Quantification of endocannabinoids in postmortem brain of schizophrenic subjects
Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in...
Saved in:
Published in | Schizophrenia research Vol. 148; no. 1-3; pp. 145 - 150 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels.
Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. |
---|---|
AbstractList | Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels.
Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Abstract Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG ( p < 0.001), AEA ( p < 0.0001), DHEA ( p < 0.0001), LEA ( p < 0.01) and PEA ( p < 0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130 ± 18%; p = 0.16; hippocampus: 168 ± 28%, p < 0.01; prefrontal cortex: 237 ± 45%, p < 0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66 ± 7%, p < 0.01; hippocampus: 66 ± 7%, p < 0.01; prefrontal cortex: 75 ± 10%, p = 0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60 ± 6%, p < 0.001) and hippocampus (68 ± 7%, p < 0.05) of schizophrenic subjects. PEA (71 ± 6%, p < 0.05) and LEA (72 ± 6%, p < 0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia.Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. |
Author | Callado, Luis F. Aaltonen, Niina Muguruza, Carolina Lehtonen, Marko Morentin, Benito Meana, J. Javier |
Author_xml | – sequence: 1 givenname: Carolina surname: Muguruza fullname: Muguruza, Carolina organization: Department of Pharmacology, University of the Basque Country UPV/EHU, Spain – sequence: 2 givenname: Marko surname: Lehtonen fullname: Lehtonen, Marko organization: School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland – sequence: 3 givenname: Niina surname: Aaltonen fullname: Aaltonen, Niina organization: School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland – sequence: 4 givenname: Benito surname: Morentin fullname: Morentin, Benito organization: Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain – sequence: 5 givenname: J. Javier surname: Meana fullname: Meana, J. Javier organization: Department of Pharmacology, University of the Basque Country UPV/EHU, Spain – sequence: 6 givenname: Luis F. surname: Callado fullname: Callado, Luis F. email: lf.callado@ehu.es organization: Department of Pharmacology, University of the Basque Country UPV/EHU, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27633477$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23800614$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkk-L1TAUxYOMOG9Gv4FIN4Kb1pukTRuRARn8BwMq6jqk6Q2mtskzaYXx05vOe4MgyODqLvI7J8k594yc-OCRkMcUKgpUPB-rZL5FTBUDyisQVR73yI42LS9ZA_KE7EAyKKUU9Sk5S2kEANpA-4CcMt4BCFrvyMdPq_aLs87oxQVfBFugH4LR3uve-eCGVDhf7ENa5hAXnIs-anfD5evdr7DPb_DOFGntRzRLekjuWz0lfHSc5-Trm9dfLt-VVx_evr98dVWaBmApO9qB0J1hDeMMJRN1P0gzIFLaty1tjRUgGmqR2o5KK7nsZY0d9rbPp8zwc_Ls4LuP4ceKaVGzSwanSXsMa1K0pm3DuWhERp8c0bWfcVD76GYdr9VtChl4egR0MnqyUXvj0h-uFZzXbZu5FwfOxJBSRKuMW25yW3Iok6KgtmrUqA7VqK0aBULlkcX1X-Jb_ztkFwcZ5jB_OowZcugNDi7mvNUQ3P8amMnlxvT0Ha8xjWGNPhelqEpMgfq8Lc22M5QDcMq3X7_8t8Hd9_8GPALTdw |
CitedBy_id | crossref_primary_10_1038_s41380_018_0200_8 crossref_primary_10_1038_srep45050 crossref_primary_10_1007_s12035_016_9697_5 crossref_primary_10_1016_j_bcp_2018_07_009 crossref_primary_10_1080_15622975_2022_2038797 crossref_primary_10_1016_j_alcohol_2020_07_008 crossref_primary_10_1016_j_jpsychires_2016_05_013 crossref_primary_10_1016_j_pnpbp_2016_08_006 crossref_primary_10_3389_fneur_2016_00005 crossref_primary_10_1016_j_neubiorev_2014_02_006 crossref_primary_10_1016_j_psychres_2023_115643 crossref_primary_10_1016_j_toxac_2021_07_004 crossref_primary_10_1016_j_aca_2021_338839 crossref_primary_10_1016_j_jpsychires_2016_01_002 crossref_primary_10_1016_j_scog_2015_06_002 crossref_primary_10_1192_j_eurpsy_2019_9 crossref_primary_10_1016_j_aca_2019_09_002 crossref_primary_10_1080_15622975_2022_2111713 crossref_primary_10_1002_pmic_201700270 crossref_primary_10_1080_10408347_2024_2432998 crossref_primary_10_3389_fnbeh_2020_00052 crossref_primary_10_1016_j_mam_2017_12_004 crossref_primary_10_1186_s13023_015_0248_3 crossref_primary_10_3390_ijms22136881 crossref_primary_10_3109_15622975_2016_1151075 crossref_primary_10_1016_j_pnpbp_2020_110164 crossref_primary_10_1016_j_pnpbp_2020_109945 crossref_primary_10_1177_02698811211001107 crossref_primary_10_1016_j_talanta_2018_04_033 crossref_primary_10_3390_ijms23094764 crossref_primary_10_1016_j_schres_2019_08_003 crossref_primary_10_3390_biom10020329 crossref_primary_10_3389_fphar_2022_869606 crossref_primary_10_3390_brainsci14121230 crossref_primary_10_14218_JERP_2017_00009 crossref_primary_10_1016_j_neubiorev_2016_06_002 crossref_primary_10_3389_fpsyt_2022_885904 crossref_primary_10_3389_fnmol_2019_00142 crossref_primary_10_1016_j_pnpbp_2020_110096 crossref_primary_10_1177_0269881119857205 crossref_primary_10_1016_j_schres_2019_06_001 crossref_primary_10_3389_fpsyt_2014_00073 crossref_primary_10_1016_j_euroneuro_2019_04_005 crossref_primary_10_3389_fpsyt_2023_1231710 crossref_primary_10_1016_j_aca_2018_06_016 crossref_primary_10_1016_j_scog_2015_10_004 crossref_primary_10_1016_j_jpsychires_2018_04_002 crossref_primary_10_1186_s40543_023_00381_6 crossref_primary_10_2174_1570159X17666190801155922 crossref_primary_10_1007_s00216_017_0300_3 crossref_primary_10_1016_j_bbi_2019_07_018 crossref_primary_10_1016_j_psychres_2024_116005 crossref_primary_10_1111_adb_13233 crossref_primary_10_1016_j_biopsych_2024_11_015 crossref_primary_10_1007_s13167_020_00203_4 crossref_primary_10_1002_dta_1574 crossref_primary_10_3389_fpsyt_2020_00315 crossref_primary_10_1016_j_bbr_2019_112231 crossref_primary_10_1016_j_pnpbp_2015_03_006 crossref_primary_10_1155_2016_2426398 |
Cites_doi | 10.1017/S1461145708009371 10.1124/pr.110.003004 10.1007/s00213-009-1608-2 10.1038/7268 10.1038/nn2042 10.1038/tp.2012.15 10.1016/j.biopsych.2005.08.019 10.1038/npp.2011.43 10.1016/j.jchromb.2011.02.004 10.1523/JNEUROSCI.3502-04.2004 10.1523/JNEUROSCI.0309-06.2006 10.1186/1476-511X-2-5 10.1007/s00221-006-0503-x 10.1016/j.neuroimage.2010.04.034 10.1002/jnr.20630 10.1016/S0306-4522(00)00552-2 10.1038/nature09552 10.1038/npp.2011.181 10.1093/cercor/5.4.307 10.1097/00001756-199906030-00008 10.1054/mehy.2000.1100 10.1007/s00213-009-1612-6 10.1177/0269881111420313 10.1038/sj.npp.1300558 10.1016/j.tips.2008.03.001 10.1016/j.euroneuro.2010.04.008 10.1192/bjp.bp.108.053843 10.1016/j.pnpbp.2003.11.005 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Elsevier B.V. 2015 INIST-CNRS Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.schres.2013.06.013 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1573-2509 |
EndPage | 150 |
ExternalDocumentID | 23800614 27633477 10_1016_j_schres_2013_06_013 S0920996413003137 1_s2_0_S0920996413003137 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 4H- 53G 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABOYX ABWVN ABXDB ACDAQ ACGFS ACHQT ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HMW HVGLF HZ~ IHE J1W KOM M29 M2V M39 M3V M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPS SSB SSH SSN SSY SSZ T5K WUQ Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c500t-81806a8c25232e9264bd9cdee11b7717cf60651fe1f819f939b94e8ebfb7172c3 |
IEDL.DBID | .~1 |
ISSN | 0920-9964 1573-2509 |
IngestDate | Fri Jul 11 03:10:35 EDT 2025 Mon Jul 21 05:49:36 EDT 2025 Wed Apr 02 07:15:55 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Tue Jul 01 04:00:36 EDT 2025 Fri Feb 23 02:32:21 EST 2024 Sun Feb 23 10:19:49 EST 2025 Tue Aug 26 18:11:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-3 |
Keywords | Human brain Schizophrenia Antipsychotic 2-Arachidonoyl glycerol Endocannabinoids Anandamide Human Neuroleptic Psychotropic Arachidonic acid derivatives Central nervous system Postmortem Glycerol Pharmacotherapy Cannabinoid Encephalon Psychosis Treatment Endocannabinoid Drug of abuse |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-81806a8c25232e9264bd9cdee11b7717cf60651fe1f819f939b94e8ebfb7172c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23800614 |
PQID | 1417533656 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1417533656 pubmed_primary_23800614 pascalfrancis_primary_27633477 crossref_citationtrail_10_1016_j_schres_2013_06_013 crossref_primary_10_1016_j_schres_2013_06_013 elsevier_sciencedirect_doi_10_1016_j_schres_2013_06_013 elsevier_clinicalkeyesjournals_1_s2_0_S0920996413003137 elsevier_clinicalkey_doi_10_1016_j_schres_2013_06_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Schizophrenia research |
PublicationTitleAlternate | Schizophr Res |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Maccarrone, Rossi, Bari, De Chiara, Fezza, Musella, Gasperi, Prosperetti, Bernardi, Finazzi-Agrò, Cravatt, Centonze (bb0095) 2008; 11 Fernandez-Espejo, Viveros, Nuñez, Ellenbroek, Rodriguez de Fonseca (bb0045) 2009; 206 Koethe, Giuffrida, Schreiber, Hellmich, Schultze-Lutter, Ruhrmann, Klosterkötter, Piomelli, Lewewke (bb0075) 2009; 194 Zavitsanou, Garrick, Huang (bb0150) 2004; 28 De Marchi, De Petrocellis, Orlando, Daniele, Fezza, Di Marzo (bb0030) 2003; 2 Tzavara, Li, Moutsimili, Bisogno, Di Marzo, Phebus, Nomikos, Giros (bb0130) 2005; 59 Katona, Urban, Wallace, Ledent, Jung, Piomelli, Mackie, Freund (bb0070) 2006; 26 Leweke, Piomelli, Pahlisch, Muhl, Gerth, Hoyer, Klosterkötter, Hellmich, Koethe (bb0090) 2012; 2 Dalton, Long, Weickert, Zavitsanou (bb0025) 2011; 36 Wong, Kuwabara, Horti, Raymont, Brasic, Guevara, Ye, Dannals, Ravert, Nandi, Rahmim, Ming, Grachev, Roy, Cascella (bb0145) 2010; 52 Insel (bb0065) 2010; 468 Urigüen, García-Fuster, Callado, Morentin, La Harpe, Casadó, Lluis, Franco, García-Sevilla, Meana (bb0135) 2009; 206 Newell, Deng, Huang (bb0110) 2006; 172 Giuffrida, Leweke, Gerth, Schreiber, Koethe, Faulhaber, Klosterkötter, Piomelli (bb0055) 2004; 29 Pertwee, Howlett, Abood, Alexander, Di Marzo, Elphick (bb0115) 2010; 62 Dean, Sundram, Bradbury, Scarr, Copolov (bb0035) 2001; 103 Leweke, Giuffrida, Wurster, Emrich, Piomelli (bb0085) 1999; 8 Pryor (bb0120) 2000; 55 Moghaddam, Javitt (bb0105) 2012; 37 Rajkowska, Goldman-Rakic (bb0125) 1995; 5 Giuffrida, Parsons, Kerr, Rodríguez de Fonseca, Navarro, Piomelli (bb0060) 1999; 2 Clark, Shoaib, Hewitt, Stanford, Bate (bb0020) 2012; 26 Andersson, Terasmaa, Fuxe, Strömberg (bb0015) 2005; 82 Di Marzo, Maccarrone (bb0040) 2008; 29 Lehtonen, Storvik, Malinen, Hyytiä, Lakso, Auriola, Wong, Callaway (bb0080) 2011; 879 Melis, Perra, Muntoni, Pillolla, Lutz, Marsicano, Di Marzo, Gessa, Pistis (bb0100) 2004; 24 Alexander, Kendall (bb0005) 2009 Vigano, Guidalia, Petrosino, Realini, Rubino, Di Marzo, Parolaro (bb0140) 2009; 12 American Psychiatric Association (bb0010) 1994 García-Sevilla, Alvaro-Bartolome, Diez-Alarcia, Ramos-Miguel, Puigdemont, Perez, Alvarez, Meana (bb0050) 2010; 20 Newell (10.1016/j.schres.2013.06.013_bb0110) 2006; 172 American Psychiatric Association (10.1016/j.schres.2013.06.013_bb0010) 1994 Moghaddam (10.1016/j.schres.2013.06.013_bb0105) 2012; 37 Melis (10.1016/j.schres.2013.06.013_bb0100) 2004; 24 Andersson (10.1016/j.schres.2013.06.013_bb0015) 2005; 82 Zavitsanou (10.1016/j.schres.2013.06.013_bb0150) 2004; 28 Urigüen (10.1016/j.schres.2013.06.013_bb0135) 2009; 206 Pertwee (10.1016/j.schres.2013.06.013_bb0115) 2010; 62 Pryor (10.1016/j.schres.2013.06.013_bb0120) 2000; 55 Alexander (10.1016/j.schres.2013.06.013_bb0005) 2009 Giuffrida (10.1016/j.schres.2013.06.013_bb0055) 2004; 29 De Marchi (10.1016/j.schres.2013.06.013_bb0030) 2003; 2 Fernandez-Espejo (10.1016/j.schres.2013.06.013_bb0045) 2009; 206 Vigano (10.1016/j.schres.2013.06.013_bb0140) 2009; 12 García-Sevilla (10.1016/j.schres.2013.06.013_bb0050) 2010; 20 Dalton (10.1016/j.schres.2013.06.013_bb0025) 2011; 36 Insel (10.1016/j.schres.2013.06.013_bb0065) 2010; 468 Leweke (10.1016/j.schres.2013.06.013_bb0085) 1999; 8 Tzavara (10.1016/j.schres.2013.06.013_bb0130) 2005; 59 Wong (10.1016/j.schres.2013.06.013_bb0145) 2010; 52 Maccarrone (10.1016/j.schres.2013.06.013_bb0095) 2008; 11 Rajkowska (10.1016/j.schres.2013.06.013_bb0125) 1995; 5 Di Marzo (10.1016/j.schres.2013.06.013_bb0040) 2008; 29 Koethe (10.1016/j.schres.2013.06.013_bb0075) 2009; 194 Clark (10.1016/j.schres.2013.06.013_bb0020) 2012; 26 Katona (10.1016/j.schres.2013.06.013_bb0070) 2006; 26 Dean (10.1016/j.schres.2013.06.013_bb0035) 2001; 103 Giuffrida (10.1016/j.schres.2013.06.013_bb0060) 1999; 2 Lehtonen (10.1016/j.schres.2013.06.013_bb0080) 2011; 879 Leweke (10.1016/j.schres.2013.06.013_bb0090) 2012; 2 |
References_xml | – volume: 103 start-page: 9 year: 2001 end-page: 15 ident: bb0035 article-title: Studies on [ publication-title: Neuroscience – volume: 8 start-page: 1665 year: 1999 end-page: 1669 ident: bb0085 article-title: Elevated endogenous cannabinoids in schizophrenia publication-title: Neuroreport – volume: 2 start-page: 5 year: 2003 ident: bb0030 article-title: Endocannabinoid signalling in the blood of patients with schizophrenia publication-title: Lipids Health Dis. – volume: 24 start-page: 10707 year: 2004 end-page: 10715 ident: bb0100 article-title: Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol mediated suppression of excitation in dopamine neurons publication-title: J. Neurosci. – volume: 11 start-page: 152 year: 2008 end-page: 159 ident: bb0095 article-title: Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum publication-title: Nat. Neurosci. – volume: 28 start-page: 355 year: 2004 end-page: 360 ident: bb0150 article-title: Selective antagonist [ publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry – volume: 879 start-page: 677 year: 2011 end-page: 694 ident: bb0080 article-title: Determination of endocannabinoids in nematodes and human brain tissue by liquid chromatography electrospray ionization tandem mass spectrometry publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – volume: 206 start-page: 313 year: 2009 end-page: 324 ident: bb0135 article-title: Immunodensity and mRNA expression of A publication-title: Psychopharmacology (Berl.) – year: 1994 ident: bb0010 article-title: Diagnostic and Statistical Manual of Mental Disorders – volume: 82 start-page: 264 year: 2005 end-page: 272 ident: bb0015 article-title: Subchronic haloperidol increases CB1 receptor binding and G protein coupling on discrete regions of the basal ganglia publication-title: J. Neurosci. Res. – volume: 36 start-page: 1620 year: 2011 end-page: 1630 ident: bb0025 article-title: Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex publication-title: Neuropsychopharmacology – volume: 5 start-page: 307 year: 1995 end-page: 322 ident: bb0125 article-title: Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria publication-title: Cereb. Cortex – volume: 26 start-page: 1136 year: 2012 end-page: 1142 ident: bb0020 article-title: A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments publication-title: J. Psychopharmacol. – volume: 59 start-page: 508 year: 2005 end-page: 515 ident: bb0130 article-title: Endocannabinoids activate transient receptor potential vanilloid 1 receptor to reduce hyperdopaminergia-related hyperactivity: therapeutic implications publication-title: Biol. Psychiatry – volume: 194 start-page: 371 year: 2009 end-page: 372 ident: bb0075 article-title: Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis publication-title: Br. J. Psychiatry – start-page: 3 year: 2009 end-page: 35 ident: bb0005 article-title: The life cycle of the endocannabinoids: formation and inactivation publication-title: Behavioral Neurobiology of the Endocannabinoid System – volume: 26 start-page: 5628 year: 2006 end-page: 5637 ident: bb0070 article-title: Molecular composition of the endocannabinoid system at glutamatergic synapses publication-title: J. Neurosci. – volume: 55 start-page: 494 year: 2000 end-page: 501 ident: bb0120 article-title: Is platelet release of 2-arachidonoyl-glycerol a mediator of cognitive deficits? An endocannabinoid theory of schizophrenia and arousal publication-title: Med. Hypotheses – volume: 2 start-page: 358 year: 1999 end-page: 363 ident: bb0060 article-title: Dopamine activation of endogenous cannabinoid signaling in dorsal striatum publication-title: Nat. Neurosci. – volume: 206 start-page: 531 year: 2009 end-page: 549 ident: bb0045 article-title: Role of publication-title: Psychopharmacology (Berl.) – volume: 29 start-page: 229 year: 2008 end-page: 233 ident: bb0040 article-title: FAAH and anandamide: is 2-AG really the odd one out? publication-title: Trends Pharmacol. Sci. – volume: 468 start-page: 187 year: 2010 end-page: 193 ident: bb0065 article-title: Rethinking schizophrenia publication-title: Nature – volume: 20 start-page: 721 year: 2010 end-page: 730 ident: bb0050 article-title: Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients publication-title: Eur. Neuropsychopharmacol. – volume: 62 start-page: 588 year: 2010 end-page: 631 ident: bb0115 article-title: International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂ publication-title: Pharmacol. Rev. – volume: 29 start-page: 2108 year: 2004 end-page: 2114 ident: bb0055 article-title: Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms publication-title: Neuropsychopharmacology – volume: 172 start-page: 556 year: 2006 end-page: 560 ident: bb0110 article-title: Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia publication-title: Exp. Brain Res. – volume: 2 start-page: e94 year: 2012 ident: bb0090 article-title: Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia publication-title: Transl. Psychiatry – volume: 12 start-page: 599 year: 2009 end-page: 614 ident: bb0140 article-title: Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia publication-title: Int. J. Neuropsychopharmacol. – volume: 37 start-page: 4 year: 2012 end-page: 15 ident: bb0105 article-title: From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment publication-title: Neuropsychopharmacology – volume: 52 start-page: 1505 year: 2010 end-page: 1513 ident: bb0145 article-title: Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [ publication-title: Neuroimage – volume: 12 start-page: 599 year: 2009 ident: 10.1016/j.schres.2013.06.013_bb0140 article-title: Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145708009371 – volume: 62 start-page: 588 year: 2010 ident: 10.1016/j.schres.2013.06.013_bb0115 article-title: International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂ publication-title: Pharmacol. Rev. doi: 10.1124/pr.110.003004 – volume: 206 start-page: 313 year: 2009 ident: 10.1016/j.schres.2013.06.013_bb0135 article-title: Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment publication-title: Psychopharmacology (Berl.) doi: 10.1007/s00213-009-1608-2 – volume: 2 start-page: 358 year: 1999 ident: 10.1016/j.schres.2013.06.013_bb0060 article-title: Dopamine activation of endogenous cannabinoid signaling in dorsal striatum publication-title: Nat. Neurosci. doi: 10.1038/7268 – volume: 11 start-page: 152 year: 2008 ident: 10.1016/j.schres.2013.06.013_bb0095 article-title: Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum publication-title: Nat. Neurosci. doi: 10.1038/nn2042 – volume: 2 start-page: e94 year: 2012 ident: 10.1016/j.schres.2013.06.013_bb0090 article-title: Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia publication-title: Transl. Psychiatry doi: 10.1038/tp.2012.15 – volume: 59 start-page: 508 year: 2005 ident: 10.1016/j.schres.2013.06.013_bb0130 article-title: Endocannabinoids activate transient receptor potential vanilloid 1 receptor to reduce hyperdopaminergia-related hyperactivity: therapeutic implications publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2005.08.019 – volume: 36 start-page: 1620 year: 2011 ident: 10.1016/j.schres.2013.06.013_bb0025 article-title: Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.43 – volume: 879 start-page: 677 year: 2011 ident: 10.1016/j.schres.2013.06.013_bb0080 article-title: Determination of endocannabinoids in nematodes and human brain tissue by liquid chromatography electrospray ionization tandem mass spectrometry publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2011.02.004 – volume: 24 start-page: 10707 year: 2004 ident: 10.1016/j.schres.2013.06.013_bb0100 article-title: Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol mediated suppression of excitation in dopamine neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3502-04.2004 – volume: 26 start-page: 5628 year: 2006 ident: 10.1016/j.schres.2013.06.013_bb0070 article-title: Molecular composition of the endocannabinoid system at glutamatergic synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0309-06.2006 – volume: 2 start-page: 5 year: 2003 ident: 10.1016/j.schres.2013.06.013_bb0030 article-title: Endocannabinoid signalling in the blood of patients with schizophrenia publication-title: Lipids Health Dis. doi: 10.1186/1476-511X-2-5 – volume: 172 start-page: 556 year: 2006 ident: 10.1016/j.schres.2013.06.013_bb0110 article-title: Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0503-x – volume: 52 start-page: 1505 year: 2010 ident: 10.1016/j.schres.2013.06.013_bb0145 article-title: Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.034 – volume: 82 start-page: 264 year: 2005 ident: 10.1016/j.schres.2013.06.013_bb0015 article-title: Subchronic haloperidol increases CB1 receptor binding and G protein coupling on discrete regions of the basal ganglia publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20630 – volume: 103 start-page: 9 year: 2001 ident: 10.1016/j.schres.2013.06.013_bb0035 article-title: Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and Cannabis use publication-title: Neuroscience doi: 10.1016/S0306-4522(00)00552-2 – volume: 468 start-page: 187 year: 2010 ident: 10.1016/j.schres.2013.06.013_bb0065 article-title: Rethinking schizophrenia publication-title: Nature doi: 10.1038/nature09552 – volume: 37 start-page: 4 year: 2012 ident: 10.1016/j.schres.2013.06.013_bb0105 article-title: From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.181 – volume: 5 start-page: 307 year: 1995 ident: 10.1016/j.schres.2013.06.013_bb0125 article-title: Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria publication-title: Cereb. Cortex doi: 10.1093/cercor/5.4.307 – start-page: 3 year: 2009 ident: 10.1016/j.schres.2013.06.013_bb0005 article-title: The life cycle of the endocannabinoids: formation and inactivation – volume: 8 start-page: 1665 year: 1999 ident: 10.1016/j.schres.2013.06.013_bb0085 article-title: Elevated endogenous cannabinoids in schizophrenia publication-title: Neuroreport doi: 10.1097/00001756-199906030-00008 – volume: 55 start-page: 494 year: 2000 ident: 10.1016/j.schres.2013.06.013_bb0120 article-title: Is platelet release of 2-arachidonoyl-glycerol a mediator of cognitive deficits? An endocannabinoid theory of schizophrenia and arousal publication-title: Med. Hypotheses doi: 10.1054/mehy.2000.1100 – volume: 206 start-page: 531 year: 2009 ident: 10.1016/j.schres.2013.06.013_bb0045 article-title: Role of Cannabis and endocannabinoids in the genesis of schizophrenia publication-title: Psychopharmacology (Berl.) doi: 10.1007/s00213-009-1612-6 – volume: 26 start-page: 1136 year: 2012 ident: 10.1016/j.schres.2013.06.013_bb0020 article-title: A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments publication-title: J. Psychopharmacol. doi: 10.1177/0269881111420313 – year: 1994 ident: 10.1016/j.schres.2013.06.013_bb0010 – volume: 29 start-page: 2108 year: 2004 ident: 10.1016/j.schres.2013.06.013_bb0055 article-title: Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300558 – volume: 29 start-page: 229 year: 2008 ident: 10.1016/j.schres.2013.06.013_bb0040 article-title: FAAH and anandamide: is 2-AG really the odd one out? publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2008.03.001 – volume: 20 start-page: 721 year: 2010 ident: 10.1016/j.schres.2013.06.013_bb0050 article-title: Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2010.04.008 – volume: 194 start-page: 371 year: 2009 ident: 10.1016/j.schres.2013.06.013_bb0075 article-title: Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.108.053843 – volume: 28 start-page: 355 year: 2004 ident: 10.1016/j.schres.2013.06.013_bb0150 article-title: Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2003.11.005 |
SSID | ssj0001507 |
Score | 2.340347 |
Snippet | Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and... Abstract Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | 2-Arachidonoyl glycerol Adult Adult and adolescent clinical studies Analysis of Variance Anandamide Antipsychotic Antipsychotic Agents - pharmacology Antipsychotic Agents - therapeutic use Biological and medical sciences Brain - drug effects Brain - metabolism Case-Control Studies Chromatography, Liquid Endocannabinoids Endocannabinoids - metabolism Female Human brain Humans Male Medical sciences Middle Aged Neuropharmacology Pharmacology. Drug treatments Postmortem Changes Psychiatry Psycholeptics: tranquillizer, neuroleptic Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychopharmacology Psychoses Schizophrenia Schizophrenia - drug therapy Schizophrenia - pathology Tandem Mass Spectrometry |
Title | Quantification of endocannabinoids in postmortem brain of schizophrenic subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0920996413003137 https://www.clinicalkey.es/playcontent/1-s2.0-S0920996413003137 https://dx.doi.org/10.1016/j.schres.2013.06.013 https://www.ncbi.nlm.nih.gov/pubmed/23800614 https://www.proquest.com/docview/1417533656 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iF0FE8f0oK3hd2-ymu5ujiKUqFkUFbyHJJlDR3WLaq7_dmexuH6goXttMm04nk-9rv5kh5BQuvVwBMAdaQpOQSSCscA3BudKSK2sUpxHWDt8Okv4Tu37uPi-Ri6YWBmWVde6vcrrP1vUj7dqb7dFw2H7ocCz7TDALYwNCrChnLMUoP_uYyTwQ8Ph-e0CTcHVTPuc1XkAggdSiwCv2XTxp_NP1tDaSDpxmq2kXP8NRfy31Nsh6jSeD82rLm2TJFFvk7n4iKxGQ93tQ2sAUOdxaRSGBCZfD3AXDIhiVbvzmxbaBwkkRuM7NifB04CYKf6dx2-Spd_l40Q_r0Qmh7nY64xAruBOZ6Qh4ZmQ4oB6Vc50bQ6lKgcFpC8SlS62hFiCB5TFXnJnMKKvg2UjHO2S5KAuzRwKABJInkUnylLKUZUpLBQw85anNcli5T-LGY0LXfcVxvMWraARkL6Lys0A_C9TRUbAKp1ajqq_GL-u7zZchmppRyHICEv8vdul3dsbVR9UJKlwkOuJLOM1bLkTkH96ztRAt0w8YQTKPWQovfdKEj4DTjH_RyMKUE9gMw86pMYDsfbJbxdXMOs4QcLKDf2_skKxGfpoH6hePyPL4fWKOAVONVcsfmhZZOb-66Q8-AV_WINY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5aHxREFK96ruDr0mbvPBZRWo-iqNC3kGQTqOjuYtr_78weVdFS8XWb6Wank5nv285ByDkEvVQCMAdaQiM3EEBYIQzBuVKCSaMlox7WDt8No_5zcD0KR0vkoqmFwbTK2vdXPr301vWVTq3NTjEedx67DMs-I_TC2IAwXiYr2J0qbJGV3uCmP5w5ZMQ8Zcs9YEoo0FTQlWlewCGB12KOl1828qT-vAi1XggLejPVwIv5iLSMTFebZKOGlE6v2vUWWdLZNrl_mIoqD6hUvZMbR2cpBK4sE0CG83FqnXHmFLmdvJX5to7EYRG4zn7Jw1OOnUp8VWN3yPPV5dNF362nJ7gq7HYnLhZxRyJRHlBNTzMAPjJlKtWaUhkDiVMGuEtIjaYGUIFhPpMs0ImWRsKnnvJ3SSvLM71PHEAFgkWejtKYBnGQSCUkkPCYxSZJYWWb-I3GuKpbi-OEi1fe5JC98ErPHPXMMZWOgpQ7kyqq1hoL1ofNj8GbslFwdBx8_wK5-Dc5bevTajnl1uNd_sOivkp-M8o_3PPkm7XMHtADf-4HMXz1WWM-HA40_ksjMp1PYTMBNk_1AWe3yV5lV5_SfoKYMzj498ZOyWr_6e6W3w6GN4dkzSuHe2A64xFpTd6n-hgg1kSe1EfoAy_PI4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+endocannabinoids+in+postmortem+brain+of+schizophrenic+subjects&rft.jtitle=Schizophrenia+research&rft.au=Muguruza%2C+Carolina&rft.au=Lehtonen%2C+Marko&rft.au=Aaltonen%2C+Niina&rft.au=Morentin%2C+Benito&rft.date=2013-08-01&rft.issn=0920-9964&rft.volume=148&rft.issue=1&rft.spage=145&rft.epage=150&rft_id=info:doi/10.1016%2Fj.schres.2013.06.013&rft.externalDBID=ECK1-s2.0-S0920996413003137&rft.externalDocID=1_s2_0_S0920996413003137 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09209964%2FS0920996413X00088%2Fcov150h.gif |