Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers

Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced suc...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 13; no. 3; pp. 341 - 350
Main Authors Montserrat, Nuria, Nivet, Emmanuel, Sancho-Martinez, Ignacio, Hishida, Tomoaki, Kumar, Sachin, Miquel, Laia, Cortina, Carme, Hishida, Yuriko, Xia, Yun, Esteban, Concepcion Rodriguez, Izpisua Belmonte, Juan Carlos
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency. •Mesendodermal lineage specifiers replace OCT4 in hiPSC generation•Ectodermal lineage specifiers are able to replace SOX2 in hiPSC generation•Simultaneous replacement of OCT4 and SOX2 allows human cell reprogramming to iPSCs Successful reprogramming of human cells with OCT4 and SOX2 replaced with lineage specifiers, supporting the idea that pluripotency is achieved through an equilibrium between counteracting differentiation networks.
AbstractList Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.
Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency. •Mesendodermal lineage specifiers replace OCT4 in hiPSC generation•Ectodermal lineage specifiers are able to replace SOX2 in hiPSC generation•Simultaneous replacement of OCT4 and SOX2 allows human cell reprogramming to iPSCs Successful reprogramming of human cells with OCT4 and SOX2 replaced with lineage specifiers, supporting the idea that pluripotency is achieved through an equilibrium between counteracting differentiation networks.
Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.
Author Montserrat, Nuria
Kumar, Sachin
Nivet, Emmanuel
Cortina, Carme
Esteban, Concepcion Rodriguez
Hishida, Tomoaki
Miquel, Laia
Xia, Yun
Sancho-Martinez, Ignacio
Hishida, Yuriko
Izpisua Belmonte, Juan Carlos
Author_xml – sequence: 1
  givenname: Nuria
  surname: Montserrat
  fullname: Montserrat, Nuria
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
– sequence: 2
  givenname: Emmanuel
  surname: Nivet
  fullname: Nivet, Emmanuel
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Ignacio
  surname: Sancho-Martinez
  fullname: Sancho-Martinez, Ignacio
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
– sequence: 4
  givenname: Tomoaki
  surname: Hishida
  fullname: Hishida, Tomoaki
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 5
  givenname: Sachin
  surname: Kumar
  fullname: Kumar, Sachin
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 6
  givenname: Laia
  surname: Miquel
  fullname: Miquel, Laia
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
– sequence: 7
  givenname: Carme
  surname: Cortina
  fullname: Cortina, Carme
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
– sequence: 8
  givenname: Yuriko
  surname: Hishida
  fullname: Hishida, Yuriko
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 9
  givenname: Yun
  surname: Xia
  fullname: Xia, Yun
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 10
  givenname: Concepcion Rodriguez
  surname: Esteban
  fullname: Esteban, Concepcion Rodriguez
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
– sequence: 11
  givenname: Juan Carlos
  surname: Izpisua Belmonte
  fullname: Izpisua Belmonte, Juan Carlos
  email: belmonte@salk.edu, izpisua@cmrb.eu
  organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23871606$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gD3BAOXJJGMdrO5a4oKqlrVYC8XG2vPZ48SqJF9sB9d_j1RYOHNrTWPLzjEbve05O5jgjIa8pdBSoeLfrcsGp64GyDkQHVD0jZ3SQvFVSypP6VmzVcgXqlJznvAPgkoJ8QU57NkgqQJyRuy-4T3GbzDSFedtE39wsk5mb67BJcTOaXHJTYvN5XFLYx4KzvW9-h_KjWYcZzRabr3u0wQdM-SV57s2Y8dXDvCDfr6--Xd60608fby8_rFvLAUpreokMnAWQzHCm_OB6wTlKbzxuBDqUyhjwzg9eeu6UZEzVYe0K6o9jF-TtcW89_OeCuegpZIvjaGaMS9a0CpyLlRqeRrkAWrNU_dPoitFeSd4ftr55QJfNhE7vU5hMutd_U61AfwRsijkn9P8QCvpQnd7pQ3X6UJ0GoesFVRr-k2wopoQ4l2TC-Lj6_qhijf1X7UJnG2pV6EJCW7SL4TH9D9xotDo
CitedBy_id crossref_primary_10_1134_S0006297916130137
crossref_primary_10_1016_j_gde_2018_05_013
crossref_primary_10_1016_j_ajpath_2013_09_026
crossref_primary_10_1016_j_cell_2015_03_017
crossref_primary_10_1093_molbev_msab075
crossref_primary_10_1016_j_bbrc_2015_11_120
crossref_primary_10_1016_j_sbi_2021_05_011
crossref_primary_10_1038_cr_2015_6
crossref_primary_10_4161_cc_27770
crossref_primary_10_1002_bies_201600103
crossref_primary_10_1016_j_jconrel_2014_04_011
crossref_primary_10_1002_jcb_28900
crossref_primary_10_1002_stem_2436
crossref_primary_10_1371_journal_pone_0095213
crossref_primary_10_1126_sciadv_aba1190
crossref_primary_10_1038_s12276_021_00637_4
crossref_primary_10_4155_pbp_15_9
crossref_primary_10_1371_journal_pone_0220742
crossref_primary_10_1016_j_stem_2019_10_002
crossref_primary_10_1186_s13619_015_0024_9
crossref_primary_10_1016_j_jmb_2020_01_024
crossref_primary_10_1016_j_tcb_2015_12_003
crossref_primary_10_1089_cell_2016_0041
crossref_primary_10_1093_nsr_nwt007
crossref_primary_10_1152_physrev_00001_2014
crossref_primary_10_1590_s1980_5764_2016dn1004006
crossref_primary_10_1016_j_stem_2014_09_015
crossref_primary_10_1016_j_scr_2015_11_002
crossref_primary_10_1007_s00005_016_0385_y
crossref_primary_10_1038_s41589_020_0618_6
crossref_primary_10_1371_journal_pone_0118424
crossref_primary_10_1007_s12015_022_10366_4
crossref_primary_10_1242_dev_123950
crossref_primary_10_1007_s11033_015_3926_2
crossref_primary_10_1098_rsob_220065
crossref_primary_10_1016_j_gde_2014_08_005
crossref_primary_10_1016_j_stem_2014_09_019
crossref_primary_10_1530_RAF_22_0078
crossref_primary_10_1016_j_stem_2013_07_013
crossref_primary_10_1126_sciadv_aaz7364
crossref_primary_10_1073_pnas_1317150111
crossref_primary_10_1002_stem_1764
crossref_primary_10_1038_srep13317
crossref_primary_10_1177_10668969231188904
crossref_primary_10_1016_j_stem_2019_06_010
crossref_primary_10_1002_stem_1800
crossref_primary_10_1038_s41598_017_15187_x
crossref_primary_10_1016_j_scr_2015_08_006
crossref_primary_10_1007_s12015_014_9536_x
crossref_primary_10_1007_s11802_022_4806_8
crossref_primary_10_1007_s40291_022_00599_x
crossref_primary_10_1186_s13059_016_0897_0
crossref_primary_10_1038_s41556_018_0067_6
crossref_primary_10_1371_journal_pone_0124562
crossref_primary_10_1016_j_imlet_2013_09_019
crossref_primary_10_1016_j_yexcr_2020_112215
crossref_primary_10_1134_S0006297915130088
crossref_primary_10_1038_cr_2014_165
crossref_primary_10_1016_j_stem_2013_11_015
crossref_primary_10_1016_j_ydbio_2016_12_005
crossref_primary_10_1371_journal_pone_0131288
crossref_primary_10_1038_s41536_021_00199_z
crossref_primary_10_1038_s41556_018_0136_x
crossref_primary_10_1186_s13287_020_01964_5
crossref_primary_10_1038_cr_2013_119
crossref_primary_10_1038_s41598_017_05117_2
crossref_primary_10_1016_j_cell_2016_02_014
crossref_primary_10_1016_j_gde_2013_12_007
crossref_primary_10_1242_dev_114249
crossref_primary_10_1016_j_gde_2017_06_012
crossref_primary_10_1038_s41467_020_17959_y
crossref_primary_10_1016_j_trsl_2014_03_004
crossref_primary_10_1152_physiolgenomics_00138_2014
crossref_primary_10_1002_bies_202000285
crossref_primary_10_1007_s00418_015_1352_0
crossref_primary_10_1155_2016_4287158
crossref_primary_10_1016_j_stem_2015_08_006
crossref_primary_10_1016_j_stem_2013_08_004
crossref_primary_10_1242_dev_203090
crossref_primary_10_1002_ijc_31750
crossref_primary_10_1016_j_stemcr_2016_04_005
crossref_primary_10_1016_j_gde_2017_06_005
crossref_primary_10_1016_j_tice_2016_07_005
crossref_primary_10_1038_srep07927
crossref_primary_10_1038_nrm_2016_8
crossref_primary_10_1038_srep41852
crossref_primary_10_1126_sciadv_adg8495
crossref_primary_10_1371_journal_pone_0126522
crossref_primary_10_1126_sciadv_ade3888
crossref_primary_10_1016_j_scr_2015_06_006
crossref_primary_10_1038_516172a
crossref_primary_10_1111_wrr_12925
crossref_primary_10_1016_j_tcb_2013_11_010
crossref_primary_10_1016_j_bbagrm_2013_10_001
crossref_primary_10_1016_j_gde_2014_09_009
crossref_primary_10_1038_s41467_023_39104_1
crossref_primary_10_1155_2014_756240
crossref_primary_10_1016_j_stem_2014_05_002
crossref_primary_10_1111_dom_12717
crossref_primary_10_1038_s41598_018_31688_9
crossref_primary_10_1016_j_gpb_2013_09_005
crossref_primary_10_1016_j_gpb_2013_09_001
crossref_primary_10_3390_ijms26010114
crossref_primary_10_1038_s41523_017_0012_z
crossref_primary_10_1074_jbc_RA118_003913
crossref_primary_10_1089_cell_2016_0020
crossref_primary_10_1007_s00441_016_2369_y
crossref_primary_10_1002_wdev_206
crossref_primary_10_3390_ijms160920873
crossref_primary_10_1016_j_stemcr_2016_07_014
crossref_primary_10_15252_embj_201490804
crossref_primary_10_1038_s41467_018_03478_4
crossref_primary_10_1155_2015_219514
crossref_primary_10_17116_rosstomat201710249_57
crossref_primary_10_1016_j_jgg_2015_10_001
Cites_doi 10.1074/jbc.M109.016840
10.1016/j.stem.2009.09.012
10.1038/nature09726
10.1016/j.cell.2011.05.017
10.1038/nature07042
10.1016/j.stem.2011.11.003
10.1016/j.stem.2011.03.013
10.1016/j.stem.2009.07.012
10.1016/j.bbagen.2012.08.008
10.1016/j.cell.2012.09.045
10.1016/j.stem.2013.04.023
10.1016/j.stem.2012.12.007
10.1038/nature08436
10.1242/dev.038828
10.1038/ncb2742
10.1038/nmeth.2255
10.1038/embor.2011.88
10.1016/j.stem.2012.02.016
10.1038/nrg1475
10.1038/nbt.1580
10.1016/j.cell.2005.08.040
10.1038/ncpcardio0442
10.1016/j.cell.2013.05.001
10.1016/j.stem.2009.12.009
10.1016/j.cell.2009.01.023
10.1038/nature07061
10.1101/gad.176826.111
10.1038/embor.2011.11
10.1038/nbt1374
10.1016/j.devcel.2013.05.004
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
8FD
FR3
H94
P64
7S9
L.6
DOI 10.1016/j.stem.2013.06.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Immunology Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 350
ExternalDocumentID 23871606
10_1016_j_stem_2013_06_019
S193459091300307X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QO
7T5
8FD
FR3
H94
P64
7S9
L.6
ID FETCH-LOGICAL-c500t-a27e30dc0073a539f8d2655e7fafeb6ede79aa0fdf8f7f5d973395d9cc4079ad3
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Tue Aug 05 10:27:31 EDT 2025
Fri Jul 11 15:07:27 EDT 2025
Mon Jul 21 10:01:21 EDT 2025
Mon Jul 21 06:05:40 EDT 2025
Tue Jul 01 01:08:24 EDT 2025
Thu Apr 24 23:06:51 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-a27e30dc0073a539f8d2655e7fafeb6ede79aa0fdf8f7f5d973395d9cc4079ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S193459091300307X
PMID 23871606
PQID 1431297528
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1733556498
proquest_miscellaneous_1560110192
proquest_miscellaneous_1431297528
pubmed_primary_23871606
crossref_primary_10_1016_j_stem_2013_06_019
crossref_citationtrail_10_1016_j_stem_2013_06_019
elsevier_sciencedirect_doi_10_1016_j_stem_2013_06_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-05
PublicationDateYYYYMMDD 2013-09-05
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Suzuki, Raya, Kawakami, Morita, Matsui, Nakashima, Gage, Rodríguez-Esteban, Izpisúa Belmonte (bib24) 2006; 3
Kim, Zaehres, Wu, Gentile, Ko, Sebastiano, Araúzo-Bravo, Ruau, Han, Zenke, Schöler (bib9) 2008; 454
Shu, Wu, Wu, Li, Shao, Zhao, Tang, Yang, Shen, Zuo (bib22) 2013; 153
Kurian, Sancho-Martinez, Nivet, Aguirre, Moon, Pendaries, Volle-Challier, Bono, Herbert, Pulecio (bib12) 2013; 10
Zipori (bib30) 2004; 5
Nishiyama, Xin, Sharov, Thomas, Mowrer, Meyers, Piao, Mehta, Yee, Nakatake (bib15) 2009; 5
Niwa, Toyooka, Shimosato, Strumpf, Takahashi, Yagi, Rossant (bib16) 2005; 123
Frum, Halbisen, Wang, Amiri, Robson, Ralston (bib3) 2013
Wang, Oron, Nelson, Razis, Ivanova (bib27) 2012; 10
Ralston, Cox, Nishioka, Sasaki, Chea, Rugg-Gunn, Guo, Robson, Draper, Rossant (bib18) 2010; 137
Wang, Chen, Hu, Wei, Qin, Gao, Zhang, Jiang, Li, Liu (bib26) 2011; 12
Home, Ray, Dutta, Bronshteyn, Larson, Paul (bib5) 2009; 284
Kim, Sebastiano, Wu, Araúzo-Bravo, Sasse, Gentile, Ko, Ruau, Ehrich, van den Boom (bib11) 2009; 136
Thomson, Liu, Zou, Smith, Meissner, Ramanathan (bib25) 2011; 145
Zaret, Carroll (bib29) 2011; 25
Kamiya, Banno, Sasai, Ohgushi, Inomata, Watanabe, Kawada, Yakura, Kiyonari, Nakao (bib7) 2011; 470
Chan, Ratanasirintrawoot, Park, Manos, Loh, Huo, Miller, Hartung, Rho, Ince (bib2) 2009; 27
Heng, Feng, Han, Jiang, Kraus, Ng, Orlov, Huss, Yang, Lufkin (bib4) 2010; 6
Ichida, Blanchard, Lam, Son, Chung, Egli, Loh, Carter, Di Giorgio, Koszka (bib6) 2009; 5
Karwacki-Neisius, Göke, Osorno, Halbritter, Ng, Weiße, Wong, Gagliardi, Mullin, Festuccia (bib8) 2013; 12
Loh, Lim (bib13) 2011; 8
Kim, Greber, Araúzo-Bravo, Meyer, Park, Zaehres, Schöler (bib10) 2009; 461
Redmer, Diecke, Grigoryan, Quiroga-Negreira, Birchmeier, Besser (bib19) 2011; 12
Xu, Shi, Ding (bib28) 2008; 453
Carey, Markoulaki, Hanna, Faddah, Buganim, Kim, Ganz, Steine, Cassady, Creyghton (bib1) 2011; 9
Nakagawa, Koyanagi, Tanabe, Takahashi, Ichisaka, Aoi, Okita, Mochiduki, Takizawa, Yamanaka (bib14) 2008; 26
Radzisheuskaya, Le Bin Chia, Dos Santos, Theunissen, Castro, Nichols, Silva (bib17) 2013; 15
Sarkar, Hochedlinger (bib21) 2013; 12
Soufi, Donahue, Zaret (bib23) 2012; 151
Sakaki-Yumoto, Katsuno, Derynck (bib20) 2013; 1830
Zaret (10.1016/j.stem.2013.06.019_bib29) 2011; 25
Sarkar (10.1016/j.stem.2013.06.019_bib21) 2013; 12
Ralston (10.1016/j.stem.2013.06.019_bib18) 2010; 137
Loh (10.1016/j.stem.2013.06.019_bib13) 2011; 8
Kurian (10.1016/j.stem.2013.06.019_bib12) 2013; 10
Kamiya (10.1016/j.stem.2013.06.019_bib7) 2011; 470
Radzisheuskaya (10.1016/j.stem.2013.06.019_bib17) 2013; 15
Kim (10.1016/j.stem.2013.06.019_bib11) 2009; 136
Thomson (10.1016/j.stem.2013.06.019_bib25) 2011; 145
Redmer (10.1016/j.stem.2013.06.019_bib19) 2011; 12
Home (10.1016/j.stem.2013.06.019_bib5) 2009; 284
Wang (10.1016/j.stem.2013.06.019_bib26) 2011; 12
Shu (10.1016/j.stem.2013.06.019_bib22) 2013; 153
Karwacki-Neisius (10.1016/j.stem.2013.06.019_bib8) 2013; 12
Carey (10.1016/j.stem.2013.06.019_bib1) 2011; 9
Kim (10.1016/j.stem.2013.06.019_bib10) 2009; 461
Wang (10.1016/j.stem.2013.06.019_bib27) 2012; 10
Nishiyama (10.1016/j.stem.2013.06.019_bib15) 2009; 5
Suzuki (10.1016/j.stem.2013.06.019_bib24) 2006; 3
Kim (10.1016/j.stem.2013.06.019_bib9) 2008; 454
Zipori (10.1016/j.stem.2013.06.019_bib30) 2004; 5
Xu (10.1016/j.stem.2013.06.019_bib28) 2008; 453
Chan (10.1016/j.stem.2013.06.019_bib2) 2009; 27
Nakagawa (10.1016/j.stem.2013.06.019_bib14) 2008; 26
Frum (10.1016/j.stem.2013.06.019_bib3) 2013
Heng (10.1016/j.stem.2013.06.019_bib4) 2010; 6
Sakaki-Yumoto (10.1016/j.stem.2013.06.019_bib20) 2013; 1830
Ichida (10.1016/j.stem.2013.06.019_bib6) 2009; 5
Soufi (10.1016/j.stem.2013.06.019_bib23) 2012; 151
Niwa (10.1016/j.stem.2013.06.019_bib16) 2005; 123
24012365 - Cell Stem Cell. 2013 Sep 5;13(3):261-2
References_xml – volume: 1830
  start-page: 2280
  year: 2013
  end-page: 2296
  ident: bib20
  article-title: TGF-β family signaling in stem cells
  publication-title: Biochim. Biophys. Acta
– volume: 26
  start-page: 101
  year: 2008
  end-page: 106
  ident: bib14
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nat. Biotechnol.
– volume: 470
  start-page: 503
  year: 2011
  end-page: 509
  ident: bib7
  article-title: Intrinsic transition of embryonic stem-cell differentiation into neural progenitors
  publication-title: Nature
– volume: 12
  start-page: 720
  year: 2011
  end-page: 726
  ident: bib19
  article-title: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
  publication-title: EMBO Rep.
– volume: 454
  start-page: 646
  year: 2008
  end-page: 650
  ident: bib9
  article-title: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors
  publication-title: Nature
– volume: 10
  start-page: 77
  year: 2013
  end-page: 83
  ident: bib12
  article-title: Conversion of human fibroblasts to angioblast-like progenitor cells
  publication-title: Nat. Methods
– volume: 6
  start-page: 167
  year: 2010
  end-page: 174
  ident: bib4
  article-title: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 2227
  year: 2011
  end-page: 2241
  ident: bib29
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
– volume: 5
  start-page: 420
  year: 2009
  end-page: 433
  ident: bib15
  article-title: Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors
  publication-title: Cell Stem Cell
– year: 2013
  ident: bib3
  article-title: Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst
  publication-title: Dev. Cell
– volume: 8
  start-page: 363
  year: 2011
  end-page: 369
  ident: bib13
  article-title: A precarious balance: pluripotency factors as lineage specifiers
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 873
  year: 2004
  end-page: 878
  ident: bib30
  article-title: The nature of stem cells: state rather than entity
  publication-title: Nat. Rev. Genet.
– volume: 137
  start-page: 395
  year: 2010
  end-page: 403
  ident: bib18
  article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2
  publication-title: Development
– volume: 151
  start-page: 994
  year: 2012
  end-page: 1004
  ident: bib23
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
– volume: 12
  start-page: 531
  year: 2013
  end-page: 545
  ident: bib8
  article-title: Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 579
  year: 2013
  end-page: 590
  ident: bib17
  article-title: A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages
  publication-title: Nat. Cell Biol.
– volume: 3
  start-page: S114
  year: 2006
  end-page: S122
  ident: bib24
  article-title: Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification
  publication-title: Nat. Clin. Pract. Cardiovasc. Med.
– volume: 10
  start-page: 440
  year: 2012
  end-page: 454
  ident: bib27
  article-title: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 284
  start-page: 28729
  year: 2009
  end-page: 28737
  ident: bib5
  article-title: GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression
  publication-title: J. Biol. Chem.
– volume: 453
  start-page: 338
  year: 2008
  end-page: 344
  ident: bib28
  article-title: A chemical approach to stem-cell biology and regenerative medicine
  publication-title: Nature
– volume: 461
  start-page: 649
  year: 2009
  end-page: 653
  ident: bib10
  article-title: Direct reprogramming of human neural stem cells by OCT4
  publication-title: Nature
– volume: 136
  start-page: 411
  year: 2009
  end-page: 419
  ident: bib11
  article-title: Oct4-induced pluripotency in adult neural stem cells
  publication-title: Cell
– volume: 9
  start-page: 588
  year: 2011
  end-page: 598
  ident: bib1
  article-title: Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 145
  start-page: 875
  year: 2011
  end-page: 889
  ident: bib25
  article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers
  publication-title: Cell
– volume: 5
  start-page: 491
  year: 2009
  end-page: 503
  ident: bib6
  article-title: A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog
  publication-title: Cell Stem Cell
– volume: 27
  start-page: 1033
  year: 2009
  end-page: 1037
  ident: bib2
  article-title: Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells
  publication-title: Nat. Biotechnol.
– volume: 123
  start-page: 917
  year: 2005
  end-page: 929
  ident: bib16
  article-title: Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation
  publication-title: Cell
– volume: 153
  start-page: 963
  year: 2013
  end-page: 975
  ident: bib22
  article-title: Induction of pluripotency in mouse somatic cells with lineage specifiers
  publication-title: Cell
– volume: 12
  start-page: 373
  year: 2011
  end-page: 378
  ident: bib26
  article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors
  publication-title: EMBO Rep.
– volume: 12
  start-page: 15
  year: 2013
  end-page: 30
  ident: bib21
  article-title: The sox family of transcription factors: versatile regulators of stem and progenitor cell fate
  publication-title: Cell Stem Cell
– volume: 284
  start-page: 28729
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib5
  article-title: GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.016840
– volume: 5
  start-page: 491
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib6
  article-title: A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.012
– volume: 470
  start-page: 503
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib7
  article-title: Intrinsic transition of embryonic stem-cell differentiation into neural progenitors
  publication-title: Nature
  doi: 10.1038/nature09726
– volume: 145
  start-page: 875
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib25
  article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers
  publication-title: Cell
  doi: 10.1016/j.cell.2011.05.017
– volume: 453
  start-page: 338
  year: 2008
  ident: 10.1016/j.stem.2013.06.019_bib28
  article-title: A chemical approach to stem-cell biology and regenerative medicine
  publication-title: Nature
  doi: 10.1038/nature07042
– volume: 9
  start-page: 588
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib1
  article-title: Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.11.003
– volume: 8
  start-page: 363
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib13
  article-title: A precarious balance: pluripotency factors as lineage specifiers
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.03.013
– volume: 5
  start-page: 420
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib15
  article-title: Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.07.012
– volume: 1830
  start-page: 2280
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib20
  article-title: TGF-β family signaling in stem cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.08.008
– volume: 151
  start-page: 994
  year: 2012
  ident: 10.1016/j.stem.2013.06.019_bib23
  article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 12
  start-page: 531
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib8
  article-title: Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.04.023
– volume: 12
  start-page: 15
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib21
  article-title: The sox family of transcription factors: versatile regulators of stem and progenitor cell fate
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.12.007
– volume: 461
  start-page: 649
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib10
  article-title: Direct reprogramming of human neural stem cells by OCT4
  publication-title: Nature
  doi: 10.1038/nature08436
– volume: 137
  start-page: 395
  year: 2010
  ident: 10.1016/j.stem.2013.06.019_bib18
  article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2
  publication-title: Development
  doi: 10.1242/dev.038828
– volume: 15
  start-page: 579
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib17
  article-title: A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2742
– volume: 10
  start-page: 77
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib12
  article-title: Conversion of human fibroblasts to angioblast-like progenitor cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2255
– volume: 12
  start-page: 720
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib19
  article-title: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.88
– volume: 10
  start-page: 440
  year: 2012
  ident: 10.1016/j.stem.2013.06.019_bib27
  article-title: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.02.016
– volume: 5
  start-page: 873
  year: 2004
  ident: 10.1016/j.stem.2013.06.019_bib30
  article-title: The nature of stem cells: state rather than entity
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1475
– volume: 27
  start-page: 1033
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib2
  article-title: Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1580
– volume: 123
  start-page: 917
  year: 2005
  ident: 10.1016/j.stem.2013.06.019_bib16
  article-title: Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.040
– volume: 3
  start-page: S114
  issue: Suppl 1
  year: 2006
  ident: 10.1016/j.stem.2013.06.019_bib24
  article-title: Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification
  publication-title: Nat. Clin. Pract. Cardiovasc. Med.
  doi: 10.1038/ncpcardio0442
– volume: 153
  start-page: 963
  year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib22
  article-title: Induction of pluripotency in mouse somatic cells with lineage specifiers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.001
– volume: 6
  start-page: 167
  year: 2010
  ident: 10.1016/j.stem.2013.06.019_bib4
  article-title: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.009
– volume: 136
  start-page: 411
  year: 2009
  ident: 10.1016/j.stem.2013.06.019_bib11
  article-title: Oct4-induced pluripotency in adult neural stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.023
– volume: 454
  start-page: 646
  year: 2008
  ident: 10.1016/j.stem.2013.06.019_bib9
  article-title: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors
  publication-title: Nature
  doi: 10.1038/nature07061
– volume: 25
  start-page: 2227
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib29
  article-title: Pioneer transcription factors: establishing competence for gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.176826.111
– volume: 12
  start-page: 373
  year: 2011
  ident: 10.1016/j.stem.2013.06.019_bib26
  article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.11
– volume: 26
  start-page: 101
  year: 2008
  ident: 10.1016/j.stem.2013.06.019_bib14
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1374
– year: 2013
  ident: 10.1016/j.stem.2013.06.019_bib3
  article-title: Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.05.004
– reference: 24012365 - Cell Stem Cell. 2013 Sep 5;13(3):261-2
SSID ssj0057107
Score 2.4624274
Snippet Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 341
SubjectTerms bioinformatics
Cell Dedifferentiation - genetics
Cell Lineage
Cells, Cultured
Computational Biology - methods
fibroblasts
Fibroblasts - physiology
GATA3 Transcription Factor - genetics
GATA3 Transcription Factor - metabolism
Gene Expression Profiling
Gene Expression Regulation - genetics
Guided Tissue Regeneration
Humans
mice
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Pluripotent Stem Cells - physiology
RNA, Small Interfering - genetics
somatic cells
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - metabolism
transcriptome
Transgenes - genetics
Title Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers
URI https://dx.doi.org/10.1016/j.stem.2013.06.019
https://www.ncbi.nlm.nih.gov/pubmed/23871606
https://www.proquest.com/docview/1431297528
https://www.proquest.com/docview/1560110192
https://www.proquest.com/docview/1733556498
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7E91sieJOybfNqjrq4iKAIKvRWkjaBFd0ubvfgv3cmbQVBe_BUKJPSTqYz32RehFyYJNYZY-CbKGnAQSlNZK0SkVBWAT62LAsR3fsHefvC73KRr5BxXwuDaZWd7m91etDW3Z1Rx83RfDodPQH04EJjX8sgqTnoYcazUMSXX_faWIAFVW1kmUdI3RXOtDle2CsZ07tY6OGJ3XZ-N05_gc9ghCabZKNDj_SqfcEtsuJm22StnSf5uUPuAE63-VbvYJFo7Wk4o6cT8IlrCzi5WdCmpo9vS1AVNaLlT4oHsRQ8UgeKhYZp9B6nY--Sl8nN8_g26oYlRKWI4yYyqXIsrkoMvRnBtM-qVArhlDfeWekqp7Qxsa985pUXlVaMabiUJbh02lRsj6zO6pk7IBSEi7uKW6fLlLvUW1ZJHjspnYMt9-aQJD2XirLrJI4DLd6KPmXstUDOFsjZAvPmEn1ILr_XzNs-GoPUomd-8UMaClD0g-vO-50q4DfB2IeZuXq5AA-HJVhEnGYDNOidJoh5B2iAbUJIruE5-60ofH8PoB_wPmN59M-3PybraRi2oaNYnJDV5mPpTgHyNPYsyPQXnjv_nw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2I77dG8CZl26ZJmqOKy_pEUGFvIWkTUHQr2j34751JW0HQPXgqlKS0k-nM92UmM4QcmSRWOWPATaQwQFAKE1krecSllYCPLctDRPfmVgwes8shH06Rs-4sDKZVtra_senBWrd3eq00e29PT717gB4ZV1jXMmjqcJrMAhqQ2L_hYnjamWMOLlQ2oeUswuHtyZkmyQuLJWN-FwtFPLHczu_e6S_0GbxQf4kstvCRnjRvuEym3GiFzDUNJT9XySXg6Sbh6hVcEq08DZv0tA-kuLIAlOsPWlf07mUMtqJCuPxJcSeWAiV1YFloaEfvsT32Gnnsnz-cDaK2W0JU8DiuI5NKx-KywNib4Uz5vEwF5056450VrnRSGRP70udeel4qyZiCS1EAp1OmZOtkZlSN3CahoF2ZKzPrVJFmLvWWlSKLnRDOwZp7s0WSTkq6aEuJY0eLF93ljD1rlKxGyWpMnEvUFjn-nvPWFNKYOJp3wtc_1EGDpZ8477BbKQ3_CQY_zMhV4w-gOCzBU8RpPmEM0tMEQe-EMSA2zkWm4DkbjSp8fw_AH6Cfsdj-59sfkPnBw821vr64vdohC2novKGimO-Smfp97PYA_9R2P-j3F3gAAs0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprogramming+of+Human+Fibroblasts+to+Pluripotency+with+Lineage+Specifiers&rft.jtitle=Cell+stem+cell&rft.au=Montserrat%2C+Nuria&rft.au=Nivet%2C+Emmanuel&rft.au=Sancho-Martinez%2C+Ignacio&rft.au=Hishida%2C+Tomoaki&rft.date=2013-09-05&rft.issn=1934-5909&rft.volume=13&rft.issue=3+p.341-350&rft.spage=341&rft.epage=350&rft_id=info:doi/10.1016%2Fj.stem.2013.06.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon