Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers
Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced suc...
Saved in:
Published in | Cell stem cell Vol. 13; no. 3; pp. 341 - 350 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.
•Mesendodermal lineage specifiers replace OCT4 in hiPSC generation•Ectodermal lineage specifiers are able to replace SOX2 in hiPSC generation•Simultaneous replacement of OCT4 and SOX2 allows human cell reprogramming to iPSCs
Successful reprogramming of human cells with OCT4 and SOX2 replaced with lineage specifiers, supporting the idea that pluripotency is achieved through an equilibrium between counteracting differentiation networks. |
---|---|
AbstractList | Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency. Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency. •Mesendodermal lineage specifiers replace OCT4 in hiPSC generation•Ectodermal lineage specifiers are able to replace SOX2 in hiPSC generation•Simultaneous replacement of OCT4 and SOX2 allows human cell reprogramming to iPSCs Successful reprogramming of human cells with OCT4 and SOX2 replaced with lineage specifiers, supporting the idea that pluripotency is achieved through an equilibrium between counteracting differentiation networks. Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency.Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to accomplish this replacement. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that it is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlies the induction of pluripotency. |
Author | Montserrat, Nuria Kumar, Sachin Nivet, Emmanuel Cortina, Carme Esteban, Concepcion Rodriguez Hishida, Tomoaki Miquel, Laia Xia, Yun Sancho-Martinez, Ignacio Hishida, Yuriko Izpisua Belmonte, Juan Carlos |
Author_xml | – sequence: 1 givenname: Nuria surname: Montserrat fullname: Montserrat, Nuria organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain – sequence: 2 givenname: Emmanuel surname: Nivet fullname: Nivet, Emmanuel organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 3 givenname: Ignacio surname: Sancho-Martinez fullname: Sancho-Martinez, Ignacio organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain – sequence: 4 givenname: Tomoaki surname: Hishida fullname: Hishida, Tomoaki organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 5 givenname: Sachin surname: Kumar fullname: Kumar, Sachin organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 6 givenname: Laia surname: Miquel fullname: Miquel, Laia organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain – sequence: 7 givenname: Carme surname: Cortina fullname: Cortina, Carme organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain – sequence: 8 givenname: Yuriko surname: Hishida fullname: Hishida, Yuriko organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 9 givenname: Yun surname: Xia fullname: Xia, Yun organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 10 givenname: Concepcion Rodriguez surname: Esteban fullname: Esteban, Concepcion Rodriguez organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain – sequence: 11 givenname: Juan Carlos surname: Izpisua Belmonte fullname: Izpisua Belmonte, Juan Carlos email: belmonte@salk.edu, izpisua@cmrb.eu organization: Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23871606$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gD3BAOXJJGMdrO5a4oKqlrVYC8XG2vPZ48SqJF9sB9d_j1RYOHNrTWPLzjEbve05O5jgjIa8pdBSoeLfrcsGp64GyDkQHVD0jZ3SQvFVSypP6VmzVcgXqlJznvAPgkoJ8QU57NkgqQJyRuy-4T3GbzDSFedtE39wsk5mb67BJcTOaXHJTYvN5XFLYx4KzvW9-h_KjWYcZzRabr3u0wQdM-SV57s2Y8dXDvCDfr6--Xd60608fby8_rFvLAUpreokMnAWQzHCm_OB6wTlKbzxuBDqUyhjwzg9eeu6UZEzVYe0K6o9jF-TtcW89_OeCuegpZIvjaGaMS9a0CpyLlRqeRrkAWrNU_dPoitFeSd4ftr55QJfNhE7vU5hMutd_U61AfwRsijkn9P8QCvpQnd7pQ3X6UJ0GoesFVRr-k2wopoQ4l2TC-Lj6_qhijf1X7UJnG2pV6EJCW7SL4TH9D9xotDo |
CitedBy_id | crossref_primary_10_1134_S0006297916130137 crossref_primary_10_1016_j_gde_2018_05_013 crossref_primary_10_1016_j_ajpath_2013_09_026 crossref_primary_10_1016_j_cell_2015_03_017 crossref_primary_10_1093_molbev_msab075 crossref_primary_10_1016_j_bbrc_2015_11_120 crossref_primary_10_1016_j_sbi_2021_05_011 crossref_primary_10_1038_cr_2015_6 crossref_primary_10_4161_cc_27770 crossref_primary_10_1002_bies_201600103 crossref_primary_10_1016_j_jconrel_2014_04_011 crossref_primary_10_1002_jcb_28900 crossref_primary_10_1002_stem_2436 crossref_primary_10_1371_journal_pone_0095213 crossref_primary_10_1126_sciadv_aba1190 crossref_primary_10_1038_s12276_021_00637_4 crossref_primary_10_4155_pbp_15_9 crossref_primary_10_1371_journal_pone_0220742 crossref_primary_10_1016_j_stem_2019_10_002 crossref_primary_10_1186_s13619_015_0024_9 crossref_primary_10_1016_j_jmb_2020_01_024 crossref_primary_10_1016_j_tcb_2015_12_003 crossref_primary_10_1089_cell_2016_0041 crossref_primary_10_1093_nsr_nwt007 crossref_primary_10_1152_physrev_00001_2014 crossref_primary_10_1590_s1980_5764_2016dn1004006 crossref_primary_10_1016_j_stem_2014_09_015 crossref_primary_10_1016_j_scr_2015_11_002 crossref_primary_10_1007_s00005_016_0385_y crossref_primary_10_1038_s41589_020_0618_6 crossref_primary_10_1371_journal_pone_0118424 crossref_primary_10_1007_s12015_022_10366_4 crossref_primary_10_1242_dev_123950 crossref_primary_10_1007_s11033_015_3926_2 crossref_primary_10_1098_rsob_220065 crossref_primary_10_1016_j_gde_2014_08_005 crossref_primary_10_1016_j_stem_2014_09_019 crossref_primary_10_1530_RAF_22_0078 crossref_primary_10_1016_j_stem_2013_07_013 crossref_primary_10_1126_sciadv_aaz7364 crossref_primary_10_1073_pnas_1317150111 crossref_primary_10_1002_stem_1764 crossref_primary_10_1038_srep13317 crossref_primary_10_1177_10668969231188904 crossref_primary_10_1016_j_stem_2019_06_010 crossref_primary_10_1002_stem_1800 crossref_primary_10_1038_s41598_017_15187_x crossref_primary_10_1016_j_scr_2015_08_006 crossref_primary_10_1007_s12015_014_9536_x crossref_primary_10_1007_s11802_022_4806_8 crossref_primary_10_1007_s40291_022_00599_x crossref_primary_10_1186_s13059_016_0897_0 crossref_primary_10_1038_s41556_018_0067_6 crossref_primary_10_1371_journal_pone_0124562 crossref_primary_10_1016_j_imlet_2013_09_019 crossref_primary_10_1016_j_yexcr_2020_112215 crossref_primary_10_1134_S0006297915130088 crossref_primary_10_1038_cr_2014_165 crossref_primary_10_1016_j_stem_2013_11_015 crossref_primary_10_1016_j_ydbio_2016_12_005 crossref_primary_10_1371_journal_pone_0131288 crossref_primary_10_1038_s41536_021_00199_z crossref_primary_10_1038_s41556_018_0136_x crossref_primary_10_1186_s13287_020_01964_5 crossref_primary_10_1038_cr_2013_119 crossref_primary_10_1038_s41598_017_05117_2 crossref_primary_10_1016_j_cell_2016_02_014 crossref_primary_10_1016_j_gde_2013_12_007 crossref_primary_10_1242_dev_114249 crossref_primary_10_1016_j_gde_2017_06_012 crossref_primary_10_1038_s41467_020_17959_y crossref_primary_10_1016_j_trsl_2014_03_004 crossref_primary_10_1152_physiolgenomics_00138_2014 crossref_primary_10_1002_bies_202000285 crossref_primary_10_1007_s00418_015_1352_0 crossref_primary_10_1155_2016_4287158 crossref_primary_10_1016_j_stem_2015_08_006 crossref_primary_10_1016_j_stem_2013_08_004 crossref_primary_10_1242_dev_203090 crossref_primary_10_1002_ijc_31750 crossref_primary_10_1016_j_stemcr_2016_04_005 crossref_primary_10_1016_j_gde_2017_06_005 crossref_primary_10_1016_j_tice_2016_07_005 crossref_primary_10_1038_srep07927 crossref_primary_10_1038_nrm_2016_8 crossref_primary_10_1038_srep41852 crossref_primary_10_1126_sciadv_adg8495 crossref_primary_10_1371_journal_pone_0126522 crossref_primary_10_1126_sciadv_ade3888 crossref_primary_10_1016_j_scr_2015_06_006 crossref_primary_10_1038_516172a crossref_primary_10_1111_wrr_12925 crossref_primary_10_1016_j_tcb_2013_11_010 crossref_primary_10_1016_j_bbagrm_2013_10_001 crossref_primary_10_1016_j_gde_2014_09_009 crossref_primary_10_1038_s41467_023_39104_1 crossref_primary_10_1155_2014_756240 crossref_primary_10_1016_j_stem_2014_05_002 crossref_primary_10_1111_dom_12717 crossref_primary_10_1038_s41598_018_31688_9 crossref_primary_10_1016_j_gpb_2013_09_005 crossref_primary_10_1016_j_gpb_2013_09_001 crossref_primary_10_3390_ijms26010114 crossref_primary_10_1038_s41523_017_0012_z crossref_primary_10_1074_jbc_RA118_003913 crossref_primary_10_1089_cell_2016_0020 crossref_primary_10_1007_s00441_016_2369_y crossref_primary_10_1002_wdev_206 crossref_primary_10_3390_ijms160920873 crossref_primary_10_1016_j_stemcr_2016_07_014 crossref_primary_10_15252_embj_201490804 crossref_primary_10_1038_s41467_018_03478_4 crossref_primary_10_1155_2015_219514 crossref_primary_10_17116_rosstomat201710249_57 crossref_primary_10_1016_j_jgg_2015_10_001 |
Cites_doi | 10.1074/jbc.M109.016840 10.1016/j.stem.2009.09.012 10.1038/nature09726 10.1016/j.cell.2011.05.017 10.1038/nature07042 10.1016/j.stem.2011.11.003 10.1016/j.stem.2011.03.013 10.1016/j.stem.2009.07.012 10.1016/j.bbagen.2012.08.008 10.1016/j.cell.2012.09.045 10.1016/j.stem.2013.04.023 10.1016/j.stem.2012.12.007 10.1038/nature08436 10.1242/dev.038828 10.1038/ncb2742 10.1038/nmeth.2255 10.1038/embor.2011.88 10.1016/j.stem.2012.02.016 10.1038/nrg1475 10.1038/nbt.1580 10.1016/j.cell.2005.08.040 10.1038/ncpcardio0442 10.1016/j.cell.2013.05.001 10.1016/j.stem.2009.12.009 10.1016/j.cell.2009.01.023 10.1038/nature07061 10.1101/gad.176826.111 10.1038/embor.2011.11 10.1038/nbt1374 10.1016/j.devcel.2013.05.004 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 8FD FR3 H94 P64 7S9 L.6 |
DOI | 10.1016/j.stem.2013.06.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Immunology Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 350 |
ExternalDocumentID | 23871606 10_1016_j_stem_2013_06_019 S193459091300307X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QO 7T5 8FD FR3 H94 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c500t-a27e30dc0073a539f8d2655e7fafeb6ede79aa0fdf8f7f5d973395d9cc4079ad3 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Tue Aug 05 10:27:31 EDT 2025 Fri Jul 11 15:07:27 EDT 2025 Mon Jul 21 10:01:21 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Tue Jul 01 01:08:24 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-a27e30dc0073a539f8d2655e7fafeb6ede79aa0fdf8f7f5d973395d9cc4079ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S193459091300307X |
PMID | 23871606 |
PQID | 1431297528 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1733556498 proquest_miscellaneous_1560110192 proquest_miscellaneous_1431297528 pubmed_primary_23871606 crossref_primary_10_1016_j_stem_2013_06_019 crossref_citationtrail_10_1016_j_stem_2013_06_019 elsevier_sciencedirect_doi_10_1016_j_stem_2013_06_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-05 |
PublicationDateYYYYMMDD | 2013-09-05 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Suzuki, Raya, Kawakami, Morita, Matsui, Nakashima, Gage, Rodríguez-Esteban, Izpisúa Belmonte (bib24) 2006; 3 Kim, Zaehres, Wu, Gentile, Ko, Sebastiano, Araúzo-Bravo, Ruau, Han, Zenke, Schöler (bib9) 2008; 454 Shu, Wu, Wu, Li, Shao, Zhao, Tang, Yang, Shen, Zuo (bib22) 2013; 153 Kurian, Sancho-Martinez, Nivet, Aguirre, Moon, Pendaries, Volle-Challier, Bono, Herbert, Pulecio (bib12) 2013; 10 Zipori (bib30) 2004; 5 Nishiyama, Xin, Sharov, Thomas, Mowrer, Meyers, Piao, Mehta, Yee, Nakatake (bib15) 2009; 5 Niwa, Toyooka, Shimosato, Strumpf, Takahashi, Yagi, Rossant (bib16) 2005; 123 Frum, Halbisen, Wang, Amiri, Robson, Ralston (bib3) 2013 Wang, Oron, Nelson, Razis, Ivanova (bib27) 2012; 10 Ralston, Cox, Nishioka, Sasaki, Chea, Rugg-Gunn, Guo, Robson, Draper, Rossant (bib18) 2010; 137 Wang, Chen, Hu, Wei, Qin, Gao, Zhang, Jiang, Li, Liu (bib26) 2011; 12 Home, Ray, Dutta, Bronshteyn, Larson, Paul (bib5) 2009; 284 Kim, Sebastiano, Wu, Araúzo-Bravo, Sasse, Gentile, Ko, Ruau, Ehrich, van den Boom (bib11) 2009; 136 Thomson, Liu, Zou, Smith, Meissner, Ramanathan (bib25) 2011; 145 Zaret, Carroll (bib29) 2011; 25 Kamiya, Banno, Sasai, Ohgushi, Inomata, Watanabe, Kawada, Yakura, Kiyonari, Nakao (bib7) 2011; 470 Chan, Ratanasirintrawoot, Park, Manos, Loh, Huo, Miller, Hartung, Rho, Ince (bib2) 2009; 27 Heng, Feng, Han, Jiang, Kraus, Ng, Orlov, Huss, Yang, Lufkin (bib4) 2010; 6 Ichida, Blanchard, Lam, Son, Chung, Egli, Loh, Carter, Di Giorgio, Koszka (bib6) 2009; 5 Karwacki-Neisius, Göke, Osorno, Halbritter, Ng, Weiße, Wong, Gagliardi, Mullin, Festuccia (bib8) 2013; 12 Loh, Lim (bib13) 2011; 8 Kim, Greber, Araúzo-Bravo, Meyer, Park, Zaehres, Schöler (bib10) 2009; 461 Redmer, Diecke, Grigoryan, Quiroga-Negreira, Birchmeier, Besser (bib19) 2011; 12 Xu, Shi, Ding (bib28) 2008; 453 Carey, Markoulaki, Hanna, Faddah, Buganim, Kim, Ganz, Steine, Cassady, Creyghton (bib1) 2011; 9 Nakagawa, Koyanagi, Tanabe, Takahashi, Ichisaka, Aoi, Okita, Mochiduki, Takizawa, Yamanaka (bib14) 2008; 26 Radzisheuskaya, Le Bin Chia, Dos Santos, Theunissen, Castro, Nichols, Silva (bib17) 2013; 15 Sarkar, Hochedlinger (bib21) 2013; 12 Soufi, Donahue, Zaret (bib23) 2012; 151 Sakaki-Yumoto, Katsuno, Derynck (bib20) 2013; 1830 Zaret (10.1016/j.stem.2013.06.019_bib29) 2011; 25 Sarkar (10.1016/j.stem.2013.06.019_bib21) 2013; 12 Ralston (10.1016/j.stem.2013.06.019_bib18) 2010; 137 Loh (10.1016/j.stem.2013.06.019_bib13) 2011; 8 Kurian (10.1016/j.stem.2013.06.019_bib12) 2013; 10 Kamiya (10.1016/j.stem.2013.06.019_bib7) 2011; 470 Radzisheuskaya (10.1016/j.stem.2013.06.019_bib17) 2013; 15 Kim (10.1016/j.stem.2013.06.019_bib11) 2009; 136 Thomson (10.1016/j.stem.2013.06.019_bib25) 2011; 145 Redmer (10.1016/j.stem.2013.06.019_bib19) 2011; 12 Home (10.1016/j.stem.2013.06.019_bib5) 2009; 284 Wang (10.1016/j.stem.2013.06.019_bib26) 2011; 12 Shu (10.1016/j.stem.2013.06.019_bib22) 2013; 153 Karwacki-Neisius (10.1016/j.stem.2013.06.019_bib8) 2013; 12 Carey (10.1016/j.stem.2013.06.019_bib1) 2011; 9 Kim (10.1016/j.stem.2013.06.019_bib10) 2009; 461 Wang (10.1016/j.stem.2013.06.019_bib27) 2012; 10 Nishiyama (10.1016/j.stem.2013.06.019_bib15) 2009; 5 Suzuki (10.1016/j.stem.2013.06.019_bib24) 2006; 3 Kim (10.1016/j.stem.2013.06.019_bib9) 2008; 454 Zipori (10.1016/j.stem.2013.06.019_bib30) 2004; 5 Xu (10.1016/j.stem.2013.06.019_bib28) 2008; 453 Chan (10.1016/j.stem.2013.06.019_bib2) 2009; 27 Nakagawa (10.1016/j.stem.2013.06.019_bib14) 2008; 26 Frum (10.1016/j.stem.2013.06.019_bib3) 2013 Heng (10.1016/j.stem.2013.06.019_bib4) 2010; 6 Sakaki-Yumoto (10.1016/j.stem.2013.06.019_bib20) 2013; 1830 Ichida (10.1016/j.stem.2013.06.019_bib6) 2009; 5 Soufi (10.1016/j.stem.2013.06.019_bib23) 2012; 151 Niwa (10.1016/j.stem.2013.06.019_bib16) 2005; 123 24012365 - Cell Stem Cell. 2013 Sep 5;13(3):261-2 |
References_xml | – volume: 1830 start-page: 2280 year: 2013 end-page: 2296 ident: bib20 article-title: TGF-β family signaling in stem cells publication-title: Biochim. Biophys. Acta – volume: 26 start-page: 101 year: 2008 end-page: 106 ident: bib14 article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts publication-title: Nat. Biotechnol. – volume: 470 start-page: 503 year: 2011 end-page: 509 ident: bib7 article-title: Intrinsic transition of embryonic stem-cell differentiation into neural progenitors publication-title: Nature – volume: 12 start-page: 720 year: 2011 end-page: 726 ident: bib19 article-title: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming publication-title: EMBO Rep. – volume: 454 start-page: 646 year: 2008 end-page: 650 ident: bib9 article-title: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors publication-title: Nature – volume: 10 start-page: 77 year: 2013 end-page: 83 ident: bib12 article-title: Conversion of human fibroblasts to angioblast-like progenitor cells publication-title: Nat. Methods – volume: 6 start-page: 167 year: 2010 end-page: 174 ident: bib4 article-title: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells publication-title: Cell Stem Cell – volume: 25 start-page: 2227 year: 2011 end-page: 2241 ident: bib29 article-title: Pioneer transcription factors: establishing competence for gene expression publication-title: Genes Dev. – volume: 5 start-page: 420 year: 2009 end-page: 433 ident: bib15 article-title: Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors publication-title: Cell Stem Cell – year: 2013 ident: bib3 article-title: Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst publication-title: Dev. Cell – volume: 8 start-page: 363 year: 2011 end-page: 369 ident: bib13 article-title: A precarious balance: pluripotency factors as lineage specifiers publication-title: Cell Stem Cell – volume: 5 start-page: 873 year: 2004 end-page: 878 ident: bib30 article-title: The nature of stem cells: state rather than entity publication-title: Nat. Rev. Genet. – volume: 137 start-page: 395 year: 2010 end-page: 403 ident: bib18 article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2 publication-title: Development – volume: 151 start-page: 994 year: 2012 end-page: 1004 ident: bib23 article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome publication-title: Cell – volume: 12 start-page: 531 year: 2013 end-page: 545 ident: bib8 article-title: Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog publication-title: Cell Stem Cell – volume: 15 start-page: 579 year: 2013 end-page: 590 ident: bib17 article-title: A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages publication-title: Nat. Cell Biol. – volume: 3 start-page: S114 year: 2006 end-page: S122 ident: bib24 article-title: Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification publication-title: Nat. Clin. Pract. Cardiovasc. Med. – volume: 10 start-page: 440 year: 2012 end-page: 454 ident: bib27 article-title: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells publication-title: Cell Stem Cell – volume: 284 start-page: 28729 year: 2009 end-page: 28737 ident: bib5 article-title: GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression publication-title: J. Biol. Chem. – volume: 453 start-page: 338 year: 2008 end-page: 344 ident: bib28 article-title: A chemical approach to stem-cell biology and regenerative medicine publication-title: Nature – volume: 461 start-page: 649 year: 2009 end-page: 653 ident: bib10 article-title: Direct reprogramming of human neural stem cells by OCT4 publication-title: Nature – volume: 136 start-page: 411 year: 2009 end-page: 419 ident: bib11 article-title: Oct4-induced pluripotency in adult neural stem cells publication-title: Cell – volume: 9 start-page: 588 year: 2011 end-page: 598 ident: bib1 article-title: Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 145 start-page: 875 year: 2011 end-page: 889 ident: bib25 article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers publication-title: Cell – volume: 5 start-page: 491 year: 2009 end-page: 503 ident: bib6 article-title: A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog publication-title: Cell Stem Cell – volume: 27 start-page: 1033 year: 2009 end-page: 1037 ident: bib2 article-title: Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells publication-title: Nat. Biotechnol. – volume: 123 start-page: 917 year: 2005 end-page: 929 ident: bib16 article-title: Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation publication-title: Cell – volume: 153 start-page: 963 year: 2013 end-page: 975 ident: bib22 article-title: Induction of pluripotency in mouse somatic cells with lineage specifiers publication-title: Cell – volume: 12 start-page: 373 year: 2011 end-page: 378 ident: bib26 article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors publication-title: EMBO Rep. – volume: 12 start-page: 15 year: 2013 end-page: 30 ident: bib21 article-title: The sox family of transcription factors: versatile regulators of stem and progenitor cell fate publication-title: Cell Stem Cell – volume: 284 start-page: 28729 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib5 article-title: GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.016840 – volume: 5 start-page: 491 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib6 article-title: A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.09.012 – volume: 470 start-page: 503 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib7 article-title: Intrinsic transition of embryonic stem-cell differentiation into neural progenitors publication-title: Nature doi: 10.1038/nature09726 – volume: 145 start-page: 875 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib25 article-title: Pluripotency factors in embryonic stem cells regulate differentiation into germ layers publication-title: Cell doi: 10.1016/j.cell.2011.05.017 – volume: 453 start-page: 338 year: 2008 ident: 10.1016/j.stem.2013.06.019_bib28 article-title: A chemical approach to stem-cell biology and regenerative medicine publication-title: Nature doi: 10.1038/nature07042 – volume: 9 start-page: 588 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib1 article-title: Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.11.003 – volume: 8 start-page: 363 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib13 article-title: A precarious balance: pluripotency factors as lineage specifiers publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.03.013 – volume: 5 start-page: 420 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib15 article-title: Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.07.012 – volume: 1830 start-page: 2280 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib20 article-title: TGF-β family signaling in stem cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.08.008 – volume: 151 start-page: 994 year: 2012 ident: 10.1016/j.stem.2013.06.019_bib23 article-title: Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 12 start-page: 531 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib8 article-title: Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.04.023 – volume: 12 start-page: 15 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib21 article-title: The sox family of transcription factors: versatile regulators of stem and progenitor cell fate publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.12.007 – volume: 461 start-page: 649 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib10 article-title: Direct reprogramming of human neural stem cells by OCT4 publication-title: Nature doi: 10.1038/nature08436 – volume: 137 start-page: 395 year: 2010 ident: 10.1016/j.stem.2013.06.019_bib18 article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2 publication-title: Development doi: 10.1242/dev.038828 – volume: 15 start-page: 579 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib17 article-title: A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages publication-title: Nat. Cell Biol. doi: 10.1038/ncb2742 – volume: 10 start-page: 77 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib12 article-title: Conversion of human fibroblasts to angioblast-like progenitor cells publication-title: Nat. Methods doi: 10.1038/nmeth.2255 – volume: 12 start-page: 720 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib19 article-title: E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming publication-title: EMBO Rep. doi: 10.1038/embor.2011.88 – volume: 10 start-page: 440 year: 2012 ident: 10.1016/j.stem.2013.06.019_bib27 article-title: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.016 – volume: 5 start-page: 873 year: 2004 ident: 10.1016/j.stem.2013.06.019_bib30 article-title: The nature of stem cells: state rather than entity publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1475 – volume: 27 start-page: 1033 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib2 article-title: Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1580 – volume: 123 start-page: 917 year: 2005 ident: 10.1016/j.stem.2013.06.019_bib16 article-title: Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation publication-title: Cell doi: 10.1016/j.cell.2005.08.040 – volume: 3 start-page: S114 issue: Suppl 1 year: 2006 ident: 10.1016/j.stem.2013.06.019_bib24 article-title: Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification publication-title: Nat. Clin. Pract. Cardiovasc. Med. doi: 10.1038/ncpcardio0442 – volume: 153 start-page: 963 year: 2013 ident: 10.1016/j.stem.2013.06.019_bib22 article-title: Induction of pluripotency in mouse somatic cells with lineage specifiers publication-title: Cell doi: 10.1016/j.cell.2013.05.001 – volume: 6 start-page: 167 year: 2010 ident: 10.1016/j.stem.2013.06.019_bib4 article-title: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.12.009 – volume: 136 start-page: 411 year: 2009 ident: 10.1016/j.stem.2013.06.019_bib11 article-title: Oct4-induced pluripotency in adult neural stem cells publication-title: Cell doi: 10.1016/j.cell.2009.01.023 – volume: 454 start-page: 646 year: 2008 ident: 10.1016/j.stem.2013.06.019_bib9 article-title: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors publication-title: Nature doi: 10.1038/nature07061 – volume: 25 start-page: 2227 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib29 article-title: Pioneer transcription factors: establishing competence for gene expression publication-title: Genes Dev. doi: 10.1101/gad.176826.111 – volume: 12 start-page: 373 year: 2011 ident: 10.1016/j.stem.2013.06.019_bib26 article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors publication-title: EMBO Rep. doi: 10.1038/embor.2011.11 – volume: 26 start-page: 101 year: 2008 ident: 10.1016/j.stem.2013.06.019_bib14 article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts publication-title: Nat. Biotechnol. doi: 10.1038/nbt1374 – year: 2013 ident: 10.1016/j.stem.2013.06.019_bib3 article-title: Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.05.004 – reference: 24012365 - Cell Stem Cell. 2013 Sep 5;13(3):261-2 |
SSID | ssj0057107 |
Score | 2.4624274 |
Snippet | Since the initial discovery that OCT4, SOX2, KLF4, and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 341 |
SubjectTerms | bioinformatics Cell Dedifferentiation - genetics Cell Lineage Cells, Cultured Computational Biology - methods fibroblasts Fibroblasts - physiology GATA3 Transcription Factor - genetics GATA3 Transcription Factor - metabolism Gene Expression Profiling Gene Expression Regulation - genetics Guided Tissue Regeneration Humans mice Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Pluripotent Stem Cells - physiology RNA, Small Interfering - genetics somatic cells SOXB1 Transcription Factors - genetics SOXB1 Transcription Factors - metabolism transcriptome Transgenes - genetics |
Title | Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers |
URI | https://dx.doi.org/10.1016/j.stem.2013.06.019 https://www.ncbi.nlm.nih.gov/pubmed/23871606 https://www.proquest.com/docview/1431297528 https://www.proquest.com/docview/1560110192 https://www.proquest.com/docview/1733556498 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7E91sieJOybfNqjrq4iKAIKvRWkjaBFd0ubvfgv3cmbQVBe_BUKJPSTqYz32RehFyYJNYZY-CbKGnAQSlNZK0SkVBWAT62LAsR3fsHefvC73KRr5BxXwuDaZWd7m91etDW3Z1Rx83RfDodPQH04EJjX8sgqTnoYcazUMSXX_faWIAFVW1kmUdI3RXOtDle2CsZ07tY6OGJ3XZ-N05_gc9ghCabZKNDj_SqfcEtsuJm22StnSf5uUPuAE63-VbvYJFo7Wk4o6cT8IlrCzi5WdCmpo9vS1AVNaLlT4oHsRQ8UgeKhYZp9B6nY--Sl8nN8_g26oYlRKWI4yYyqXIsrkoMvRnBtM-qVArhlDfeWekqp7Qxsa985pUXlVaMabiUJbh02lRsj6zO6pk7IBSEi7uKW6fLlLvUW1ZJHjspnYMt9-aQJD2XirLrJI4DLd6KPmXstUDOFsjZAvPmEn1ILr_XzNs-GoPUomd-8UMaClD0g-vO-50q4DfB2IeZuXq5AA-HJVhEnGYDNOidJoh5B2iAbUJIruE5-60ofH8PoB_wPmN59M-3PybraRi2oaNYnJDV5mPpTgHyNPYsyPQXnjv_nw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2I77dG8CZl26ZJmqOKy_pEUGFvIWkTUHQr2j34751JW0HQPXgqlKS0k-nM92UmM4QcmSRWOWPATaQwQFAKE1krecSllYCPLctDRPfmVgwes8shH06Rs-4sDKZVtra_senBWrd3eq00e29PT717gB4ZV1jXMmjqcJrMAhqQ2L_hYnjamWMOLlQ2oeUswuHtyZkmyQuLJWN-FwtFPLHczu_e6S_0GbxQf4kstvCRnjRvuEym3GiFzDUNJT9XySXg6Sbh6hVcEq08DZv0tA-kuLIAlOsPWlf07mUMtqJCuPxJcSeWAiV1YFloaEfvsT32Gnnsnz-cDaK2W0JU8DiuI5NKx-KywNib4Uz5vEwF5056450VrnRSGRP70udeel4qyZiCS1EAp1OmZOtkZlSN3CahoF2ZKzPrVJFmLvWWlSKLnRDOwZp7s0WSTkq6aEuJY0eLF93ljD1rlKxGyWpMnEvUFjn-nvPWFNKYOJp3wtc_1EGDpZ8477BbKQ3_CQY_zMhV4w-gOCzBU8RpPmEM0tMEQe-EMSA2zkWm4DkbjSp8fw_AH6Cfsdj-59sfkPnBw821vr64vdohC2novKGimO-Smfp97PYA_9R2P-j3F3gAAs0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reprogramming+of+Human+Fibroblasts+to+Pluripotency+with+Lineage+Specifiers&rft.jtitle=Cell+stem+cell&rft.au=Montserrat%2C+Nuria&rft.au=Nivet%2C+Emmanuel&rft.au=Sancho-Martinez%2C+Ignacio&rft.au=Hishida%2C+Tomoaki&rft.date=2013-09-05&rft.issn=1934-5909&rft.volume=13&rft.issue=3+p.341-350&rft.spage=341&rft.epage=350&rft_id=info:doi/10.1016%2Fj.stem.2013.06.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |