Correlation between Membrane Permeability and the Intracellular Degradation Activity of Proteolysis-Targeting Chimeras
Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the...
Saved in:
Published in | Chemical & pharmaceutical bulletin Vol. 72; no. 11; pp. 961 - 965 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Pharmaceutical Society of Japan
14.11.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0009-2363 1347-5223 1347-5223 |
DOI | 10.1248/cpb.c24-00615 |
Cover
Loading…
Abstract | Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs. |
---|---|
AbstractList | Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs. Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs. |
ArticleNumber | c24-00615 |
Author | Yokoo, Hidetomo Demizu, Yosuke Osawa, Hinata Saito, Kosuke |
Author_xml | – sequence: 1 fullname: Yokoo, Hidetomo organization: National Institute of Health Sciences – sequence: 1 fullname: Saito, Kosuke organization: National Institute of Health Sciences – sequence: 1 fullname: Demizu, Yosuke organization: Graduate School of Medical Life Science, Yokohama City University – sequence: 1 fullname: Osawa, Hinata organization: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39537180$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c1P2zAYBnBrYhoFdtx1irTLLgF_JXGOqOwDCTQOcLbeOG9aV4nd2Q6o__1cyjppF_vg32O99nNGTpx3SMgnRi8Zl-rKbLtLw2VJac2qd2TBhGzKinNxQhaU0rbkohan5CzGDaW8oo34QE5FW4mGKbogz0sfAo6QrHdFh-kF0RX3OHUBHBYPGCaEzo427QpwfZHWWNy6FMDgOM4jhOIGVwH6Q_7aJPu8p34oHoJP6MddtLF8hLDCZN2qWK7thAHiBXk_wBjx49t-Tp6-f3tc_izvfv24XV7flaaiNJUKBimx7VvW9AZN3yvFect40_SiHqDmMICRVKp6qBmiqmuqFEUJppeD6aQ4J18P926D_z1jTHqycT97fp2foxaMK8Vyrs30y3904-fg8nRZSSmVklWT1ec3NXcT9nob7ARhp__-aAblAZjgYww4HAmjet-Yzo3p3Jh-bSz7m4PfxAQrPGoIyZoRX3XDNWP79Rj7d7yGoNGJP_URoqg |
Cites_doi | 10.1039/C0MB00074D 10.1021/acs.jmedchem.1c01496 10.1073/pnas.141230798 10.1021/acschembio.9b00972 10.1126/science.287.5460.2013 10.1016/S0021-9258(18)61429-2 10.3390/cells8060619 10.1016/j.bmcl.2008.07.114 10.3390/bioengineering9120766 10.1021/acs.jmedchem.6b01781 10.1021/acs.jmedchem.1c01206 10.1039/D2MD00284A 10.1186/s12943-022-01707-5 10.1021/acs.jmedchem.8b01631 10.2353/ajpath.2009.080709 10.1021/acsmedchemlett.0c00605 10.1016/j.ejmech.2022.114821 10.1021/acs.jmedchem.2c00877 10.1016/0005-2760(79)90198-X 10.1016/j.bmc.2023.117259 10.1039/D2CS00220E 10.1016/S0167-4838(00)00161-8 10.3390/molecules27061977 10.1016/j.ab.2008.08.012 10.1021/jacs.2c05499 |
ContentType | Journal Article |
Copyright | 2024 Author(s) Published by The Pharmaceutical Society of Japan 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 Author(s) Published by The Pharmaceutical Society of Japan – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 7U9 H94 K9. 7X8 |
DOI | 10.1248/cpb.c24-00615 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5223 |
EndPage | 965 |
ExternalDocumentID | 39537180 10_1248_cpb_c24_00615 article_cpb_72_11_72_c24_00615_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29B 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 L7B MOJWN OK1 P2P RJT RZJ TR2 XSB ZGI AAYXX CITATION .55 .GJ 3O- ABTAH AI. CGR CUY CVF ECM EIF NPM TKC VH1 X7J X7M ZE2 ZY4 7TK 7TM 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c500t-8af44e9d917dcecdd882291277d36fa62afac40486f61ee8660880e4acd4fcb43 |
ISSN | 0009-2363 1347-5223 |
IngestDate | Thu Jul 10 21:29:24 EDT 2025 Mon Jun 30 08:02:11 EDT 2025 Thu Jan 02 22:27:22 EST 2025 Tue Jul 01 01:28:32 EDT 2025 Wed Sep 03 06:30:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | degradation activity LC-tandem mass spectrometry (LC-MS/MS) linker optimization membrane permeability proteolysis-targeting chimera |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c500t-8af44e9d917dcecdd882291277d36fa62afac40486f61ee8660880e4acd4fcb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/cpb/72/11/72_c24-00615/_article/-char/en |
PMID | 39537180 |
PQID | 3144488457 |
PQPubID | 1996362 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_3128818669 proquest_journals_3144488457 pubmed_primary_39537180 crossref_primary_10_1248_cpb_c24_00615 jstage_primary_article_cpb_72_11_72_c24_00615_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/11/14 |
PublicationDateYYYYMMDD | 2024-11-14 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024/11/14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Chemical & pharmaceutical bulletin |
PublicationTitleAlternate | Chem. Pharm. Bull. |
PublicationYear | 2024 |
Publisher | The Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 2) Schneekloth A. R., Pucheault M., Tae H. S., Crews C. M., Bioorg. Med. Chem. Lett., 18, 5904–5908 (2008). 6) Liu X., Kalogeropulou A. F., Domingos S., Makukhin N., Nirujogi R. S., Singh F., Shpiro N., Saalfrank A., Sammler E., Ganley I. G., Moreira R., Alessi D. R., Ciulli A., J. Am. Chem. Soc., 144, 16930–16952 (2022). 7) Klein V. G., Bond A. G., Craigon C., Lokey R. S., Ciulli A., J. Med. Chem., 64, 18082–18101 (2021). 12) Poongavanam V., Atilaw Y., Siegel S., Giese A., Lehmann L., Meibom D., Erdelyi M., Kihlberg J., J. Med. Chem., 65, 13029–13040 (2022). 10) Han X., Wang C., Qin C., Xiang W., Fernandez-Salas E., Yang C. Y., Wang M., Zhao L., Xu T., Chinnaswamy K., Delproposto J., Stuckey J., Wang S., J. Med. Chem., 62, 941–964 (2019). 8) Yokoo H., Shibata N., Endo A., Ito T., Yanase Y., Murakami Y., Fujii K., Hamamura K., Saeki Y., Naito M., Aritake K., Demizu Y., J. Med. Chem., 64, 15868–15882 (2021). 25) El-Baz N., Nunn B. M., Bates P. J., O’Toole M. G., Bioengineering (Basel), 9, 766 (2022). 1) Sakamoto K. M., Kim K. B., Kumagai A., Mercurio F., Crews C. M., Deshaies R. J., Proc. Natl. Acad. Sci. U.S.A., 98, 8554–8559 (2001). 20) Urade Y., Hayaishi O., Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1482, 259–271 (2000). 16) Christ-Hazelhof E., Nugteren D. H., Biochim. Biophys. Acta Lipids Lipid Metab., 572, 43–51 (1979). 18) Matsuoka T., Hirata M., Tanaka H., Takahashi Y., Murata T., Kabashima K., Sugimoto Y., Kobayashi T., Ushikubi F., Aze Y., Eguchi N., Urade Y., Yoshida N., Kimura K., Mizoguchi A., Honda Y., Nagai H., Narumiya S., Science, 287, 2013–2017 (2000). 22) Yokoo H., Shibata N., Naganuma M., Murakami Y., Fujii K., Ito T., Aritake K., Naito M., Demizu Y., ACS Med. Chem. Lett., 12, 236–241 (2021). 14) Colletti L. M., Liu Y., Koev G., Richardson P. L., Chen C. M., Kati W., Anal. Biochem., 383, 186–193 (2008). 3) Cao C., He M., Wang L., He Y., Rao Y., Chem. Soc. Rev., 51, 7066–7114 (2022). 13) Foley C. A., Potjewyd F., Lamb K. N., James L. I., Frye S. V., ACS Chem. Biol., 15, 290–295 (2020). 17) Urade Y., Fujimoto N., Ujihara M., Hayaishi O., J. Biol. Chem., 262, 3820–3825 (1987). 11) Cyrus K., Wehenkel M., Choi E. Y., Han H. J., Lee H., Swanson H., Kim K. B., Mol. Biosyst., 7, 359–364 (2011). 21) Mohri I., Aritake K., Taniguchi H., Sato Y., Kamauchi S., Nagata N., Maruyama T., Taniike M., Urade Y., Am. J. Pathol., 174, 1735–1744 (2009). 19) Rittchen S., Heinemann A., Cells, 8, 619 (2019). 4) Kelm J. M., Pandey D. S., Malin E., Kansou H., Arora S., Kumar R., Gavande N. S., Mol. Cancer, 22, 62 (2023). 5) Wang X. R., Wang S., Mu H. X., Xu K. Y., Wang X. T., Shi J. T., Cui Q. H., Zhang L. W., Chen S. W., Eur. J. Med. Chem., 244, 114821 (2022). 23) Murakami Y., Osawa H., Kurohara T., Yanase Y., Ito T., Yokoo H., Shibata N., Naito M., Aritake K., Demizu Y., RSC Med. Chem., 13, 1495–1503 (2022). 24) Osawa H., Kurohara T., Ito T., Shibata N., Demizu Y., Bioorg. Med. Chem., 84, 117259 (2023). 15) Nguyen T. T., Kim J. W., Choi H. I., Maeng H. J., Koo T. S., Molecules, 27, 1977 (2022). 9) Wurz R. P., Dellamaggiore K., Dou H., Javier N., Lo M. C., McCarter J. D., Mohl D., Sastri C., Lipford J. R., Cee V. J., J. Med. Chem., 61, 453–461 (2018). 22 23 24 25 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 21) Mohri I., Aritake K., Taniguchi H., Sato Y., Kamauchi S., Nagata N., Maruyama T., Taniike M., Urade Y., Am. J. Pathol., 174, 1735–1744 (2009). – reference: 11) Cyrus K., Wehenkel M., Choi E. Y., Han H. J., Lee H., Swanson H., Kim K. B., Mol. Biosyst., 7, 359–364 (2011). – reference: 6) Liu X., Kalogeropulou A. F., Domingos S., Makukhin N., Nirujogi R. S., Singh F., Shpiro N., Saalfrank A., Sammler E., Ganley I. G., Moreira R., Alessi D. R., Ciulli A., J. Am. Chem. Soc., 144, 16930–16952 (2022). – reference: 1) Sakamoto K. M., Kim K. B., Kumagai A., Mercurio F., Crews C. M., Deshaies R. J., Proc. Natl. Acad. Sci. U.S.A., 98, 8554–8559 (2001). – reference: 2) Schneekloth A. R., Pucheault M., Tae H. S., Crews C. M., Bioorg. Med. Chem. Lett., 18, 5904–5908 (2008). – reference: 14) Colletti L. M., Liu Y., Koev G., Richardson P. L., Chen C. M., Kati W., Anal. Biochem., 383, 186–193 (2008). – reference: 19) Rittchen S., Heinemann A., Cells, 8, 619 (2019). – reference: 8) Yokoo H., Shibata N., Endo A., Ito T., Yanase Y., Murakami Y., Fujii K., Hamamura K., Saeki Y., Naito M., Aritake K., Demizu Y., J. Med. Chem., 64, 15868–15882 (2021). – reference: 12) Poongavanam V., Atilaw Y., Siegel S., Giese A., Lehmann L., Meibom D., Erdelyi M., Kihlberg J., J. Med. Chem., 65, 13029–13040 (2022). – reference: 25) El-Baz N., Nunn B. M., Bates P. J., O’Toole M. G., Bioengineering (Basel), 9, 766 (2022). – reference: 23) Murakami Y., Osawa H., Kurohara T., Yanase Y., Ito T., Yokoo H., Shibata N., Naito M., Aritake K., Demizu Y., RSC Med. Chem., 13, 1495–1503 (2022). – reference: 20) Urade Y., Hayaishi O., Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1482, 259–271 (2000). – reference: 15) Nguyen T. T., Kim J. W., Choi H. I., Maeng H. J., Koo T. S., Molecules, 27, 1977 (2022). – reference: 5) Wang X. R., Wang S., Mu H. X., Xu K. Y., Wang X. T., Shi J. T., Cui Q. H., Zhang L. W., Chen S. W., Eur. J. Med. Chem., 244, 114821 (2022). – reference: 10) Han X., Wang C., Qin C., Xiang W., Fernandez-Salas E., Yang C. Y., Wang M., Zhao L., Xu T., Chinnaswamy K., Delproposto J., Stuckey J., Wang S., J. Med. Chem., 62, 941–964 (2019). – reference: 4) Kelm J. M., Pandey D. S., Malin E., Kansou H., Arora S., Kumar R., Gavande N. S., Mol. Cancer, 22, 62 (2023). – reference: 9) Wurz R. P., Dellamaggiore K., Dou H., Javier N., Lo M. C., McCarter J. D., Mohl D., Sastri C., Lipford J. R., Cee V. J., J. Med. Chem., 61, 453–461 (2018). – reference: 22) Yokoo H., Shibata N., Naganuma M., Murakami Y., Fujii K., Ito T., Aritake K., Naito M., Demizu Y., ACS Med. Chem. Lett., 12, 236–241 (2021). – reference: 7) Klein V. G., Bond A. G., Craigon C., Lokey R. S., Ciulli A., J. Med. Chem., 64, 18082–18101 (2021). – reference: 18) Matsuoka T., Hirata M., Tanaka H., Takahashi Y., Murata T., Kabashima K., Sugimoto Y., Kobayashi T., Ushikubi F., Aze Y., Eguchi N., Urade Y., Yoshida N., Kimura K., Mizoguchi A., Honda Y., Nagai H., Narumiya S., Science, 287, 2013–2017 (2000). – reference: 16) Christ-Hazelhof E., Nugteren D. H., Biochim. Biophys. Acta Lipids Lipid Metab., 572, 43–51 (1979). – reference: 3) Cao C., He M., Wang L., He Y., Rao Y., Chem. Soc. Rev., 51, 7066–7114 (2022). – reference: 17) Urade Y., Fujimoto N., Ujihara M., Hayaishi O., J. Biol. Chem., 262, 3820–3825 (1987). – reference: 13) Foley C. A., Potjewyd F., Lamb K. N., James L. I., Frye S. V., ACS Chem. Biol., 15, 290–295 (2020). – reference: 24) Osawa H., Kurohara T., Ito T., Shibata N., Demizu Y., Bioorg. Med. Chem., 84, 117259 (2023). – ident: 11 doi: 10.1039/C0MB00074D – ident: 7 doi: 10.1021/acs.jmedchem.1c01496 – ident: 1 doi: 10.1073/pnas.141230798 – ident: 13 doi: 10.1021/acschembio.9b00972 – ident: 18 doi: 10.1126/science.287.5460.2013 – ident: 17 doi: 10.1016/S0021-9258(18)61429-2 – ident: 19 doi: 10.3390/cells8060619 – ident: 2 doi: 10.1016/j.bmcl.2008.07.114 – ident: 25 doi: 10.3390/bioengineering9120766 – ident: 9 doi: 10.1021/acs.jmedchem.6b01781 – ident: 8 doi: 10.1021/acs.jmedchem.1c01206 – ident: 23 doi: 10.1039/D2MD00284A – ident: 4 doi: 10.1186/s12943-022-01707-5 – ident: 10 doi: 10.1021/acs.jmedchem.8b01631 – ident: 21 doi: 10.2353/ajpath.2009.080709 – ident: 22 doi: 10.1021/acsmedchemlett.0c00605 – ident: 5 doi: 10.1016/j.ejmech.2022.114821 – ident: 12 doi: 10.1021/acs.jmedchem.2c00877 – ident: 16 doi: 10.1016/0005-2760(79)90198-X – ident: 24 doi: 10.1016/j.bmc.2023.117259 – ident: 3 doi: 10.1039/D2CS00220E – ident: 20 doi: 10.1016/S0167-4838(00)00161-8 – ident: 15 doi: 10.3390/molecules27061977 – ident: 14 doi: 10.1016/j.ab.2008.08.012 – ident: 6 doi: 10.1021/jacs.2c05499 |
SSID | ssj0025073 |
Score | 2.4133663 |
Snippet | Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins.... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 961 |
SubjectTerms | Cell Membrane Permeability - drug effects Cell membranes Chimeras Chromatography, Liquid Correlation Degradation degradation activity Design optimization Humans LC-tandem mass spectrometry (LC-MS/MS) linker optimization Mass spectrometry Mass spectroscopy Membrane permeability Molecular Structure Permeability Proteolysis Proteolysis - drug effects proteolysis-targeting chimera Tandem Mass Spectrometry |
Title | Correlation between Membrane Permeability and the Intracellular Degradation Activity of Proteolysis-Targeting Chimeras |
URI | https://www.jstage.jst.go.jp/article/cpb/72/11/72_c24-00615/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/39537180 https://www.proquest.com/docview/3144488457 https://www.proquest.com/docview/3128818669 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Chemical and Pharmaceutical Bulletin, 2024/11/14, Vol.72(11), pp.961-965 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwoELWt5lF2Qk1Es3kDhO0hw4VPtQtS-KlEq9RYkfu2W1TbVpQd3fwo9lbCdOKhUEXKIqtlxr5vN4ZjIPhD5kPOQyjgKHSE8X1YYj5VPpsIC4nOWqRphKFL64DEcTejoNpp3Oz1bU0mqZf2T3W_NK_oer8A74qrJk_4GzdlF4Ab-Bv_AEDsPzr3h8qFprmGA2G3B1IW7BAAbVcQwyV5gq3Ot2nORdppz1Ovr0SFWKME2V-kNW9ZFQQXGqeEOhi5U4iQ4V19EB1zPlwSrb-qytN6AQtLje8I_n7creWrDcFNoxO5pxsSxuC-vgLbMfmRmYm1Q54_TJZrrHU_-sKFc3FoBH8I_3K311NO8rvwWhKoHPa_yWp6ALNAJMUaH5ltAf6rzTDbkdO8SvRKEwotqnEZjRJlu5luURaWPW23pHEKryHtgCUAa70jpdcxnWAQCXX9KTyfl5mhxPkwfoIQEjRIn9s6_2GxXojpHt06f2VlVwheU_bSy-ofE8-gZK_5X4vT2j9ZpkFz2pDBI8NOh6ijpi_gz1xoaV6wOcNAl65QHu4XFT63z9HH1vQRBXEMQ1BHEbghiIjwGCeAOCuAVBXEMQFxJvhSCuIfgCTU6Ok8ORU7XygEPvuktnkElKRcxjL-JMMM4HqtGAB2TlfiizkGQyY1SVf5ShJ8QgDOH2cwXNGKeS5dR_iXbmxVy8Rlh6nMGtxEH3CkD7jAa5EFJ4knDP9SWNu6hXkztdmIotqbJ0gS8p8CUFvqSaL1302TDDTqsOsp4WETCO1dPOb4aB0CB-umi_5mFaCYUy9T1K4U6kQdRF7-0wiGxFV6B8sVJzyEAXmoS9vjK8t1vw48AHddF98-fF99Dj5kzto53l3Uq8Be14mb_TIP0FATHEMQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+Membrane+Permeability+and+the+Intracellular+Degradation+Activity+of+Proteolysis-Targeting+Chimeras&rft.jtitle=Chemical+%26+pharmaceutical+bulletin&rft.au=Yokoo%2C+Hidetomo&rft.au=Osawa%2C+Hinata&rft.au=Saito%2C+Kosuke&rft.au=Demizu%2C+Yosuke&rft.date=2024-11-14&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0009-2363&rft.eissn=1347-5223&rft.volume=72&rft.issue=11&rft_id=info:doi/10.1248%2Fcpb.c24-00615&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2363&client=summon |