Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile

This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were suppleme...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 1124
Main Authors Vargas, Julio E., Andrés, Sonia, Snelling, Timothy J., López-Ferreras, Lorena, Yáñez-Ruíz, David R., García-Estrada, Carlos, López, Secundino
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 20.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant ( = 0.132), but the contrast comparing oil-supplemented diets with the control was significant ( = 0.039). Methane production was reduced ( < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 9 12 15 in rumen digesta, and that of C18:2 9 11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of producers of stearic acid, and affected the numbers of protozoa, methanogens, and , but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
AbstractList This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant ( P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant ( P = 0.039). Methane production was reduced ( P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c 9 c 12 c 15 in rumen digesta, and that of C18:2 c 9 t 11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis , but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant ( = 0.132), but the contrast comparing oil-supplemented diets with the control was significant ( = 0.039). Methane production was reduced ( < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 9 12 15 in rumen digesta, and that of C18:2 9 11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of producers of stearic acid, and affected the numbers of protozoa, methanogens, and , but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil-supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil-supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
Author Snelling, Timothy J.
López-Ferreras, Lorena
Yáñez-Ruíz, David R.
Vargas, Julio E.
Andrés, Sonia
García-Estrada, Carlos
López, Secundino
AuthorAffiliation 2 Grupo CIENVET, Facultad de Ciencias Agropecuarias, Universidad de Caldas Manizales, Colombia
5 Estación Experimental del Zaidín, CSIC Granada, Spain
3 Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, United Kingdom
1 Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León León, Spain
4 Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Gothenburg, Sweden
6 INBIOTEC, Instituto de Biotecnología de León León, Spain
AuthorAffiliation_xml – name: 6 INBIOTEC, Instituto de Biotecnología de León León, Spain
– name: 1 Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León León, Spain
– name: 4 Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Gothenburg, Sweden
– name: 5 Estación Experimental del Zaidín, CSIC Granada, Spain
– name: 3 Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, United Kingdom
– name: 2 Grupo CIENVET, Facultad de Ciencias Agropecuarias, Universidad de Caldas Manizales, Colombia
Author_xml – sequence: 1
  givenname: Julio E.
  surname: Vargas
  fullname: Vargas, Julio E.
– sequence: 2
  givenname: Sonia
  surname: Andrés
  fullname: Andrés, Sonia
– sequence: 3
  givenname: Timothy J.
  surname: Snelling
  fullname: Snelling, Timothy J.
– sequence: 4
  givenname: Lorena
  surname: López-Ferreras
  fullname: López-Ferreras, Lorena
– sequence: 5
  givenname: David R.
  surname: Yáñez-Ruíz
  fullname: Yáñez-Ruíz, David R.
– sequence: 6
  givenname: Carlos
  surname: García-Estrada
  fullname: García-Estrada, Carlos
– sequence: 7
  givenname: Secundino
  surname: López
  fullname: López, Secundino
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28676798$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/255168$$DView record from Swedish Publication Index
BookMark eNp1Uk1v1DAQjVARLaV3TshHDmSx82E7F6SqdMtKrYr4kLhZ46_FVWIvdtKq_77eTam6SPhgW-P33oxn3uviwAdviuItwYu65t1HOzglFxUmbIEJqZoXxRGhtClrXP06eHY_LE5SusF5NbjK-6visOKUUdbxoyKcW2vUiIJF3ydv-3BnIgKv0RVE5w26dn1CwaNv0-A89OjKqRikCyN8QCuPbt0YA1qaOBg_wugyckv-7NYmjYCWMI736FQ5jb7GYF1v3hQvLfTJnDyex8XP5fmPsy_l5fXF6uz0slQtxmPJJJYtg5razlRcA2MdSAkSAOOqIprmj9UdJopJRQymTMuGgaasBUM4yPq4WM26OsCN2EQ3QLwXAZzYBUJcC4ijU70RSmUJ6AjV0Da6roGbVnIrGdNgTUWyVjlrpTuzmeSe2nraiBxaTyIZUbUtoTzjP834DB6MVrk1Efo92v6Ld7_FOtyKtmGUcpoF3j8KxPBnyp0Ug0vK9D14E6YkSC625qThXYa-e57rKcnfCWcAngF5bilFY58gBIutj8TOR2LrI7HzUabQfyjKzcPN1br-_8QH_2PQFg
CitedBy_id crossref_primary_10_3390_su13020607
crossref_primary_10_1038_s41598_019_48294_y
crossref_primary_10_3390_fermentation9040320
crossref_primary_10_3390_applmicrobiol2010004
crossref_primary_10_1111_jpn_13367
crossref_primary_10_1016_j_smallrumres_2018_09_003
crossref_primary_10_3389_fmicb_2020_00625
crossref_primary_10_3389_fvets_2018_00201
crossref_primary_10_14202_vetworld_2020_586_592
crossref_primary_10_3390_molecules24010041
crossref_primary_10_1016_j_psj_2022_102433
crossref_primary_10_1021_acs_jafc_3c07416
crossref_primary_10_1088_1755_1315_637_1_012058
crossref_primary_10_3390_ani11092746
crossref_primary_10_1016_j_heliyon_2024_e25200
crossref_primary_10_1016_j_psj_2024_103760
crossref_primary_10_1590_1413_7054202044012420
crossref_primary_10_3390_foods14060986
crossref_primary_10_5194_aab_66_1_2023
crossref_primary_10_3390_polym15153153
crossref_primary_10_1371_journal_pone_0216187
crossref_primary_10_1016_j_fbio_2023_103006
crossref_primary_10_32634_0869_8155_2023_371_6_58_64
crossref_primary_10_1038_s41598_020_58401_z
crossref_primary_10_3389_fmicb_2022_847073
crossref_primary_10_1016_j_jevs_2024_105230
crossref_primary_10_1017_S175173111900137X
crossref_primary_10_3168_jds_2019_16781
crossref_primary_10_3390_microorganisms12101967
crossref_primary_10_1016_j_anaerobe_2019_102143
crossref_primary_10_3390_ani8060083
crossref_primary_10_3389_fmicb_2020_588666
crossref_primary_10_3390_ani12223154
crossref_primary_10_1016_j_azn_2024_06_002
crossref_primary_10_3168_jds_2018_14985
crossref_primary_10_3389_fmicb_2019_00903
crossref_primary_10_1096_fj_202401565RR
crossref_primary_10_1016_j_micpath_2018_08_038
crossref_primary_10_3390_antiox12101882
crossref_primary_10_1186_s12917_024_04017_8
crossref_primary_10_1186_s40104_022_00776_2
crossref_primary_10_3390_fermentation9070596
crossref_primary_10_1016_j_livsci_2021_104489
crossref_primary_10_1038_s41467_022_28402_9
crossref_primary_10_1186_s42523_019_0018_y
crossref_primary_10_1017_S1751731118000836
crossref_primary_10_1007_s11250_023_03670_9
crossref_primary_10_1016_S2095_3119_20_63174_4
crossref_primary_10_1088_1755_1315_624_1_012112
crossref_primary_10_1093_jas_skz079
crossref_primary_10_1071_AN20206
crossref_primary_10_1021_acs_jafc_8b01253
crossref_primary_10_3389_fnut_2022_955846
crossref_primary_10_3390_ani14010133
crossref_primary_10_1080_1745039X_2021_2013114
crossref_primary_10_3390_fermentation8070310
Cites_doi 10.1371/journal.pone.0083424
10.1002/ejlt.200700052
10.1093/jn/138.5.889
10.1111/1751-7915.12164
10.1016/j.anifeedsci.2014.12.004
10.1017/S0007114599001300
10.1017/S175173111000042X
10.3168/jds.2012-5412
10.3168/jds.S0022-0302(91)78489-0
10.1079/BJN19770102
10.1079/BJN20061783
10.1017/S0007114500000180
10.1093/jn/134.12.3378
10.1016/j.anifeedsci.2012.07.010
10.3168/jds.2009-2934
10.2527/jas.2007-0588
10.1111/j.1574-6941.2003.tb01040.x
10.1017/S1357729800053765
10.1186/s12864-015-2032-0
10.3168/jds.2010-3101
10.1017/S1751731112001681
10.1007/s12275-011-0365-1
10.1079/PNS19880062
10.1016/S0928-8244(03)00224-4
10.3168/jds.2010-3107
10.1017/S1751731116000756
10.3168/jds.S0022-0302(93)77727-9
10.1111/j.1574-6941.2010.00892.x
10.1016/S0378-1097(03)00218-0
10.2527/jas.2008-1446
10.1007/s00253-006-0802-y
10.1016/j.anifeedsci.2007.09.033
10.4141/CJAS07112
10.5713/ajas.2009.r.11
10.1016/j.anifeedsci.2015.09.007
10.1017/s0021859615001094
10.2478/sab-2014-0103
10.2527/jas.2008-1184
10.5713/ajas.2007.1694
10.3168/jds.2016-11500
10.1002/9783527679577.ch34
10.1016/j.mimet.2011.03.014
10.1007/978-94-009-1453-7_13
10.3168/jds.S0022-0302(80)82881-5
10.1042/bj0430099
10.1128/AEM.00739-09
10.3168/jds.2006-478
10.3168/jds.S0022-0302(06)72134-8
10.1016/0377-8401(94)90171-6
10.1016/j.anifeedsci.2008.09.004
10.3945/jn.112.158576
10.3168/jds.2011-4561
10.1016/j.livsci.2014.01.007
10.1093/nar/gkg039
10.1016/j.biortech.2016.09.106
10.1111/j.1574-6941.2006.00190.x
10.1111/j.1574-6968.2006.00487.x
10.1128/aem.01473-08
10.1016/s2095-3119(16)61418-1
10.1046/j.1365-2672.2002.01580.x
10.1128/AEM.67.6.2766-2774.2001
10.1186/1471-2180-10-52
10.3168/jds.S0022-0302(04)73250-6
10.1016/j.foodchem.2012.12.033
10.2527/2004.8251461x
10.1111/j.1574-6941.2007.00394.x
10.1371/journal.pone.0129174
10.1017/S1751731110000546
10.1111/j.1365-2672.2007.03349.x
ContentType Journal Article
Copyright Copyright © 2017 Vargas, Andrés, Snelling, López-Ferreras, Yáñez-Ruíz, García-Estrada and López. 2017 Vargas, Andrés, Snelling, López-Ferreras, Yáñez-Ruíz, García-Estrada and López
Copyright_xml – notice: Copyright © 2017 Vargas, Andrés, Snelling, López-Ferreras, Yáñez-Ruíz, García-Estrada and López. 2017 Vargas, Andrés, Snelling, López-Ferreras, Yáñez-Ruíz, García-Estrada and López
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTPV
AOWAS
F1U
DOA
DOI 10.3389/fmicb.2017.01124
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_ccc1ea916da54d33a8e5b8fb77dafe21
oai_gup_ub_gu_se_255168
PMC5476686
28676798
10_3389_fmicb_2017_01124
Genre Journal Article
GrantInformation_xml – fundername: Consejería de Educación, Junta de Castilla y León
  grantid: LE007A07
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c500t-7b0b57a36f9e28da779abbabaa00221d63023901c7bc1e067db47ad675ae18ab3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:27:56 EDT 2025
Thu Aug 21 06:35:43 EDT 2025
Thu Aug 21 14:09:09 EDT 2025
Fri Jul 11 04:01:34 EDT 2025
Thu Apr 03 06:59:12 EDT 2025
Tue Jul 01 00:54:42 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords microbial community composition
TRFLP
qPCR
dietary fats
Rusitec fermenters
rumen microbiota
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-7b0b57a36f9e28da779abbabaa00221d63023901c7bc1e067db47ad675ae18ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Antonio Faciola, University of Nevada, Reno, United States
Reviewed by: Timothy Hackmann, University of Florida, United States; Gwinyai Chibisa, University of Idaho, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.01124
PMID 28676798
PQID 1916381489
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ccc1ea916da54d33a8e5b8fb77dafe21
swepub_primary_oai_gup_ub_gu_se_255168
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476686
proquest_miscellaneous_1916381489
pubmed_primary_28676798
crossref_primary_10_3389_fmicb_2017_01124
crossref_citationtrail_10_3389_fmicb_2017_01124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-20
PublicationDateYYYYMMDD 2017-06-20
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-20
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tajima (B64) 2001; 67
Kim (B31) 2009; 22
Huws (B25) 2015; 8
Cole (B11) 2003; 31
Hristov (B24) 2013
Hongoh (B23) 2003; 221
Myer (B44) 2015; 10
Stevenson (B62) 2007; 75
Andrés (B2) 2016; 154
Eugène (B17) 2008; 88
Ouwerkerk (B49) 2002; 92
Cooper (B12) 2004; 82
Shingfield (B57) 2012; 142
Denman (B15) 2007; 62
Hill (B22) 2003; 43
Petri (B53) 2013; 8
Potu (B54) 2011; 49
Varadyova (B67) 2008; 144
Maeda (B37) 2003; 39
Boeckaert (B7) 2007; 109
Patra (B52) 2014; 162
Khafipour (B30) 2009; 75
Kim (B32) 2008; 138
Vargas-Bello-Pérez (B68) 2016; 10
Ferreira (B18) 2016; 216
Korczyński (B33) 2015
Denman (B14) 2006; 58
AbuGhazaleh (B1) 2004; 87
Paillard (B50) 2007; 103
Smith (B59) 2014
Steinfeld (B61) 2006
Bodas (B6) 2012; 176
Lemos (B35) 2011; 86
Newbold (B48) 1988; 47
Carro (B9) 1999; 82
Wang (B71) 2016; 222
Czerkawski (B13) 1977; 38
Maia (B38) 2010; 10
Stamey (B60) 2012; 95
Shingfield (B56) 2013; 7
Morán (B41) 2013; 138
Palmquist (B51) 1980; 63
Sylvester (B63) 2004; 134
Shingfield (B58) 2006; 89
McDougall (B40) 1948; 43
Morgavi (B42) 2010; 4
Wu (B74) 1991; 74
Boeckaert (B8) 2008; 74
Shingfield (B55) 2003; 77
France (B19) 2000; 83
Lourenço (B36) 2010; 4
Wasowska (B72) 2006; 95
Nagaraja (B46) 2007; 90
Martínez (B39) 2010; 93
Huws (B26) 2010; 73
Bauman (B3) 2005
Castagnino (B10) 2015; 201
Nam (B47) 2007; 20
Solomon (B27) 2007
Jenkins (B28) 1993; 76
Wallace (B70) 2015; 16
Gao (B20) 2016; 15
Nagaraja (B45) 1997
Jenkins (B29) 2008; 86
Doreau (B16) 2009; 150
Toral (B66) 2012; 95
Wallace (B69) 2006; 265
Blanch (B5) 2009; 87
Belenguer (B4) 2010; 93
García-González (B21) 2010; 93
Theodorou (B65) 1994; 48
Weld (B73) 2017; 100
Kouřimská (B34) 2014; 45
Moya (B43) 2009; 87
22916931 - J Dairy Sci. 2012 Sep;95(9):5269-75
20167098 - BMC Microbiol. 2010 Feb 18;10:52
6989864 - J Dairy Sci. 1980 Jan;63(1):1-14
19542509 - J Anim Sci. 2009 Sep;87(9):2874-81
15570040 - J Nutr. 2004 Dec;134(12):3378-84
20630243 - J Dairy Sci. 2010 Jul;93(7):3275-86
17235560 - Appl Microbiol Biotechnol. 2007 May;75(1):165-74
17147764 - FEMS Microbiol Lett. 2006 Dec;265(2):195-201
17897229 - J Appl Microbiol. 2007 Oct;103(4):1251-61
26030887 - PLoS One. 2015 Jun 01;10(6):e0129174
19783747 - Appl Environ Microbiol. 2009 Nov;75(22):7115-24
27765375 - Bioresour Technol. 2016 Dec;222:485-497
18424597 - J Nutr. 2008 May;138(5):889-96
11375193 - Appl Environ Microbiol. 2001 Jun;67(6):2766-74
12520046 - Nucleic Acids Res. 2003 Jan 1;31(1):442-3
15144087 - J Anim Sci. 2004 May;82(5):1461-70
16428640 - J Dairy Sci. 2006 Feb;89(2):714-32
22281344 - J Dairy Sci. 2012 Feb;95(2):794-806
10743487 - Br J Nutr. 1999 Aug;82(2):149-57
19719691 - FEMS Microbiol Ecol. 2003 Feb 1;43(1):1-11
19213715 - J Anim Sci. 2009 May;87(5):1722-30
22444606 - Animal. 2010 Jul;4(7):1008-23
21457733 - J Microbiol Methods. 2011 Jul;86(1):42-51
26494241 - BMC Genomics. 2015 Oct 23;16:839
20491929 - FEMS Microbiol Ecol. 2010 Aug;73(2):396-407
15259240 - J Dairy Sci. 2004 Apr;87(4):1047-50
23497902 - Food Chem. 2013 Jun 15;138(4):2407-14
588537 - Br J Nutr. 1977 Nov;38(3):371-84
18042812 - J Anim Sci. 2008 Feb;86(2):397-412
17117998 - FEMS Microbiol Ecol. 2006 Dec;58(3):572-82
23031638 - Animal. 2013 Mar;7 Suppl 1:132-62
24391765 - PLoS One. 2013 Dec 31;8(12):e83424
14557000 - FEMS Immunol Med Microbiol. 2003 Oct 24;39(1):81-6
27146195 - Animal. 2016 Nov;10 (11):1821-1828
12725942 - FEMS Microbiol Lett. 2003 Apr 25;221(2):299-304
11966917 - J Appl Microbiol. 2002;92(4):753-8
22739367 - J Nutr. 2012 Aug;142(8):1437-48
18820074 - Appl Environ Microbiol. 2008 Nov;74(22):6923-30
1779057 - J Dairy Sci. 1991 Sep;74(9):3035-46
10743493 - Br J Nutr. 2000 Feb;83(2):143-50
16748377 - Biochem J. 1948;43(1):99-109
17949432 - FEMS Microbiol Ecol. 2007 Dec;62(3):313-22
28088408 - J Dairy Sci. 2017 Mar;100(3):1766-1779
16768845 - Br J Nutr. 2006 Jun;95(6):1199-211
17517750 - J Dairy Sci. 2007 Jun;90 Suppl 1:E17-38
20655445 - J Dairy Sci. 2010 Aug;93(8):3755-63
20655439 - J Dairy Sci. 2010 Aug;93(8):3699-712
8132891 - J Dairy Sci. 1993 Dec;76(12):3851-63
21538241 - J Microbiol. 2011 Apr;49(2):216-23
22444607 - Animal. 2010 Jul;4(7):1024-36
25223749 - Microb Biotechnol. 2015 Mar;8(2):331-41
References_xml – volume: 8
  start-page: e83424
  year: 2013
  ident: B53
  article-title: Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0083424
– volume: 109
  start-page: 767
  year: 2007
  ident: B7
  article-title: Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200700052
– volume: 138
  start-page: 889
  year: 2008
  ident: B32
  article-title: Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community
  publication-title: J. Nutr.
  doi: 10.1093/jn/138.5.889
– volume: 8
  start-page: 331
  year: 2015
  ident: B25
  article-title: Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12164
– volume: 201
  start-page: 14
  year: 2015
  ident: B10
  article-title: Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2014.12.004
– volume: 82
  start-page: 149
  year: 1999
  ident: B9
  article-title: Effect of supplementing a fiber basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semicontinuous culture system (Rusitec)
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114599001300
– volume: 4
  start-page: 1008
  year: 2010
  ident: B36
  article-title: The role of microbes in rumen lipolysis and biohydrogenation and their manipulation
  publication-title: Animal
  doi: 10.1017/S175173111000042X
– start-page: 811
  volume-title: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: B59
  article-title: Agriculture, Forestry and Other Land Use (AFOLU)
– volume: 95
  start-page: 5269
  year: 2012
  ident: B60
  article-title: Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-5412
– volume: 74
  start-page: 3035
  year: 1991
  ident: B74
  article-title: Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(91)78489-0
– volume: 38
  start-page: 371
  year: 1977
  ident: B13
  article-title: Design and development of a long-term rumen simulation technique (Rusitec)
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19770102
– volume: 95
  start-page: 1199
  year: 2006
  ident: B72
  article-title: Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN20061783
– volume: 83
  start-page: 143
  year: 2000
  ident: B19
  article-title: Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114500000180
– volume: 134
  start-page: 3378
  year: 2004
  ident: B63
  article-title: Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.12.3378
– volume: 176
  start-page: 78
  year: 2012
  ident: B6
  article-title: Manipulation of rumen fermentation and methane production with plant secondary metabolites
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2012.07.010
– volume: 93
  start-page: 3699
  year: 2010
  ident: B39
  article-title: Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2934
– volume: 86
  start-page: 397
  year: 2008
  ident: B29
  article-title: Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2007-0588
– volume: 43
  start-page: 1
  year: 2003
  ident: B22
  article-title: Using ecological diversity measures with bacterial communities
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2003.tb01040.x
– volume: 77
  start-page: 165
  year: 2003
  ident: B55
  article-title: Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows
  publication-title: Anim. Sci.
  doi: 10.1017/S1357729800053765
– volume: 16
  start-page: 839
  year: 2015
  ident: B70
  article-title: The rumen microbial metagenome associated with high methane production in cattle
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2032-0
– start-page: 523
  volume-title: Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress
  year: 2005
  ident: B3
  article-title: Milk fatty acids and human health: potential role of conjugated linoleic acid and trans fatty acids
– volume: 93
  start-page: 3275
  year: 2010
  ident: B4
  article-title: Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3101
– volume: 7
  start-page: 132
  year: 2013
  ident: B56
  article-title: Recent developments in altering the fatty acid composition of ruminant-derived foods
  publication-title: Animal
  doi: 10.1017/S1751731112001681
– volume: 49
  start-page: 216
  year: 2011
  ident: B54
  article-title: The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-011-0365-1
– volume: 47
  start-page: 154A
  year: 1988
  ident: B48
  article-title: Lipids as rumen defaunating agents
  publication-title: Proc. Nutr. Soc.
  doi: 10.1079/PNS19880062
– volume: 39
  start-page: 81
  year: 2003
  ident: B37
  article-title: Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1016/S0928-8244(03)00224-4
– volume: 93
  start-page: 3755
  year: 2010
  ident: B21
  article-title: Decrease of ruminal methane production in Rusitec fermenters through the addition of plant material from rhubarb (Rheum spp.) and alder buckthorn (Frangula alnus)
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3107
– volume: 10
  start-page: 1821
  year: 2016
  ident: B68
  article-title: Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils
  publication-title: Animal
  doi: 10.1017/S1751731116000756
– volume: 76
  start-page: 3851
  year: 1993
  ident: B28
  article-title: Lipid metabolism in the rumen
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(93)77727-9
– volume: 73
  start-page: 396
  year: 2010
  ident: B26
  article-title: Forage type and fish oil cause shifts in rumen bacterial diversity
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00892.x
– volume: 221
  start-page: 299
  year: 2003
  ident: B23
  article-title: Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00218-0
– volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: B27
– volume: 87
  start-page: 2874
  year: 2009
  ident: B43
  article-title: Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2008-1446
– volume: 75
  start-page: 165
  year: 2007
  ident: B62
  article-title: Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0802-y
– volume: 144
  start-page: 44
  year: 2008
  ident: B67
  article-title: Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2007.09.033
– volume: 88
  start-page: 331
  year: 2008
  ident: B17
  article-title: Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/CJAS07112
– volume: 22
  start-page: 1341
  year: 2009
  ident: B31
  article-title: Dietary transformation of lipid in the rumen microbial ecosystem
  publication-title: Asian-Austr. J. Anim. Sci.
  doi: 10.5713/ajas.2009.r.11
– volume: 216
  start-page: 30
  year: 2016
  ident: B18
  article-title: Nutrient digestibility and ruminal fatty acid metabolism in lambs supplemented with soybean oil partially replaced by fish oil blend
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2015.09.007
– volume: 154
  start-page: 542
  year: 2016
  ident: B2
  article-title: Effects of the inclusion of flaxseed and quercetin in the diet of fattening lambs on ruminal microbiota, in vitro fermentation and biohydrogenation of fatty acids
  publication-title: J. Agric. Sci.
  doi: 10.1017/s0021859615001094
– volume: 45
  start-page: 162
  year: 2014
  ident: B34
  article-title: Effect of feeding with algae on fatty acid profile of goat's milk
  publication-title: Sci. Agric. Bohem.
  doi: 10.2478/sab-2014-0103
– volume: 87
  start-page: 1722
  year: 2009
  ident: B5
  article-title: Physiological changes in rumen fermentation during acidosis induction and its control using a multivalent polyclonal antibody preparation in heifers
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2008-1184
– volume: 20
  start-page: 1694
  year: 2007
  ident: B47
  article-title: Biohydrogenation pathways for linoleic and linolenic acids by Orpinomyces rumen fungus
  publication-title: Asian-Aust. J. Anim. Sci.
  doi: 10.5713/ajas.2007.1694
– volume: 100
  start-page: 1766
  year: 2017
  ident: B73
  article-title: The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: a meta-analysis
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11500
– start-page: 605
  volume-title: Marine Algae Extracts: Processes, Products, and Applications
  year: 2015
  ident: B33
  article-title: Algae extract as a potential feed additive
  doi: 10.1002/9783527679577.ch34
– volume: 86
  start-page: 42
  year: 2011
  ident: B35
  article-title: Rethinking microbial diversity analysis in the high throughput sequencing era
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2011.03.014
– start-page: 523
  volume-title: The Rumen Microbial Ecosystem
  year: 1997
  ident: B45
  article-title: Manipulation of ruminal fermentation
  doi: 10.1007/978-94-009-1453-7_13
– volume: 63
  start-page: 1
  year: 1980
  ident: B51
  article-title: Fat in lactation rations: review
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(80)82881-5
– volume: 43
  start-page: 99
  year: 1948
  ident: B40
  article-title: Studies on ruminant saliva. 1. The composition and output of sheep's saliva
  publication-title: Biochem. J.
  doi: 10.1042/bj0430099
– volume: 75
  start-page: 7115
  year: 2009
  ident: B30
  article-title: Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00739-09
– volume: 90
  start-page: E17
  year: 2007
  ident: B46
  article-title: Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook
  publication-title: J. Dairy. Sci.
  doi: 10.3168/jds.2006-478
– volume-title: Livestock's Long Shadow: Environmental Issues and Options
  year: 2006
  ident: B61
– volume: 89
  start-page: 714
  year: 2006
  ident: B58
  article-title: Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(06)72134-8
– volume: 48
  start-page: 185
  year: 1994
  ident: B65
  article-title: A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/0377-8401(94)90171-6
– volume: 150
  start-page: 187
  year: 2009
  ident: B16
  article-title: Effects of linseed lipids fed as rolled seeds, extruded seeds or oil on organic matter and crude protein digestion in cows
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2008.09.004
– volume: 142
  start-page: 1437
  year: 2012
  ident: B57
  article-title: Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows
  publication-title: J. Nutr.
  doi: 10.3945/jn.112.158576
– volume: 95
  start-page: 794
  year: 2012
  ident: B66
  article-title: Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-4561
– volume: 162
  start-page: 97
  year: 2014
  ident: B52
  article-title: A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2014.01.007
– volume: 31
  start-page: 442
  year: 2003
  ident: B11
  article-title: The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg039
– volume: 222
  start-page: 485
  year: 2016
  ident: B71
  article-title: Perspectives on the feasibility of using microalgae for industrial wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.106
– volume: 58
  start-page: 572
  year: 2006
  ident: B14
  article-title: Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2006.00190.x
– volume: 265
  start-page: 195
  year: 2006
  ident: B69
  article-title: Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2006.00487.x
– volume: 74
  start-page: 6923
  year: 2008
  ident: B8
  article-title: Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.01473-08
– volume: 15
  start-page: 2827
  year: 2016
  ident: B20
  article-title: Impacts of the unsaturation degree of long-chain fatty acids on the volatile fatty acid profiles of rumen microbial fermentation in goats in vitro
  publication-title: J. Integr. Agric.
  doi: 10.1016/s2095-3119(16)61418-1
– volume: 92
  start-page: 753
  year: 2002
  ident: B49
  article-title: Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2002.01580.x
– volume: 67
  start-page: 2766
  year: 2001
  ident: B64
  article-title: Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.6.2766-2774.2001
– volume: 10
  start-page: 52
  year: 2010
  ident: B38
  article-title: Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-52
– volume: 87
  start-page: 1047
  year: 2004
  ident: B1
  article-title: Short communication: Docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(04)73250-6
– volume: 138
  start-page: 2407
  year: 2013
  ident: B41
  article-title: Effect of dietary carnosic acid on the fatty acid profile and flavour stability of meat from fattening lambs
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.12.033
– volume: 82
  start-page: 1461
  year: 2004
  ident: B12
  article-title: Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs
  publication-title: J. Anim. Sci.
  doi: 10.2527/2004.8251461x
– volume: 62
  start-page: 313
  year: 2007
  ident: B15
  article-title: Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00394.x
– volume: 10
  start-page: e0129174
  year: 2015
  ident: B44
  article-title: Rumen microbiome from steers differing in feed efficiency
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129174
– volume-title: Mitigation of Greenhouse Gas Emissions in Livestock Production – A Review of Technical Options for Non-CO
  year: 2013
  ident: B24
– volume: 4
  start-page: 1024
  year: 2010
  ident: B42
  article-title: Microbial ecosystem and methanogenesis in ruminants
  publication-title: Animal
  doi: 10.1017/S1751731110000546
– volume: 103
  start-page: 1251
  year: 2007
  ident: B50
  article-title: Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2007.03349.x
– reference: 22916931 - J Dairy Sci. 2012 Sep;95(9):5269-75
– reference: 15570040 - J Nutr. 2004 Dec;134(12):3378-84
– reference: 10743487 - Br J Nutr. 1999 Aug;82(2):149-57
– reference: 17517750 - J Dairy Sci. 2007 Jun;90 Suppl 1:E17-38
– reference: 12520046 - Nucleic Acids Res. 2003 Jan 1;31(1):442-3
– reference: 24391765 - PLoS One. 2013 Dec 31;8(12):e83424
– reference: 19542509 - J Anim Sci. 2009 Sep;87(9):2874-81
– reference: 18820074 - Appl Environ Microbiol. 2008 Nov;74(22):6923-30
– reference: 11375193 - Appl Environ Microbiol. 2001 Jun;67(6):2766-74
– reference: 16428640 - J Dairy Sci. 2006 Feb;89(2):714-32
– reference: 19719691 - FEMS Microbiol Ecol. 2003 Feb 1;43(1):1-11
– reference: 6989864 - J Dairy Sci. 1980 Jan;63(1):1-14
– reference: 25223749 - Microb Biotechnol. 2015 Mar;8(2):331-41
– reference: 19783747 - Appl Environ Microbiol. 2009 Nov;75(22):7115-24
– reference: 17949432 - FEMS Microbiol Ecol. 2007 Dec;62(3):313-22
– reference: 19213715 - J Anim Sci. 2009 May;87(5):1722-30
– reference: 1779057 - J Dairy Sci. 1991 Sep;74(9):3035-46
– reference: 12725942 - FEMS Microbiol Lett. 2003 Apr 25;221(2):299-304
– reference: 22739367 - J Nutr. 2012 Aug;142(8):1437-48
– reference: 21457733 - J Microbiol Methods. 2011 Jul;86(1):42-51
– reference: 26030887 - PLoS One. 2015 Jun 01;10(6):e0129174
– reference: 17147764 - FEMS Microbiol Lett. 2006 Dec;265(2):195-201
– reference: 20655445 - J Dairy Sci. 2010 Aug;93(8):3755-63
– reference: 17235560 - Appl Microbiol Biotechnol. 2007 May;75(1):165-74
– reference: 22281344 - J Dairy Sci. 2012 Feb;95(2):794-806
– reference: 17897229 - J Appl Microbiol. 2007 Oct;103(4):1251-61
– reference: 10743493 - Br J Nutr. 2000 Feb;83(2):143-50
– reference: 20655439 - J Dairy Sci. 2010 Aug;93(8):3699-712
– reference: 16768845 - Br J Nutr. 2006 Jun;95(6):1199-211
– reference: 15259240 - J Dairy Sci. 2004 Apr;87(4):1047-50
– reference: 8132891 - J Dairy Sci. 1993 Dec;76(12):3851-63
– reference: 16748377 - Biochem J. 1948;43(1):99-109
– reference: 22444607 - Animal. 2010 Jul;4(7):1024-36
– reference: 20167098 - BMC Microbiol. 2010 Feb 18;10:52
– reference: 20491929 - FEMS Microbiol Ecol. 2010 Aug;73(2):396-407
– reference: 27765375 - Bioresour Technol. 2016 Dec;222:485-497
– reference: 28088408 - J Dairy Sci. 2017 Mar;100(3):1766-1779
– reference: 21538241 - J Microbiol. 2011 Apr;49(2):216-23
– reference: 22444606 - Animal. 2010 Jul;4(7):1008-23
– reference: 588537 - Br J Nutr. 1977 Nov;38(3):371-84
– reference: 26494241 - BMC Genomics. 2015 Oct 23;16:839
– reference: 20630243 - J Dairy Sci. 2010 Jul;93(7):3275-86
– reference: 23031638 - Animal. 2013 Mar;7 Suppl 1:132-62
– reference: 18042812 - J Anim Sci. 2008 Feb;86(2):397-412
– reference: 17117998 - FEMS Microbiol Ecol. 2006 Dec;58(3):572-82
– reference: 11966917 - J Appl Microbiol. 2002;92(4):753-8
– reference: 27146195 - Animal. 2016 Nov;10 (11):1821-1828
– reference: 14557000 - FEMS Immunol Med Microbiol. 2003 Oct 24;39(1):81-6
– reference: 15144087 - J Anim Sci. 2004 May;82(5):1461-70
– reference: 18424597 - J Nutr. 2008 May;138(5):889-96
– reference: 23497902 - Food Chem. 2013 Jun 15;138(4):2407-14
SSID ssj0000402000
Score 2.4121807
Snippet This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1124
SubjectTerms ANALYSIS
CLOSTRIDIUM-PROTEOCLASTICUM
DIETARY
dietary fats
DIVERSITY
FATTENING LAMBS
FISH-OIL
LACTATING DAIRY-COWS
LINOLEIC-ACID
LIPID-METABOLISM
METHANE PRODUCTION
microbial community composition
Microbiology
Microbiology in the Medical Area
Mikrobiologi inom det medicinska området
qPCR
REAL-TIME PCR
RUMEN BACTERIAL COMMUNITY
rumen microbiota
Rusitec fermenters
TRFLP
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwR52fdHBFEEKzrbdMmfdzEyxSuijrYWzj5moVLOnbbwf57T5LusqLoi4_NB23P9-Ekv0PIKwdVo1WN-s1NlTPTCtS52uT4xFjNtWubcHd49bk5OWWfzuqzW62-wpmwBA-cCHeotV5YwCDGQM1MVYGwtRJOcW7A2XiFvESfdyuZijY4pEVFkeqSmIW1yKZOq3CUi79DkS7ZzA9FuP4_xZi_H5WcAYpGJ7R8QO5P0SM9Sl-9S-5Y_5DcTf0krx-RPmER097R76N369ABjYI3dAXhkh_90q03tPf02xhbedFVl2CYBnhLP3p61Q2XPV2irZ4uJPm4OdWggC5hGK7pke4M_Zo6fT8mp8sPP96f5FNHhVzXRTHkXBWq5sge19pSGOC8BaVAAQRfvjBNaCGEEYLmCqmOjswoxsFgUgF2IUBVT8iO7719RmiFRhLnrK2sZVbgAsBQq-GKw4I712Tk8Ia-Uk9w46HrxVpi2hE4IiNHZOCIjBzJyJvtjosEtfGXtceBZdt1ASQ7DqDoyEl05L9EJyMvbxguUalCpQS87ceNxCQW7RJmim1GniYB2L6qFAHjrhUZ4TPRmH3LfMZ3PyNwd8140wgkzeskRLMt5-OFxKHzUW6sLEP9Ujz_H3-5R-4FuoXjbWWxT3aGy9G-wEBqUAdRZ34BXNUgfQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile
URI https://www.ncbi.nlm.nih.gov/pubmed/28676798
https://www.proquest.com/docview/1916381489
https://pubmed.ncbi.nlm.nih.gov/PMC5476686
https://gup.ub.gu.se/publication/255168
https://doaj.org/article/ccc1ea916da54d33a8e5b8fb77dafe21
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgi5-fV0yOCCIJ79jvpg8gprqewKurCvoXJR9fCkp67rbj_vZOkt1JcfPKl0CahTWYmM9Mkvx8hT2rISiULtG-ms0muK442V-gJ3uV5wVRdle7s8OxjeT7PPyyKxZ_j0cMAbvamdo5Par5enf76sX2FBv_SZZzob1ECjZJulxY7RW1N86vkGvol5vgMZkOw7-dllyrFcVir3Ntw5Js8hP--uPPv7ZMjkFHvmKaH5OYQUdKzoAK3yBVjb5PrgWNye4e0AZ-YtjX92tt65VjRKFhNZ-AO_tFPzWpDW0u_9J7ei86aAM3UwXP63tKfTbdu6RTn7-GQkvWNw7oU0Cl03ZaeqUbTz4H9-y6ZT99-e3M-GVgWJqqI427CZCwLhiKrK5NyDYxVICVIAOffE106WiGMGhSTKjHo3LTMGWhMNMAkHGR2jxzY1pojQjOcOLHMmMyY3HCsABh-lUwySFhdlxF5cTm-Qg0Q5I4JYyUwFXESEV4iwklEeIlE5NmuxUWA3_hH3ddOZLt6DjjbP2jXSzHYoVAKOwEYE2socp1lwE0heS0Z01CbNInI40uBCzQ0t3oC1rT9RmBii3MVZo9VRO4HBdi9KuUO967iEWEj1Rh9y7jENt89mHeRs7LkODRPgxKNmiz7C4GPlr3YGJG6NU3-4H_08pjccOPmtryl8UNy0K178wiDq06e-J8SeH23SE68_fwGvxUpdQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Sunflower+and+Marine+Oils+on+Ruminal+Microbiota%2C+In+vitro+Fermentation+and+Digesta+Fatty+Acid+Profile&rft.jtitle=Frontiers+in+microbiology&rft.au=Julio+E.+Vargas&rft.au=Julio+E.+Vargas&rft.au=Sonia+Andr%C3%A9s&rft.au=Timothy+J.+Snelling&rft.date=2017-06-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01124&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ccc1ea916da54d33a8e5b8fb77dafe21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon