Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees

This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that p...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 212818 - 212836
Main Authors Prada, Miguel Angel, Dominguez, Manuel, Vicario, Jose Lopez, Alves, Paulo Alexandre Vara, Barbu, Marian, Podpora, Michal, Spagnolini, Umberto, Pereira, Maria J. Varanda, Vilanova, Ramon
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3040858

Cover

Loading…
Abstract This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that purpose, it uses a data set that only contains features typically gathered by university administrations about the students, degrees and subjects. The web-based tool provides access to results from different analyses. Clustering and visualization in a low-dimensional representation of students' data help an analyst to discover patterns. The coordinated visualization of aggregated students' performance into histograms, which are automatically updated subject to custom filters set interactively by an analyst, can be used to facilitate the validation of hypotheses about a set of students. Classification of students already graduated over three performance levels using exploratory variables and early performance information is used to understand the degree of course-dependency of students' behavior at different degrees. The analysis of the impact of the student's explanatory variables and early performance in the graduation probability can lead to a better understanding of the causes of dropout. Preliminary experiments on data of the engineering students from the 6 institutions associated to this project were used to define the final implementation of the web-based tool. Preliminary results for classification and drop-out were acceptable since accuracies were higher than 90% in some cases. The usefulness of the tool is discussed with respect to the stated goals, showing its potential for the support of early profiling of students. Real data from engineering degrees of EU Higher Education institutions show the potential of the tool for managing high education and validate its applicability on real scenarios.
AbstractList This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool is focused on the analysis of students' performance, in terms of the observable scores and of the completion of their studies. For that purpose, it uses a data set that only contains features typically gathered by university administrations about the students, degrees and subjects. The web-based tool provides access to results from different analyses. Clustering and visualization in a low-dimensional representation of students' data help an analyst to discover patterns. The coordinated visualization of aggregated students' performance into histograms, which are automatically updated subject to custom filters set interactively by an analyst, can be used to facilitate the validation of hypotheses about a set of students. Classification of students already graduated over three performance levels using exploratory variables and early performance information is used to understand the degree of course-dependency of students' behavior at different degrees. The analysis of the impact of the student's explanatory variables and early performance in the graduation probability can lead to a better understanding of the causes of dropout. Preliminary experiments on data of the engineering students from the 6 institutions associated to this project were used to define the final implementation of the web-based tool. Preliminary results for classification and drop-out were acceptable since accuracies were higher than 90% in some cases. The usefulness of the tool is discussed with respect to the stated goals, showing its potential for the support of early profiling of students. Real data from engineering degrees of EU Higher Education institutions show the potential of the tool for managing high education and validate its applicability on real scenarios.
Author Pereira, Maria J. Varanda
Vicario, Jose Lopez
Spagnolini, Umberto
Podpora, Michal
Vilanova, Ramon
Prada, Miguel Angel
Alves, Paulo Alexandre Vara
Barbu, Marian
Dominguez, Manuel
Author_xml – sequence: 1
  givenname: Miguel Angel
  orcidid: 0000-0002-1563-1556
  surname: Prada
  fullname: Prada, Miguel Angel
  email: ma.prada@unileon.es
  organization: Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Escuela de Ingenierías, Universidad de León, León, Spain
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0002-3921-1599
  surname: Dominguez
  fullname: Dominguez, Manuel
  organization: Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Escuela de Ingenierías, Universidad de León, León, Spain
– sequence: 3
  givenname: Jose Lopez
  orcidid: 0000-0002-3574-4697
  surname: Vicario
  fullname: Vicario, Jose Lopez
  organization: Departamento de Telecomunicacio i Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Spain
– sequence: 4
  givenname: Paulo Alexandre Vara
  surname: Alves
  fullname: Alves, Paulo Alexandre Vara
  organization: Research Centre in Digitalization and Intelligent Robotics, Polytechnic Institute of Bragança, Bragança, Portugal
– sequence: 5
  givenname: Marian
  orcidid: 0000-0001-6645-3705
  surname: Barbu
  fullname: Barbu, Marian
  organization: Automatic Control and Electrical Engineering Department, Dunărea de Jos University of Galaţi, Galaţi, Romania
– sequence: 6
  givenname: Michal
  surname: Podpora
  fullname: Podpora, Michal
  organization: Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Opole, Poland
– sequence: 7
  givenname: Umberto
  orcidid: 0000-0002-7047-2455
  surname: Spagnolini
  fullname: Spagnolini, Umberto
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 8
  givenname: Maria J. Varanda
  orcidid: 0000-0001-6323-0071
  surname: Pereira
  fullname: Pereira, Maria J. Varanda
  organization: Research Centre in Digitalization and Intelligent Robotics, Polytechnic Institute of Bragança, Bragança, Portugal
– sequence: 9
  givenname: Ramon
  orcidid: 0000-0002-8035-5199
  surname: Vilanova
  fullname: Vilanova, Ramon
  organization: Departamento de Telecomunicacio i Enginyeria de Sistemes, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Spain
BookMark eNqFkU9v1DAQxS1UJErpJ-jFEucs_hfH5rakC61UxGEXcbRcZxy8CvFiO4d-e7KbalX1gi-eGc3vjfTee3QxxhEQuqFkRSnRn9Ztu9luV4wwsuJEEFWrN-iSUakrXnN58aJ-h65z3pP5qXlUN5eobLrJ2RLiaAd8a4vF38MYxh77mPBuKjEdm-10OMRUcBjxXeh_Q8Jn7DNe41_wWH2xGTq8i3HA7VzibZm6pyOwGfswApx0bqFPAPkDeuvtkOH6-b9CP79udu1d9fDj2327fqhcTUipNHeUaw2u0bRh7NERbSWXnmoKljVApRedlEwKQoSUIBynltZQd5YxzhS_QveLbhft3hxS-GPTk4k2mNMgpt7YVIIbwNTSq4Z777mWwutOWXCqFrrTjlsFZNb6uGgdUvw7QS5mH6c0u5YNE1I1kjSKzlt82XIp5pzAn69SYo5pmSUtc0zLPKc1U_oV5UI5uVuSDcN_2JuFDQBwvqbZbJgW_B_QSqLG
CODEN IAECCG
CitedBy_id crossref_primary_10_1088_1742_6596_1933_1_012061
crossref_primary_10_1186_s41239_024_00450_9
crossref_primary_10_3390_fi13020043
crossref_primary_10_3390_bdcc5040064
crossref_primary_10_1016_j_procs_2022_12_014
crossref_primary_10_1109_ACCESS_2022_3157288
crossref_primary_10_3390_info15110738
crossref_primary_10_54033_cadpedv21n7_091
crossref_primary_10_1109_ACCESS_2022_3151652
crossref_primary_10_3390_math10152740
crossref_primary_10_1186_s41239_022_00374_2
crossref_primary_10_5753_rbie_2024_3559
crossref_primary_10_1108_QEA_01_2024_0006
crossref_primary_10_1007_s40031_024_00998_0
crossref_primary_10_1007_s10639_022_11536_0
crossref_primary_10_1109_ACCESS_2024_3496929
crossref_primary_10_1109_ACCESS_2024_3521383
Cites_doi 10.1109/VAST.2016.7883517
10.1080/09645290701523267
10.1109/ACCESS.2017.2654247
10.1007/s10734-012-9554-z
10.23919/CISTI.2017.7975976
10.18608/hla17
10.1109/TNN.2005.845141
10.1016/j.chb.2018.07.027
10.1109/TLT.2019.2911608
10.1016/j.compedu.2018.12.006
10.1016/j.enbuild.2016.10.026
10.1016/0169-7439(87)80084-9
10.1002/widm.1075
10.1017/CBO9780511801389
10.1371/journal.pone.0171207
10.1016/j.compedu.2017.05.007
10.2478/cait-2013-0006
10.1145/2330601.2330666
10.1504/IJTEL.2012.051816
10.1016/j.ifacol.2019.08.188
10.1109/TSMCC.2010.2053532
10.1007/s10758-014-9226-4
10.21125/edulearn.2018.1780
10.1002/0470011815.b2a10021
10.1002/widm.1243
10.1007/978-3-540-70956-5_7
10.18608/jla.2014.13.7
10.1016/j.compedu.2018.03.018
10.1109/TVCG.2011.185
10.1016/j.tele.2019.01.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3040858
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 2169-3536
EndPage 212836
ExternalDocumentID oai_doaj_org_article_56f873fff3964f9d8aec8549d9c3a8e0
10_1109_ACCESS_2020_3040858
9272294
Genre orig-research
GrantInformation_xml – fundername: Erasmus+ Key Action 2 Strategic Partnerships KA203, funded by the European Commission
  grantid: 2016-1-ES01-KA203-025452
  funderid: 10.13039/501100000780
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c500t-93c1399ec791722bc09a636f191ea27e16f4d6626400466e4c31a15e5da223283
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:14:50 EDT 2025
Mon Jun 30 04:46:22 EDT 2025
Tue Jul 01 02:56:01 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Wed Aug 27 02:33:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-93c1399ec791722bc09a636f191ea27e16f4d6626400466e4c31a15e5da223283
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-3921-1599
0000-0002-7047-2455
0000-0001-6645-3705
0000-0001-6323-0071
0000-0002-3574-4697
0000-0002-8035-5199
0000-0002-1563-1556
OpenAccessLink https://doaj.org/article/56f873fff3964f9d8aec8549d9c3a8e0
PQID 2468760781
PQPubID 4845423
PageCount 19
ParticipantIDs ieee_primary_9272294
proquest_journals_2468760781
doaj_primary_oai_doaj_org_article_56f873fff3964f9d8aec8549d9c3a8e0
crossref_citationtrail_10_1109_ACCESS_2020_3040858
crossref_primary_10_1109_ACCESS_2020_3040858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
siemens (ref10) 2011; 46
ref15
ref52
ref17
zimmerman (ref23) 2015; 7
ref16
baker (ref14) 2009; 1
ref19
ref18
khasanah (ref31) 2017; 215
domínguez (ref45) 2018
pedregosa (ref55) 2011; 12
ref46
ref48
ref42
prada (ref44) 2018
siemens (ref11) 2012; 15
ref8
ref7
pathros ibarra garcia (ref28) 2011
ref9
vossensteyn (ref1) 2015
ref4
ref3
tinto (ref24) 1992; 3
ref6
ref5
kuzilek (ref36) 2017; 4
ref40
spagnolini (ref58) 2019
dekker (ref57) 2009
ref35
ref37
avella (ref12) 2016; 20
ref30
ref33
mckinney (ref54) 2012
ref32
ref2
van der maaten (ref41) 2009
barbu (ref53) 2019
fontana (ref51) 2018
ref38
(ref34) 2016
strecht (ref26) 2015
bishop (ref49) 2006
ref25
ref22
ref21
barbu (ref20) 2017
ref29
hastie (ref50) 2001
lopez vicario (ref47) 2018
macqueen (ref39) 1967
van der maaten (ref43) 2008; 9
nghe (ref27) 2007
References_xml – year: 2006
  ident: ref49
  publication-title: Pattern Recognition and Machine Learning
– year: 2018
  ident: ref44
  article-title: Data mining tool for academic data exploitation: Graphical data analysis and visualization
– year: 2018
  ident: ref47
  article-title: Data mining tool for academic data exploitation: Selection of most suitable algorithms
– ident: ref22
  doi: 10.1109/VAST.2016.7883517
– ident: ref32
  doi: 10.1080/09645290701523267
– year: 2016
  ident: ref34
  publication-title: Regulation (EU) 2016/679 of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data and Repealing Directive 95/46/EC (General Data Protection Regulation)
– ident: ref6
  doi: 10.1109/ACCESS.2017.2654247
– ident: ref33
  doi: 10.1007/s10734-012-9554-z
– ident: ref4
  doi: 10.23919/CISTI.2017.7975976
– year: 2018
  ident: ref51
  article-title: Analysis of dropout in engineering BSc using logistic mixed-effect models
  publication-title: XLIX Scientific Meeting of the Italian Statistical Society
– year: 2019
  ident: ref58
  article-title: Data mining tool for academic data exploitation: Webtool description and usage
– volume: 46
  start-page: 31
  year: 2011
  ident: ref10
  article-title: Penetrating the fog: Analytics in learning and education
  publication-title: EDUCAUSE Rev
– ident: ref2
  doi: 10.18608/hla17
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref43
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2001
  ident: ref50
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref38
  doi: 10.1109/TNN.2005.845141
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref55
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref8
  doi: 10.1016/j.chb.2018.07.027
– ident: ref17
  doi: 10.1109/TLT.2019.2911608
– volume: 7
  start-page: 151
  year: 2015
  ident: ref23
  article-title: A model-based approach to predicting graduate-level performance using indicators of undergraduate-level performance
  publication-title: Educational Data Mining
– year: 2012
  ident: ref54
  publication-title: Python for Data Analysis Data Wrangling with Pandas NumPy and IPython
– ident: ref16
  doi: 10.1016/j.compedu.2018.12.006
– ident: ref46
  doi: 10.1016/j.enbuild.2016.10.026
– start-page: 50
  year: 2018
  ident: ref45
  article-title: SPEET: Visual data analysis of engineering students performance from academic data
  publication-title: Proc Learn Anal Summer Inst Spain
– ident: ref42
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref13
  doi: 10.1002/widm.1075
– ident: ref48
  doi: 10.1017/CBO9780511801389
– ident: ref37
  doi: 10.1371/journal.pone.0171207
– year: 2015
  ident: ref1
  article-title: Dropout and completion in higher education in Europe
– ident: ref30
  doi: 10.1016/j.compedu.2017.05.007
– start-page: 169
  year: 2011
  ident: ref28
  article-title: Model prediction of academic performance for first year students
  publication-title: Proc 10th Mex Int Conf Artif Intell
– ident: ref29
  doi: 10.2478/cait-2013-0006
– year: 2009
  ident: ref41
  article-title: Dimensionality reduction: A comparative review
– volume: 3
  start-page: 1697
  year: 1992
  ident: ref24
  article-title: Student attrition and retention
  publication-title: The International Encyclopedia of Higher Education
– ident: ref25
  doi: 10.1145/2330601.2330666
– volume: 4
  year: 2017
  ident: ref36
  article-title: Open university learning analytics dataset
  publication-title: Data Science Journal
– ident: ref9
  doi: 10.1504/IJTEL.2012.051816
– ident: ref19
  doi: 10.1016/j.ifacol.2019.08.188
– start-page: 281
  year: 1967
  ident: ref39
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statistics Probab Statist
– year: 2019
  ident: ref53
  article-title: Data mining tool for academic data exploitation: Publication report on engineering students profiles
– year: 2017
  ident: ref20
  article-title: Data mining tool for academic data exploitation: Literature review and first architecture proposal
– volume: 20
  start-page: 13
  year: 2016
  ident: ref12
  article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review
  publication-title: Online Learning
– volume: 1
  start-page: 3
  year: 2009
  ident: ref14
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Educational Data Mining
– ident: ref7
  doi: 10.1109/TSMCC.2010.2053532
– start-page: 392
  year: 2015
  ident: ref26
  article-title: A comparative study of classification and regression algorithms for modelling students' academic performance
  publication-title: Proc 8th Int Conf Educ Data Mining
– ident: ref35
  doi: 10.1007/s10758-014-9226-4
– start-page: 7
  year: 2007
  ident: ref27
  article-title: A comparative analysis of techniques for predicting academic performance
  publication-title: Proc 37th Annu Frontiers Edu Conf -Global Eng Knowl Borders Opportunities Passports (FIE)
– ident: ref40
  doi: 10.21125/edulearn.2018.1780
– volume: 215
  year: 2017
  ident: ref31
  article-title: A comparative study to predict student's performance using educational data mining techniques
  publication-title: Proc IOP Conf Ser Mater Sci Eng
– start-page: 1
  year: 2009
  ident: ref57
  article-title: Predicting students drop out: A case study
  publication-title: International Working Group on Educational Data Mining
– ident: ref52
  doi: 10.1002/0470011815.b2a10021
– ident: ref3
  doi: 10.1002/widm.1243
– volume: 15
  start-page: 1
  year: 2012
  ident: ref11
  article-title: Guest editorial-learning and knowledge analytics
  publication-title: Educ Technol Soc
– ident: ref21
  doi: 10.1007/978-3-540-70956-5_7
– ident: ref18
  doi: 10.18608/jla.2014.13.7
– ident: ref15
  doi: 10.1016/j.compedu.2018.03.018
– ident: ref56
  doi: 10.1109/TVCG.2011.185
– ident: ref5
  doi: 10.1016/j.tele.2019.01.007
SSID ssj0000816957
Score 2.3436553
Snippet This paper presents a web-based software tool for tutoring support of engineering students without any need of data scientist background for usage. This tool...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 212818
SubjectTerms Classification
Clustering
Colleges & universities
Data analysis
Data mining
Data visualization
Drop-out prediction
Education
educational data mining
Engineering
Engineering education
Europe
Higher education
Higher education institutions
Histograms
Impact analysis
performance prediction
Software
Software development tools
Students
Tutoring
Visual analytics
Visualization
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQyqPqUop86JEsWSdx4t6WBYSQtqdF5WY59lhCRbuIzR7g13cm8Ua8VPWWhydxNI79ffb4G4AfRSi0K4mdKBuqJPelT3Sd1YksFcEDh9IjE8XpL3V5nV_dFDcbcNzvhUHENvgMh3zYruX7hVvxVNmJlqWUOt-ETSJu3V6tfj6FE0jooozCQqNUn4wnE_oGooCSmGnKSl7Vi8Gn1eiPSVXe9MTt8HKxDdN1xbqokj_DVVMP3dMrzcb_rfln-BRxphh3DWMHNnC-yymaYzjHLnx8pkS4B01_h4zObGPFtM0cIQjTihnrHPAJpwAluC5u56KLDxG92U8xFr-xTk5pVPRitljciQkdCo5TfGSDZ68TZ0gsH5f7cH1xPptcJjEhQ-KKNG0SnTkCjBpdSSRPytql2qpMBeJ8aGWJIxVyr4giccegFOYuG9lRgYW3hEIIyHyBrflijl9BZKmrpA6S14EJw_iaV3ms9FXQ1gWVDkCuPWVcVCvnpBl3pmUtqTadew2710T3DuC4N7rvxDr-XfyUm0BflJW22wvkOhN_XFOoUJVZCCHTKg_aVxZdRaTaa5fZCqmie-zu_iHR0wM4XDcoE3uFpZG5osGH5ZUO3rf6Bh-4gt0UzyFsNQ8r_E6gp6mP2tb-FzNZ_AE
  priority: 102
  providerName: IEEE
Title Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees
URI https://ieeexplore.ieee.org/document/9272294
https://www.proquest.com/docview/2468760781
https://doaj.org/article/56f873fff3964f9d8aec8549d9c3a8e0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ-iTrH-IgePlrVpmybetuoYwjxtuFtI8wME2UTrwf_e99JaJoJevLUlaZu8l7zva9LvEXJV-EKaEtgJ117EuS1tLOusjlnJAR4Yx6xDojh74NNFfr8slhupvnBPWCsP3HbcsOBelJn3PpM899IK7YwAUmOlybRwga1DzNsgU2EOFimXRdnJDKWJHI6qCloEhJABT01Q10t8C0VBsb9LsfJjXg7BZrJP9jqUSEft2x2QLbc6JLsb2oED0vRbM6DgrW40nYVcDxRQKJ2jMgGeYNJOANj0aUXbHR20r3ZDR_TR1fEY4pil8_X6mVZwSHFn4QdW2HgcvXXAy93bEVlM7ubVNO5SKMSmSJImlpkBiCedKYGWMVabRGqecQ8szWlWupT73HIgNTiUOXe5yVKdFq6wGnADQI9jsr1ar9wJoVliBJOe4cotoA5b47qMZlZ4qY3nSUTYV28q0-mLY5qLZxV4RiJVawKFJlCdCSJy3Vd6aeU1fi8-RjP1RVEbO1wAj1Gdx6i_PCYiAzRyfxMJDWIyj8j5l9FVN47fFMs5hAsURDr9j0efkR1sTvsJ55xsN6_v7gJATVNfBv-9DP8ffgIUF_CK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOBVoQWwr4wLHZJk7ixL1tt1QLdHvait4sxx5LFdUuotkD_PrOJN6ofAhxy9ckjsbxvGdP3gC8L0OpXUXsRNlQJ4WvfKKbvElkpQgeOJQemSjOL9Tssvh0VV5tweHwLwwidslnOObNbi3fr9yap8qOtKyk1MUDeEhxv8z6v7WGGRUuIaHLKkoLZak-mkyn9BZEAiVx05S1vOpfwk-n0h_LqvwxFncB5uwpzDdN6_NKvo7XbTN2P39Tbfzftj-DnYg0xaTvGs9hC5e7XKQ5JnTswpN7WoR70A5nyOjUtlbMu9oRglCtWLDSAe9wEVAC7OJ6KfoMETGYHYuJ-IJNckJx0YvFanUjprQpOFPxBxvce5w4ReL5ePsCLs8-LKazJJZkSFyZpm2ic0eQUaOriOZJ2bhUW5WrQKwPrawwU6HwikgSDw1KYeHyzGYllt4SDiEo8xK2l6slvgKRp66WOkheCSYU4xte57HS10FbF1Q6ArnxlHFRr5zLZtyYjrek2vTuNexeE907gsPB6Fsv1_Hvy0-4CwyXstZ2d4BcZ-Kna0oV6ioPIeRaFUH72qKriVZ77XJbIzV0j9093CR6egQHmw5l4rhwa2ShKPywwNL-363ewaPZYn5uzj9efH4Nj7mx_YTPAWy339f4hiBQ27ztev4dfGT_Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Data+Mining+for+Tutoring+Support+in+Higher+Education%3A+A+Web-Based+Tool+Case+Study+in+Engineering+Degrees&rft.jtitle=IEEE+access&rft.au=Prada%2C+Miguel+Angel&rft.au=Dominguez%2C+Manuel&rft.au=Vicario%2C+Jose+Lopez&rft.au=Alves%2C+Paulo+Alexandre+Vara&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=212818&rft.epage=212836&rft_id=info:doi/10.1109%2FACCESS.2020.3040858&rft.externalDocID=9272294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon