Correlation between Membrane Permeability and the Intracellular Degradation Activity of Proteolysis-Targeting Chimeras

Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the...

Full description

Saved in:
Bibliographic Details
Published inChemical & pharmaceutical bulletin Vol. 72; no. 11; pp. 961 - 965
Main Authors Yokoo, Hidetomo, Saito, Kosuke, Demizu, Yosuke, Osawa, Hinata
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 14.11.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0009-2363
1347-5223
1347-5223
DOI10.1248/cpb.c24-00615

Cover

Loading…
Abstract Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.
AbstractList Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.
Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins. This technology shows higher activity than conventional inhibitors and holds great potential in the field of drug discovery. Optimization of the linker is essential for PROTACs to achieve sufficient activity, particularly with regard to cell membrane permeability. However, the correlation between membrane permeability and the activity of PROTACs has not been fully explored. To address this, we established a new molecular design approach to remove the linker and optimize PROTAC structure. These PROTAC compound groups were used to analyze the correlation between membrane permeability and activity using LC-tandem mass spectrometry (LC-MS/MS). Results revealed that the degradation activity of PROTACs fluctuates with increasing membrane permeability and changes in response to linker optimization, while sufficient proteolytic activity can be retained. These findings demonstrate the importance of considering the balance between membrane permeability and activity in PROTAC design and provide a new strategy for developing more effective PROTACs.
ArticleNumber c24-00615
Author Yokoo, Hidetomo
Demizu, Yosuke
Osawa, Hinata
Saito, Kosuke
Author_xml – sequence: 1
  fullname: Yokoo, Hidetomo
  organization: National Institute of Health Sciences
– sequence: 1
  fullname: Saito, Kosuke
  organization: National Institute of Health Sciences
– sequence: 1
  fullname: Demizu, Yosuke
  organization: Graduate School of Medical Life Science, Yokohama City University
– sequence: 1
  fullname: Osawa, Hinata
  organization: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39537180$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1P2zAYBnBrYhoFdtx1irTLLgF_JXGOqOwDCTQOcLbeOG9aV4nd2Q6o__1cyjppF_vg32O99nNGTpx3SMgnRi8Zl-rKbLtLw2VJac2qd2TBhGzKinNxQhaU0rbkohan5CzGDaW8oo34QE5FW4mGKbogz0sfAo6QrHdFh-kF0RX3OHUBHBYPGCaEzo427QpwfZHWWNy6FMDgOM4jhOIGVwH6Q_7aJPu8p34oHoJP6MddtLF8hLDCZN2qWK7thAHiBXk_wBjx49t-Tp6-f3tc_izvfv24XV7flaaiNJUKBimx7VvW9AZN3yvFect40_SiHqDmMICRVKp6qBmiqmuqFEUJppeD6aQ4J18P926D_z1jTHqycT97fp2foxaMK8Vyrs30y3904-fg8nRZSSmVklWT1ec3NXcT9nob7ARhp__-aAblAZjgYww4HAmjet-Yzo3p3Jh-bSz7m4PfxAQrPGoIyZoRX3XDNWP79Rj7d7yGoNGJP_URoqg
Cites_doi 10.1039/C0MB00074D
10.1021/acs.jmedchem.1c01496
10.1073/pnas.141230798
10.1021/acschembio.9b00972
10.1126/science.287.5460.2013
10.1016/S0021-9258(18)61429-2
10.3390/cells8060619
10.1016/j.bmcl.2008.07.114
10.3390/bioengineering9120766
10.1021/acs.jmedchem.6b01781
10.1021/acs.jmedchem.1c01206
10.1039/D2MD00284A
10.1186/s12943-022-01707-5
10.1021/acs.jmedchem.8b01631
10.2353/ajpath.2009.080709
10.1021/acsmedchemlett.0c00605
10.1016/j.ejmech.2022.114821
10.1021/acs.jmedchem.2c00877
10.1016/0005-2760(79)90198-X
10.1016/j.bmc.2023.117259
10.1039/D2CS00220E
10.1016/S0167-4838(00)00161-8
10.3390/molecules27061977
10.1016/j.ab.2008.08.012
10.1021/jacs.2c05499
ContentType Journal Article
Copyright 2024 Author(s) Published by The Pharmaceutical Society of Japan
2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 Author(s) Published by The Pharmaceutical Society of Japan
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
7U9
H94
K9.
7X8
DOI 10.1248/cpb.c24-00615
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Virology and AIDS Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5223
EndPage 965
ExternalDocumentID 39537180
10_1248_cpb_c24_00615
article_cpb_72_11_72_c24_00615_article_char_en
Genre Journal Article
GroupedDBID ---
29B
2WC
53G
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
L7B
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
ZGI
AAYXX
CITATION
.55
.GJ
3O-
ABTAH
AI.
CGR
CUY
CVF
ECM
EIF
NPM
TKC
VH1
X7J
X7M
ZE2
ZY4
7TK
7TM
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c500t-8af44e9d917dcecdd882291277d36fa62afac40486f61ee8660880e4acd4fcb43
ISSN 0009-2363
1347-5223
IngestDate Thu Jul 10 21:29:24 EDT 2025
Mon Jun 30 08:02:11 EDT 2025
Thu Jan 02 22:27:22 EST 2025
Tue Jul 01 01:28:32 EDT 2025
Wed Sep 03 06:30:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords degradation activity
LC-tandem mass spectrometry (LC-MS/MS)
linker optimization
membrane permeability
proteolysis-targeting chimera
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c500t-8af44e9d917dcecdd882291277d36fa62afac40486f61ee8660880e4acd4fcb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/cpb/72/11/72_c24-00615/_article/-char/en
PMID 39537180
PQID 3144488457
PQPubID 1996362
PageCount 5
ParticipantIDs proquest_miscellaneous_3128818669
proquest_journals_3144488457
pubmed_primary_39537180
crossref_primary_10_1248_cpb_c24_00615
jstage_primary_article_cpb_72_11_72_c24_00615_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024/11/14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024/11/14
  day: 14
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Chemical & pharmaceutical bulletin
PublicationTitleAlternate Chem. Pharm. Bull.
PublicationYear 2024
Publisher The Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 2) Schneekloth A. R., Pucheault M., Tae H. S., Crews C. M., Bioorg. Med. Chem. Lett., 18, 5904–5908 (2008).
6) Liu X., Kalogeropulou A. F., Domingos S., Makukhin N., Nirujogi R. S., Singh F., Shpiro N., Saalfrank A., Sammler E., Ganley I. G., Moreira R., Alessi D. R., Ciulli A., J. Am. Chem. Soc., 144, 16930–16952 (2022).
7) Klein V. G., Bond A. G., Craigon C., Lokey R. S., Ciulli A., J. Med. Chem., 64, 18082–18101 (2021).
12) Poongavanam V., Atilaw Y., Siegel S., Giese A., Lehmann L., Meibom D., Erdelyi M., Kihlberg J., J. Med. Chem., 65, 13029–13040 (2022).
10) Han X., Wang C., Qin C., Xiang W., Fernandez-Salas E., Yang C. Y., Wang M., Zhao L., Xu T., Chinnaswamy K., Delproposto J., Stuckey J., Wang S., J. Med. Chem., 62, 941–964 (2019).
8) Yokoo H., Shibata N., Endo A., Ito T., Yanase Y., Murakami Y., Fujii K., Hamamura K., Saeki Y., Naito M., Aritake K., Demizu Y., J. Med. Chem., 64, 15868–15882 (2021).
25) El-Baz N., Nunn B. M., Bates P. J., O’Toole M. G., Bioengineering (Basel), 9, 766 (2022).
1) Sakamoto K. M., Kim K. B., Kumagai A., Mercurio F., Crews C. M., Deshaies R. J., Proc. Natl. Acad. Sci. U.S.A., 98, 8554–8559 (2001).
20) Urade Y., Hayaishi O., Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1482, 259–271 (2000).
16) Christ-Hazelhof E., Nugteren D. H., Biochim. Biophys. Acta Lipids Lipid Metab., 572, 43–51 (1979).
18) Matsuoka T., Hirata M., Tanaka H., Takahashi Y., Murata T., Kabashima K., Sugimoto Y., Kobayashi T., Ushikubi F., Aze Y., Eguchi N., Urade Y., Yoshida N., Kimura K., Mizoguchi A., Honda Y., Nagai H., Narumiya S., Science, 287, 2013–2017 (2000).
22) Yokoo H., Shibata N., Naganuma M., Murakami Y., Fujii K., Ito T., Aritake K., Naito M., Demizu Y., ACS Med. Chem. Lett., 12, 236–241 (2021).
14) Colletti L. M., Liu Y., Koev G., Richardson P. L., Chen C. M., Kati W., Anal. Biochem., 383, 186–193 (2008).
3) Cao C., He M., Wang L., He Y., Rao Y., Chem. Soc. Rev., 51, 7066–7114 (2022).
13) Foley C. A., Potjewyd F., Lamb K. N., James L. I., Frye S. V., ACS Chem. Biol., 15, 290–295 (2020).
17) Urade Y., Fujimoto N., Ujihara M., Hayaishi O., J. Biol. Chem., 262, 3820–3825 (1987).
11) Cyrus K., Wehenkel M., Choi E. Y., Han H. J., Lee H., Swanson H., Kim K. B., Mol. Biosyst., 7, 359–364 (2011).
21) Mohri I., Aritake K., Taniguchi H., Sato Y., Kamauchi S., Nagata N., Maruyama T., Taniike M., Urade Y., Am. J. Pathol., 174, 1735–1744 (2009).
19) Rittchen S., Heinemann A., Cells, 8, 619 (2019).
4) Kelm J. M., Pandey D. S., Malin E., Kansou H., Arora S., Kumar R., Gavande N. S., Mol. Cancer, 22, 62 (2023).
5) Wang X. R., Wang S., Mu H. X., Xu K. Y., Wang X. T., Shi J. T., Cui Q. H., Zhang L. W., Chen S. W., Eur. J. Med. Chem., 244, 114821 (2022).
23) Murakami Y., Osawa H., Kurohara T., Yanase Y., Ito T., Yokoo H., Shibata N., Naito M., Aritake K., Demizu Y., RSC Med. Chem., 13, 1495–1503 (2022).
24) Osawa H., Kurohara T., Ito T., Shibata N., Demizu Y., Bioorg. Med. Chem., 84, 117259 (2023).
15) Nguyen T. T., Kim J. W., Choi H. I., Maeng H. J., Koo T. S., Molecules, 27, 1977 (2022).
9) Wurz R. P., Dellamaggiore K., Dou H., Javier N., Lo M. C., McCarter J. D., Mohl D., Sastri C., Lipford J. R., Cee V. J., J. Med. Chem., 61, 453–461 (2018).
22
23
24
25
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 21) Mohri I., Aritake K., Taniguchi H., Sato Y., Kamauchi S., Nagata N., Maruyama T., Taniike M., Urade Y., Am. J. Pathol., 174, 1735–1744 (2009).
– reference: 11) Cyrus K., Wehenkel M., Choi E. Y., Han H. J., Lee H., Swanson H., Kim K. B., Mol. Biosyst., 7, 359–364 (2011).
– reference: 6) Liu X., Kalogeropulou A. F., Domingos S., Makukhin N., Nirujogi R. S., Singh F., Shpiro N., Saalfrank A., Sammler E., Ganley I. G., Moreira R., Alessi D. R., Ciulli A., J. Am. Chem. Soc., 144, 16930–16952 (2022).
– reference: 1) Sakamoto K. M., Kim K. B., Kumagai A., Mercurio F., Crews C. M., Deshaies R. J., Proc. Natl. Acad. Sci. U.S.A., 98, 8554–8559 (2001).
– reference: 2) Schneekloth A. R., Pucheault M., Tae H. S., Crews C. M., Bioorg. Med. Chem. Lett., 18, 5904–5908 (2008).
– reference: 14) Colletti L. M., Liu Y., Koev G., Richardson P. L., Chen C. M., Kati W., Anal. Biochem., 383, 186–193 (2008).
– reference: 19) Rittchen S., Heinemann A., Cells, 8, 619 (2019).
– reference: 8) Yokoo H., Shibata N., Endo A., Ito T., Yanase Y., Murakami Y., Fujii K., Hamamura K., Saeki Y., Naito M., Aritake K., Demizu Y., J. Med. Chem., 64, 15868–15882 (2021).
– reference: 12) Poongavanam V., Atilaw Y., Siegel S., Giese A., Lehmann L., Meibom D., Erdelyi M., Kihlberg J., J. Med. Chem., 65, 13029–13040 (2022).
– reference: 25) El-Baz N., Nunn B. M., Bates P. J., O’Toole M. G., Bioengineering (Basel), 9, 766 (2022).
– reference: 23) Murakami Y., Osawa H., Kurohara T., Yanase Y., Ito T., Yokoo H., Shibata N., Naito M., Aritake K., Demizu Y., RSC Med. Chem., 13, 1495–1503 (2022).
– reference: 20) Urade Y., Hayaishi O., Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1482, 259–271 (2000).
– reference: 15) Nguyen T. T., Kim J. W., Choi H. I., Maeng H. J., Koo T. S., Molecules, 27, 1977 (2022).
– reference: 5) Wang X. R., Wang S., Mu H. X., Xu K. Y., Wang X. T., Shi J. T., Cui Q. H., Zhang L. W., Chen S. W., Eur. J. Med. Chem., 244, 114821 (2022).
– reference: 10) Han X., Wang C., Qin C., Xiang W., Fernandez-Salas E., Yang C. Y., Wang M., Zhao L., Xu T., Chinnaswamy K., Delproposto J., Stuckey J., Wang S., J. Med. Chem., 62, 941–964 (2019).
– reference: 4) Kelm J. M., Pandey D. S., Malin E., Kansou H., Arora S., Kumar R., Gavande N. S., Mol. Cancer, 22, 62 (2023).
– reference: 9) Wurz R. P., Dellamaggiore K., Dou H., Javier N., Lo M. C., McCarter J. D., Mohl D., Sastri C., Lipford J. R., Cee V. J., J. Med. Chem., 61, 453–461 (2018).
– reference: 22) Yokoo H., Shibata N., Naganuma M., Murakami Y., Fujii K., Ito T., Aritake K., Naito M., Demizu Y., ACS Med. Chem. Lett., 12, 236–241 (2021).
– reference: 7) Klein V. G., Bond A. G., Craigon C., Lokey R. S., Ciulli A., J. Med. Chem., 64, 18082–18101 (2021).
– reference: 18) Matsuoka T., Hirata M., Tanaka H., Takahashi Y., Murata T., Kabashima K., Sugimoto Y., Kobayashi T., Ushikubi F., Aze Y., Eguchi N., Urade Y., Yoshida N., Kimura K., Mizoguchi A., Honda Y., Nagai H., Narumiya S., Science, 287, 2013–2017 (2000).
– reference: 16) Christ-Hazelhof E., Nugteren D. H., Biochim. Biophys. Acta Lipids Lipid Metab., 572, 43–51 (1979).
– reference: 3) Cao C., He M., Wang L., He Y., Rao Y., Chem. Soc. Rev., 51, 7066–7114 (2022).
– reference: 17) Urade Y., Fujimoto N., Ujihara M., Hayaishi O., J. Biol. Chem., 262, 3820–3825 (1987).
– reference: 13) Foley C. A., Potjewyd F., Lamb K. N., James L. I., Frye S. V., ACS Chem. Biol., 15, 290–295 (2020).
– reference: 24) Osawa H., Kurohara T., Ito T., Shibata N., Demizu Y., Bioorg. Med. Chem., 84, 117259 (2023).
– ident: 11
  doi: 10.1039/C0MB00074D
– ident: 7
  doi: 10.1021/acs.jmedchem.1c01496
– ident: 1
  doi: 10.1073/pnas.141230798
– ident: 13
  doi: 10.1021/acschembio.9b00972
– ident: 18
  doi: 10.1126/science.287.5460.2013
– ident: 17
  doi: 10.1016/S0021-9258(18)61429-2
– ident: 19
  doi: 10.3390/cells8060619
– ident: 2
  doi: 10.1016/j.bmcl.2008.07.114
– ident: 25
  doi: 10.3390/bioengineering9120766
– ident: 9
  doi: 10.1021/acs.jmedchem.6b01781
– ident: 8
  doi: 10.1021/acs.jmedchem.1c01206
– ident: 23
  doi: 10.1039/D2MD00284A
– ident: 4
  doi: 10.1186/s12943-022-01707-5
– ident: 10
  doi: 10.1021/acs.jmedchem.8b01631
– ident: 21
  doi: 10.2353/ajpath.2009.080709
– ident: 22
  doi: 10.1021/acsmedchemlett.0c00605
– ident: 5
  doi: 10.1016/j.ejmech.2022.114821
– ident: 12
  doi: 10.1021/acs.jmedchem.2c00877
– ident: 16
  doi: 10.1016/0005-2760(79)90198-X
– ident: 24
  doi: 10.1016/j.bmc.2023.117259
– ident: 3
  doi: 10.1039/D2CS00220E
– ident: 20
  doi: 10.1016/S0167-4838(00)00161-8
– ident: 15
  doi: 10.3390/molecules27061977
– ident: 14
  doi: 10.1016/j.ab.2008.08.012
– ident: 6
  doi: 10.1021/jacs.2c05499
SSID ssj0025073
Score 2.4133663
Snippet Proteolysis-targeting chimeras (PROTACs) have attracted attention as an innovative drug modality that induces the selective degradation of target proteins....
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 961
SubjectTerms Cell Membrane Permeability - drug effects
Cell membranes
Chimeras
Chromatography, Liquid
Correlation
Degradation
degradation activity
Design optimization
Humans
LC-tandem mass spectrometry (LC-MS/MS)
linker optimization
Mass spectrometry
Mass spectroscopy
Membrane permeability
Molecular Structure
Permeability
Proteolysis
Proteolysis - drug effects
proteolysis-targeting chimera
Tandem Mass Spectrometry
Title Correlation between Membrane Permeability and the Intracellular Degradation Activity of Proteolysis-Targeting Chimeras
URI https://www.jstage.jst.go.jp/article/cpb/72/11/72_c24-00615/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/39537180
https://www.proquest.com/docview/3144488457
https://www.proquest.com/docview/3128818669
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Chemical and Pharmaceutical Bulletin, 2024/11/14, Vol.72(11), pp.961-965
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwoELWt5lF2Qk1Es3kDhO0hw4VPtQtS-KlEq9RYkfu2W1TbVpQd3fwo9lbCdOKhUEXKIqtlxr5vN4ZjIPhD5kPOQyjgKHSE8X1YYj5VPpsIC4nOWqRphKFL64DEcTejoNpp3Oz1bU0mqZf2T3W_NK_oer8A74qrJk_4GzdlF4Ab-Bv_AEDsPzr3h8qFprmGA2G3B1IW7BAAbVcQwyV5gq3Ot2nORdppz1Ovr0SFWKME2V-kNW9ZFQQXGqeEOhi5U4iQ4V19EB1zPlwSrb-qytN6AQtLje8I_n7creWrDcFNoxO5pxsSxuC-vgLbMfmRmYm1Q54_TJZrrHU_-sKFc3FoBH8I_3K311NO8rvwWhKoHPa_yWp6ALNAJMUaH5ltAf6rzTDbkdO8SvRKEwotqnEZjRJlu5luURaWPW23pHEKryHtgCUAa70jpdcxnWAQCXX9KTyfl5mhxPkwfoIQEjRIn9s6_2GxXojpHt06f2VlVwheU_bSy-ofE8-gZK_5X4vT2j9ZpkFz2pDBI8NOh6ijpi_gz1xoaV6wOcNAl65QHu4XFT63z9HH1vQRBXEMQ1BHEbghiIjwGCeAOCuAVBXEMQFxJvhSCuIfgCTU6Ok8ORU7XygEPvuktnkElKRcxjL-JMMM4HqtGAB2TlfiizkGQyY1SVf5ShJ8QgDOH2cwXNGKeS5dR_iXbmxVy8Rlh6nMGtxEH3CkD7jAa5EFJ4knDP9SWNu6hXkztdmIotqbJ0gS8p8CUFvqSaL1302TDDTqsOsp4WETCO1dPOb4aB0CB-umi_5mFaCYUy9T1K4U6kQdRF7-0wiGxFV6B8sVJzyEAXmoS9vjK8t1vw48AHddF98-fF99Dj5kzto53l3Uq8Be14mb_TIP0FATHEMQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+Membrane+Permeability+and+the+Intracellular+Degradation+Activity+of+Proteolysis-Targeting+Chimeras&rft.jtitle=Chemical+%26+pharmaceutical+bulletin&rft.au=Yokoo%2C+Hidetomo&rft.au=Osawa%2C+Hinata&rft.au=Saito%2C+Kosuke&rft.au=Demizu%2C+Yosuke&rft.date=2024-11-14&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0009-2363&rft.eissn=1347-5223&rft.volume=72&rft.issue=11&rft_id=info:doi/10.1248%2Fcpb.c24-00615&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2363&client=summon