Degradation of contaminants in plasma technology: An overview

The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configu...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 424; no. Pt A; p. 127390
Main Authors Sanito, Raynard Christianson, You, Sheng-Jie, Wang, Ya-Fen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. [Display omitted] •Different types of plasma technology system have been used widely in many research fields.•Plasma bubble reactor shows a good result on the treatment of organic pollutants.•Many reactive species play an integral role to degrade pollutants in the plasma system.•SARS-CoV-2 virus can be inactivated via an atmospheric-cold plasma.
AbstractList The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. ga1
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants. [Display omitted] •Different types of plasma technology system have been used widely in many research fields.•Plasma bubble reactor shows a good result on the treatment of organic pollutants.•Many reactive species play an integral role to degrade pollutants in the plasma system.•SARS-CoV-2 virus can be inactivated via an atmospheric-cold plasma.
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.
ArticleNumber 127390
Author Sanito, Raynard Christianson
Wang, Ya-Fen
You, Sheng-Jie
Author_xml – sequence: 1
  givenname: Raynard Christianson
  surname: Sanito
  fullname: Sanito, Raynard Christianson
  organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
– sequence: 2
  givenname: Sheng-Jie
  surname: You
  fullname: You, Sheng-Jie
  organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
– sequence: 3
  givenname: Ya-Fen
  surname: Wang
  fullname: Wang, Ya-Fen
  email: yfwang@cycu.edu.tw
  organization: Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34879580$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9vFCEUxYmpsdvqR9DMoy-zwsAAo7GmqX-TJr7oM2HgsstmBlZg19RPL3W3Rn2pTzxwzrnn3t8ZOgkxAEJPCV4STPiLzXKz1j9mXZYd7siSdIIO-AFaECloSynlJ2iBKWYtlQM7RWc5bzDGRPTsETqlTIqhl3iBXr-FVdJWFx9DE11jYih69kGHkhsfmu2k86ybAmYd4hRXNy-byyrcQ9p7-P4YPXR6yvDk-J6jr-_ffbn62F5__vDp6vK6NT3GpR2Mw7IXzjriejcMZnRMCCGl1dyYzgprtGaACR4d8G4crZCcEwEOHNME03N0ccjd7sYZrIFQkp7UNvlZpxsVtVd__wS_Vqu4V7LO54OsAc-PASl-20EuavbZwDTpAHGXVccpl4QJ3P2HtO5CO8FYlT77s9bvPnfnrYJXB4FJMecEThlfft26tvSTIljdwlQbdYSpbmGqA8zq7v9x3w24z_fm4IOKpGJKKhsPwYD1CUxRNvp7En4C_Ee9jA
CitedBy_id crossref_primary_10_1016_j_seppur_2022_122762
crossref_primary_10_1016_j_eti_2022_102725
crossref_primary_10_1016_j_jwpe_2023_104350
crossref_primary_10_1016_j_psep_2022_10_014
crossref_primary_10_1007_s11356_024_34475_4
crossref_primary_10_1016_j_apsusc_2023_158254
crossref_primary_10_1016_j_mseb_2024_117545
crossref_primary_10_1016_j_watres_2025_123435
crossref_primary_10_1016_j_cej_2023_142753
crossref_primary_10_1016_j_jenvman_2024_122861
crossref_primary_10_1016_j_jcis_2024_10_030
crossref_primary_10_1002_chem_202301666
crossref_primary_10_1088_1402_4896_ad6bfa
crossref_primary_10_3389_fmicb_2022_1100102
crossref_primary_10_3390_plasma7030038
crossref_primary_10_1016_j_arabjc_2023_105048
crossref_primary_10_1016_j_heliyon_2024_e32428
crossref_primary_10_1016_j_susmat_2025_e01300
crossref_primary_10_1007_s11356_023_31238_5
crossref_primary_10_1016_j_jece_2023_111758
crossref_primary_10_1016_j_radphyschem_2024_111694
crossref_primary_10_2139_ssrn_4163778
crossref_primary_10_54021_seesv6n1_001
crossref_primary_10_1016_j_seppur_2022_121639
crossref_primary_10_3390_polym15132850
crossref_primary_10_1016_j_jwpe_2024_105915
crossref_primary_10_1016_j_cej_2023_144094
crossref_primary_10_1016_j_heliyon_2022_e11240
crossref_primary_10_1016_j_seppur_2022_121913
crossref_primary_10_1088_1361_6463_ac40bb
crossref_primary_10_3390_atmos15121446
crossref_primary_10_1016_j_scitotenv_2022_155707
crossref_primary_10_3390_su162310568
crossref_primary_10_1021_acsomega_4c04302
crossref_primary_10_1021_acsomega_4c01596
crossref_primary_10_3390_su16114855
crossref_primary_10_1016_j_apsusc_2024_159699
crossref_primary_10_1016_j_jece_2023_111330
crossref_primary_10_1016_j_lwt_2024_116943
crossref_primary_10_1515_gps_2022_0092
crossref_primary_10_1016_j_jwpe_2024_106183
crossref_primary_10_1016_j_fuel_2022_125297
crossref_primary_10_1109_TPS_2024_3359116
crossref_primary_10_1016_j_enconman_2022_115514
crossref_primary_10_1016_j_eti_2023_103011
crossref_primary_10_1016_j_jhazmat_2024_135787
crossref_primary_10_3390_pr12102128
crossref_primary_10_1088_1361_6463_acca2f
crossref_primary_10_2139_ssrn_4119764
crossref_primary_10_1016_j_envres_2023_115976
crossref_primary_10_1016_j_susmat_2023_e00643
crossref_primary_10_1007_s11356_024_33442_3
crossref_primary_10_1016_j_seppur_2023_123317
crossref_primary_10_1016_j_cej_2023_144316
crossref_primary_10_3390_catal13020431
crossref_primary_10_1016_j_clwat_2024_100018
crossref_primary_10_3390_toxics12010040
crossref_primary_10_1007_s11356_023_25880_2
crossref_primary_10_1007_s11356_023_25524_5
crossref_primary_10_1016_j_scitotenv_2023_164933
crossref_primary_10_1016_j_heliyon_2022_e10137
crossref_primary_10_3390_w15081562
crossref_primary_10_1016_j_seppur_2023_124680
crossref_primary_10_1016_j_solener_2024_112854
crossref_primary_10_1016_j_seppur_2024_127431
crossref_primary_10_1016_j_chemosphere_2023_139246
crossref_primary_10_1088_1361_6463_ad5c76
crossref_primary_10_1016_j_cej_2023_142491
crossref_primary_10_1016_j_chemosphere_2022_136696
crossref_primary_10_1016_j_jece_2025_116150
crossref_primary_10_1016_j_chemosphere_2023_138061
crossref_primary_10_1016_j_chemosphere_2024_142586
crossref_primary_10_1007_s42250_024_01174_z
crossref_primary_10_1088_1361_6463_ad8bd2
crossref_primary_10_1021_acssuschemeng_2c04269
crossref_primary_10_1016_j_seppur_2022_121362
crossref_primary_10_1016_j_cej_2025_159345
crossref_primary_10_1016_j_seppur_2024_129252
crossref_primary_10_1016_j_jwpe_2024_105358
crossref_primary_10_1016_j_jwpe_2023_104169
crossref_primary_10_3390_catal12091051
crossref_primary_10_1016_j_jece_2024_113712
crossref_primary_10_1002_ppap_202200181
crossref_primary_10_1016_j_energy_2023_126910
crossref_primary_10_1016_j_seppur_2024_126497
crossref_primary_10_1021_acsomega_2c00617
crossref_primary_10_1016_j_cej_2025_160334
crossref_primary_10_1016_j_biortech_2023_129480
crossref_primary_10_1016_j_jclepro_2023_135930
crossref_primary_10_3390_app13074221
crossref_primary_10_1016_j_seppur_2023_123445
crossref_primary_10_1016_j_ceja_2023_100443
crossref_primary_10_1016_j_seppur_2022_121644
crossref_primary_10_1080_10962247_2023_2282011
Cites_doi 10.1109/TPS.2018.2808243
10.1088/0022-3727/42/20/202002
10.1021/es404296x
10.1016/j.scitotenv.2014.11.017
10.1016/j.cej.2013.04.114
10.1039/C8SE00584B
10.1088/0022-3727/45/25/253001
10.1016/j.chemosphere.2016.09.089
10.1016/j.cpme.2017.06.002
10.1016/j.jenvman.2015.05.004
10.1080/10962247.2019.1582441
10.1016/j.lwt.2018.10.095
10.1016/j.eti.2021.101502
10.1109/PLASMA.2012.6383555
10.1016/j.jhazmat.2021.125658
10.3389/fphy.2021.683118
10.4315/0362-028X.JFP-18-136
10.1021/acs.est.7b05111
10.1111/1541-4337.12398
10.3182/20130825-4-US-2038.00109
10.1016/j.cej.2020.126413
10.1088/0963-0252/20/3/034006
10.1088/0022-3727/41/5/053001
10.1203/PDR.0b013e3181a9eafb
10.1016/j.cej.2012.07.088
10.1016/j.jhazmat.2008.04.017
10.1016/j.seppur.2019.03.057
10.1016/j.jaap.2008.03.001
10.1016/j.niox.2010.09.005
10.1016/j.tsf.2007.10.062
10.1016/j.scitotenv.2020.142295
10.1016/j.cej.2015.02.027
10.1016/j.ijfoodmicro.2016.09.006
10.1016/j.chemosphere.2018.09.138
10.1016/j.tibtech.2020.04.003
10.1016/S0360-1285(98)00021-5
10.1016/j.ijhydene.2010.06.104
10.1016/j.cej.2020.127742
10.1088/0963-0252/23/1/015019
10.1109/TPS.2008.2001084
10.1016/S1001-0742(07)60229-0
10.1016/j.cej.2012.11.116
10.1016/j.biortech.2014.03.067
10.1016/j.electacta.2017.05.121
10.1016/j.renene.2016.04.080
10.1016/j.jenvman.2021.112380
10.1371/journal.pone.0199832
10.1016/j.jhazmat.2018.08.095
10.1016/j.jhazmat.2011.08.060
10.1016/j.jhazmat.2020.122558
10.1088/1361-6463/ab1466
10.1016/j.cej.2013.08.114
10.1128/AEM.02836-17
10.1109/TPS.2012.2206119
10.1016/j.jhazmat.2011.05.086
10.1088/0741-3335/47/12B/S43
10.1007/s11090-010-9215-x
10.1016/j.jaap.2018.01.014
10.1088/0022-3727/49/20/204001
10.1007/BF00705312
10.1016/j.cpme.2015.10.001
10.1016/j.wasman.2006.07.027
10.1016/j.chemosphere.2017.03.126
10.1021/acs.chemrev.5b00407
10.1371/journal.pone.0217788
10.1016/j.foodcont.2016.12.021
10.1016/j.ijhydene.2008.10.061
10.1016/j.cap.2013.04.021
10.1016/j.jhazmat.2017.12.064
10.1088/0022-3727/49/40/404002
10.3390/ma11101925
10.1016/j.jhazmat.2021.126906
10.1021/es1014967
10.1016/j.jenvman.2020.110910
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jhazmat.2021.127390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
EndPage 127390
ExternalDocumentID PMC8500698
34879580
10_1016_j_jhazmat_2021_127390
S030438942102358X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c500t-9cf0857fdf1f5f99cbf477788da6cc2d7dcaa4e010bfe62bbd786617efef4a103
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Thu Aug 21 17:34:37 EDT 2025
Tue Aug 05 10:44:10 EDT 2025
Mon Jul 21 10:54:52 EDT 2025
Thu Apr 03 07:06:43 EDT 2025
Tue Jul 01 00:49:54 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 23 02:38:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Photocatalytic
Reactive species
Plasma technologies
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Discharge plasma
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-9cf0857fdf1f5f99cbf477788da6cc2d7dcaa4e010bfe62bbd786617efef4a103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8500698
PMID 34879580
PQID 2608532744
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8500698
proquest_miscellaneous_2636814702
proquest_miscellaneous_2608532744
pubmed_primary_34879580
crossref_citationtrail_10_1016_j_jhazmat_2021_127390
crossref_primary_10_1016_j_jhazmat_2021_127390
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_127390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Perez, Biondi, Laurita, Proto, Sarti, Gherardi, Bertaccini, Colombo (bib77) 2019; 14
Cubas, Machado, Machado, Gross, Magnago, Moecke, Souza (bib23) 2015; 159
Iervolino, Vaiano, Pepe, Campiglia, Palma (bib48) 2020; 10
Cubas, Machado, Santos, Zanco, Ribeiro, Andre, Debacher, Moecke (bib25) 2019; 222
Fridman, Kennedy (bib34) 2011
Borges, Nishime, Kostov, Lima, Gontijo, Carvalho, Honda, Ito (bib12) 2017; 7-8
Liao, Liu, Xiang, Ahn, Chen, Ye, Ding (bib57) 2017; 75
Lukes, Locke, Brisset (bib63) 2012
Tetronics (bib98) 2015
Gomez, Rani, Cheeseman, Deegan, Wise, Boccaccini (bib38) 2009; 161
Chang (bib15) 2009; 3
Zinovlev, Fornasiero, Lodolo, Miertus (bib117) 2007
Song, Wang, Jiao, Qu, Chen, Wang, Wang, Zhang, Ling (bib92) 2022; 422
Mohamed, Nayak, Rendine, Wigdahl, Krebs, Bruggeman, Miller (bib73) 2021; 9
Tsai, Chen (bib99) 2009; 34
Samukawa, Hori, Rauf, Tachibana, Bruggeman, Kroesen, Whitehead, Murphy, Gutsol, Starikovskaia, Kortshagen, Boeuf, Sommerer, Kushner, Czanetzki, Mason (bib82) 2012; 45
Filipic, Guttierez-Aguirre, Prmic, Mozetic, Dobnik (bib32) 2020; Vol. 38
PANI composites as a disinfectant for the elimination of
Zeghioud, Nguyen-Tri, Khezami, Amrane, Assadi (bib108) 2020; 387
Li and collaborators (Li et al., 2001). -→ Li and collaborators (Li et al., 2021).
Sanito, You, Chang, Wang (bib84) 2020; 394
Scally, Gulan, Weigang, Cullen, Milosavljevic (bib89) 2018; 11
.
Xia, T., Kleinheksel, A., Lee, E.M., Qiao, Z., Wigginton, K.R., Clack, H.L., 2019, Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 52, 255201. Journal of Applied Physics.
Nayak, Aboubakr, Goyal, Bruggeman (bib76) 2017; 15
Heberlein, Murphy (bib43) 2008; 41
Mao, Chen, Wu, Tang, Yao, Zhang, Jiang, Han, Wu, Lu, Nozaki (bib67) 2018; 347
Sirkawar, Zhao, Clough, Yao, Zhong, Memon, Shah, Anthony, Fennell (bib90) 2016; 9
Bansode, More, Siddiqui, Satpute, Ahmad, Bhoraskar, Mathe (bib6) 2017; 167
Fridman, Nester, Kennedy, Saveliev, Mutaf-Yardimci (bib35) 1999; 25
Su, Tian, Zhou, Li, Zhang, Jiang, Yang, Zhang, Fang (bib94) 2018; 84
Yan, Peng, Lu, Du, Li, Chen, Ni, Cen (bib107) 2007; 19
Ersoya, Barisci, Dinc (bib30) 2019; 100
Guo, Xu, Liu, Zhao, Liu, Zhang, Chen, Kong (bib40) 2018; 84
Moldgy, Nayak, Aboubakr, Goyal, Bruggeman (bib74) 2020; 53
Stoffels, Sakiyama, Graves (bib93) 2008; 36
Basu (bib7) 2010
Lukes, Dolezalova, Sisrova, Clupek (bib64) 2014; 23
Leins, Gaiser, Schulz, Walker, Schumacher, Hirth (bib52) 2015; Vol. 98
Aboubakr, Gangalk, Youssef, Goyai, Bruggeman (bib1) 2016; 49
Chandana, Reddy, Subrahmanyam (bib14) 2015; 282
Locke, Shih (bib60) 2011; 20
Bisag, Isabelli, Laurita, Bucci, Capelli, Dirani, Gherardi, Laghi, Paglianti, Sambri, Colombo (bib10) 2020
Zhu, Li, Zhu, Pu (bib115) 2009; 42
Wang, You, Tsai, Wang (bib101) 2010; 35
Misra, N.N., Yadav, B., Roopesh, M.S., Jo, C., 2019, Cold plasma for effective fungal mycotoxin control in foods: mechanisms, Inactivation effects and applications.
Mai-Prochnow, Alam, Zhou, Zhang, Ostrikov, Cullen (bib66) 2020
Chapman (bib16) 1980
Sanito, R.C., Yeh, T.Z., You, S.J., Wang, Y.F., 2021b, Novel TiO
Banaschik, Petr Lukes, Miron, Banaschik, Pipa, Fricke, Bednarski, Kolb (bib5) 2017; 245
Rossnagel, Cuomo, Westwood (bib81) 1991
Hayyan, Hashim, Al Nashef (bib42) 2016; 116
Zhang, Zhou, Wang, Mai-Prochnow, McConchie, Li, Zhou, Thompson, Ostrikov, Cullen (bib110) 2021
in aquaculture water.
Watanabe, Tsuru (bib103) 2008; 516
Guo, Yao, Yang, Zhang, Qi, Guo, Xi, Liu, Zhang, Cheng, Wang, Rong, Chen, Kong (bib41) 2021; 421
Los, Ziuzina, Boehm, Cullen, Bourke (bib61) 2020; 86
Snoecx, Wessenbeeck, Lenaerts, Cha, Bogaerts (bib91) 2019; 3
Taylor, Pirzada (bib97) 1994; 1
Butscher, Loon, Waskow, van Rohr, Schuppler (bib13) 2016; 238
Cubas, Machado, Machado, Moecke, Dutra, Fiedler, Bueno (bib24) 2016; Vol. 39
Qu, Liang, Qu, Huang, Liu, Mao, Ji, Huang (bib78) 2013; 228
Wardenier, Vanraes, Nikiforov, van Hulle, Leys (bib102) 2019
Gorbunov (bib39) 2020; Vol 21
Li, Li, Zhang, Ji, Zhou, Guo, Zhao, Liu, Han (bib55) 2021; 9
Sanito, Chen, You, Yang, Hsieh, Wang (bib86) 2020; 20
Cubas, Machado, Machado, Gross, Magnago, Moecke, Souza (bib22) 2014; 48
Sanito, You, Wang (bib83) 2021; 288
Zhou, Zhang, Zhou, Mai-Prochnow, Ponraj, Fang, Masood, Kanangh, McClure, Alam, Ostrikov, Cullen (bib112) 2021; 750
Jiang, Zheng, Liu, Wu (bib49) 2012; 204–206
Garcia, Mora, Esquivel, Foster, Rodero, Jimenez-Sanchidiran, Romero-Salguero (bib37) 2017; 180
Mizeraczyk, Jasinski, Zakrzewski (bib72) 2005; 47
Belov, Vanneste, Aghaee, Paulussen, Bogaerts (bib9) 2016
Zimmerman, J.L., Dumler, K., Shimizu, T., Morfill, G.E., Wolf, A., Boxhammer, V., Schlegel, J., Gansbacher, B., Anton, M. 2011, Effectof cold atmospheric plasmas on adenoviruses in solution.
Garcia, Varo, Martinez (bib36) 2010; 30
Medel, Bustos, Esquivel, Godinez, Meas (bib70) 2012; 681875
Wolf, von Gunten, Kohn (bib105) 2018; 52
Reddy, Raju, Karuppiah, Reddy, Subrahmanyam (bib80) 2013; 217
Vandenbroucke, Morent, De Geyter, Leys (bib100) 2011; 195
Rahuman, M.M.S.M., Pistone, L., Trifiro, F., Miertus, S., 2000, Destruction technologies for polychlorinated biphenyls (PCBs). In: Proceedings of Expert Group Meetings on POPs and Pesticides Contaminations: Remediation Technologies and on Clean Technologies for the Reduction and Elimination of POPs, pp. 1–55.
Chen, Wang, Zhang, Chen, Zhu, Min, Tan (bib17) 2008; 82
Santos, Cubas, Moecke, Ribeiro, Amante (bib88) 2018; Vol. 81
Adamovich, Baalard, Bogaerts, Bruggeman, Cappelli, Colombo, Czarnetzki, Ebert, Eden, Favia, Graves, Hamaguchi, Hieftje, Hori, Kaganovich, Kortshagen, Kusher, Mason, Mazouffre, Thagard, Metelmann, Mizuno, Moreau, Murphy, Niemira, Oehrlein, Petrovic, Pitchford, Pu, Rauf, Sakai, Samukawa, Starikovskaia, Tennyson, Terashima, Turnere, van de Sanden, Verdelle (bib2) 2017; 50
Huang, Cheng, Chen, Zhan (bib47) 2016; 96
Mattox (bib69) 2010
Dobrin, Bradu, Magureanu, Mandache, Parvulescu (bib26) 2013; 234
Chung, Mei, Tu, Chang (bib20) 2018
Estifaee, Su, Yannam, Rogers, Thagard (bib31) 2019; 9
Liebmann, Scherer, Bibinov, Rajasekaran, Kovacs, Gesche, wakowicz, Kolb-Bachofen (bib58) 2011; 24
Wessenback (bib104) 2016
Cho, Lee, Mackeyev, Wilson, Alvarez, Hughes, Kim (bib19) 2010; 44
Borges, Lima, Nishime, Gontijo, Kostov, Ito (bib11) 2018; 13
Szalatkiewiczm J., 2013, Metals recovery from waste of printed circuit boards processed in plasmatron plasma reactor, 16th IFAC symposium in automation in mining, mineral and metal processing, 478–483.
Hrabovsky, M., Konrad, M., Kopecky, V., Hlina, M., Kavka, T., Chumak, O., Maslani, A., Oost, G.V., 2010, Plasma aided gasification of biomass and plastics using CO
Markovic, Jovic, Stankovic, Kovacevic, Roglic, Gojgic-Cvijovic, Manojlovic (bib68) 2015; 505
Du, Huang, Gong, Wei (bib29) 2018; Vol 46
Li, Rao, Zhang, Huang, Cao, Peng, Wu, Xiao, Huang (bib54) 2019; 21
Zhou, Zhou, Alam, Zhang, Li, Xia, Mai-Prochnow, An, Lovell, Masood, Amal, Ostrikov, Cullen (bib114) 2021; 403
Dojcinovic, Roglic, Obradovic, Kuraica, Kostic, Nesic, Manojlovic (bib27) 2011; 192
Du, Gong, Lin (bib28) 2019; Vol 69
Lu, Sun, Li, Yan, Diu (bib62) 2012; Vol. 40
Sanito, You, Chang, Wang (bib85) 2020; 270
and
Zhou, Zhang, Zhou, Mai-Prochnow, Ponraj, Fang, Masood, Kanangh, McClure, Alam, Ostrikov, Cullen (bib113) 2021; 750
Hefny, Pattyn, Lukes, Benediktm (bib44) 2016; 49
Laurita, Barbieri, Gherardi, Colombo, Lukes (bib51) 2015; 3
Auten, Davis (bib4) 2009; 66
Chen, Junior, Arumugaswami, Wirz (bib18) 2020; 32
Bayarri, Alcalde, Lopez-Vinent, Mico, Sans (bib8) 2021; 415
Lin, Wu, Jhang, Yang, Hsiao (bib59) 2014; 161
Machala, Taabova, Hensel, Spetlikova, Sikurova, Lukes (bib65) 2013
Zhang, Liu, Zhou, Song, Sun, Sun, Zhang, Niu, Fan, Yang (bib111) 2014; 104
Kim, Yong, Park, Choe, Jo (bib50) 2013
APEXGREEN, 2021, Ding Jian Green Energy Technology Company Limited.
Muvhiiwa, Sempuga, Hilderbant, van der Walt (bib75) 2018; 130
as oxidizer. International symposium on non-thermal/thermal plasma pollution control technology & sustainable energy, ISNTP 7. St John’s, newfoundland, Canada.
Fridman (bib33) 2008
Higman, van der Burgt (bib45) 2008
Cubas, Ferreira, Goncalves, Machado, Debacher, Moecke (bib21) 2021; 271
Lemmens, Elslander, Vanderreydt, Peys, Diels, Oosterlinck, Joos (bib53) 2007; 27
Szalatkiewicz, Szewczyk, Budny, Missala, Winiarski (bib95) 2013; 57
Zhang, Zhou, Wang, Mai-Prochnow, McConchie, Li, Zhou, Thompson, Ostrikov, Cullen (bib109) 2021
10.1016/j.jhazmat.2021.127390_bib56
Scally (10.1016/j.jhazmat.2021.127390_bib89) 2018; 11
Fridman (10.1016/j.jhazmat.2021.127390_bib35) 1999; 25
Li (10.1016/j.jhazmat.2021.127390_bib55) 2021; 9
Machala (10.1016/j.jhazmat.2021.127390_bib65) 2013
Song (10.1016/j.jhazmat.2021.127390_bib92) 2022; 422
Auten (10.1016/j.jhazmat.2021.127390_bib4) 2009; 66
10.1016/j.jhazmat.2021.127390_bib106
Hayyan (10.1016/j.jhazmat.2021.127390_bib42) 2016; 116
Mao (10.1016/j.jhazmat.2021.127390_bib67) 2018; 347
Los (10.1016/j.jhazmat.2021.127390_bib61) 2020; 86
Reddy (10.1016/j.jhazmat.2021.127390_bib80) 2013; 217
Watanabe (10.1016/j.jhazmat.2021.127390_bib103) 2008; 516
Chen (10.1016/j.jhazmat.2021.127390_bib18) 2020; 32
Ersoya (10.1016/j.jhazmat.2021.127390_bib30) 2019; 100
Sanito (10.1016/j.jhazmat.2021.127390_bib85) 2020; 270
Sirkawar (10.1016/j.jhazmat.2021.127390_bib90) 2016; 9
10.1016/j.jhazmat.2021.127390_bib46
Wessenback (10.1016/j.jhazmat.2021.127390_bib104) 2016
Lukes (10.1016/j.jhazmat.2021.127390_bib64) 2014; 23
Zhang (10.1016/j.jhazmat.2021.127390_bib111) 2014; 104
Liao (10.1016/j.jhazmat.2021.127390_bib57) 2017; 75
Santos (10.1016/j.jhazmat.2021.127390_bib88) 2018; Vol. 81
Cubas (10.1016/j.jhazmat.2021.127390_bib22) 2014; 48
10.1016/j.jhazmat.2021.127390_bib116
Mattox (10.1016/j.jhazmat.2021.127390_bib69) 2010
Iervolino (10.1016/j.jhazmat.2021.127390_bib48) 2020; 10
Chung (10.1016/j.jhazmat.2021.127390_bib20) 2018
Dojcinovic (10.1016/j.jhazmat.2021.127390_bib27) 2011; 192
Liebmann (10.1016/j.jhazmat.2021.127390_bib58) 2011; 24
Locke (10.1016/j.jhazmat.2021.127390_bib60) 2011; 20
Mai-Prochnow (10.1016/j.jhazmat.2021.127390_bib66) 2020
Laurita (10.1016/j.jhazmat.2021.127390_bib51) 2015; 3
Dobrin (10.1016/j.jhazmat.2021.127390_bib26) 2013; 234
Bayarri (10.1016/j.jhazmat.2021.127390_bib8) 2021; 415
Jiang (10.1016/j.jhazmat.2021.127390_bib49) 2012; 204–206
Fridman (10.1016/j.jhazmat.2021.127390_bib34) 2011
Mizeraczyk (10.1016/j.jhazmat.2021.127390_bib72) 2005; 47
Wardenier (10.1016/j.jhazmat.2021.127390_bib102) 2019
Perez (10.1016/j.jhazmat.2021.127390_bib77) 2019; 14
Nayak (10.1016/j.jhazmat.2021.127390_bib76) 2017; 15
Zhang (10.1016/j.jhazmat.2021.127390_bib110) 2021
Sanito (10.1016/j.jhazmat.2021.127390_bib86) 2020; 20
Cubas (10.1016/j.jhazmat.2021.127390_bib23) 2015; 159
Du (10.1016/j.jhazmat.2021.127390_bib29) 2018; Vol 46
Garcia (10.1016/j.jhazmat.2021.127390_bib37) 2017; 180
Belov (10.1016/j.jhazmat.2021.127390_bib9) 2016
Qu (10.1016/j.jhazmat.2021.127390_bib78) 2013; 228
Guo (10.1016/j.jhazmat.2021.127390_bib40) 2018; 84
Estifaee (10.1016/j.jhazmat.2021.127390_bib31) 2019; 9
Samukawa (10.1016/j.jhazmat.2021.127390_bib82) 2012; 45
10.1016/j.jhazmat.2021.127390_bib3
Basu (10.1016/j.jhazmat.2021.127390_bib7) 2010
Borges (10.1016/j.jhazmat.2021.127390_bib11) 2018; 13
Lu (10.1016/j.jhazmat.2021.127390_bib62) 2012; Vol. 40
Tetronics (10.1016/j.jhazmat.2021.127390_bib98) 2015
Gomez (10.1016/j.jhazmat.2021.127390_bib38) 2009; 161
10.1016/j.jhazmat.2021.127390_bib96
Vandenbroucke (10.1016/j.jhazmat.2021.127390_bib100) 2011; 195
Chandana (10.1016/j.jhazmat.2021.127390_bib14) 2015; 282
Lukes (10.1016/j.jhazmat.2021.127390_bib63) 2012
Filipic (10.1016/j.jhazmat.2021.127390_bib32) 2020; Vol. 38
Garcia (10.1016/j.jhazmat.2021.127390_bib36) 2010; 30
Zhou (10.1016/j.jhazmat.2021.127390_bib113) 2021; 750
Gorbunov (10.1016/j.jhazmat.2021.127390_bib39) 2020; Vol 21
Chen (10.1016/j.jhazmat.2021.127390_bib17) 2008; 82
Lin (10.1016/j.jhazmat.2021.127390_bib59) 2014; 161
Chapman (10.1016/j.jhazmat.2021.127390_bib16) 1980
Yan (10.1016/j.jhazmat.2021.127390_bib107) 2007; 19
Heberlein (10.1016/j.jhazmat.2021.127390_bib43) 2008; 41
Huang (10.1016/j.jhazmat.2021.127390_bib47) 2016; 96
Borges (10.1016/j.jhazmat.2021.127390_bib12) 2017; 7-8
10.1016/j.jhazmat.2021.127390_bib87
Butscher (10.1016/j.jhazmat.2021.127390_bib13) 2016; 238
Sanito (10.1016/j.jhazmat.2021.127390_bib83) 2021; 288
Wang (10.1016/j.jhazmat.2021.127390_bib101) 2010; 35
Lemmens (10.1016/j.jhazmat.2021.127390_bib53) 2007; 27
Markovic (10.1016/j.jhazmat.2021.127390_bib68) 2015; 505
Medel (10.1016/j.jhazmat.2021.127390_bib70) 2012; 681875
Rossnagel (10.1016/j.jhazmat.2021.127390_bib81) 1991
Zhu (10.1016/j.jhazmat.2021.127390_bib115) 2009; 42
Taylor (10.1016/j.jhazmat.2021.127390_bib97) 1994; 1
Hefny (10.1016/j.jhazmat.2021.127390_bib44) 2016; 49
Zhou (10.1016/j.jhazmat.2021.127390_bib114) 2021; 403
Higman (10.1016/j.jhazmat.2021.127390_bib45) 2008
Su (10.1016/j.jhazmat.2021.127390_bib94) 2018; 84
Kim (10.1016/j.jhazmat.2021.127390_bib50) 2013
Mohamed (10.1016/j.jhazmat.2021.127390_bib73) 2021; 9
Snoecx (10.1016/j.jhazmat.2021.127390_bib91) 2019; 3
Wolf (10.1016/j.jhazmat.2021.127390_bib105) 2018; 52
Cubas (10.1016/j.jhazmat.2021.127390_bib25) 2019; 222
10.1016/j.jhazmat.2021.127390_bib79
Adamovich (10.1016/j.jhazmat.2021.127390_bib2) 2017; 50
Sanito (10.1016/j.jhazmat.2021.127390_bib84) 2020; 394
10.1016/j.jhazmat.2021.127390_bib71
Bansode (10.1016/j.jhazmat.2021.127390_bib6) 2017; 167
Moldgy (10.1016/j.jhazmat.2021.127390_bib74) 2020; 53
Cubas (10.1016/j.jhazmat.2021.127390_bib21) 2021; 271
Stoffels (10.1016/j.jhazmat.2021.127390_bib93) 2008; 36
Tsai (10.1016/j.jhazmat.2021.127390_bib99) 2009; 34
Chang (10.1016/j.jhazmat.2021.127390_bib15) 2009; 3
Szalatkiewicz (10.1016/j.jhazmat.2021.127390_bib95) 2013; 57
Fridman (10.1016/j.jhazmat.2021.127390_bib33) 2008
Banaschik (10.1016/j.jhazmat.2021.127390_bib5) 2017; 245
Cubas (10.1016/j.jhazmat.2021.127390_bib24) 2016; Vol. 39
Cho (10.1016/j.jhazmat.2021.127390_bib19) 2010; 44
Li (10.1016/j.jhazmat.2021.127390_bib54) 2019; 21
Zinovlev (10.1016/j.jhazmat.2021.127390_bib117) 2007
Bisag (10.1016/j.jhazmat.2021.127390_bib10) 2020
Leins (10.1016/j.jhazmat.2021.127390_bib52) 2015; Vol. 98
Muvhiiwa (10.1016/j.jhazmat.2021.127390_bib75) 2018; 130
Zeghioud (10.1016/j.jhazmat.2021.127390_bib108) 2020; 387
Aboubakr (10.1016/j.jhazmat.2021.127390_bib1) 2016; 49
Guo (10.1016/j.jhazmat.2021.127390_bib41) 2021; 421
Du (10.1016/j.jhazmat.2021.127390_bib28) 2019; Vol 69
Zhou (10.1016/j.jhazmat.2021.127390_bib112) 2021; 750
Zhang (10.1016/j.jhazmat.2021.127390_bib109) 2021
References_xml – volume: 282
  start-page: 116
  year: 2015
  end-page: 122
  ident: bib14
  article-title: Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium
  publication-title: Chemical Engineering Journal
– volume: 84
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib40
  article-title: Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma –activated water
  publication-title: Appl. Environ. Microbiol., Public Environ. Health Probl.
– volume: 270
  year: 2020
  ident: bib85
  article-title: Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis
  publication-title: J. Environ. Manag.
– reference: and
– volume: 3
  start-page: 67
  year: 2009
  end-page: 84
  ident: bib15
  article-title: Thermal plasma solid waste and water treatments: a critical review. Int. J. Plasma
  publication-title: Environ. Sci. Technol.
– volume: 82
  start-page: 145
  year: 2008
  end-page: 150
  ident: bib17
  article-title: Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 15
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib76
  article-title: Reactive species responsible for the inactivation of feline calicivirus by a two-dimensional array of integrated coaxial microhollow dielectric barrier discharges in air
  publication-title: Plasma Process Polym.
– volume: 52
  start-page: 2170
  year: 2018
  end-page: 2177
  ident: bib105
  article-title: Kinetics of inactivation of waterborne enteric viruses by Ozone
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 241
  year: 2010
  end-page: 255
  ident: bib36
  article-title: Excitation of species in an expanded argon microwave plasma at atmospheric pressure
  publication-title: Plasma Chem. Plasma Process
– reference: Misra, N.N., Yadav, B., Roopesh, M.S., Jo, C., 2019, Cold plasma for effective fungal mycotoxin control in foods: mechanisms, Inactivation effects and applications.
– volume: 48
  start-page: 2853
  year: 2014
  end-page: 2861
  ident: bib22
  article-title: Inertization of heavy metals present in galvanic sludge by DC thermal plasma
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: B589
  year: 2005
  end-page: B602
  ident: bib72
  article-title: Hazardous gas treatment using atmospheric pressure microwave discharges
  publication-title: Plasma Phys. Control. Fusion
– volume: 100
  start-page: 306
  year: 2019
  end-page: 313
  ident: bib30
  article-title: Mechanisms of the
  publication-title: LWT-Food Sci. Technol.
– volume: 20
  start-page: 2226
  year: 2020
  end-page: 2238
  ident: bib86
  article-title: Hydrogen and methane production from Styrofoam Waste using an atmospheric-pressure microwave plasma reactor, Aerosol and Air Quality
  publication-title: Research
– volume: 41
  start-page: 1
  year: 2008
  end-page: 20
  ident: bib43
  article-title: Thermal plasma waste treatment
  publication-title: J. Phys. D Appl. Phys.
– start-page: 10
  year: 2013
  end-page: 649-659
  ident: bib65
  article-title: Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects
  publication-title: Plasma process. polym
– volume: 25
  start-page: 211
  year: 1999
  end-page: 213
  ident: bib35
  article-title: Gliding arc gas discharge
  publication-title: Prog. Energy Combust. Sci.
– volume: 180
  start-page: 239
  year: 2017
  end-page: 246
  ident: bib37
  article-title: Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye
  publication-title: Chemosphere
– volume: 1
  start-page: 35
  year: 1994
  end-page: 50
  ident: bib97
  article-title: Thermal plasma processing of materials: a review
  publication-title: Adv. Perform. Mater.
– volume: Vol. 39
  start-page: 906
  year: 2016
  end-page: 913
  ident: bib24
  article-title: Application of thermal plasma for inertization of sludge produced during treatment of landfill leacheate
  publication-title: Quim. Nova
– volume: 53
  year: 2020
  ident: bib74
  article-title: Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species
  publication-title: J. Phys. D: Appl Phys.
– volume: 394
  year: 2020
  ident: bib84
  article-title: Effect of shell powder on removal of metals and volatile organic compounds (VOCs) from resin in atmospheric-pressure microwave plasma reactor
  publication-title: J. Hazard. Mater.
– volume: 35
  start-page: 9637
  year: 2010
  end-page: 9640
  ident: bib101
  article-title: Production of hydrogen by plasma-reforming of methanol
  publication-title: Int. J. Hydrog. Energy
– volume: 403
  year: 2021
  ident: bib114
  article-title: Plasmalytic bubbles using CeO2 for organic pollutant degradation
  publication-title: Chem. Eng. J.
– volume: 288
  year: 2021
  ident: bib83
  article-title: Application of plasma technology for treating e-waste: a review
  publication-title: J. Environ. Manag.
– reference: /PANI composites as a disinfectant for the elimination of
– volume: 49
  year: 2016
  ident: bib1
  article-title: Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways
  publication-title: J.Phys. D: Appl. Phys
– volume: Vol 46
  start-page: 838
  year: 2018
  end-page: 858
  ident: bib29
  article-title: Plasma purification of halogen volatile organic compounds
  publication-title: IEEE Trans. Plasma Sci.
– volume: 3
  start-page: 53
  year: 2015
  end-page: 61
  ident: bib51
  article-title: Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma
  publication-title: Clin. Plasma Med.
– volume: 422
  year: 2022
  ident: bib92
  article-title: Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 1441
  year: 2008
  end-page: 1457
  ident: bib93
  article-title: Cold atmospheric plasma: charged species and their interactions with cells and tissues
  publication-title: IEEE Trans. Plasma Sci.
– volume: 96
  start-page: 490
  year: 2016
  end-page: 497
  ident: bib47
  article-title: Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study
  publication-title: Renew. Energy
– year: 2015
  ident: bib98
  article-title: Tetronics International: About Tetronics
– volume: Vol. 40
  start-page: 2151
  year: 2012
  end-page: 2156
  ident: bib62
  article-title: Decomposition of toluene in a rotating glaidarc discharge reactor
  publication-title: IEEE Trans. Plasma Sci.
– volume: 222
  start-page: 68
  year: 2019
  end-page: 74
  ident: bib25
  article-title: Effect of chemical species generated by different gemoetries of air and argon non-thermal plasma reactors on bacteria inactivation in water
  publication-title: Sep. Purif. Technol.
– volume: Vol 21
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib39
  article-title: Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance
  publication-title: Aerosol air Qual. Res.
– year: 2012
  ident: bib63
  article-title: Aqueous-phase chemistry of electrical discharged plasma in water and in gas-liquid environments
  publication-title: Plasma Chemistry and Catalysis in Gases and Liquids
– year: 2008
  ident: bib45
  publication-title: Gasification
– start-page: 1420
  year: 2013
  end-page: 1425
  ident: bib50
  article-title: Effects of dielectric barrier discharge plasma on inactivation and the physicochemical and sensory characteristics of pork loin
  publication-title: Curr. Appl. Phys.
– volume: 44
  start-page: 6685
  year: 2010
  end-page: 6691
  ident: bib19
  article-title: Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine functionalized C60 derivative
  publication-title: Environ. Sci. Technol.
– volume: 161
  start-page: 614
  year: 2009
  end-page: 626
  ident: bib38
  article-title: Thermal plasma technology for the treatment of wastes: a critical review
  publication-title: J. Hazard. Mater.
– volume: Vol. 98
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib52
  article-title: How to ignite an atmospheric-pressure microwave plasma torch without any additional igniters
  publication-title: J. Vis. Exp.
– volume: 9
  year: 2021
  ident: bib73
  article-title: Non-thermal plasma as a novel strategy for treating or preventing viral infection and associated disease, review
  publication-title: Front. Phys.
– reference: Li and collaborators (Li et al., 2001). -→ Li and collaborators (Li et al., 2021).
– reference: Zimmerman, J.L., Dumler, K., Shimizu, T., Morfill, G.E., Wolf, A., Boxhammer, V., Schlegel, J., Gansbacher, B., Anton, M. 2011, Effectof cold atmospheric plasmas on adenoviruses in solution.
– volume: 415
  year: 2021
  ident: bib8
  article-title: Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses
  publication-title: J. Hazard. Mater.
– volume: 45
  year: 2012
  ident: bib82
  article-title: The 2012 plasma road map
  publication-title: J. Phys. D: Appl. Phys.
– volume: 3
  start-page: 1388
  year: 2019
  ident: bib91
  article-title: Suppressing the formation of NOx and N
  publication-title: Sustain. Energy Fuels
– year: 1991
  ident: bib81
  article-title: Handbook of plasma processing technology: fundamental, etching, deposition, and surface interactions
  publication-title: Material Science and Processing Technology
– volume: 7-8
  start-page: 9
  year: 2017
  end-page: 15
  ident: bib12
  article-title: Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits
  publication-title: Critical plasma medicine
– volume: 49
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib44
  article-title: Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 97
  year: 2010
  end-page: 116
  ident: bib7
  publication-title: Biomass gasification and Pyrolysis
– year: 2011
  ident: bib34
  publication-title: Plasma Physics and Engineering
– reference: Szalatkiewiczm J., 2013, Metals recovery from waste of printed circuit boards processed in plasmatron plasma reactor, 16th IFAC symposium in automation in mining, mineral and metal processing, 478–483.
– volume: 387
  year: 2020
  ident: bib108
  article-title: Review on discharge plasma for water treatment: mechanism, reactor geometris, active species and combined process
  publication-title: J. Water Process Eng.
– volume: 228
  start-page: 28
  year: 2013
  end-page: 35
  ident: bib78
  article-title: Simultaneous removal of cadmium ions and phenol from water solution by pulsed corona discharged plasma combine with activated carbon
  publication-title: Chem. Eng. J.
– volume: 516
  start-page: 4391
  year: 2008
  end-page: 4396
  ident: bib103
  article-title: Water plasma generation under atmospheric pressure for HFC destruction
  publication-title: Thin Solid Films
– volume: 19
  start-page: 1404
  year: 2007
  end-page: 1408
  ident: bib107
  article-title: Destruction of PCDD/Fs by gliding arc discharges
  publication-title: J. Environ. Sci.
– volume: 66
  start-page: 121
  year: 2009
  end-page: 127
  ident: bib4
  article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details
  publication-title: Pediatr. Res.
– volume: 27
  start-page: 1562
  year: 2007
  end-page: 1569
  ident: bib53
  article-title: Assessment of plasma gasification of high caloric waste streams
  publication-title: waste management
– volume: 23
  year: 2014
  ident: bib64
  article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitritethrough a pseudo-second-order post-discharge reaction of H
  publication-title: Plasma Source Sci. Technol.
– volume: 750
  year: 2021
  ident: bib112
  article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants
  publication-title: Sci. Total Environ.
– reference: Rahuman, M.M.S.M., Pistone, L., Trifiro, F., Miertus, S., 2000, Destruction technologies for polychlorinated biphenyls (PCBs). In: Proceedings of Expert Group Meetings on POPs and Pesticides Contaminations: Remediation Technologies and on Clean Technologies for the Reduction and Elimination of POPs, pp. 1–55.
– volume: 234
  start-page: 389
  year: 2013
  end-page: 396
  ident: bib26
  article-title: Degradation of diclofenac in water using a pulsed corona discharged
  publication-title: Chem. Eng. J.
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib66
  article-title: Microbial decontamination of chicken using atmospheric-plasma bubbles
  publication-title: Plasma Process Polym.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 19
  ident: bib11
  article-title: Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study
  publication-title: PLoS One
– year: 2018
  ident: bib20
  article-title: Removal of VOCs from gas streams via plasma and catalysis
  publication-title: Catalysis Reviews
– volume: 161
  start-page: 304
  year: 2014
  end-page: 309
  ident: bib59
  article-title: Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor
  publication-title: Bio-Resour. Technol.
– volume: 505
  start-page: 1148
  year: 2015
  end-page: 1155
  ident: bib68
  article-title: Application of non-thermal plasma reactor and fenton reaction for degradation of ibuprofen
  publication-title: Sci. Total Environ.
– start-page: 157
  year: 2010
  end-page: 193
  ident: bib69
  article-title: The Low-pressure Plasma Processing Environment in Handbook of Physical Vapor Deposition (PVD) Processing
– volume: 11
  start-page: 192
  year: 2018
  ident: bib89
  article-title: Significant of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas aeruginosa
  publication-title: Materials
– volume: 195
  start-page: 30
  year: 2011
  end-page: 54
  ident: bib100
  article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement
  publication-title: J. Hazard. Mater.
– volume: 245
  start-page: 539
  year: 2017
  end-page: 548
  ident: bib5
  article-title: Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water
  publication-title: Electrochimica Acta
– volume: 159
  start-page: 202
  year: 2015
  end-page: 208
  ident: bib23
  article-title: Final treatment of spent batteries by thermal plasma
  publication-title: J. Environ. Manag.
– volume: Vol. 38
  start-page: 1278
  year: 2020
  end-page: 1291
  ident: bib32
  article-title: Cold plasma, a new hope in the field of virus inactivation, Cell Press Reviews
  publication-title: Trends Biotechnol.
– reference: 〉.
– year: 2016
  ident: bib9
  article-title: Synthesis of micro-and nanomaterials in CO
  publication-title: Plasma Process Polym.
– volume: 21
  start-page: 341
  year: 2019
  end-page: 348
  ident: bib54
  article-title: Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant
  publication-title: Chemosphere
– volume: 34
  start-page: 833
  year: 2009
  end-page: 838
  ident: bib99
  article-title: Production of hydrogen and nano carbon powders from direct plasmalysis of methane
  publication-title: International journal of hydrogen energy
– reference: APEXGREEN, 2021, Ding Jian Green Energy Technology Company Limited. 〈
– year: 2021
  ident: bib110
  article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation
  publication-title: Chemical Engineering Journal
– volume: 271
  year: 2021
  ident: bib21
  article-title: Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Eschericia coli in water
  publication-title: Chemosphere
– volume: 9
  year: 2019
  ident: bib31
  article-title: Mechanism of E. coli 905 inactivation by direct-in-liquid electrical discharge plasma in low conductivity 906 solutions
  publication-title: Sci.Rep, UK
– volume: 9
  start-page: 2927
  year: 2016
  end-page: 3304
  ident: bib90
  article-title: An overview of advances in biomass gasification
  publication-title: Energy Environ. Sci. R. Soc.
– volume: 24
  start-page: 8
  year: 2011
  end-page: 16
  ident: bib58
  article-title: Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells
  publication-title: Nitric Oxide
– volume: 57
  start-page: 1100
  year: 2013
  end-page: 1108
  ident: bib95
  article-title: Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas, 11 th international conference on modern building materials, structures and technique, MBMST 2013
  publication-title: Procedia Eng.
– volume: 238
  start-page: 222
  year: 2016
  end-page: 232
  ident: bib13
  article-title: Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge
  publication-title: Int. J. Food Microbiol.
– volume: 10
  start-page: 888
  year: 2020
  ident: bib48
  article-title: Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process
  publication-title: Catalysis
– volume: 20
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib60
  article-title: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water
  publication-title: Plasma Sources Sci. Technol.
– volume: 130
  start-page: 159
  year: 2018
  end-page: 168
  ident: bib75
  article-title: Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 14
  year: 2019
  ident: bib77
  article-title: Plasma activated water as resistance inducer against bacterial leaf spot of tomato
  publication-title: PLoS ONE
– reference: Xia, T., Kleinheksel, A., Lee, E.M., Qiao, Z., Wigginton, K.R., Clack, H.L., 2019, Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 52, 255201. Journal of Applied Physics.
– volume: 104
  year: 2014
  ident: bib111
  article-title: Atmospheric cold plasma jet for plant disease treatment
  publication-title: Appl. Phys. Lett.
– reference: in aquaculture water.
– volume: 42
  year: 2009
  ident: bib115
  article-title: Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium
  publication-title: J. Phys. D: Appl. Phys.
– volume: 192
  start-page: 763
  year: 2011
  end-page: 771
  ident: bib27
  article-title: Decolorization of reactive textile dyes using water falling film dielectric barrier discharge
  publication-title: J. Hazard. Mater.
– volume: Vol 69
  start-page: 879
  year: 2019
  end-page: 899
  ident: bib28
  article-title: Decomposition of volatile organic compounds using corona discharge plasma technology
  publication-title: J. Air Waste Manag. Assoc.
– volume: 32
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib18
  article-title: Cold atmospheric plasma for SARS-CoV-2 inactivation
  publication-title: Phys. Fluids
– volume: Vol. 81
  start-page: 1897
  year: 2018
  end-page: 1905
  ident: bib88
  article-title: Use of cold plasma to inactivate Eschericia coli and physicochemical evaluation in Pumpkin Puree
  publication-title: J. Food Prot.
– volume: 347
  start-page: 150
  year: 2018
  end-page: 159
  ident: bib67
  article-title: Plasma-catalyst hybrid reactor with CeO
  publication-title: J. Hazard. Mater.
– year: 1980
  ident: bib16
  article-title: Glow Discharge Processing: Sputtering and Plasma Etching
– reference: Hrabovsky, M., Konrad, M., Kopecky, V., Hlina, M., Kavka, T., Chumak, O., Maslani, A., Oost, G.V., 2010, Plasma aided gasification of biomass and plastics using CO
– volume: 167
  start-page: 396
  year: 2017
  end-page: 405
  ident: bib6
  article-title: Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process
  publication-title: Chemosphere
– volume: 84
  year: 2018
  ident: bib94
  article-title: Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus
  publication-title: Appl. Environ. Microbiol.
– volume: 75
  start-page: 83
  year: 2017
  end-page: 91
  ident: bib57
  article-title: Inactivation mechanism of non-thermal plasma on microbes: a review
  publication-title: Food Control
– volume: 750
  year: 2021
  ident: bib113
  article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants
  publication-title: Sci. Total Environ.
– volume: 116
  start-page: 3029
  year: 2016
  end-page: 3085
  ident: bib42
  article-title: Superoxide ion: generation and chemical implications
  publication-title: Chem., Rev.
– year: 2008
  ident: bib33
  article-title: Plasma Chemistry
– volume: 204–206
  start-page: 32
  year: 2012
  end-page: 39
  ident: bib49
  article-title: Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system
  publication-title: Chem. Eng. J.
– year: 2021
  ident: bib109
  article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation
  publication-title: Chem. Eng. J.
– year: 2019
  ident: bib102
  article-title: Removal micro-pollutants from water in a continuous-flo electrical discharge reactor
  publication-title: J. Hazard. Mater.
– volume: 50
  year: 2017
  ident: bib2
  article-title: The plasma roadmap: Low temperature plasma science and technology, topical review
  publication-title: J. Phys. D: Appl. Phys.
– volume: 86
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib61
  article-title: Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavous spores and biofilms: a comparative study
  publication-title: Appl. Environ. Microbiol. Food Microbiol.
– volume: 217
  start-page: 41
  year: 2013
  end-page: 47
  ident: bib80
  article-title: Degradataion and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor
  publication-title: Chem. Eng. J.
– volume: 681875
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib70
  article-title: Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes
  publication-title: Int. J. Photo
– volume: 9
  year: 2021
  ident: bib55
  article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO
  publication-title: J. Environ. Chem. Eng.
– start-page: 1
  year: 2007
  end-page: 182
  ident: bib117
  article-title: Non-combustion technologies for POPs destruction
  publication-title: Rev. Eval.
– volume: 421
  year: 2021
  ident: bib41
  article-title: Plasma activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection
  publication-title: Chem. Eng. J.
– reference: as oxidizer. International symposium on non-thermal/thermal plasma pollution control technology & sustainable energy, ISNTP 7. St John’s, newfoundland, Canada.
– reference: Sanito, R.C., Yeh, T.Z., You, S.J., Wang, Y.F., 2021b, Novel TiO
– start-page: 1
  year: 2016
  end-page: 193
  ident: bib104
  article-title: Plasma Catalysis as an Efficient and Sustainable Air Purification
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib10
  article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission
  publication-title: Plasma Process Polym.
– volume: Vol 46
  start-page: 838
  issue: No 4
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib29
  article-title: Plasma purification of halogen volatile organic compounds
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2808243
– volume: 42
  year: 2009
  ident: 10.1016/j.jhazmat.2021.127390_bib115
  article-title: Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/20/202002
– volume: 48
  start-page: 2853
  year: 2014
  ident: 10.1016/j.jhazmat.2021.127390_bib22
  article-title: Inertization of heavy metals present in galvanic sludge by DC thermal plasma
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404296x
– volume: Vol. 98
  start-page: 1
  year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib52
  article-title: How to ignite an atmospheric-pressure microwave plasma torch without any additional igniters
  publication-title: J. Vis. Exp.
– volume: 505
  start-page: 1148
  year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib68
  article-title: Application of non-thermal plasma reactor and fenton reaction for degradation of ibuprofen
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.017
– year: 2012
  ident: 10.1016/j.jhazmat.2021.127390_bib63
  article-title: Aqueous-phase chemistry of electrical discharged plasma in water and in gas-liquid environments
– volume: 50
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib2
  article-title: The plasma roadmap: Low temperature plasma science and technology, topical review
  publication-title: J. Phys. D: Appl. Phys.
– year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib109
  article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation
  publication-title: Chem. Eng. J.
– volume: 228
  start-page: 28
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib78
  article-title: Simultaneous removal of cadmium ions and phenol from water solution by pulsed corona discharged plasma combine with activated carbon
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.114
– volume: 3
  start-page: 1388
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib91
  article-title: Suppressing the formation of NOx and N2O in CO2 / N2 dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C8SE00584B
– volume: 45
  year: 2012
  ident: 10.1016/j.jhazmat.2021.127390_bib82
  article-title: The 2012 plasma road map
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/25/253001
– start-page: 157
  year: 2010
  ident: 10.1016/j.jhazmat.2021.127390_bib69
– volume: 167
  start-page: 396
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib6
  article-title: Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.089
– volume: 7-8
  start-page: 9
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib12
  article-title: Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits
  publication-title: Critical plasma medicine
  doi: 10.1016/j.cpme.2017.06.002
– volume: 159
  start-page: 202
  year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib23
  article-title: Final treatment of spent batteries by thermal plasma
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.05.004
– volume: Vol 69
  start-page: 879
  issue: No 8
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib28
  article-title: Decomposition of volatile organic compounds using corona discharge plasma technology
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2019.1582441
– volume: 100
  start-page: 306
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib30
  article-title: Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone
  publication-title: LWT-Food Sci. Technol.
  doi: 10.1016/j.lwt.2018.10.095
– start-page: 10
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib65
  article-title: Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects
  publication-title: Plasma process. polym
– ident: 10.1016/j.jhazmat.2021.127390_bib87
  doi: 10.1016/j.eti.2021.101502
– ident: 10.1016/j.jhazmat.2021.127390_bib116
  doi: 10.1109/PLASMA.2012.6383555
– start-page: 1
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib104
– volume: 415
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib8
  article-title: Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125658
– volume: 9
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib73
  article-title: Non-thermal plasma as a novel strategy for treating or preventing viral infection and associated disease, review
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2021.683118
– volume: Vol. 81
  start-page: 1897
  issue: No. 11
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib88
  article-title: Use of cold plasma to inactivate Eschericia coli and physicochemical evaluation in Pumpkin Puree
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X.JFP-18-136
– start-page: 1
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib66
  article-title: Microbial decontamination of chicken using atmospheric-plasma bubbles
  publication-title: Plasma Process Polym.
– volume: 86
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib61
  article-title: Inactivation efficacies and mechanisms of gas plasma and plasma-activated water against Aspergillus flavous spores and biofilms: a comparative study
  publication-title: Appl. Environ. Microbiol. Food Microbiol.
– volume: 52
  start-page: 2170
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib105
  article-title: Kinetics of inactivation of waterborne enteric viruses by Ozone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05111
– volume: 53
  issue: 4
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib74
  article-title: Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species
  publication-title: J. Phys. D: Appl Phys.
– ident: 10.1016/j.jhazmat.2021.127390_bib71
  doi: 10.1111/1541-4337.12398
– year: 1991
  ident: 10.1016/j.jhazmat.2021.127390_bib81
  article-title: Handbook of plasma processing technology: fundamental, etching, deposition, and surface interactions
– ident: 10.1016/j.jhazmat.2021.127390_bib96
  doi: 10.3182/20130825-4-US-2038.00109
– volume: 403
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib114
  article-title: Plasmalytic bubbles using CeO2 for organic pollutant degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126413
– volume: 20
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhazmat.2021.127390_bib60
  article-title: Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/20/3/034006
– volume: 20
  start-page: 2226
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib86
  article-title: Hydrogen and methane production from Styrofoam Waste using an atmospheric-pressure microwave plasma reactor, Aerosol and Air Quality
  publication-title: Research
– start-page: 1
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib10
  article-title: Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission
  publication-title: Plasma Process Polym.
– volume: 41
  start-page: 1
  year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib43
  article-title: Thermal plasma waste treatment
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/41/5/053001
– volume: 66
  start-page: 121
  year: 2009
  ident: 10.1016/j.jhazmat.2021.127390_bib4
  article-title: Oxygen toxicity and reactive oxygen species: the devil is in the details
  publication-title: Pediatr. Res.
  doi: 10.1203/PDR.0b013e3181a9eafb
– volume: 204–206
  start-page: 32
  year: 2012
  ident: 10.1016/j.jhazmat.2021.127390_bib49
  article-title: Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.07.088
– volume: 161
  start-page: 614
  year: 2009
  ident: 10.1016/j.jhazmat.2021.127390_bib38
  article-title: Thermal plasma technology for the treatment of wastes: a critical review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.04.017
– volume: Vol. 39
  start-page: 906
  issue: No. 8
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib24
  article-title: Application of thermal plasma for inertization of sludge produced during treatment of landfill leacheate
  publication-title: Quim. Nova
– volume: 222
  start-page: 68
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib25
  article-title: Effect of chemical species generated by different gemoetries of air and argon non-thermal plasma reactors on bacteria inactivation in water
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.03.057
– year: 2011
  ident: 10.1016/j.jhazmat.2021.127390_bib34
– volume: 82
  start-page: 145
  year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib17
  article-title: Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2008.03.001
– volume: 104
  year: 2014
  ident: 10.1016/j.jhazmat.2021.127390_bib111
  article-title: Atmospheric cold plasma jet for plant disease treatment
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 8
  year: 2011
  ident: 10.1016/j.jhazmat.2021.127390_bib58
  article-title: Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2010.09.005
– volume: 15
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib76
  article-title: Reactive species responsible for the inactivation of feline calicivirus by a two-dimensional array of integrated coaxial microhollow dielectric barrier discharges in air
  publication-title: Plasma Process Polym.
– volume: 516
  start-page: 4391
  year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib103
  article-title: Water plasma generation under atmospheric pressure for HFC destruction
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.10.062
– volume: 750
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib113
  article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142295
– volume: 271
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib21
  article-title: Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Eschericia coli in water
  publication-title: Chemosphere
– volume: 282
  start-page: 116
  year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib14
  article-title: Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2015.02.027
– volume: 238
  start-page: 222
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib13
  article-title: Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2016.09.006
– volume: 21
  start-page: 341
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib54
  article-title: Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.138
– year: 1980
  ident: 10.1016/j.jhazmat.2021.127390_bib16
– volume: Vol. 38
  start-page: 1278
  issue: No. 11
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib32
  article-title: Cold plasma, a new hope in the field of virus inactivation, Cell Press Reviews
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.04.003
– volume: 25
  start-page: 211
  year: 1999
  ident: 10.1016/j.jhazmat.2021.127390_bib35
  article-title: Gliding arc gas discharge
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(98)00021-5
– volume: 35
  start-page: 9637
  year: 2010
  ident: 10.1016/j.jhazmat.2021.127390_bib101
  article-title: Production of hydrogen by plasma-reforming of methanol
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.06.104
– volume: 10
  start-page: 888
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib48
  article-title: Degradation of acid orange 7 azo dye in aqueous solution by a catalytic-assisted, non-thermal plasma process
  publication-title: Catalysis
– volume: 57
  start-page: 1100
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib95
  article-title: Construction aspects of plasma based technology for waste of electrical and electronic equipment (WEEE) management in urban areas, 11 th international conference on modern building materials, structures and technique, MBMST 2013
  publication-title: Procedia Eng.
– volume: 421
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib41
  article-title: Plasma activated water: an alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127742
– volume: 23
  year: 2014
  ident: 10.1016/j.jhazmat.2021.127390_bib64
  article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitritethrough a pseudo-second-order post-discharge reaction of H2O2 and HNO2
  publication-title: Plasma Source Sci. Technol.
  doi: 10.1088/0963-0252/23/1/015019
– year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib33
– volume: 36
  start-page: 1441
  year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib93
  article-title: Cold atmospheric plasma: charged species and their interactions with cells and tissues
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2008.2001084
– volume: 19
  start-page: 1404
  year: 2007
  ident: 10.1016/j.jhazmat.2021.127390_bib107
  article-title: Destruction of PCDD/Fs by gliding arc discharges
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(07)60229-0
– volume: 217
  start-page: 41
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib80
  article-title: Degradataion and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.11.116
– volume: 387
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib108
  article-title: Review on discharge plasma for water treatment: mechanism, reactor geometris, active species and combined process
  publication-title: J. Water Process Eng.
– ident: 10.1016/j.jhazmat.2021.127390_bib3
– volume: 161
  start-page: 304
  year: 2014
  ident: 10.1016/j.jhazmat.2021.127390_bib59
  article-title: Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor
  publication-title: Bio-Resour. Technol.
  doi: 10.1016/j.biortech.2014.03.067
– volume: 245
  start-page: 539
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib5
  article-title: Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2017.05.121
– volume: 9
  start-page: 2927
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib90
  article-title: An overview of advances in biomass gasification
  publication-title: Energy Environ. Sci. R. Soc.
– year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib20
  article-title: Removal of VOCs from gas streams via plasma and catalysis
– volume: 96
  start-page: 490
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib47
  article-title: Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.04.080
– volume: 288
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib83
  article-title: Application of plasma technology for treating e-waste: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112380
– volume: 13
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib11
  article-title: Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0199832
– year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib102
  article-title: Removal micro-pollutants from water in a continuous-flo electrical discharge reactor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.095
– volume: 195
  start-page: 30
  year: 2011
  ident: 10.1016/j.jhazmat.2021.127390_bib100
  article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.08.060
– volume: 84
  start-page: 1
  issue: 17
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib40
  article-title: Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma –activated water
  publication-title: Appl. Environ. Microbiol., Public Environ. Health Probl.
– volume: 394
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib84
  article-title: Effect of shell powder on removal of metals and volatile organic compounds (VOCs) from resin in atmospheric-pressure microwave plasma reactor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122558
– ident: 10.1016/j.jhazmat.2021.127390_bib106
  doi: 10.1088/1361-6463/ab1466
– volume: 234
  start-page: 389
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib26
  article-title: Degradation of diclofenac in water using a pulsed corona discharged
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.08.114
– volume: 84
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib94
  article-title: Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02836-17
– volume: 750
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib112
  article-title: Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142295
– volume: 32
  start-page: 1
  issue: 111702
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib18
  article-title: Cold atmospheric plasma for SARS-CoV-2 inactivation
  publication-title: Phys. Fluids
– volume: Vol. 40
  start-page: 2151
  issue: No 9
  year: 2012
  ident: 10.1016/j.jhazmat.2021.127390_bib62
  article-title: Decomposition of toluene in a rotating glaidarc discharge reactor
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2012.2206119
– volume: 681875
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhazmat.2021.127390_bib70
  article-title: Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes
  publication-title: Int. J. Photo
– ident: 10.1016/j.jhazmat.2021.127390_bib46
– volume: 192
  start-page: 763
  year: 2011
  ident: 10.1016/j.jhazmat.2021.127390_bib27
  article-title: Decolorization of reactive textile dyes using water falling film dielectric barrier discharge
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.05.086
– year: 2008
  ident: 10.1016/j.jhazmat.2021.127390_bib45
– volume: 47
  start-page: B589
  year: 2005
  ident: 10.1016/j.jhazmat.2021.127390_bib72
  article-title: Hazardous gas treatment using atmospheric pressure microwave discharges
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/47/12B/S43
– volume: 30
  start-page: 241
  year: 2010
  ident: 10.1016/j.jhazmat.2021.127390_bib36
  article-title: Excitation of species in an expanded argon microwave plasma at atmospheric pressure
  publication-title: Plasma Chem. Plasma Process
  doi: 10.1007/s11090-010-9215-x
– volume: 130
  start-page: 159
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib75
  article-title: Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2018.01.014
– volume: 9
  year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib55
  article-title: Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO2/γ-Al2O3 catalyst
  publication-title: J. Environ. Chem. Eng.
– volume: 49
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib1
  article-title: Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways
  publication-title: J.Phys. D: Appl. Phys
  doi: 10.1088/0022-3727/49/20/204001
– volume: 1
  start-page: 35
  year: 1994
  ident: 10.1016/j.jhazmat.2021.127390_bib97
  article-title: Thermal plasma processing of materials: a review
  publication-title: Adv. Perform. Mater.
  doi: 10.1007/BF00705312
– year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib9
  article-title: Synthesis of micro-and nanomaterials in CO2 and CO dielectric barrier discharges
  publication-title: Plasma Process Polym.
– volume: 3
  start-page: 67
  year: 2009
  ident: 10.1016/j.jhazmat.2021.127390_bib15
  article-title: Thermal plasma solid waste and water treatments: a critical review. Int. J. Plasma
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 53
  year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib51
  article-title: Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma
  publication-title: Clin. Plasma Med.
  doi: 10.1016/j.cpme.2015.10.001
– volume: 27
  start-page: 1562
  year: 2007
  ident: 10.1016/j.jhazmat.2021.127390_bib53
  article-title: Assessment of plasma gasification of high caloric waste streams
  publication-title: waste management
  doi: 10.1016/j.wasman.2006.07.027
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib31
  article-title: Mechanism of E. coli 905 inactivation by direct-in-liquid electrical discharge plasma in low conductivity 906 solutions
  publication-title: Sci.Rep, UK
– volume: 180
  start-page: 239
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib37
  article-title: Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.126
– volume: 116
  start-page: 3029
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib42
  article-title: Superoxide ion: generation and chemical implications
  publication-title: Chem., Rev.
  doi: 10.1021/acs.chemrev.5b00407
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.jhazmat.2021.127390_bib77
  article-title: Plasma activated water as resistance inducer against bacterial leaf spot of tomato
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0217788
– ident: 10.1016/j.jhazmat.2021.127390_bib79
– volume: 75
  start-page: 83
  year: 2017
  ident: 10.1016/j.jhazmat.2021.127390_bib57
  article-title: Inactivation mechanism of non-thermal plasma on microbes: a review
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.12.021
– volume: 34
  start-page: 833
  year: 2009
  ident: 10.1016/j.jhazmat.2021.127390_bib99
  article-title: Production of hydrogen and nano carbon powders from direct plasmalysis of methane
  publication-title: International journal of hydrogen energy
  doi: 10.1016/j.ijhydene.2008.10.061
– ident: 10.1016/j.jhazmat.2021.127390_bib56
– volume: Vol 21
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib39
  article-title: Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance
  publication-title: Aerosol air Qual. Res.
– start-page: 1420
  year: 2013
  ident: 10.1016/j.jhazmat.2021.127390_bib50
  article-title: Effects of dielectric barrier discharge plasma on inactivation and the physicochemical and sensory characteristics of pork loin
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2013.04.021
– volume: 347
  start-page: 150
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib67
  article-title: Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.12.064
– year: 2021
  ident: 10.1016/j.jhazmat.2021.127390_bib110
  article-title: Degradation of cefexime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation
  publication-title: Chemical Engineering Journal
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhazmat.2021.127390_bib44
  article-title: Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/40/404002
– volume: 11
  start-page: 192
  year: 2018
  ident: 10.1016/j.jhazmat.2021.127390_bib89
  article-title: Significant of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas aeruginosa
  publication-title: Materials
  doi: 10.3390/ma11101925
– volume: 422
  year: 2022
  ident: 10.1016/j.jhazmat.2021.127390_bib92
  article-title: Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126906
– volume: 44
  start-page: 6685
  year: 2010
  ident: 10.1016/j.jhazmat.2021.127390_bib19
  article-title: Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine functionalized C60 derivative
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1014967
– volume: 270
  year: 2020
  ident: 10.1016/j.jhazmat.2021.127390_bib85
  article-title: Economic and environmental evaluation of flux agents in the vitrification of resin waste: A SWOT analysis
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.110910
– start-page: 97
  year: 2010
  ident: 10.1016/j.jhazmat.2021.127390_bib7
– year: 2015
  ident: 10.1016/j.jhazmat.2021.127390_bib98
– start-page: 1
  year: 2007
  ident: 10.1016/j.jhazmat.2021.127390_bib117
  article-title: Non-combustion technologies for POPs destruction
  publication-title: Rev. Eval.
SSID ssj0001754
Score 2.6581886
SecondaryResourceType review_article
Snippet The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127390
SubjectTerms Bacteria - genetics
biomass
COVID-19
Discharge plasma
Humans
hydrogen
Metals
methane production
photocatalysis
Photocatalytic
Plasma technologies
Reactive species
Review
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
viruses
Volatile Organic Compounds
Title Degradation of contaminants in plasma technology: An overview
URI https://dx.doi.org/10.1016/j.jhazmat.2021.127390
https://www.ncbi.nlm.nih.gov/pubmed/34879580
https://www.proquest.com/docview/2608532744
https://www.proquest.com/docview/2636814702
https://pubmed.ncbi.nlm.nih.gov/PMC8500698
Volume 424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeL9Rkbh2a9ekSZE4TDw0nhdA2i1K0kTbBN0Eg0kc-O3YazsYIJC4traaOIkfjf2ZkH2tuQnAz_BFooVPjWB-Qp3wYwRbC5lRjmHt8NV13Lyj5y3WmiJHZS0MplUWuj_X6SNtXTypFdKs9Tud2g1e6oG5pRi0REy0sIKdctzl1bePNA8wjzmEFN4AAPVHFU-tW-221Ss4hhAm1sNqCJYcVfPP9um7__k1jfKTXTpdIPOFQ-k18jEvkimbLZG5TzCDS2T6Ug2XyeEx4kLkLZS8nvMwSV0ViTBeJ_P64Ec_KG8w_td-4DWA8AWViR2ukLvTk9ujpl80T_ANC4KBnxiH4PUudaFjLkmMdpRzCHhThanSKU-NUtRCOKadjetap1yArebWWUdVGESrpJL1MrtOPKV4nGAkopylQZRqCDFS5xIT8boD0W0QWopMmgJZHBtc3MsyhawrC0lLlLTMJb1BqmO2fg6t8ReDKNdDTuwRCer_L9a9cv0knB-8FFGZ7T0_SYjnwGNBnMTfaKJYhJTjVNfyNR-POKLYrl3AF_jEbhgTIH735Jus0x7heAuGONFi8__T2iKzdSzHwAY1bJtUBo_PdgecpIHeHZ2CXTLTOLtoXr8DhiAS2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9Bedh4mAb7Yh8sk_aaNmns2Jm0h4oNlVH6MpD6ZtmOLVptaQUFJP567oiT0W0CidfEp9hn-z5yd78D-GyMsAnaGbEsjIyZlTwumJdxTmBrKbfac6odPhrnwxP2Y8Ina7DX1MJQWmWQ_bVMv5XW4UkvcLO3mE57Pymoh-qWkdOScTlZhw1Cp-Id2BgcHA7HrUBGDVmjSFEQAAn-FPL0Zt3Zqb5G2xA9xX7aTVGZk3T-v4r61wT9O5Pyjmrafw7Pgk0ZDeppb8Gaq7Zh8w7S4Dasj_TVC_j6jaAh6i5K0dxHlKeuQy5MNK2iBZrSv3W0bH-3f4kGOPCS5Im7egkn-9-P94Zx6J8QW54ky7iwnvDrfelTz31RWOOZEOjzlpqypUtRWq2ZQ4_MeJf3jSmFRHUtnHee6TTJXkGnmlfuDURai7wgZ0R7x5KsNOhllN4XNhN9j6zbAdawTNkALk49Ln6pJotspgKnFXFa1ZzegW5LtqjRNR4ikM1-qJVjolADPET6qdk_hVeI4iK6cvOLc4UuHRotBJV435gslykTtNTX9Z63M84YdWyX-AWxchraAQThvfqmmp7eQnlLTlDR8u3jl_URngyPj0ZqdDA-fAdP-1SdQf1q-HvoLM8u3Ae0mZZmN9yJG96cFYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+contaminants+in+plasma+technology%3A+An+overview&rft.jtitle=Journal+of+hazardous+materials&rft.au=Sanito%2C+Raynard+Christianson&rft.au=You%2C+Sheng-Jie&rft.au=Wang%2C+Ya-Fen&rft.date=2022-02-15&rft.issn=0304-3894&rft.volume=424&rft.spage=127390&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.127390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2021_127390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon