Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees
This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that p...
Saved in:
Published in | IEEE access Vol. 8; pp. 212818 - 212836 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2020.3040858 |
Cover
Loading…
Abstract | This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that purpose, it uses a data set that only contains features typically gathered by university administrations about the students, degrees and subjects. The web-based tool provides access to results from different analyses. Clustering and visualization in a low-dimensional representation of students' data help an analyst to discover patterns. The coordinated visualization of aggregated students' performance into histograms, which are automatically updated subject to custom filters set interactively by an analyst, can be used to facilitate the validation of hypotheses about a set of students. Classification of students already graduated over three performance levels using exploratory variables and early performance information is used to understand the degree of course-dependency of students' behavior at different degrees. The analysis of the impact of the student's explanatory variables and early performance in the graduation probability can lead to a better understanding of the causes of dropout. Preliminary experiments on data of the engineering students from the 6 institutions associated to this project were used to define the final implementation of the web-based tool. Preliminary results for classification and drop-out were acceptable since accuracies were higher than 90% in some cases. The usefulness of the tool is discussed with respect to the stated goals, showing its potential for the support of early profiling of students. Real data from engineering degrees of EU Higher Education institutions show the potential of the tool for managing high education and validate its applicability on real scenarios. |
---|---|
AbstractList | This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that purpose, it uses a data set that only contains features typically gathered by university administrations about the students, degrees and subjects. The web-based tool provides access to results from different analyses. Clustering and visualization in a low-dimensional representation of students' data help an analyst to discover patterns. The coordinated visualization of aggregated students' performance into histograms, which are automatically updated subject to custom filters set interactively by an analyst, can be used to facilitate the validation of hypotheses about a set of students. Classification of students already graduated over three performance levels using exploratory variables and early performance information is used to understand the degree of course-dependency of students' behavior at different degrees. The analysis of the impact of the student's explanatory variables and early performance in the graduation probability can lead to a better understanding of the causes of dropout. Preliminary experiments on data of the engineering students from the 6 institutions associated to this project were used to define the final implementation of the web-based tool. Preliminary results for classification and drop-out were acceptable since accuracies were higher than 90% in some cases. The usefulness of the tool is discussed with respect to the stated goals, showing its potential for the support of early profiling of students. Real data from engineering degrees of EU Higher Education institutions show the potential of the tool for managing high education and validate its applicability on real scenarios. |
Author | Pereira, Maria J. Varanda Vicario, Jose Lopez Spagnolini, Umberto Podpora, Michal Vilanova, Ramon Prada, Miguel Angel Alves, Paulo Alexandre Vara Barbu, Marian Dominguez, Manuel |
Author_xml | – sequence: 1 givenname: Miguel Angel orcidid: 0000-0002-1563-1556 surname: Prada fullname: Prada, Miguel Angel email: ma.prada@unileon.es organization: Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Escuela de Ingenierías, Universidad de León, León, Spain – sequence: 2 givenname: Manuel orcidid: 0000-0002-3921-1599 surname: Dominguez fullname: Dominguez, Manuel organization: Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Escuela de Ingenierías, Universidad de León, León, Spain – sequence: 3 givenname: Jose Lopez orcidid: 0000-0002-3574-4697 surname: Vicario fullname: Vicario, Jose Lopez organization: Departamento de Telecomunicacio i Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Spain – sequence: 4 givenname: Paulo Alexandre Vara surname: Alves fullname: Alves, Paulo Alexandre Vara organization: Research Centre in Digitalization and Intelligent Robotics, Polytechnic Institute of Bragança, Bragança, Portugal – sequence: 5 givenname: Marian orcidid: 0000-0001-6645-3705 surname: Barbu fullname: Barbu, Marian organization: Automatic Control and Electrical Engineering Department, Dunărea de Jos University of Galaţi, Galaţi, Romania – sequence: 6 givenname: Michal surname: Podpora fullname: Podpora, Michal organization: Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Opole, Poland – sequence: 7 givenname: Umberto orcidid: 0000-0002-7047-2455 surname: Spagnolini fullname: Spagnolini, Umberto organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy – sequence: 8 givenname: Maria J. Varanda orcidid: 0000-0001-6323-0071 surname: Pereira fullname: Pereira, Maria J. Varanda organization: Research Centre in Digitalization and Intelligent Robotics, Polytechnic Institute of Bragança, Bragança, Portugal – sequence: 9 givenname: Ramon orcidid: 0000-0002-8035-5199 surname: Vilanova fullname: Vilanova, Ramon organization: Departamento de Telecomunicacio i Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Spain |
BookMark | eNqFkU9v1DAQxS1UJErpJ-jFEucs_hfH5rakC61UxGEXcbRcZxy8CvFiO4d-e7KbalX1gi-eGc3vjfTee3QxxhEQuqFkRSnRn9Ztu9luV4wwsuJEEFWrN-iSUakrXnN58aJ-h65z3pP5qXlUN5eobLrJ2RLiaAd8a4vF38MYxh77mPBuKjEdm-10OMRUcBjxXeh_Q8Jn7DNe41_wWH2xGTq8i3HA7VzibZm6pyOwGfswApx0bqFPAPkDeuvtkOH6-b9CP79udu1d9fDj2327fqhcTUipNHeUaw2u0bRh7NERbSWXnmoKljVApRedlEwKQoSUIBynltZQd5YxzhS_QveLbhft3hxS-GPTk4k2mNMgpt7YVIIbwNTSq4Z777mWwutOWXCqFrrTjlsFZNb6uGgdUvw7QS5mH6c0u5YNE1I1kjSKzlt82XIp5pzAn69SYo5pmSUtc0zLPKc1U_oV5UI5uVuSDcN_2JuFDQBwvqbZbJgW_B_QSqLG |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1088_1742_6596_1933_1_012061 crossref_primary_10_1186_s41239_024_00450_9 crossref_primary_10_3390_fi13020043 crossref_primary_10_3390_bdcc5040064 crossref_primary_10_1016_j_procs_2022_12_014 crossref_primary_10_1109_ACCESS_2022_3157288 crossref_primary_10_3390_info15110738 crossref_primary_10_54033_cadpedv21n7_091 crossref_primary_10_1109_ACCESS_2022_3151652 crossref_primary_10_3390_math10152740 crossref_primary_10_1186_s41239_022_00374_2 crossref_primary_10_5753_rbie_2024_3559 crossref_primary_10_1108_QEA_01_2024_0006 crossref_primary_10_1007_s40031_024_00998_0 crossref_primary_10_1007_s10639_022_11536_0 crossref_primary_10_1109_ACCESS_2024_3496929 crossref_primary_10_1109_ACCESS_2024_3521383 |
Cites_doi | 10.1109/VAST.2016.7883517 10.1080/09645290701523267 10.1109/ACCESS.2017.2654247 10.1007/s10734-012-9554-z 10.23919/CISTI.2017.7975976 10.18608/hla17 10.1109/TNN.2005.845141 10.1016/j.chb.2018.07.027 10.1109/TLT.2019.2911608 10.1016/j.compedu.2018.12.006 10.1016/j.enbuild.2016.10.026 10.1016/0169-7439(87)80084-9 10.1002/widm.1075 10.1017/CBO9780511801389 10.1371/journal.pone.0171207 10.1016/j.compedu.2017.05.007 10.2478/cait-2013-0006 10.1145/2330601.2330666 10.1504/IJTEL.2012.051816 10.1016/j.ifacol.2019.08.188 10.1109/TSMCC.2010.2053532 10.1007/s10758-014-9226-4 10.21125/edulearn.2018.1780 10.1002/0470011815.b2a10021 10.1002/widm.1243 10.1007/978-3-540-70956-5_7 10.18608/jla.2014.13.7 10.1016/j.compedu.2018.03.018 10.1109/TVCG.2011.185 10.1016/j.tele.2019.01.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3040858 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education |
EISSN | 2169-3536 |
EndPage | 212836 |
ExternalDocumentID | oai_doaj_org_article_56f873fff3964f9d8aec8549d9c3a8e0 10_1109_ACCESS_2020_3040858 9272294 |
Genre | orig-research |
GrantInformation_xml | – fundername: Erasmus+ Key Action 2 Strategic Partnerships KA203, funded by the European Commission grantid: 2016-1-ES01-KA203-025452 funderid: 10.13039/501100000780 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c500t-93c1399ec791722bc09a636f191ea27e16f4d6626400466e4c31a15e5da223283 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:14:50 EDT 2025 Mon Jun 30 04:46:22 EDT 2025 Tue Jul 01 02:56:01 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Wed Aug 27 02:33:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-93c1399ec791722bc09a636f191ea27e16f4d6626400466e4c31a15e5da223283 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0002-3921-1599 0000-0002-7047-2455 0000-0001-6645-3705 0000-0001-6323-0071 0000-0002-3574-4697 0000-0002-8035-5199 0000-0002-1563-1556 |
OpenAccessLink | https://doaj.org/article/56f873fff3964f9d8aec8549d9c3a8e0 |
PQID | 2468760781 |
PQPubID | 4845423 |
PageCount | 19 |
ParticipantIDs | ieee_primary_9272294 proquest_journals_2468760781 doaj_primary_oai_doaj_org_article_56f873fff3964f9d8aec8549d9c3a8e0 crossref_citationtrail_10_1109_ACCESS_2020_3040858 crossref_primary_10_1109_ACCESS_2020_3040858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 siemens (ref10) 2011; 46 ref15 ref52 ref17 zimmerman (ref23) 2015; 7 ref16 baker (ref14) 2009; 1 ref19 ref18 khasanah (ref31) 2017; 215 domínguez (ref45) 2018 pedregosa (ref55) 2011; 12 ref46 ref48 ref42 prada (ref44) 2018 siemens (ref11) 2012; 15 ref8 ref7 pathros ibarra garcia (ref28) 2011 ref9 vossensteyn (ref1) 2015 ref4 ref3 tinto (ref24) 1992; 3 ref6 ref5 kuzilek (ref36) 2017; 4 ref40 spagnolini (ref58) 2019 dekker (ref57) 2009 ref35 ref37 avella (ref12) 2016; 20 ref30 ref33 mckinney (ref54) 2012 ref32 ref2 van der maaten (ref41) 2009 barbu (ref53) 2019 fontana (ref51) 2018 ref38 (ref34) 2016 strecht (ref26) 2015 bishop (ref49) 2006 ref25 ref22 ref21 barbu (ref20) 2017 ref29 hastie (ref50) 2001 lopez vicario (ref47) 2018 macqueen (ref39) 1967 van der maaten (ref43) 2008; 9 nghe (ref27) 2007 |
References_xml | – year: 2006 ident: ref49 publication-title: Pattern Recognition and Machine Learning – year: 2018 ident: ref44 article-title: Data mining tool for academic data exploitation: Graphical data analysis and visualization – year: 2018 ident: ref47 article-title: Data mining tool for academic data exploitation: Selection of most suitable algorithms – ident: ref22 doi: 10.1109/VAST.2016.7883517 – ident: ref32 doi: 10.1080/09645290701523267 – year: 2016 ident: ref34 publication-title: Regulation (EU) 2016/679 of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data and Repealing Directive 95/46/EC (General Data Protection Regulation) – ident: ref6 doi: 10.1109/ACCESS.2017.2654247 – ident: ref33 doi: 10.1007/s10734-012-9554-z – ident: ref4 doi: 10.23919/CISTI.2017.7975976 – year: 2018 ident: ref51 article-title: Analysis of dropout in engineering BSc using logistic mixed-effect models publication-title: XLIX Scientific Meeting of the Italian Statistical Society – year: 2019 ident: ref58 article-title: Data mining tool for academic data exploitation: Webtool description and usage – volume: 46 start-page: 31 year: 2011 ident: ref10 article-title: Penetrating the fog: Analytics in learning and education publication-title: EDUCAUSE Rev – ident: ref2 doi: 10.18608/hla17 – volume: 9 start-page: 2579 year: 2008 ident: ref43 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2001 ident: ref50 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref38 doi: 10.1109/TNN.2005.845141 – volume: 12 start-page: 2825 year: 2011 ident: ref55 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref8 doi: 10.1016/j.chb.2018.07.027 – ident: ref17 doi: 10.1109/TLT.2019.2911608 – volume: 7 start-page: 151 year: 2015 ident: ref23 article-title: A model-based approach to predicting graduate-level performance using indicators of undergraduate-level performance publication-title: Educational Data Mining – year: 2012 ident: ref54 publication-title: Python for Data Analysis Data Wrangling with Pandas NumPy and IPython – ident: ref16 doi: 10.1016/j.compedu.2018.12.006 – ident: ref46 doi: 10.1016/j.enbuild.2016.10.026 – start-page: 50 year: 2018 ident: ref45 article-title: SPEET: Visual data analysis of engineering students performance from academic data publication-title: Proc Learn Anal Summer Inst Spain – ident: ref42 doi: 10.1016/0169-7439(87)80084-9 – ident: ref13 doi: 10.1002/widm.1075 – ident: ref48 doi: 10.1017/CBO9780511801389 – ident: ref37 doi: 10.1371/journal.pone.0171207 – year: 2015 ident: ref1 article-title: Dropout and completion in higher education in Europe – ident: ref30 doi: 10.1016/j.compedu.2017.05.007 – start-page: 169 year: 2011 ident: ref28 article-title: Model prediction of academic performance for first year students publication-title: Proc 10th Mex Int Conf Artif Intell – ident: ref29 doi: 10.2478/cait-2013-0006 – year: 2009 ident: ref41 article-title: Dimensionality reduction: A comparative review – volume: 3 start-page: 1697 year: 1992 ident: ref24 article-title: Student attrition and retention publication-title: The International Encyclopedia of Higher Education – ident: ref25 doi: 10.1145/2330601.2330666 – volume: 4 year: 2017 ident: ref36 article-title: Open university learning analytics dataset publication-title: Data Science Journal – ident: ref9 doi: 10.1504/IJTEL.2012.051816 – ident: ref19 doi: 10.1016/j.ifacol.2019.08.188 – start-page: 281 year: 1967 ident: ref39 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Statistics Probab Statist – year: 2019 ident: ref53 article-title: Data mining tool for academic data exploitation: Publication report on engineering students profiles – year: 2017 ident: ref20 article-title: Data mining tool for academic data exploitation: Literature review and first architecture proposal – volume: 20 start-page: 13 year: 2016 ident: ref12 article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review publication-title: Online Learning – volume: 1 start-page: 3 year: 2009 ident: ref14 article-title: The state of educational data mining in 2009: A review and future visions publication-title: Educational Data Mining – ident: ref7 doi: 10.1109/TSMCC.2010.2053532 – start-page: 392 year: 2015 ident: ref26 article-title: A comparative study of classification and regression algorithms for modelling students' academic performance publication-title: Proc 8th Int Conf Educ Data Mining – ident: ref35 doi: 10.1007/s10758-014-9226-4 – start-page: 7 year: 2007 ident: ref27 article-title: A comparative analysis of techniques for predicting academic performance publication-title: Proc 37th Annu Frontiers Edu Conf -Global Eng Knowl Borders Opportunities Passports (FIE) – ident: ref40 doi: 10.21125/edulearn.2018.1780 – volume: 215 year: 2017 ident: ref31 article-title: A comparative study to predict student's performance using educational data mining techniques publication-title: Proc IOP Conf Ser Mater Sci Eng – start-page: 1 year: 2009 ident: ref57 article-title: Predicting students drop out: A case study publication-title: International Working Group on Educational Data Mining – ident: ref52 doi: 10.1002/0470011815.b2a10021 – ident: ref3 doi: 10.1002/widm.1243 – volume: 15 start-page: 1 year: 2012 ident: ref11 article-title: Guest editorial-learning and knowledge analytics publication-title: Educ Technol Soc – ident: ref21 doi: 10.1007/978-3-540-70956-5_7 – ident: ref18 doi: 10.18608/jla.2014.13.7 – ident: ref15 doi: 10.1016/j.compedu.2018.03.018 – ident: ref56 doi: 10.1109/TVCG.2011.185 – ident: ref5 doi: 10.1016/j.tele.2019.01.007 |
SSID | ssj0000816957 |
Score | 2.3436553 |
Snippet | This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 212818 |
SubjectTerms | Classification Clustering Colleges & universities Data analysis Data mining Data visualization Drop-out prediction Education educational data mining Engineering Engineering education Europe Higher education Higher education institutions Histograms Impact analysis performance prediction Software Software development tools Students Tutoring Visual analytics Visualization |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQyqPqUop86JEsWSdx4t6WBYSQtqdF5WY59lhCRbuIzR7g13cm8Ua8VPWWhydxNI79ffb4G4AfRSi0K4mdKBuqJPelT3Sd1YksFcEDh9IjE8XpL3V5nV_dFDcbcNzvhUHENvgMh3zYruX7hVvxVNmJlqWUOt-ETSJu3V6tfj6FE0jooozCQqNUn4wnE_oGooCSmGnKSl7Vi8Gn1eiPSVXe9MTt8HKxDdN1xbqokj_DVVMP3dMrzcb_rfln-BRxphh3DWMHNnC-yymaYzjHLnx8pkS4B01_h4zObGPFtM0cIQjTihnrHPAJpwAluC5u56KLDxG92U8xFr-xTk5pVPRitljciQkdCo5TfGSDZ68TZ0gsH5f7cH1xPptcJjEhQ-KKNG0SnTkCjBpdSSRPytql2qpMBeJ8aGWJIxVyr4giccegFOYuG9lRgYW3hEIIyHyBrflijl9BZKmrpA6S14EJw_iaV3ms9FXQ1gWVDkCuPWVcVCvnpBl3pmUtqTadew2710T3DuC4N7rvxDr-XfyUm0BflJW22wvkOhN_XFOoUJVZCCHTKg_aVxZdRaTaa5fZCqmie-zu_iHR0wM4XDcoE3uFpZG5osGH5ZUO3rf6Bh-4gt0UzyFsNQ8r_E6gp6mP2tb-FzNZ_AE priority: 102 providerName: IEEE |
Title | Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees |
URI | https://ieeexplore.ieee.org/document/9272294 https://www.proquest.com/docview/2468760781 https://doaj.org/article/56f873fff3964f9d8aec8549d9c3a8e0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ-iTrH-IgePlrVpmybetuoYwjxtuFtI8wME2UTrwf_e99JaJoJevLUlaZu8l7zva9LvEXJV-EKaEtgJ117EuS1tLOusjlnJAR4Yx6xDojh74NNFfr8slhupvnBPWCsP3HbcsOBelJn3PpM899IK7YwAUmOlybRwga1DzNsgU2EOFimXRdnJDKWJHI6qCloEhJABT01Q10t8C0VBsb9LsfJjXg7BZrJP9jqUSEft2x2QLbc6JLsb2oED0vRbM6DgrW40nYVcDxRQKJ2jMgGeYNJOANj0aUXbHR20r3ZDR_TR1fEY4pil8_X6mVZwSHFn4QdW2HgcvXXAy93bEVlM7ubVNO5SKMSmSJImlpkBiCedKYGWMVabRGqecQ8szWlWupT73HIgNTiUOXe5yVKdFq6wGnADQI9jsr1ar9wJoVliBJOe4cotoA5b47qMZlZ4qY3nSUTYV28q0-mLY5qLZxV4RiJVawKFJlCdCSJy3Vd6aeU1fi8-RjP1RVEbO1wAj1Gdx6i_PCYiAzRyfxMJDWIyj8j5l9FVN47fFMs5hAsURDr9j0efkR1sTvsJ55xsN6_v7gJATVNfBv-9DP8ffgIUF_CK |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOBVoQWwr4wLHZJk7ixL1tt1QLdHvait4sxx5LFdUuotkD_PrOJN6ofAhxy9ckjsbxvGdP3gC8L0OpXUXsRNlQJ4WvfKKbvElkpQgeOJQemSjOL9Tssvh0VV5tweHwLwwidslnOObNbi3fr9yap8qOtKyk1MUDeEhxv8z6v7WGGRUuIaHLKkoLZak-mkyn9BZEAiVx05S1vOpfwk-n0h_LqvwxFncB5uwpzDdN6_NKvo7XbTN2P39Tbfzftj-DnYg0xaTvGs9hC5e7XKQ5JnTswpN7WoR70A5nyOjUtlbMu9oRglCtWLDSAe9wEVAC7OJ6KfoMETGYHYuJ-IJNckJx0YvFanUjprQpOFPxBxvce5w4ReL5ePsCLs8-LKazJJZkSFyZpm2ic0eQUaOriOZJ2bhUW5WrQKwPrawwU6HwikgSDw1KYeHyzGYllt4SDiEo8xK2l6slvgKRp66WOkheCSYU4xte57HS10FbF1Q6ArnxlHFRr5zLZtyYjrek2vTuNexeE907gsPB6Fsv1_Hvy0-4CwyXstZ2d4BcZ-Kna0oV6ioPIeRaFUH72qKriVZ77XJbIzV0j9093CR6egQHmw5l4rhwa2ShKPywwNL-363ewaPZYn5uzj9efH4Nj7mx_YTPAWy339f4hiBQ27ztev4dfGT_Sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Data+Mining+for+Tutoring+Support+in+Higher+Education%3A+A+Web-Based+Tool+Case+Study+in+Engineering+Degrees&rft.jtitle=IEEE+access&rft.au=Prada%2C+Miguel+Angel&rft.au=Dominguez%2C+Manuel&rft.au=Vicario%2C+Jose+Lopez&rft.au=Alves%2C+Paulo+Alexandre+Vara&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=212818&rft.epage=212836&rft_id=info:doi/10.1109%2FACCESS.2020.3040858&rft.externalDocID=9272294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |