Degradation of contaminants in plasma technology: An overview
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configu...
Saved in:
Published in | Journal of hazardous materials Vol. 424; no. Pt A; p. 127390 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.
[Display omitted]
•Different types of plasma technology system have been used widely in many research fields.•Plasma bubble reactor shows a good result on the treatment of organic pollutants.•Many reactive species play an integral role to degrade pollutants in the plasma system.•SARS-CoV-2 virus can be inactivated via an atmospheric-cold plasma. |
---|---|
AbstractList | The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. ga1 The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. [Display omitted] •Different types of plasma technology system have been used widely in many research fields.•Plasma bubble reactor shows a good result on the treatment of organic pollutants.•Many reactive species play an integral role to degrade pollutants in the plasma system.•SARS-CoV-2 virus can be inactivated via an atmospheric-cold plasma. The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. |
ArticleNumber | 127390 |
Author | Sanito, Raynard Christianson Wang, Ya-Fen You, Sheng-Jie |
Author_xml | – sequence: 1 givenname: Raynard Christianson surname: Sanito fullname: Sanito, Raynard Christianson organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC – sequence: 2 givenname: Sheng-Jie surname: You fullname: You, Sheng-Jie organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC – sequence: 3 givenname: Ya-Fen surname: Wang fullname: Wang, Ya-Fen email: yfwang@cycu.edu.tw organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34879580$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9vFCEUxYmpsdvqR9DMoy-zwsAAo7GmqX-TJr7oM2HgsstmBlZg19RPL3W3Rn2pTzxwzrnn3t8ZOgkxAEJPCV4STPiLzXKz1j9mXZYd7siSdIIO-AFaECloSynlJ2iBKWYtlQM7RWc5bzDGRPTsETqlTIqhl3iBXr-FVdJWFx9DE11jYih69kGHkhsfmu2k86ybAmYd4hRXNy-byyrcQ9p7-P4YPXR6yvDk-J6jr-_ffbn62F5__vDp6vK6NT3GpR2Mw7IXzjriejcMZnRMCCGl1dyYzgprtGaACR4d8G4crZCcEwEOHNME03N0ccjd7sYZrIFQkp7UNvlZpxsVtVd__wS_Vqu4V7LO54OsAc-PASl-20EuavbZwDTpAHGXVccpl4QJ3P2HtO5CO8FYlT77s9bvPnfnrYJXB4FJMecEThlfft26tvSTIljdwlQbdYSpbmGqA8zq7v9x3w24z_fm4IOKpGJKKhsPwYD1CUxRNvp7En4C_Ee9jA |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_122762 crossref_primary_10_1016_j_eti_2022_102725 crossref_primary_10_1016_j_jwpe_2023_104350 crossref_primary_10_1016_j_psep_2022_10_014 crossref_primary_10_1007_s11356_024_34475_4 crossref_primary_10_1016_j_apsusc_2023_158254 crossref_primary_10_1016_j_mseb_2024_117545 crossref_primary_10_1016_j_watres_2025_123435 crossref_primary_10_1016_j_cej_2023_142753 crossref_primary_10_1016_j_jenvman_2024_122861 crossref_primary_10_1016_j_jcis_2024_10_030 crossref_primary_10_1002_chem_202301666 crossref_primary_10_1088_1402_4896_ad6bfa crossref_primary_10_3389_fmicb_2022_1100102 crossref_primary_10_3390_plasma7030038 crossref_primary_10_1016_j_arabjc_2023_105048 crossref_primary_10_1016_j_heliyon_2024_e32428 crossref_primary_10_1016_j_susmat_2025_e01300 crossref_primary_10_1007_s11356_023_31238_5 crossref_primary_10_1016_j_jece_2023_111758 crossref_primary_10_1016_j_radphyschem_2024_111694 crossref_primary_10_2139_ssrn_4163778 crossref_primary_10_54021_seesv6n1_001 crossref_primary_10_1016_j_seppur_2022_121639 crossref_primary_10_3390_polym15132850 crossref_primary_10_1016_j_jwpe_2024_105915 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1016_j_heliyon_2022_e11240 crossref_primary_10_1016_j_seppur_2022_121913 crossref_primary_10_1088_1361_6463_ac40bb crossref_primary_10_3390_atmos15121446 crossref_primary_10_1016_j_scitotenv_2022_155707 crossref_primary_10_3390_su162310568 crossref_primary_10_1021_acsomega_4c04302 crossref_primary_10_1021_acsomega_4c01596 crossref_primary_10_3390_su16114855 crossref_primary_10_1016_j_apsusc_2024_159699 crossref_primary_10_1016_j_jece_2023_111330 crossref_primary_10_1016_j_lwt_2024_116943 crossref_primary_10_1515_gps_2022_0092 crossref_primary_10_1016_j_jwpe_2024_106183 crossref_primary_10_1016_j_fuel_2022_125297 crossref_primary_10_1109_TPS_2024_3359116 crossref_primary_10_1016_j_enconman_2022_115514 crossref_primary_10_1016_j_eti_2023_103011 crossref_primary_10_1016_j_jhazmat_2024_135787 crossref_primary_10_3390_pr12102128 crossref_primary_10_1088_1361_6463_acca2f crossref_primary_10_2139_ssrn_4119764 crossref_primary_10_1016_j_envres_2023_115976 crossref_primary_10_1016_j_susmat_2023_e00643 crossref_primary_10_1007_s11356_024_33442_3 crossref_primary_10_1016_j_seppur_2023_123317 crossref_primary_10_1016_j_cej_2023_144316 crossref_primary_10_3390_catal13020431 crossref_primary_10_1016_j_clwat_2024_100018 crossref_primary_10_3390_toxics12010040 crossref_primary_10_1007_s11356_023_25880_2 crossref_primary_10_1007_s11356_023_25524_5 crossref_primary_10_1016_j_scitotenv_2023_164933 crossref_primary_10_1016_j_heliyon_2022_e10137 crossref_primary_10_3390_w15081562 crossref_primary_10_1016_j_seppur_2023_124680 crossref_primary_10_1016_j_solener_2024_112854 crossref_primary_10_1016_j_seppur_2024_127431 crossref_primary_10_1016_j_chemosphere_2023_139246 crossref_primary_10_1088_1361_6463_ad5c76 crossref_primary_10_1016_j_cej_2023_142491 crossref_primary_10_1016_j_chemosphere_2022_136696 crossref_primary_10_1016_j_jece_2025_116150 crossref_primary_10_1016_j_chemosphere_2023_138061 crossref_primary_10_1016_j_chemosphere_2024_142586 crossref_primary_10_1007_s42250_024_01174_z crossref_primary_10_1088_1361_6463_ad8bd2 crossref_primary_10_1021_acssuschemeng_2c04269 crossref_primary_10_1016_j_seppur_2022_121362 crossref_primary_10_1016_j_cej_2025_159345 crossref_primary_10_1016_j_seppur_2024_129252 crossref_primary_10_1016_j_jwpe_2024_105358 crossref_primary_10_1016_j_jwpe_2023_104169 crossref_primary_10_3390_catal12091051 crossref_primary_10_1016_j_jece_2024_113712 crossref_primary_10_1002_ppap_202200181 crossref_primary_10_1016_j_energy_2023_126910 crossref_primary_10_1016_j_seppur_2024_126497 crossref_primary_10_1021_acsomega_2c00617 crossref_primary_10_1016_j_cej_2025_160334 crossref_primary_10_1016_j_biortech_2023_129480 crossref_primary_10_1016_j_jclepro_2023_135930 crossref_primary_10_3390_app13074221 crossref_primary_10_1016_j_seppur_2023_123445 crossref_primary_10_1016_j_ceja_2023_100443 crossref_primary_10_1016_j_seppur_2022_121644 crossref_primary_10_1080_10962247_2023_2282011 |
Cites_doi | 10.1109/TPS.2018.2808243 10.1088/0022-3727/42/20/202002 10.1021/es404296x 10.1016/j.scitotenv.2014.11.017 10.1016/j.cej.2013.04.114 10.1039/C8SE00584B 10.1088/0022-3727/45/25/253001 10.1016/j.chemosphere.2016.09.089 10.1016/j.cpme.2017.06.002 10.1016/j.jenvman.2015.05.004 10.1080/10962247.2019.1582441 10.1016/j.lwt.2018.10.095 10.1016/j.eti.2021.101502 10.1109/PLASMA.2012.6383555 10.1016/j.jhazmat.2021.125658 10.3389/fphy.2021.683118 10.4315/0362-028X.JFP-18-136 10.1021/acs.est.7b05111 10.1111/1541-4337.12398 10.3182/20130825-4-US-2038.00109 10.1016/j.cej.2020.126413 10.1088/0963-0252/20/3/034006 10.1088/0022-3727/41/5/053001 10.1203/PDR.0b013e3181a9eafb 10.1016/j.cej.2012.07.088 10.1016/j.jhazmat.2008.04.017 10.1016/j.seppur.2019.03.057 10.1016/j.jaap.2008.03.001 10.1016/j.niox.2010.09.005 10.1016/j.tsf.2007.10.062 10.1016/j.scitotenv.2020.142295 10.1016/j.cej.2015.02.027 10.1016/j.ijfoodmicro.2016.09.006 10.1016/j.chemosphere.2018.09.138 10.1016/j.tibtech.2020.04.003 10.1016/S0360-1285(98)00021-5 10.1016/j.ijhydene.2010.06.104 10.1016/j.cej.2020.127742 10.1088/0963-0252/23/1/015019 10.1109/TPS.2008.2001084 10.1016/S1001-0742(07)60229-0 10.1016/j.cej.2012.11.116 10.1016/j.biortech.2014.03.067 10.1016/j.electacta.2017.05.121 10.1016/j.renene.2016.04.080 10.1016/j.jenvman.2021.112380 10.1371/journal.pone.0199832 10.1016/j.jhazmat.2018.08.095 10.1016/j.jhazmat.2011.08.060 10.1016/j.jhazmat.2020.122558 10.1088/1361-6463/ab1466 10.1016/j.cej.2013.08.114 10.1128/AEM.02836-17 10.1109/TPS.2012.2206119 10.1016/j.jhazmat.2011.05.086 10.1088/0741-3335/47/12B/S43 10.1007/s11090-010-9215-x 10.1016/j.jaap.2018.01.014 10.1088/0022-3727/49/20/204001 10.1007/BF00705312 10.1016/j.cpme.2015.10.001 10.1016/j.wasman.2006.07.027 10.1016/j.chemosphere.2017.03.126 10.1021/acs.chemrev.5b00407 10.1371/journal.pone.0217788 10.1016/j.foodcont.2016.12.021 10.1016/j.ijhydene.2008.10.061 10.1016/j.cap.2013.04.021 10.1016/j.jhazmat.2017.12.064 10.1088/0022-3727/49/40/404002 10.3390/ma11101925 10.1016/j.jhazmat.2021.126906 10.1021/es1014967 10.1016/j.jenvman.2020.110910 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jhazmat.2021.127390 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
EndPage | 127390 |
ExternalDocumentID | PMC8500698 34879580 10_1016_j_jhazmat_2021_127390 S030438942102358X |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c500t-9cf0857fdf1f5f99cbf477788da6cc2d7dcaa4e010bfe62bbd786617efef4a103 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Thu Aug 21 17:34:37 EDT 2025 Tue Aug 05 10:44:10 EDT 2025 Mon Jul 21 10:54:52 EDT 2025 Thu Apr 03 07:06:43 EDT 2025 Tue Jul 01 00:49:54 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 23 02:38:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Photocatalytic Reactive species Plasma technologies Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Discharge plasma |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-9cf0857fdf1f5f99cbf477788da6cc2d7dcaa4e010bfe62bbd786617efef4a103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8500698 |
PMID | 34879580 |
PQID | 2608532744 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8500698 proquest_miscellaneous_2636814702 proquest_miscellaneous_2608532744 pubmed_primary_34879580 crossref_citationtrail_10_1016_j_jhazmat_2021_127390 crossref_primary_10_1016_j_jhazmat_2021_127390 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_127390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Perez, Biondi, Laurita, Proto, Sarti, Gherardi, Bertaccini, Colombo (bib77) 2019; 14 Cubas, Machado, Machado, Gross, Magnago, Moecke, Souza (bib23) 2015; 159 Iervolino, Vaiano, Pepe, Campiglia, Palma (bib48) 2020; 10 Cubas, Machado, Santos, Zanco, Ribeiro, Andre, Debacher, Moecke (bib25) 2019; 222 Fridman, Kennedy (bib34) 2011 Borges, Nishime, Kostov, Lima, Gontijo, Carvalho, Honda, Ito (bib12) 2017; 7-8 Liao, Liu, Xiang, Ahn, Chen, Ye, Ding (bib57) 2017; 75 Lukes, Locke, Brisset (bib63) 2012 Tetronics (bib98) 2015 Gomez, Rani, Cheeseman, Deegan, Wise, Boccaccini (bib38) 2009; 161 Chang (bib15) 2009; 3 Zinovlev, Fornasiero, Lodolo, Miertus (bib117) 2007 Song, Wang, Jiao, Qu, Chen, Wang, Wang, Zhang, Ling (bib92) 2022; 422 Mohamed, Nayak, Rendine, Wigdahl, Krebs, Bruggeman, Miller (bib73) 2021; 9 Tsai, Chen (bib99) 2009; 34 Samukawa, Hori, Rauf, Tachibana, Bruggeman, Kroesen, Whitehead, Murphy, Gutsol, Starikovskaia, Kortshagen, Boeuf, Sommerer, Kushner, Czanetzki, Mason (bib82) 2012; 45 Filipic, Guttierez-Aguirre, Prmic, Mozetic, Dobnik (bib32) 2020; Vol. 38 PANI composites as a disinfectant for the elimination of Zeghioud, Nguyen-Tri, Khezami, Amrane, Assadi (bib108) 2020; 387 Li and collaborators (Li et al., 2001). -→ Li and collaborators (Li et al., 2021). Sanito, You, Chang, Wang (bib84) 2020; 394 Scally, Gulan, Weigang, Cullen, Milosavljevic (bib89) 2018; 11 . Xia, T., Kleinheksel, A., Lee, E.M., Qiao, Z., Wigginton, K.R., Clack, H.L., 2019, Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 52, 255201. Journal of Applied Physics. Nayak, Aboubakr, Goyal, Bruggeman (bib76) 2017; 15 Heberlein, Murphy (bib43) 2008; 41 Mao, Chen, Wu, Tang, Yao, Zhang, Jiang, Han, Wu, Lu, Nozaki (bib67) 2018; 347 Sirkawar, Zhao, Clough, Yao, Zhong, Memon, Shah, Anthony, Fennell (bib90) 2016; 9 Bansode, More, Siddiqui, Satpute, Ahmad, Bhoraskar, Mathe (bib6) 2017; 167 Fridman, Nester, Kennedy, Saveliev, Mutaf-Yardimci (bib35) 1999; 25 Su, Tian, Zhou, Li, Zhang, Jiang, Yang, Zhang, Fang (bib94) 2018; 84 Yan, Peng, Lu, Du, Li, Chen, Ni, Cen (bib107) 2007; 19 Ersoya, Barisci, Dinc (bib30) 2019; 100 Guo, Xu, Liu, Zhao, Liu, Zhang, Chen, Kong (bib40) 2018; 84 Moldgy, Nayak, Aboubakr, Goyal, Bruggeman (bib74) 2020; 53 Stoffels, Sakiyama, Graves (bib93) 2008; 36 Basu (bib7) 2010 Lukes, Dolezalova, Sisrova, Clupek (bib64) 2014; 23 Leins, Gaiser, Schulz, Walker, Schumacher, Hirth (bib52) 2015; Vol. 98 Aboubakr, Gangalk, Youssef, Goyai, Bruggeman (bib1) 2016; 49 Chandana, Reddy, Subrahmanyam (bib14) 2015; 282 Locke, Shih (bib60) 2011; 20 Bisag, Isabelli, Laurita, Bucci, Capelli, Dirani, Gherardi, Laghi, Paglianti, Sambri, Colombo (bib10) 2020 Zhu, Li, Zhu, Pu (bib115) 2009; 42 Wang, You, Tsai, Wang (bib101) 2010; 35 Misra, N.N., Yadav, B., Roopesh, M.S., Jo, C., 2019, Cold plasma for effective fungal mycotoxin control in foods: mechanisms, Inactivation effects and applications. Mai-Prochnow, Alam, Zhou, Zhang, Ostrikov, Cullen (bib66) 2020 Chapman (bib16) 1980 Sanito, R.C., Yeh, T.Z., You, S.J., Wang, Y.F., 2021b, Novel TiO Banaschik, Petr Lukes, Miron, Banaschik, Pipa, Fricke, Bednarski, Kolb (bib5) 2017; 245 Rossnagel, Cuomo, Westwood (bib81) 1991 Hayyan, Hashim, Al Nashef (bib42) 2016; 116 Zhang, Zhou, Wang, Mai-Prochnow, McConchie, Li, Zhou, Thompson, Ostrikov, Cullen (bib110) 2021 in aquaculture water. Watanabe, Tsuru (bib103) 2008; 516 Guo, Yao, Yang, Zhang, Qi, Guo, Xi, Liu, Zhang, Cheng, Wang, Rong, Chen, Kong (bib41) 2021; 421 Los, Ziuzina, Boehm, Cullen, Bourke (bib61) 2020; 86 Snoecx, Wessenbeeck, Lenaerts, Cha, Bogaerts (bib91) 2019; 3 Taylor, Pirzada (bib97) 1994; 1 Butscher, Loon, Waskow, van Rohr, Schuppler (bib13) 2016; 238 Cubas, Machado, Machado, Moecke, Dutra, Fiedler, Bueno (bib24) 2016; Vol. 39 Qu, Liang, Qu, Huang, Liu, Mao, Ji, Huang (bib78) 2013; 228 Wardenier, Vanraes, Nikiforov, van Hulle, Leys (bib102) 2019 Gorbunov (bib39) 2020; Vol 21 Li, Li, Zhang, Ji, Zhou, Guo, Zhao, Liu, Han (bib55) 2021; 9 Sanito, Chen, You, Yang, Hsieh, Wang (bib86) 2020; 20 Cubas, Machado, Machado, Gross, Magnago, Moecke, Souza (bib22) 2014; 48 Sanito, You, Wang (bib83) 2021; 288 Zhou, Zhang, Zhou, Mai-Prochnow, Ponraj, Fang, Masood, Kanangh, McClure, Alam, Ostrikov, Cullen (bib112) 2021; 750 Jiang, Zheng, Liu, Wu (bib49) 2012; 204–206 Garcia, Mora, Esquivel, Foster, Rodero, Jimenez-Sanchidiran, Romero-Salguero (bib37) 2017; 180 Mizeraczyk, Jasinski, Zakrzewski (bib72) 2005; 47 Belov, Vanneste, Aghaee, Paulussen, Bogaerts (bib9) 2016 Zimmerman, J.L., Dumler, K., Shimizu, T., Morfill, G.E., Wolf, A., Boxhammer, V., Schlegel, J., Gansbacher, B., Anton, M. 2011, Effectof cold atmospheric plasmas on adenoviruses in solution. Garcia, Varo, Martinez (bib36) 2010; 30 Medel, Bustos, Esquivel, Godinez, Meas (bib70) 2012; 681875 Wolf, von Gunten, Kohn (bib105) 2018; 52 Reddy, Raju, Karuppiah, Reddy, Subrahmanyam (bib80) 2013; 217 Vandenbroucke, Morent, De Geyter, Leys (bib100) 2011; 195 Rahuman, M.M.S.M., Pistone, L., Trifiro, F., Miertus, S., 2000, Destruction technologies for polychlorinated biphenyls (PCBs). In: Proceedings of Expert Group Meetings on POPs and Pesticides Contaminations: Remediation Technologies and on Clean Technologies for the Reduction and Elimination of POPs, pp. 1–55. Chen, Wang, Zhang, Chen, Zhu, Min, Tan (bib17) 2008; 82 Santos, Cubas, Moecke, Ribeiro, Amante (bib88) 2018; Vol. 81 Adamovich, Baalard, Bogaerts, Bruggeman, Cappelli, Colombo, Czarnetzki, Ebert, Eden, Favia, Graves, Hamaguchi, Hieftje, Hori, Kaganovich, Kortshagen, Kusher, Mason, Mazouffre, Thagard, Metelmann, Mizuno, Moreau, Murphy, Niemira, Oehrlein, Petrovic, Pitchford, Pu, Rauf, Sakai, Samukawa, Starikovskaia, Tennyson, Terashima, Turnere, van de Sanden, Verdelle (bib2) 2017; 50 Huang, Cheng, Chen, Zhan (bib47) 2016; 96 Mattox (bib69) 2010 Dobrin, Bradu, Magureanu, Mandache, Parvulescu (bib26) 2013; 234 Chung, Mei, Tu, Chang (bib20) 2018 Estifaee, Su, Yannam, Rogers, Thagard (bib31) 2019; 9 Liebmann, Scherer, Bibinov, Rajasekaran, Kovacs, Gesche, wakowicz, Kolb-Bachofen (bib58) 2011; 24 Wessenback (bib104) 2016 Cho, Lee, Mackeyev, Wilson, Alvarez, Hughes, Kim (bib19) 2010; 44 Borges, Lima, Nishime, Gontijo, Kostov, Ito (bib11) 2018; 13 Szalatkiewiczm J., 2013, Metals recovery from waste of printed circuit boards processed in plasmatron plasma reactor, 16th IFAC symposium in automation in mining, mineral and metal processing, 478–483. Hrabovsky, M., Konrad, M., Kopecky, V., Hlina, M., Kavka, T., Chumak, O., Maslani, A., Oost, G.V., 2010, Plasma aided gasification of biomass and plastics using CO Markovic, Jovic, Stankovic, Kovacevic, Roglic, Gojgic-Cvijovic, Manojlovic (bib68) 2015; 505 Du, Huang, Gong, Wei (bib29) 2018; Vol 46 Li, Rao, Zhang, Huang, Cao, Peng, Wu, Xiao, Huang (bib54) 2019; 21 Zhou, Zhou, Alam, Zhang, Li, Xia, Mai-Prochnow, An, Lovell, Masood, Amal, Ostrikov, Cullen (bib114) 2021; 403 Dojcinovic, Roglic, Obradovic, Kuraica, Kostic, Nesic, Manojlovic (bib27) 2011; 192 Du, Gong, Lin (bib28) 2019; Vol 69 Lu, Sun, Li, Yan, Diu (bib62) 2012; Vol. 40 Sanito, You, Chang, Wang (bib85) 2020; 270 and Zhou, Zhang, Zhou, Mai-Prochnow, Ponraj, Fang, Masood, Kanangh, McClure, Alam, Ostrikov, Cullen (bib113) 2021; 750 Hefny, Pattyn, Lukes, Benediktm (bib44) 2016; 49 Laurita, Barbieri, Gherardi, Colombo, Lukes (bib51) 2015; 3 Auten, Davis (bib4) 2009; 66 Chen, Junior, Arumugaswami, Wirz (bib18) 2020; 32 Bayarri, Alcalde, Lopez-Vinent, Mico, Sans (bib8) 2021; 415 Lin, Wu, Jhang, Yang, Hsiao (bib59) 2014; 161 Machala, Taabova, Hensel, Spetlikova, Sikurova, Lukes (bib65) 2013 Zhang, Liu, Zhou, Song, Sun, Sun, Zhang, Niu, Fan, Yang (bib111) 2014; 104 Kim, Yong, Park, Choe, Jo (bib50) 2013 APEXGREEN, 2021, Ding Jian Green Energy Technology Company Limited. Muvhiiwa, Sempuga, Hilderbant, van der Walt (bib75) 2018; 130 as oxidizer. International symposium on non-thermal/thermal plasma pollution control technology & sustainable energy, ISNTP 7. St John’s, newfoundland, Canada. Fridman (bib33) 2008 Higman, van der Burgt (bib45) 2008 Cubas, Ferreira, Goncalves, Machado, Debacher, Moecke (bib21) 2021; 271 Lemmens, Elslander, Vanderreydt, Peys, Diels, Oosterlinck, Joos (bib53) 2007; 27 Szalatkiewicz, Szewczyk, Budny, Missala, Winiarski (bib95) 2013; 57 Zhang, Zhou, Wang, Mai-Prochnow, McConchie, Li, Zhou, Thompson, Ostrikov, Cullen (bib109) 2021 10.1016/j.jhazmat.2021.127390_bib56 Scally (10.1016/j.jhazmat.2021.127390_bib89) 2018; 11 Fridman (10.1016/j.jhazmat.2021.127390_bib35) 1999; 25 Li (10.1016/j.jhazmat.2021.127390_bib55) 2021; 9 Machala (10.1016/j.jhazmat.2021.127390_bib65) 2013 Song (10.1016/j.jhazmat.2021.127390_bib92) 2022; 422 Auten (10.1016/j.jhazmat.2021.127390_bib4) 2009; 66 10.1016/j.jhazmat.2021.127390_bib106 Hayyan (10.1016/j.jhazmat.2021.127390_bib42) 2016; 116 Mao (10.1016/j.jhazmat.2021.127390_bib67) 2018; 347 Los (10.1016/j.jhazmat.2021.127390_bib61) 2020; 86 Reddy (10.1016/j.jhazmat.2021.127390_bib80) 2013; 217 Watanabe (10.1016/j.jhazmat.2021.127390_bib103) 2008; 516 Chen (10.1016/j.jhazmat.2021.127390_bib18) 2020; 32 Ersoya (10.1016/j.jhazmat.2021.127390_bib30) 2019; 100 Sanito (10.1016/j.jhazmat.2021.127390_bib85) 2020; 270 Sirkawar (10.1016/j.jhazmat.2021.127390_bib90) 2016; 9 10.1016/j.jhazmat.2021.127390_bib46 Wessenback (10.1016/j.jhazmat.2021.127390_bib104) 2016 Lukes (10.1016/j.jhazmat.2021.127390_bib64) 2014; 23 Zhang (10.1016/j.jhazmat.2021.127390_bib111) 2014; 104 Liao (10.1016/j.jhazmat.2021.127390_bib57) 2017; 75 Santos (10.1016/j.jhazmat.2021.127390_bib88) 2018; Vol. 81 Cubas (10.1016/j.jhazmat.2021.127390_bib22) 2014; 48 10.1016/j.jhazmat.2021.127390_bib116 Mattox (10.1016/j.jhazmat.2021.127390_bib69) 2010 Iervolino (10.1016/j.jhazmat.2021.127390_bib48) 2020; 10 Chung (10.1016/j.jhazmat.2021.127390_bib20) 2018 Dojcinovic (10.1016/j.jhazmat.2021.127390_bib27) 2011; 192 Liebmann (10.1016/j.jhazmat.2021.127390_bib58) 2011; 24 Locke (10.1016/j.jhazmat.2021.127390_bib60) 2011; 20 Mai-Prochnow (10.1016/j.jhazmat.2021.127390_bib66) 2020 Laurita (10.1016/j.jhazmat.2021.127390_bib51) 2015; 3 Dobrin (10.1016/j.jhazmat.2021.127390_bib26) 2013; 234 Bayarri (10.1016/j.jhazmat.2021.127390_bib8) 2021; 415 Jiang (10.1016/j.jhazmat.2021.127390_bib49) 2012; 204–206 Fridman (10.1016/j.jhazmat.2021.127390_bib34) 2011 Mizeraczyk (10.1016/j.jhazmat.2021.127390_bib72) 2005; 47 Wardenier (10.1016/j.jhazmat.2021.127390_bib102) 2019 Perez (10.1016/j.jhazmat.2021.127390_bib77) 2019; 14 Nayak (10.1016/j.jhazmat.2021.127390_bib76) 2017; 15 Zhang (10.1016/j.jhazmat.2021.127390_bib110) 2021 Sanito (10.1016/j.jhazmat.2021.127390_bib86) 2020; 20 Cubas (10.1016/j.jhazmat.2021.127390_bib23) 2015; 159 Du (10.1016/j.jhazmat.2021.127390_bib29) 2018; Vol 46 Garcia (10.1016/j.jhazmat.2021.127390_bib37) 2017; 180 Belov (10.1016/j.jhazmat.2021.127390_bib9) 2016 Qu (10.1016/j.jhazmat.2021.127390_bib78) 2013; 228 Guo (10.1016/j.jhazmat.2021.127390_bib40) 2018; 84 Estifaee (10.1016/j.jhazmat.2021.127390_bib31) 2019; 9 Samukawa (10.1016/j.jhazmat.2021.127390_bib82) 2012; 45 10.1016/j.jhazmat.2021.127390_bib3 Basu (10.1016/j.jhazmat.2021.127390_bib7) 2010 Borges (10.1016/j.jhazmat.2021.127390_bib11) 2018; 13 Lu (10.1016/j.jhazmat.2021.127390_bib62) 2012; Vol. 40 Tetronics (10.1016/j.jhazmat.2021.127390_bib98) 2015 Gomez (10.1016/j.jhazmat.2021.127390_bib38) 2009; 161 10.1016/j.jhazmat.2021.127390_bib96 Vandenbroucke (10.1016/j.jhazmat.2021.127390_bib100) 2011; 195 Chandana (10.1016/j.jhazmat.2021.127390_bib14) 2015; 282 Lukes (10.1016/j.jhazmat.2021.127390_bib63) 2012 Filipic (10.1016/j.jhazmat.2021.127390_bib32) 2020; Vol. 38 Garcia (10.1016/j.jhazmat.2021.127390_bib36) 2010; 30 Zhou (10.1016/j.jhazmat.2021.127390_bib113) 2021; 750 Gorbunov (10.1016/j.jhazmat.2021.127390_bib39) 2020; Vol 21 Chen (10.1016/j.jhazmat.2021.127390_bib17) 2008; 82 Lin (10.1016/j.jhazmat.2021.127390_bib59) 2014; 161 Chapman (10.1016/j.jhazmat.2021.127390_bib16) 1980 Yan (10.1016/j.jhazmat.2021.127390_bib107) 2007; 19 Heberlein (10.1016/j.jhazmat.2021.127390_bib43) 2008; 41 Huang (10.1016/j.jhazmat.2021.127390_bib47) 2016; 96 Borges (10.1016/j.jhazmat.2021.127390_bib12) 2017; 7-8 10.1016/j.jhazmat.2021.127390_bib87 Butscher (10.1016/j.jhazmat.2021.127390_bib13) 2016; 238 Sanito (10.1016/j.jhazmat.2021.127390_bib83) 2021; 288 Wang (10.1016/j.jhazmat.2021.127390_bib101) 2010; 35 Lemmens (10.1016/j.jhazmat.2021.127390_bib53) 2007; 27 Markovic (10.1016/j.jhazmat.2021.127390_bib68) 2015; 505 Medel (10.1016/j.jhazmat.2021.127390_bib70) 2012; 681875 Rossnagel (10.1016/j.jhazmat.2021.127390_bib81) 1991 Zhu (10.1016/j.jhazmat.2021.127390_bib115) 2009; 42 Taylor (10.1016/j.jhazmat.2021.127390_bib97) 1994; 1 Hefny (10.1016/j.jhazmat.2021.127390_bib44) 2016; 49 Zhou (10.1016/j.jhazmat.2021.127390_bib114) 2021; 403 Higman (10.1016/j.jhazmat.2021.127390_bib45) 2008 Su (10.1016/j.jhazmat.2021.127390_bib94) 2018; 84 Kim (10.1016/j.jhazmat.2021.127390_bib50) 2013 Mohamed (10.1016/j.jhazmat.2021.127390_bib73) 2021; 9 Snoecx (10.1016/j.jhazmat.2021.127390_bib91) 2019; 3 Wolf (10.1016/j.jhazmat.2021.127390_bib105) 2018; 52 Cubas (10.1016/j.jhazmat.2021.127390_bib25) 2019; 222 10.1016/j.jhazmat.2021.127390_bib79 Adamovich (10.1016/j.jhazmat.2021.127390_bib2) 2017; 50 Sanito (10.1016/j.jhazmat.2021.127390_bib84) 2020; 394 10.1016/j.jhazmat.2021.127390_bib71 Bansode (10.1016/j.jhazmat.2021.127390_bib6) 2017; 167 Moldgy (10.1016/j.jhazmat.2021.127390_bib74) 2020; 53 Cubas (10.1016/j.jhazmat.2021.127390_bib21) 2021; 271 Stoffels (10.1016/j.jhazmat.2021.127390_bib93) 2008; 36 Tsai (10.1016/j.jhazmat.2021.127390_bib99) 2009; 34 Chang (10.1016/j.jhazmat.2021.127390_bib15) 2009; 3 Szalatkiewicz (10.1016/j.jhazmat.2021.127390_bib95) 2013; 57 Fridman (10.1016/j.jhazmat.2021.127390_bib33) 2008 Banaschik (10.1016/j.jhazmat.2021.127390_bib5) 2017; 245 Cubas (10.1016/j.jhazmat.2021.127390_bib24) 2016; Vol. 39 Cho (10.1016/j.jhazmat.2021.127390_bib19) 2010; 44 Li (10.1016/j.jhazmat.2021.127390_bib54) 2019; 21 Zinovlev (10.1016/j.jhazmat.2021.127390_bib117) 2007 Bisag (10.1016/j.jhazmat.2021.127390_bib10) 2020 Leins (10.1016/j.jhazmat.2021.127390_bib52) 2015; Vol. 98 Muvhiiwa (10.1016/j.jhazmat.2021.127390_bib75) 2018; 130 Zeghioud (10.1016/j.jhazmat.2021.127390_bib108) 2020; 387 Aboubakr (10.1016/j.jhazmat.2021.127390_bib1) 2016; 49 Guo (10.1016/j.jhazmat.2021.127390_bib41) 2021; 421 Du (10.1016/j.jhazmat.2021.127390_bib28) 2019; Vol 69 Zhou (10.1016/j.jhazmat.2021.127390_bib112) 2021; 750 Zhang (10.1016/j.jhazmat.2021.127390_bib109) 2021 |
References_xml | – volume: 282 start-page: 116 year: 2015 end-page: 122 ident: bib14 article-title: Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium publication-title: Chemical Engineering Journal – volume: 84 start-page: 1 year: 2018 end-page: 10 ident: bib40 article-title: Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma –activated water publication-title: Appl. Environ. Microbiol., Public Environ. Health Probl. – volume: 270 year: 2020 ident: bib85 article-title: Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis publication-title: J. Environ. Manag. – reference: and – volume: 3 start-page: 67 year: 2009 end-page: 84 ident: bib15 article-title: Thermal plasma solid waste and water treatments: a critical review. Int. J. Plasma publication-title: Environ. Sci. Technol. – volume: 82 start-page: 145 year: 2008 end-page: 150 ident: bib17 article-title: Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating publication-title: J. Anal. Appl. Pyrolysis – volume: 15 start-page: 1 year: 2017 end-page: 12 ident: bib76 article-title: Reactive species responsible for the inactivation of feline calicivirus by a two-dimensional array of integrated coaxial microhollow dielectric barrier discharges in air publication-title: Plasma Process Polym. – volume: 52 start-page: 2170 year: 2018 end-page: 2177 ident: bib105 article-title: Kinetics of inactivation of waterborne enteric viruses by Ozone publication-title: Environ. Sci. Technol. – volume: 30 start-page: 241 year: 2010 end-page: 255 ident: bib36 article-title: Excitation of species in an expanded argon microwave plasma at atmospheric pressure publication-title: Plasma Chem. Plasma Process – reference: Misra, N.N., Yadav, B., Roopesh, M.S., Jo, C., 2019, Cold plasma for effective fungal mycotoxin control in foods: mechanisms, Inactivation effects and applications. – volume: 48 start-page: 2853 year: 2014 end-page: 2861 ident: bib22 article-title: Inertization of heavy metals present in galvanic sludge by DC thermal plasma publication-title: Environ. Sci. Technol. – volume: 47 start-page: B589 year: 2005 end-page: B602 ident: bib72 article-title: Hazardous gas treatment using atmospheric pressure microwave discharges publication-title: Plasma Phys. Control. Fusion – volume: 100 start-page: 306 year: 2019 end-page: 313 ident: bib30 article-title: Mechanisms of the publication-title: LWT-Food Sci. Technol. – volume: 20 start-page: 2226 year: 2020 end-page: 2238 ident: bib86 article-title: Hydrogen and methane production from Styrofoam Waste using an atmospheric-pressure microwave plasma reactor, Aerosol and Air Quality publication-title: Research – volume: 41 start-page: 1 year: 2008 end-page: 20 ident: bib43 article-title: Thermal plasma waste treatment publication-title: J. Phys. D Appl. Phys. – start-page: 10 year: 2013 end-page: 649-659 ident: bib65 article-title: Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects publication-title: Plasma process. polym – volume: 25 start-page: 211 year: 1999 end-page: 213 ident: bib35 article-title: Gliding arc gas discharge publication-title: Prog. Energy Combust. Sci. – volume: 180 start-page: 239 year: 2017 end-page: 246 ident: bib37 article-title: Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye publication-title: Chemosphere – volume: 1 start-page: 35 year: 1994 end-page: 50 ident: bib97 article-title: Thermal plasma processing of materials: a review publication-title: Adv. Perform. Mater. – volume: Vol. 39 start-page: 906 year: 2016 end-page: 913 ident: bib24 article-title: Application of thermal plasma for inertization of sludge produced during treatment of landfill leacheate publication-title: Quim. Nova – volume: 53 year: 2020 ident: bib74 article-title: Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species publication-title: J. Phys. D: Appl Phys. – volume: 394 year: 2020 ident: bib84 article-title: Effect of shell powder on removal of metals and volatile organic compounds (VOCs) from resin in atmospheric-pressure microwave plasma reactor publication-title: J. Hazard. Mater. – volume: 35 start-page: 9637 year: 2010 end-page: 9640 ident: bib101 article-title: Production of hydrogen by plasma-reforming of methanol publication-title: Int. J. Hydrog. Energy – volume: 403 year: 2021 ident: bib114 article-title: Plasmalytic bubbles using CeO2 for organic pollutant degradation publication-title: Chem. Eng. J. – volume: 288 year: 2021 ident: bib83 article-title: Application of plasma technology for treating e-waste: a review publication-title: J. Environ. Manag. – reference: /PANI composites as a disinfectant for the elimination of – volume: 49 year: 2016 ident: bib1 article-title: Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways publication-title: J.Phys. D: Appl. Phys – volume: Vol 46 start-page: 838 year: 2018 end-page: 858 ident: bib29 article-title: Plasma purification of halogen volatile organic compounds publication-title: IEEE Trans. Plasma Sci. – volume: 3 start-page: 53 year: 2015 end-page: 61 ident: bib51 article-title: Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma publication-title: Clin. Plasma Med. – volume: 422 year: 2022 ident: bib92 article-title: Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water publication-title: J. Hazard. Mater. – volume: 36 start-page: 1441 year: 2008 end-page: 1457 ident: bib93 article-title: Cold atmospheric plasma: charged species and their interactions with cells and tissues publication-title: IEEE Trans. Plasma Sci. – volume: 96 start-page: 490 year: 2016 end-page: 497 ident: bib47 article-title: Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study publication-title: Renew. Energy – year: 2015 ident: bib98 article-title: Tetronics International: About Tetronics – volume: Vol. 40 start-page: 2151 year: 2012 end-page: 2156 ident: bib62 article-title: Decomposition of toluene in a rotating glaidarc discharge reactor publication-title: IEEE Trans. Plasma Sci. – volume: 222 start-page: 68 year: 2019 end-page: 74 ident: bib25 article-title: Effect of chemical species generated by different gemoetries of air and argon non-thermal plasma reactors on bacteria inactivation in water publication-title: Sep. Purif. Technol. – volume: Vol 21 start-page: 1 year: 2020 end-page: 16 ident: bib39 article-title: Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance publication-title: Aerosol air Qual. Res. – year: 2012 ident: bib63 article-title: Aqueous-phase chemistry of electrical discharged plasma in water and in gas-liquid environments publication-title: Plasma Chemistry and Catalysis in Gases and Liquids – year: 2008 ident: bib45 publication-title: Gasification – start-page: 1420 year: 2013 end-page: 1425 ident: bib50 article-title: Effects of dielectric barrier discharge plasma on inactivation and the physicochemical and sensory characteristics of pork loin publication-title: Curr. Appl. Phys. – volume: 44 start-page: 6685 year: 2010 end-page: 6691 ident: bib19 article-title: Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine functionalized C60 derivative publication-title: Environ. Sci. Technol. – volume: 161 start-page: 614 year: 2009 end-page: 626 ident: bib38 article-title: Thermal plasma technology for the treatment of wastes: a critical review publication-title: J. Hazard. Mater. – volume: Vol. 98 start-page: 1 year: 2015 end-page: 12 ident: bib52 article-title: How to ignite an atmospheric-pressure microwave plasma torch without any additional igniters publication-title: J. Vis. Exp. – volume: 9 year: 2021 ident: bib73 article-title: Non-thermal plasma as a novel strategy for treating or preventing viral infection and associated disease, review publication-title: Front. Phys. – reference: Li and collaborators (Li et al., 2001). -→ Li and collaborators (Li et al., 2021). – reference: Zimmerman, J.L., Dumler, K., Shimizu, T., Morfill, G.E., Wolf, A., Boxhammer, V., Schlegel, J., Gansbacher, B., Anton, M. 2011, Effectof cold atmospheric plasmas on adenoviruses in solution. – volume: 415 year: 2021 ident: bib8 article-title: Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses publication-title: J. Hazard. Mater. – volume: 45 year: 2012 ident: bib82 article-title: The 2012 plasma road map publication-title: J. Phys. D: Appl. Phys. – volume: 3 start-page: 1388 year: 2019 ident: bib91 article-title: Suppressing the formation of NOx and N publication-title: Sustain. Energy Fuels – year: 1991 ident: bib81 article-title: Handbook of plasma processing technology: fundamental, etching, deposition, and surface interactions publication-title: Material Science and Processing Technology – volume: 7-8 start-page: 9 year: 2017 end-page: 15 ident: bib12 article-title: Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits publication-title: Critical plasma medicine – volume: 49 start-page: 1 year: 2016 end-page: 13 ident: bib44 article-title: Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions publication-title: J. Phys. D: Appl. Phys. – start-page: 97 year: 2010 end-page: 116 ident: bib7 publication-title: Biomass gasification and Pyrolysis – year: 2011 ident: bib34 publication-title: Plasma Physics and Engineering – reference: Szalatkiewiczm J., 2013, Metals recovery from waste of printed circuit boards processed in plasmatron plasma reactor, 16th IFAC symposium in automation in mining, mineral and metal processing, 478–483. – volume: 387 year: 2020 ident: bib108 article-title: Review on discharge plasma for water treatment: mechanism, reactor geometris, active species and combined process publication-title: J. Water Process Eng. – volume: 228 start-page: 28 year: 2013 end-page: 35 ident: bib78 article-title: Simultaneous removal of cadmium ions and phenol from water solution by pulsed corona discharged plasma combine with activated carbon publication-title: Chem. Eng. J. – volume: 516 start-page: 4391 year: 2008 end-page: 4396 ident: bib103 article-title: Water plasma generation under atmospheric pressure for HFC destruction publication-title: Thin Solid Films – volume: 19 start-page: 1404 year: 2007 end-page: 1408 ident: bib107 article-title: Destruction of PCDD/Fs by gliding arc discharges publication-title: J. Environ. Sci. – volume: 66 start-page: 121 year: 2009 end-page: 127 ident: bib4 article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details publication-title: Pediatr. Res. – volume: 27 start-page: 1562 year: 2007 end-page: 1569 ident: bib53 article-title: Assessment of plasma gasification of high caloric waste streams publication-title: waste management – volume: 23 year: 2014 ident: bib64 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitritethrough a pseudo-second-order post-discharge reaction of H publication-title: Plasma Source Sci. Technol. – volume: 750 year: 2021 ident: bib112 article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants publication-title: Sci. Total Environ. – reference: Rahuman, M.M.S.M., Pistone, L., Trifiro, F., Miertus, S., 2000, Destruction technologies for polychlorinated biphenyls (PCBs). In: Proceedings of Expert Group Meetings on POPs and Pesticides Contaminations: Remediation Technologies and on Clean Technologies for the Reduction and Elimination of POPs, pp. 1–55. – volume: 234 start-page: 389 year: 2013 end-page: 396 ident: bib26 article-title: Degradation of diclofenac in water using a pulsed corona discharged publication-title: Chem. Eng. J. – start-page: 1 year: 2020 end-page: 11 ident: bib66 article-title: Microbial decontamination of chicken using atmospheric-plasma bubbles publication-title: Plasma Process Polym. – volume: 13 start-page: 1 year: 2018 end-page: 19 ident: bib11 article-title: Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study publication-title: PLoS One – year: 2018 ident: bib20 article-title: Removal of VOCs from gas streams via plasma and catalysis publication-title: Catalysis Reviews – volume: 161 start-page: 304 year: 2014 end-page: 309 ident: bib59 article-title: Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor publication-title: Bio-Resour. Technol. – volume: 505 start-page: 1148 year: 2015 end-page: 1155 ident: bib68 article-title: Application of non-thermal plasma reactor and fenton reaction for degradation of ibuprofen publication-title: Sci. Total Environ. – start-page: 157 year: 2010 end-page: 193 ident: bib69 article-title: The Low-pressure Plasma Processing Environment in Handbook of Physical Vapor Deposition (PVD) Processing – volume: 11 start-page: 192 year: 2018 ident: bib89 article-title: Significant of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas aeruginosa publication-title: Materials – volume: 195 start-page: 30 year: 2011 end-page: 54 ident: bib100 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard. Mater. – volume: 245 start-page: 539 year: 2017 end-page: 548 ident: bib5 article-title: Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water publication-title: Electrochimica Acta – volume: 159 start-page: 202 year: 2015 end-page: 208 ident: bib23 article-title: Final treatment of spent batteries by thermal plasma publication-title: J. Environ. Manag. – volume: Vol. 38 start-page: 1278 year: 2020 end-page: 1291 ident: bib32 article-title: Cold plasma, a new hope in the field of virus inactivation, Cell Press Reviews publication-title: Trends Biotechnol. – reference: 〉. – year: 2016 ident: bib9 article-title: Synthesis of micro-and nanomaterials in CO publication-title: Plasma Process Polym. – volume: 21 start-page: 341 year: 2019 end-page: 348 ident: bib54 article-title: Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant publication-title: Chemosphere – volume: 34 start-page: 833 year: 2009 end-page: 838 ident: bib99 article-title: Production of hydrogen and nano carbon powders from direct plasmalysis of methane publication-title: International journal of hydrogen energy – reference: APEXGREEN, 2021, Ding Jian Green Energy Technology Company Limited. 〈 – year: 2021 ident: bib110 article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation publication-title: Chemical Engineering Journal – volume: 271 year: 2021 ident: bib21 article-title: Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Eschericia coli in water publication-title: Chemosphere – volume: 9 year: 2019 ident: bib31 article-title: Mechanism of E. coli 905 inactivation by direct-in-liquid electrical discharge plasma in low conductivity 906 solutions publication-title: Sci.Rep, UK – volume: 9 start-page: 2927 year: 2016 end-page: 3304 ident: bib90 article-title: An overview of advances in biomass gasification publication-title: Energy Environ. Sci. R. Soc. – volume: 24 start-page: 8 year: 2011 end-page: 16 ident: bib58 article-title: Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells publication-title: Nitric Oxide – volume: 57 start-page: 1100 year: 2013 end-page: 1108 ident: bib95 article-title: Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas, 11 th international conference on modern building materials, structures and technique, MBMST 2013 publication-title: Procedia Eng. – volume: 238 start-page: 222 year: 2016 end-page: 232 ident: bib13 article-title: Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge publication-title: Int. J. Food Microbiol. – volume: 10 start-page: 888 year: 2020 ident: bib48 article-title: Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process publication-title: Catalysis – volume: 20 start-page: 1 year: 2011 end-page: 13 ident: bib60 article-title: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water publication-title: Plasma Sources Sci. Technol. – volume: 130 start-page: 159 year: 2018 end-page: 168 ident: bib75 article-title: Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch publication-title: J. Anal. Appl. Pyrolysis – volume: 14 year: 2019 ident: bib77 article-title: Plasma activated water as resistance inducer against bacterial leaf spot of tomato publication-title: PLoS ONE – reference: Xia, T., Kleinheksel, A., Lee, E.M., Qiao, Z., Wigginton, K.R., Clack, H.L., 2019, Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 52, 255201. Journal of Applied Physics. – volume: 104 year: 2014 ident: bib111 article-title: Atmospheric cold plasma jet for plant disease treatment publication-title: Appl. Phys. Lett. – reference: in aquaculture water. – volume: 42 year: 2009 ident: bib115 article-title: Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium publication-title: J. Phys. D: Appl. Phys. – volume: 192 start-page: 763 year: 2011 end-page: 771 ident: bib27 article-title: Decolorization of reactive textile dyes using water falling film dielectric barrier discharge publication-title: J. Hazard. Mater. – volume: Vol 69 start-page: 879 year: 2019 end-page: 899 ident: bib28 article-title: Decomposition of volatile organic compounds using corona discharge plasma technology publication-title: J. Air Waste Manag. Assoc. – volume: 32 start-page: 1 year: 2020 end-page: 6 ident: bib18 article-title: Cold atmospheric plasma for SARS-CoV-2 inactivation publication-title: Phys. Fluids – volume: Vol. 81 start-page: 1897 year: 2018 end-page: 1905 ident: bib88 article-title: Use of cold plasma to inactivate Eschericia coli and physicochemical evaluation in Pumpkin Puree publication-title: J. Food Prot. – volume: 347 start-page: 150 year: 2018 end-page: 159 ident: bib67 article-title: Plasma-catalyst hybrid reactor with CeO publication-title: J. Hazard. Mater. – year: 1980 ident: bib16 article-title: Glow Discharge Processing: Sputtering and Plasma Etching – reference: Hrabovsky, M., Konrad, M., Kopecky, V., Hlina, M., Kavka, T., Chumak, O., Maslani, A., Oost, G.V., 2010, Plasma aided gasification of biomass and plastics using CO – volume: 167 start-page: 396 year: 2017 end-page: 405 ident: bib6 article-title: Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process publication-title: Chemosphere – volume: 84 year: 2018 ident: bib94 article-title: Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus publication-title: Appl. Environ. Microbiol. – volume: 75 start-page: 83 year: 2017 end-page: 91 ident: bib57 article-title: Inactivation mechanism of non-thermal plasma on microbes: a review publication-title: Food Control – volume: 750 year: 2021 ident: bib113 article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants publication-title: Sci. Total Environ. – volume: 116 start-page: 3029 year: 2016 end-page: 3085 ident: bib42 article-title: Superoxide ion: generation and chemical implications publication-title: Chem., Rev. – year: 2008 ident: bib33 article-title: Plasma Chemistry – volume: 204–206 start-page: 32 year: 2012 end-page: 39 ident: bib49 article-title: Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system publication-title: Chem. Eng. J. – year: 2021 ident: bib109 article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation publication-title: Chem. Eng. J. – year: 2019 ident: bib102 article-title: Removal micro-pollutants from water in a continuous-flo electrical discharge reactor publication-title: J. Hazard. Mater. – volume: 50 year: 2017 ident: bib2 article-title: The plasma roadmap: Low temperature plasma science and technology, topical review publication-title: J. Phys. D: Appl. Phys. – volume: 86 start-page: 1 year: 2020 end-page: 17 ident: bib61 article-title: Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavous spores and biofilms: a comparative study publication-title: Appl. Environ. Microbiol. Food Microbiol. – volume: 217 start-page: 41 year: 2013 end-page: 47 ident: bib80 article-title: Degradataion and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor publication-title: Chem. Eng. J. – volume: 681875 start-page: 1 year: 2012 end-page: 6 ident: bib70 article-title: Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes publication-title: Int. J. Photo – volume: 9 year: 2021 ident: bib55 article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO publication-title: J. Environ. Chem. Eng. – start-page: 1 year: 2007 end-page: 182 ident: bib117 article-title: Non-combustion technologies for POPs destruction publication-title: Rev. Eval. – volume: 421 year: 2021 ident: bib41 article-title: Plasma activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection publication-title: Chem. Eng. J. – reference: as oxidizer. International symposium on non-thermal/thermal plasma pollution control technology & sustainable energy, ISNTP 7. St John’s, newfoundland, Canada. – reference: Sanito, R.C., Yeh, T.Z., You, S.J., Wang, Y.F., 2021b, Novel TiO – start-page: 1 year: 2016 end-page: 193 ident: bib104 article-title: Plasma Catalysis as an Efficient and Sustainable Air Purification – start-page: 1 year: 2020 end-page: 8 ident: bib10 article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission publication-title: Plasma Process Polym. – volume: Vol 46 start-page: 838 issue: No 4 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib29 article-title: Plasma purification of halogen volatile organic compounds publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2808243 – volume: 42 year: 2009 ident: 10.1016/j.jhazmat.2021.127390_bib115 article-title: Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/20/202002 – volume: 48 start-page: 2853 year: 2014 ident: 10.1016/j.jhazmat.2021.127390_bib22 article-title: Inertization of heavy metals present in galvanic sludge by DC thermal plasma publication-title: Environ. Sci. Technol. doi: 10.1021/es404296x – volume: Vol. 98 start-page: 1 year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib52 article-title: How to ignite an atmospheric-pressure microwave plasma torch without any additional igniters publication-title: J. Vis. Exp. – volume: 505 start-page: 1148 year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib68 article-title: Application of non-thermal plasma reactor and fenton reaction for degradation of ibuprofen publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.017 – year: 2012 ident: 10.1016/j.jhazmat.2021.127390_bib63 article-title: Aqueous-phase chemistry of electrical discharged plasma in water and in gas-liquid environments – volume: 50 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib2 article-title: The plasma roadmap: Low temperature plasma science and technology, topical review publication-title: J. Phys. D: Appl. Phys. – year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib109 article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation publication-title: Chem. Eng. J. – volume: 228 start-page: 28 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib78 article-title: Simultaneous removal of cadmium ions and phenol from water solution by pulsed corona discharged plasma combine with activated carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.114 – volume: 3 start-page: 1388 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib91 article-title: Suppressing the formation of NOx and N2O in CO2 / N2 dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work publication-title: Sustain. Energy Fuels doi: 10.1039/C8SE00584B – volume: 45 year: 2012 ident: 10.1016/j.jhazmat.2021.127390_bib82 article-title: The 2012 plasma road map publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/25/253001 – start-page: 157 year: 2010 ident: 10.1016/j.jhazmat.2021.127390_bib69 – volume: 167 start-page: 396 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib6 article-title: Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.089 – volume: 7-8 start-page: 9 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib12 article-title: Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits publication-title: Critical plasma medicine doi: 10.1016/j.cpme.2017.06.002 – volume: 159 start-page: 202 year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib23 article-title: Final treatment of spent batteries by thermal plasma publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.05.004 – volume: Vol 69 start-page: 879 issue: No 8 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib28 article-title: Decomposition of volatile organic compounds using corona discharge plasma technology publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10962247.2019.1582441 – volume: 100 start-page: 306 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib30 article-title: Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2018.10.095 – start-page: 10 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib65 article-title: Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects publication-title: Plasma process. polym – ident: 10.1016/j.jhazmat.2021.127390_bib87 doi: 10.1016/j.eti.2021.101502 – ident: 10.1016/j.jhazmat.2021.127390_bib116 doi: 10.1109/PLASMA.2012.6383555 – start-page: 1 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib104 – volume: 415 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib8 article-title: Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125658 – volume: 9 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib73 article-title: Non-thermal plasma as a novel strategy for treating or preventing viral infection and associated disease, review publication-title: Front. Phys. doi: 10.3389/fphy.2021.683118 – volume: Vol. 81 start-page: 1897 issue: No. 11 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib88 article-title: Use of cold plasma to inactivate Eschericia coli and physicochemical evaluation in Pumpkin Puree publication-title: J. Food Prot. doi: 10.4315/0362-028X.JFP-18-136 – start-page: 1 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib66 article-title: Microbial decontamination of chicken using atmospheric-plasma bubbles publication-title: Plasma Process Polym. – volume: 86 start-page: 1 issue: 9 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib61 article-title: Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavous spores and biofilms: a comparative study publication-title: Appl. Environ. Microbiol. Food Microbiol. – volume: 52 start-page: 2170 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib105 article-title: Kinetics of inactivation of waterborne enteric viruses by Ozone publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05111 – volume: 53 issue: 4 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib74 article-title: Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species publication-title: J. Phys. D: Appl Phys. – ident: 10.1016/j.jhazmat.2021.127390_bib71 doi: 10.1111/1541-4337.12398 – year: 1991 ident: 10.1016/j.jhazmat.2021.127390_bib81 article-title: Handbook of plasma processing technology: fundamental, etching, deposition, and surface interactions – ident: 10.1016/j.jhazmat.2021.127390_bib96 doi: 10.3182/20130825-4-US-2038.00109 – volume: 403 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib114 article-title: Plasmalytic bubbles using CeO2 for organic pollutant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126413 – volume: 20 start-page: 1 year: 2011 ident: 10.1016/j.jhazmat.2021.127390_bib60 article-title: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/20/3/034006 – volume: 20 start-page: 2226 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib86 article-title: Hydrogen and methane production from Styrofoam Waste using an atmospheric-pressure microwave plasma reactor, Aerosol and Air Quality publication-title: Research – start-page: 1 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib10 article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission publication-title: Plasma Process Polym. – volume: 41 start-page: 1 year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib43 article-title: Thermal plasma waste treatment publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/41/5/053001 – volume: 66 start-page: 121 year: 2009 ident: 10.1016/j.jhazmat.2021.127390_bib4 article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3181a9eafb – volume: 204–206 start-page: 32 year: 2012 ident: 10.1016/j.jhazmat.2021.127390_bib49 article-title: Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.088 – volume: 161 start-page: 614 year: 2009 ident: 10.1016/j.jhazmat.2021.127390_bib38 article-title: Thermal plasma technology for the treatment of wastes: a critical review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.017 – volume: Vol. 39 start-page: 906 issue: No. 8 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib24 article-title: Application of thermal plasma for inertization of sludge produced during treatment of landfill leacheate publication-title: Quim. Nova – volume: 222 start-page: 68 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib25 article-title: Effect of chemical species generated by different gemoetries of air and argon non-thermal plasma reactors on bacteria inactivation in water publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.03.057 – year: 2011 ident: 10.1016/j.jhazmat.2021.127390_bib34 – volume: 82 start-page: 145 year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib17 article-title: Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2008.03.001 – volume: 104 year: 2014 ident: 10.1016/j.jhazmat.2021.127390_bib111 article-title: Atmospheric cold plasma jet for plant disease treatment publication-title: Appl. Phys. Lett. – volume: 24 start-page: 8 year: 2011 ident: 10.1016/j.jhazmat.2021.127390_bib58 article-title: Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells publication-title: Nitric Oxide doi: 10.1016/j.niox.2010.09.005 – volume: 15 start-page: 1 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib76 article-title: Reactive species responsible for the inactivation of feline calicivirus by a two-dimensional array of integrated coaxial microhollow dielectric barrier discharges in air publication-title: Plasma Process Polym. – volume: 516 start-page: 4391 year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib103 article-title: Water plasma generation under atmospheric pressure for HFC destruction publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.10.062 – volume: 750 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib113 article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142295 – volume: 271 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib21 article-title: Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Eschericia coli in water publication-title: Chemosphere – volume: 282 start-page: 116 year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib14 article-title: Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2015.02.027 – volume: 238 start-page: 222 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib13 article-title: Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2016.09.006 – volume: 21 start-page: 341 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib54 article-title: Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.138 – year: 1980 ident: 10.1016/j.jhazmat.2021.127390_bib16 – volume: Vol. 38 start-page: 1278 issue: No. 11 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib32 article-title: Cold plasma, a new hope in the field of virus inactivation, Cell Press Reviews publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.04.003 – volume: 25 start-page: 211 year: 1999 ident: 10.1016/j.jhazmat.2021.127390_bib35 article-title: Gliding arc gas discharge publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(98)00021-5 – volume: 35 start-page: 9637 year: 2010 ident: 10.1016/j.jhazmat.2021.127390_bib101 article-title: Production of hydrogen by plasma-reforming of methanol publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.06.104 – volume: 10 start-page: 888 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib48 article-title: Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process publication-title: Catalysis – volume: 57 start-page: 1100 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib95 article-title: Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas, 11 th international conference on modern building materials, structures and technique, MBMST 2013 publication-title: Procedia Eng. – volume: 421 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib41 article-title: Plasma activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127742 – volume: 23 year: 2014 ident: 10.1016/j.jhazmat.2021.127390_bib64 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitritethrough a pseudo-second-order post-discharge reaction of H2O2 and HNO2 publication-title: Plasma Source Sci. Technol. doi: 10.1088/0963-0252/23/1/015019 – year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib33 – volume: 36 start-page: 1441 year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib93 article-title: Cold atmospheric plasma: charged species and their interactions with cells and tissues publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2008.2001084 – volume: 19 start-page: 1404 year: 2007 ident: 10.1016/j.jhazmat.2021.127390_bib107 article-title: Destruction of PCDD/Fs by gliding arc discharges publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(07)60229-0 – volume: 217 start-page: 41 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib80 article-title: Degradataion and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.116 – volume: 387 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib108 article-title: Review on discharge plasma for water treatment: mechanism, reactor geometris, active species and combined process publication-title: J. Water Process Eng. – ident: 10.1016/j.jhazmat.2021.127390_bib3 – volume: 161 start-page: 304 year: 2014 ident: 10.1016/j.jhazmat.2021.127390_bib59 article-title: Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor publication-title: Bio-Resour. Technol. doi: 10.1016/j.biortech.2014.03.067 – volume: 245 start-page: 539 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib5 article-title: Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2017.05.121 – volume: 9 start-page: 2927 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib90 article-title: An overview of advances in biomass gasification publication-title: Energy Environ. Sci. R. Soc. – year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib20 article-title: Removal of VOCs from gas streams via plasma and catalysis – volume: 96 start-page: 490 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib47 article-title: Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study publication-title: Renew. Energy doi: 10.1016/j.renene.2016.04.080 – volume: 288 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib83 article-title: Application of plasma technology for treating e-waste: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112380 – volume: 13 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib11 article-title: Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study publication-title: PLoS One doi: 10.1371/journal.pone.0199832 – year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib102 article-title: Removal micro-pollutants from water in a continuous-flo electrical discharge reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.095 – volume: 195 start-page: 30 year: 2011 ident: 10.1016/j.jhazmat.2021.127390_bib100 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.08.060 – volume: 84 start-page: 1 issue: 17 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib40 article-title: Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma –activated water publication-title: Appl. Environ. Microbiol., Public Environ. Health Probl. – volume: 394 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib84 article-title: Effect of shell powder on removal of metals and volatile organic compounds (VOCs) from resin in atmospheric-pressure microwave plasma reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122558 – ident: 10.1016/j.jhazmat.2021.127390_bib106 doi: 10.1088/1361-6463/ab1466 – volume: 234 start-page: 389 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib26 article-title: Degradation of diclofenac in water using a pulsed corona discharged publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.114 – volume: 84 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib94 article-title: Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02836-17 – volume: 750 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib112 article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142295 – volume: 32 start-page: 1 issue: 111702 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib18 article-title: Cold atmospheric plasma for SARS-CoV-2 inactivation publication-title: Phys. Fluids – volume: Vol. 40 start-page: 2151 issue: No 9 year: 2012 ident: 10.1016/j.jhazmat.2021.127390_bib62 article-title: Decomposition of toluene in a rotating glaidarc discharge reactor publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2012.2206119 – volume: 681875 start-page: 1 year: 2012 ident: 10.1016/j.jhazmat.2021.127390_bib70 article-title: Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes publication-title: Int. J. Photo – ident: 10.1016/j.jhazmat.2021.127390_bib46 – volume: 192 start-page: 763 year: 2011 ident: 10.1016/j.jhazmat.2021.127390_bib27 article-title: Decolorization of reactive textile dyes using water falling film dielectric barrier discharge publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.05.086 – year: 2008 ident: 10.1016/j.jhazmat.2021.127390_bib45 – volume: 47 start-page: B589 year: 2005 ident: 10.1016/j.jhazmat.2021.127390_bib72 article-title: Hazardous gas treatment using atmospheric pressure microwave discharges publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/47/12B/S43 – volume: 30 start-page: 241 year: 2010 ident: 10.1016/j.jhazmat.2021.127390_bib36 article-title: Excitation of species in an expanded argon microwave plasma at atmospheric pressure publication-title: Plasma Chem. Plasma Process doi: 10.1007/s11090-010-9215-x – volume: 130 start-page: 159 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib75 article-title: Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.01.014 – volume: 9 year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib55 article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO2/γ-Al2O3 catalyst publication-title: J. Environ. Chem. Eng. – volume: 49 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib1 article-title: Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways publication-title: J.Phys. D: Appl. Phys doi: 10.1088/0022-3727/49/20/204001 – volume: 1 start-page: 35 year: 1994 ident: 10.1016/j.jhazmat.2021.127390_bib97 article-title: Thermal plasma processing of materials: a review publication-title: Adv. Perform. Mater. doi: 10.1007/BF00705312 – year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib9 article-title: Synthesis of micro-and nanomaterials in CO2 and CO dielectric barrier discharges publication-title: Plasma Process Polym. – volume: 3 start-page: 67 year: 2009 ident: 10.1016/j.jhazmat.2021.127390_bib15 article-title: Thermal plasma solid waste and water treatments: a critical review. Int. J. Plasma publication-title: Environ. Sci. Technol. – volume: 3 start-page: 53 year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib51 article-title: Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma publication-title: Clin. Plasma Med. doi: 10.1016/j.cpme.2015.10.001 – volume: 27 start-page: 1562 year: 2007 ident: 10.1016/j.jhazmat.2021.127390_bib53 article-title: Assessment of plasma gasification of high caloric waste streams publication-title: waste management doi: 10.1016/j.wasman.2006.07.027 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib31 article-title: Mechanism of E. coli 905 inactivation by direct-in-liquid electrical discharge plasma in low conductivity 906 solutions publication-title: Sci.Rep, UK – volume: 180 start-page: 239 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib37 article-title: Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.126 – volume: 116 start-page: 3029 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib42 article-title: Superoxide ion: generation and chemical implications publication-title: Chem., Rev. doi: 10.1021/acs.chemrev.5b00407 – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.jhazmat.2021.127390_bib77 article-title: Plasma activated water as resistance inducer against bacterial leaf spot of tomato publication-title: PLoS ONE doi: 10.1371/journal.pone.0217788 – ident: 10.1016/j.jhazmat.2021.127390_bib79 – volume: 75 start-page: 83 year: 2017 ident: 10.1016/j.jhazmat.2021.127390_bib57 article-title: Inactivation mechanism of non-thermal plasma on microbes: a review publication-title: Food Control doi: 10.1016/j.foodcont.2016.12.021 – volume: 34 start-page: 833 year: 2009 ident: 10.1016/j.jhazmat.2021.127390_bib99 article-title: Production of hydrogen and nano carbon powders from direct plasmalysis of methane publication-title: International journal of hydrogen energy doi: 10.1016/j.ijhydene.2008.10.061 – ident: 10.1016/j.jhazmat.2021.127390_bib56 – volume: Vol 21 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib39 article-title: Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance publication-title: Aerosol air Qual. Res. – start-page: 1420 year: 2013 ident: 10.1016/j.jhazmat.2021.127390_bib50 article-title: Effects of dielectric barrier discharge plasma on inactivation and the physicochemical and sensory characteristics of pork loin publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2013.04.021 – volume: 347 start-page: 150 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib67 article-title: Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.064 – year: 2021 ident: 10.1016/j.jhazmat.2021.127390_bib110 article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation publication-title: Chemical Engineering Journal – volume: 49 start-page: 1 year: 2016 ident: 10.1016/j.jhazmat.2021.127390_bib44 article-title: Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/40/404002 – volume: 11 start-page: 192 year: 2018 ident: 10.1016/j.jhazmat.2021.127390_bib89 article-title: Significant of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas aeruginosa publication-title: Materials doi: 10.3390/ma11101925 – volume: 422 year: 2022 ident: 10.1016/j.jhazmat.2021.127390_bib92 article-title: Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126906 – volume: 44 start-page: 6685 year: 2010 ident: 10.1016/j.jhazmat.2021.127390_bib19 article-title: Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine functionalized C60 derivative publication-title: Environ. Sci. Technol. doi: 10.1021/es1014967 – volume: 270 year: 2020 ident: 10.1016/j.jhazmat.2021.127390_bib85 article-title: Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110910 – start-page: 97 year: 2010 ident: 10.1016/j.jhazmat.2021.127390_bib7 – year: 2015 ident: 10.1016/j.jhazmat.2021.127390_bib98 – start-page: 1 year: 2007 ident: 10.1016/j.jhazmat.2021.127390_bib117 article-title: Non-combustion technologies for POPs destruction publication-title: Rev. Eval. |
SSID | ssj0001754 |
Score | 2.6581886 |
SecondaryResourceType | review_article |
Snippet | The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127390 |
SubjectTerms | Bacteria - genetics biomass COVID-19 Discharge plasma Humans hydrogen Metals methane production photocatalysis Photocatalytic Plasma technologies Reactive species Review SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses Volatile Organic Compounds |
Title | Degradation of contaminants in plasma technology: An overview |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.127390 https://www.ncbi.nlm.nih.gov/pubmed/34879580 https://www.proquest.com/docview/2608532744 https://www.proquest.com/docview/2636814702 https://pubmed.ncbi.nlm.nih.gov/PMC8500698 |
Volume | 424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeL9Rkbh2a9ekSZE4TDw0nhdA2i1K0kTbBN0Eg0kc-O3YazsYIJC4traaOIkfjf2ZkH2tuQnAz_BFooVPjWB-Qp3wYwRbC5lRjmHt8NV13Lyj5y3WmiJHZS0MplUWuj_X6SNtXTypFdKs9Tud2g1e6oG5pRi0REy0sIKdctzl1bePNA8wjzmEFN4AAPVHFU-tW-221Ss4hhAm1sNqCJYcVfPP9um7__k1jfKTXTpdIPOFQ-k18jEvkimbLZG5TzCDS2T6Ug2XyeEx4kLkLZS8nvMwSV0ViTBeJ_P64Ec_KG8w_td-4DWA8AWViR2ukLvTk9ujpl80T_ANC4KBnxiH4PUudaFjLkmMdpRzCHhThanSKU-NUtRCOKadjetap1yArebWWUdVGESrpJL1MrtOPKV4nGAkopylQZRqCDFS5xIT8boD0W0QWopMmgJZHBtc3MsyhawrC0lLlLTMJb1BqmO2fg6t8ReDKNdDTuwRCer_L9a9cv0knB-8FFGZ7T0_SYjnwGNBnMTfaKJYhJTjVNfyNR-POKLYrl3AF_jEbhgTIH735Jus0x7heAuGONFi8__T2iKzdSzHwAY1bJtUBo_PdgecpIHeHZ2CXTLTOLtoXr8DhiAS2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9Bedh4mAb7Yh8sk_aaNmns2Jm0h4oNlVH6MpD6ZtmOLVptaQUFJP567oiT0W0CidfEp9hn-z5yd78D-GyMsAnaGbEsjIyZlTwumJdxTmBrKbfac6odPhrnwxP2Y8Ina7DX1MJQWmWQ_bVMv5XW4UkvcLO3mE57Pymoh-qWkdOScTlZhw1Cp-Id2BgcHA7HrUBGDVmjSFEQAAn-FPL0Zt3Zqb5G2xA9xX7aTVGZk3T-v4r61wT9O5Pyjmrafw7Pgk0ZDeppb8Gaq7Zh8w7S4Dasj_TVC_j6jaAh6i5K0dxHlKeuQy5MNK2iBZrSv3W0bH-3f4kGOPCS5Im7egkn-9-P94Zx6J8QW54ky7iwnvDrfelTz31RWOOZEOjzlpqypUtRWq2ZQ4_MeJf3jSmFRHUtnHee6TTJXkGnmlfuDURai7wgZ0R7x5KsNOhllN4XNhN9j6zbAdawTNkALk49Ln6pJotspgKnFXFa1ZzegW5LtqjRNR4ikM1-qJVjolADPET6qdk_hVeI4iK6cvOLc4UuHRotBJV435gslykTtNTX9Z63M84YdWyX-AWxchraAQThvfqmmp7eQnlLTlDR8u3jl_URngyPj0ZqdDA-fAdP-1SdQf1q-HvoLM8u3Ae0mZZmN9yJG96cFYo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+contaminants+in+plasma+technology%3A+An+overview&rft.jtitle=Journal+of+hazardous+materials&rft.au=Sanito%2C+Raynard+Christianson&rft.au=You%2C+Sheng-Jie&rft.au=Wang%2C+Ya-Fen&rft.date=2022-02-15&rft.issn=0304-3894&rft.volume=424&rft.spage=127390&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.127390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2021_127390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |