tb00198.x
– start-page: 121
  volume-title: Enological Chemistr
  year: 2012
  ident: B35
  article-title: Chapter 9—Grape acids
– volume: 10
  year: 2020
  ident: B48
  article-title: A review of the potential climate change impacts and adaptation options for European viticulture
  publication-title: Appl. Sci.
  doi: 10.3390/app10093092
– volume: 8
  start-page: 2177
  year: 1969
  ident: B47
  article-title: Tartaric acid synthesis from l-ascorbic acid-1-14C in grape berries
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)88177-7
– volume: 8
  start-page: 425
  year: 2010
  ident: B46
  article-title: Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development
  publication-title: Spanish J. Agric. Res.
  doi: 10.5424/sjar/2010082-1186
– volume: 12
  year: 2021
  ident: B9
  article-title: Biosynthesis and cellular functions of tartaric acid in grapevines
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.643024
– volume: 54
  start-page: 5077
  year: 2006
  ident: B30
  article-title: Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0605446
– volume: 56
  start-page: 370
  year: 1975
  ident: B31
  article-title: The influence of temperature on Malic acid metabolism in grape berries
  publication-title: Plant Physiol.
  doi: 10.1104/pp.56.3.370
– volume: 51
  start-page: 352
  year: 2000
  ident: B16
  article-title: Study of the contribution of the major organic acids of wine to the buffering capacity of wine in model solutions
  publication-title: Am. J. Enology Viticulture
  doi: 10.5344/ajev.2000.51.4.352
– volume: 44
  start-page: 326
  year: 2012
  ident: B20
  article-title: L’acidité totale mesurée dans les moûts: Sous-estimée en toute conscience
  publication-title: Rev. Suisse Viticulture Arboriculture Horticulture
– volume-title: Wine Science: Principles and Applications
  year: 2008
  ident: B27
– volume: 11
  start-page: 150
  year: 2016
  ident: B52
  article-title: The impact of climate change on viticulture and wine quality
  publication-title: J. Wine Economics
  doi: 10.1017/jwe.2015.21
– volume: 5
  start-page: 258
  year: 2024
  ident: B55
  article-title: Climate change impacts and adaptations of wine production
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-024-00521-5
– volume: 28
  start-page: 255
  year: 2022
  ident: B12
  article-title: Assessment of phenology, growth characteristics and berry composition in a hot Australian climate to identify wine cultivars adapted to climate change
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12544
– volume: 31
  start-page: 106
  year: 2010
  ident: B22
  article-title: Leaf: fruit ratio and vine water status effects on Grenache Noir (Vitis vinifera L.) berry composition: water, sugar, organic acids and cations
  publication-title: South Afr. J. Enology Viticulture
  doi: 10.21548/31-2-1407
– volume: 21
  start-page: 247
  year: 1982
  ident: B44
  article-title: Metabolism of tartaric and Malic acids in Vitis: A review Part A
  publication-title: Vitis
– volume: 219
  start-page: 135
  year: 2017
  ident: B6
  article-title: Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries
  publication-title: Scientia Hortic.
  doi: 10.1016/j.scienta.2017.03.002
– volume: 43
  start-page: 1844
  year: 2010
  ident: B33
  article-title: Climate change associated effects on grape and wine quality and production
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.05.001
– volume: 8
  year: 2017
  ident: B42
  article-title: Potassium in the grape (Vitis vinifera L.) berry: transport and function
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01629
– volume: 8
  start-page: 29
  year: 2018
  ident: B59
  article-title: From Pinot to Xinomavro in the world’s future wine-growing regions
  publication-title: Nat. Climate Change
  doi: 10.1038/s41558-017-0016-6
SSID ssj0000500997
Score 2.421299
Snippet Climate change is drastically modifying berry composition and wine quality across the world. Most wine regions with a history of winemaking are suffering from...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1439114
SubjectTerms climate change
Environmental Sciences
grapevine
inorganic cations
malic acid
Plant Science
tartaric acid
varietal traits
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K6KGX0nedtkEtPRVMZEt-6JiEhCWEnhrITWgkmSws9tLdBPoL-rc7YznLuoX20qssy9bMSPMNGn0D8NmTkfjC-Jy8G-a6rmWOfNmnrDE6HWRHzZxt8bVeXOvLm-pmr9QX54QleuAkuGNEdC646LB2ulPetbqMoVR1J4NBNZJtk8_bC6YSqzdDnyYdY1IUZo679YrZuUtNe4OiFa5njmjk6yf3csvZkH9Czd8zJvdc0MUzeDphR3GS_vk5PIr9C3h8OhC--_ESfp7tuJfT1UoxdOKeQ2HC12LK2xDUTJBPOL8MhL-F64NYL7gnM1dHgUzUGDeCoKzYjCVyZgPxIxwvAAmS1prQqtgOwq-WhHujSJeIX8H1xfm3s0U-lVnIPUlpm7u2M8pEGbDR6AKibDCUbdCFK70iD45t5wusaEulaCxQPOgaWupSY-1VQ1vEazjohz6-BVGRy628kbHSUTdeOeO9ND5UtWt925QZyAeZWz9xkHMpjJWlWITVZFlNltVkJzVl8GX3yjoRcPyt8ykrcteRubPHBrIoO1mU_ZdFZfCJzGA2xuLkynIbk-eQrNr7IoOPD1ZiaUHyKYvr43C3saoouaQR-ZAM3iSr2Y2ljK4YlGXQzuxp9rH5k355O5J-0-woNFX68H9M8R08YbGxDy7kezjYfr-LHwhcbfFoXEe_AEbJJuk
  priority: 102
  providerName: Directory of Open Access Journals
Title Characterization of varietal effects on the acidity and pH of grape berries for selection of varieties better adapted to climate change
URI https://www.ncbi.nlm.nih.gov/pubmed/39450078
https://www.proquest.com/docview/3120596111
https://hal.inrae.fr/hal-05039398
https://pubmed.ncbi.nlm.nih.gov/PMC11499634
https://doaj.org/article/bbbaadaeab6a4f3ca842ed236f0d9b36
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbG4IEXxG8CYzKIJ6SAYztO8jChbWJUCHiiUt8sn-2wSlVS2m5ifwH_NndJWhGYkHipVMd1m_Odv-8a-zvGXnl0Ep9VPkV0g1QbI1Kgwz7SQHQ6iBqbabfFFzOZ6o-zfLbHtuWtBgOur03tqJ7UdLV48-P71TsM-CPKOBFv39bLBQlvS41hrzB49Q12E4GpoIIGnwe230t9Ex_qyq0Yo_GHyVn_nPP6UUZI1Qn6I_6c03bJv7non1sqf8Oos7vszkAu-XHvDffYXmzus1snLRLAqwfs5-lOnLk_e8nbml9Sroz3zoeNHRybkRNy5-cBCTp3TeDLCfUkaevIgZQc45oj1-XrrobOaCC6BN0JIe6CWyKd5ZuW-8UciXHk_Snjh2x69v7r6SQd6jCkHi22SV1ZV6qKIkChwQUAUUCQZdCZk14hxENZ-wxyXHMxXQuYMLoC1wKhwXhV4BryiO03bROfMJ4jJue-EjHXURdeucp7UfmQG1f6spAJE1ubWz-IlFOtjIXFZIWmydI0WZomO0xTwl7vPrLsFTr-1fmEJnLXkcS1u4Z29c0OsWoBwKGNogPjdK28K7WMQSpTi1CBMgl7iW4wGmNy_MlSG6nroK3KyyxhL7ZeYjFi6TGMa2J7sbYqk1TzCEEmYY97r9mNpSqdE2tLWDnyp9GXja808_NOFRzvDnNXpZ_-jz2esdv0lsA4Ewdsf7O6iM-RZW3gsPt3Al8_zLLDLo5-ASZ5J4I
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+varietal+effects+on+the+acidity+and+pH+of+grape+berries+for+selection+of+varieties+better+adapted+to+climate+change&rft.jtitle=Frontiers+in+plant+science&rft.au=Plantevin%2C+Marc&rft.au=Merpault%2C+Yoann&rft.au=Lecourt%2C+Julien&rft.au=Destrac-Irvine%2C+Agn%C3%A8s&rft.date=2024-10-10&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=15&rft_id=info:doi/10.3389%2Ffpls.2024.1439114&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2024_1439114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon