Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI
The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin pa...
Saved in:
Published in | Frontiers in neurology Vol. 7; no. 16; p. 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-2295 1664-2295 |
DOI | 10.3389/fneur.2016.00016 |
Cover
Abstract | The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time. |
---|---|
AbstractList | The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R
1
and R
2
relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time. The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time. The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R-1 and R-2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 +/- 1.5% lower for gray matter (GM) structures and 2.8 +/- 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 +/- 10% larger for GM and 5 +/- 2% larger for WM. Manually placed ROls indicated that the results using the template ROls may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time. |
Author | Warntjes, Marcel Tisell, Anders Engström, Maria Lundberg, Peter |
AuthorAffiliation | 2 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden 4 Radiation Physics, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden 3 Radiology, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden 1 Center for Medical Image Science and Visualization (CMIV), Linköping University , Linköping , Sweden |
AuthorAffiliation_xml | – name: 2 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden – name: 1 Center for Medical Image Science and Visualization (CMIV), Linköping University , Linköping , Sweden – name: 4 Radiation Physics, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden – name: 3 Radiology, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden |
Author_xml | – sequence: 1 givenname: Marcel surname: Warntjes fullname: Warntjes, Marcel – sequence: 2 givenname: Maria surname: Engström fullname: Engström, Maria – sequence: 3 givenname: Anders surname: Tisell fullname: Tisell, Anders – sequence: 4 givenname: Peter surname: Lundberg fullname: Lundberg, Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26925030$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126132$$DView record from Swedish Publication Index |
BookMark | eNp1kc9vFCEUx4mpsbX27slw9DIrPwZmuZi0tWqTbqxGvRKWeWwxM9ACU9P_Xma3Nq2JF3gPPt_vI3xfor0QAyD0mpIF50v1zgWY0oIRKheE1PUZOqBStg1jSuw9qvfRUc6_KkK4UlzyF2ifScUE4eQAmVXsYfBhg8sV4MsEGYIFHB1e3c3n2IQen_UwGlybmTlJplYnJkOPY8CraSi-uTTJjFCSt_jrZELxxRR_C3j17fwVeu7MkOHofj9EPz6efT_93Fx8-XR-enzRWEFIaYTjpG-NBGnXVjnZinUrlABQ0rilg55TYJx0DpamY4ZbUAooOOhsLwWT_BA1O9_8G66ntb5OfjTpTkfj9Qf_81jHtNGDnzRlknJW-fc7vsIj9BZCSWZ4Int6E_yV3sRb3XZCUtZVg7f3BineTJCLHn22MAwmQJyypp1Uki0lFxV983jWw5C_OVSA7ACbYs4J3ANCiZ7T1tu09Zy23qZdJfIfid3-epxf64f_C_8AfFKxJw |
CitedBy_id | crossref_primary_10_1007_s00062_023_01374_z crossref_primary_10_1016_j_mri_2019_08_031 crossref_primary_10_1016_j_pediatrneurol_2019_03_001 crossref_primary_10_1038_s41598_018_28852_6 crossref_primary_10_1016_j_neurad_2019_02_005 crossref_primary_10_1007_s00247_022_05389_5 crossref_primary_10_1002_brb3_2449 crossref_primary_10_1016_j_ejrad_2021_109782 crossref_primary_10_1002_mrm_28427 crossref_primary_10_1007_s00234_021_02781_0 crossref_primary_10_1016_j_nicl_2022_103166 crossref_primary_10_13104_imri_2021_25_2_76 crossref_primary_10_1016_j_nicl_2022_103244 crossref_primary_10_1093_brain_awab029 crossref_primary_10_1002_ana_25705 crossref_primary_10_1093_brain_awac436 crossref_primary_10_3389_fneur_2021_679881 crossref_primary_10_1007_s00234_017_1889_9 crossref_primary_10_1002_mrm_28509 crossref_primary_10_1111_jon_12725 crossref_primary_10_2463_mrms_rev_2024_0001 crossref_primary_10_1093_braincomms_fcac172 crossref_primary_10_3389_fphys_2023_1104838 crossref_primary_10_1002_jnr_25035 crossref_primary_10_1016_j_ejrad_2022_110525 crossref_primary_10_1007_s00415_023_11621_5 crossref_primary_10_1016_j_phro_2023_100451 crossref_primary_10_1148_radiol_220941 crossref_primary_10_1177_02841851211044970 crossref_primary_10_1016_j_neuroimage_2025_121103 crossref_primary_10_3390_cells9020393 crossref_primary_10_1002_jmri_27059 crossref_primary_10_1007_s13246_022_01128_0 crossref_primary_10_1016_j_jns_2024_123337 crossref_primary_10_2463_mrms_tn_2022_0161 crossref_primary_10_1007_s00330_018_5836_x crossref_primary_10_1111_jon_13222 crossref_primary_10_3174_ajnr_A4977 crossref_primary_10_1002_mp_15686 crossref_primary_10_1002_nbm_4277 crossref_primary_10_1161_STROKEAHA_124_049851 crossref_primary_10_3174_ajnr_A5398 crossref_primary_10_1097_RMR_0000000000000189 crossref_primary_10_3174_ajnr_A5476 crossref_primary_10_1007_s00234_019_02241_w crossref_primary_10_3174_ajnr_A5312 crossref_primary_10_3174_ajnr_A7214 crossref_primary_10_1016_j_neurobiolaging_2020_08_009 crossref_primary_10_2463_mrms_mp_2019_0075 crossref_primary_10_3345_cep_2023_00514 crossref_primary_10_1007_s00247_017_3913_y crossref_primary_10_3174_ajnr_A6209 crossref_primary_10_1007_s00234_021_02824_6 crossref_primary_10_1016_j_neuroimage_2022_118963 crossref_primary_10_1016_j_nicl_2019_101875 crossref_primary_10_1002_nbm_5114 crossref_primary_10_1016_j_jneumeth_2020_108990 crossref_primary_10_1016_j_nicl_2023_103427 crossref_primary_10_6009_jjrt_2023_2243 crossref_primary_10_1002_brb3_3619 crossref_primary_10_26416_Med_145_1_2022_6215 crossref_primary_10_1038_s41598_019_44615_3 crossref_primary_10_3174_ajnr_A5168 crossref_primary_10_1002_mrm_27108 crossref_primary_10_13104_imri_2019_23_2_148 crossref_primary_10_3174_ajnr_A5566 crossref_primary_10_3389_fnins_2021_711528 crossref_primary_10_1002_nbm_4668 crossref_primary_10_3174_ajnr_A5921 crossref_primary_10_1002_jmri_27440 crossref_primary_10_1002_mrm_27947 crossref_primary_10_1016_j_neurad_2017_10_002 |
Cites_doi | 10.1023/A:1024157522651 10.1002/mrm.20314 10.1002/jmri.20335 10.1002/mrm.1910110308 10.1038/nm.3390 10.1016/j.neuroimage.2012.07.037 10.1016/j.mri.2005.10.016 10.1002/mrm.21635 10.1016/j.neuroimage.2008.03.060 10.1002/mrm.24429 10.1016/j.tins.2008.04.001 10.1002/mrm.20552 10.1002/mrm.21704 10.1148/radiology.211.2.r99ma53489 10.1002/jmri.22831 10.1371/journal.pone.0070864 10.1111/j.1742-4658.2008.06845.x 10.1016/S1474-4422(08)70137-6 10.1111/j.1552-6569.2007.00131.x 10.1002/mrm.22131 10.1002/mrm.25125 10.1002/mrm.1910370107 10.1016/j.neuroimage.2014.11.017 10.1007/s00415-004-0306-6 10.1016/j.mri.2005.12.037 10.1080/00031305.1995.10476112 10.2463/mrms.5.99 10.1002/mrm.20680 10.1006/jmrb.1993.1055 10.1002/jmri.22170 10.1016/j.mri.2015.02.013 10.1161/01.STR.0000254729.27386.05 10.1093/brain/awf177 10.1212/WNL.33.11.1444 10.1177/1352458506070928 10.1002/mrm.10411 10.1371/journal.pone.0111688 10.1007/s11064-007-9341-x |
ContentType | Journal Article |
Copyright | Copyright © 2016 Warntjes, Engström, Tisell and Lundberg. 2016 Warntjes, Engström, Tisell and Lundberg |
Copyright_xml | – notice: Copyright © 2016 Warntjes, Engström, Tisell and Lundberg. 2016 Warntjes, Engström, Tisell and Lundberg |
DBID | AAYXX CITATION NPM 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.3389/fneur.2016.00016 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2295 |
EndPage | 16 |
ExternalDocumentID | oai_DiVA_org_liu_126132 PMC4756127 26925030 10_3389_fneur_2016_00016 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Linköpings Universitet – fundername: Länsstyrelsen Östergötland |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK E3Z EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
ID | FETCH-LOGICAL-c500t-5f30d4a6e6cbc9f645b4595ee96af8fed31e2307fe8a72a3ce99e1efe7cd65263 |
IEDL.DBID | M48 |
ISSN | 1664-2295 |
IngestDate | Thu Aug 21 06:51:49 EDT 2025 Thu Aug 21 18:12:52 EDT 2025 Fri Sep 05 09:14:49 EDT 2025 Thu Apr 03 06:57:42 EDT 2025 Tue Jul 01 03:19:11 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | myelin edema proton density quantitative magnetic resonance imaging brain tissue modeling T2 relaxation T1 relaxation T-2 relaxation T-1 relaxation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-5f30d4a6e6cbc9f645b4595ee96af8fed31e2307fe8a72a3ce99e1efe7cd65263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Nicholas Bock, McMaster University, Canada; Lipeng Ning, Brigham and Women’s Hospital, USA Specialty section: This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neurology Edited by: Yogesh Rathi, Harvard Medical School, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fneur.2016.00016 |
PMID | 26925030 |
PQID | 1769628635 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_126132 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4756127 proquest_miscellaneous_1769628635 pubmed_primary_26925030 crossref_primary_10_3389_fneur_2016_00016 crossref_citationtrail_10_3389_fneur_2016_00016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-17 |
PublicationDateYYYYMMDD | 2016-02-17 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in neurology |
PublicationTitleAlternate | Front Neurol |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bakshi (B4) 2008; 7 Abbas (B34) 2015; 106 Krauss (B28) 2015; 33 Kurtzke (B24) 1983; 33 Deoni (B14) 2012; 63 Hinman (B5) 2007; 32 Laule (B38) 2004; 251 Larsson (B18) 1989; 11 Neeb (B32) 2008; 42 Miller (B3) 2002; 125 Fields (B2) 2008; 31 Meeker (B25) 1995; 49 Peters (B6) 2002; 31 Back (B1) 2007; 38 Whittall (B8) 1997; 37 Mezer (B33) 2013; 19 Deoni (B29) 2005; 53 Warntjes (B20) 2008; 60 Warntjes (B26) 2013; 8 Cedersund (B27) 2009; 276 Deoni (B23) 2013; 70 Bjarnason (B11) 2005; 54 Deoni (B13) 2008; 60 Deichmann (B30) 2005; 54 Ernst (B31) 1993; 102 Levesque (B37) 2010; 32 Matsusue (B7) 2006; 5 Engström (B21) 2014; 9 Webb (B9) 2003; 49 Neema (B16) 2007; 17 Levesque (B22) 2009; 62 Zhang (B35) 2015; 73 MacKay (B10) 2006; 24 Vymazal (B19) 1999; 211 Oh (B17) 2005; 21 Kumar (B15) 2012; 35 Oh (B36) 2006; 24 Laule (B12) 2006; 12 22915316 - Magn Reson Med. 2013 Jul;70(1):147-54 19859946 - Magn Reson Med. 2009 Dec;62(6):1487-96 17008766 - Magn Reson Med Sci. 2006 Jul;5(2):99-104 15906339 - J Magn Reson Imaging. 2005 Jun;21(6):701-8 16410176 - Magn Reson Imaging. 2006 Jan;24(1):33-43 18538868 - Trends Neurosci. 2008 Jul;31(7):361-70 15968665 - Magn Reson Med. 2005 Jul;54(1):20-7 8978630 - Magn Reson Med. 1997 Jan;37(1):34-43 10228533 - Radiology. 1999 May;211(2):489-95 17263002 - Mult Scler. 2006 Dec;12(6):747-53 2779421 - Magn Reson Med. 1989 Sep;11(3):337-48 25393722 - PLoS One. 2014 Nov 13;9(11):e111688 17261726 - Stroke. 2007 Feb;38(2 Suppl):724-30 20578011 - J Magn Reson Imaging. 2010 Jul;32(1):60-8 17425729 - J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S 25708264 - Magn Reson Imaging. 2015 Jun;33(5):584-91 12135961 - Brain. 2002 Aug;125(Pt 8):1676-95 19025904 - Magn Reson Med. 2008 Dec;60(6):1372-87 24185694 - Nat Med. 2013 Dec;19(12 ):1667-72 18666127 - Magn Reson Med. 2008 Aug;60(2):320-9 15015007 - J Neurol. 2004 Mar;251(3):284-93 14501200 - J Neurocytol. 2002 Sep-Nov;31(8-9):581-93 17447140 - Neurochem Res. 2007 Dec;32(12):2023-31 16677958 - Magn Reson Imaging. 2006 May;24(4):515-25 12652534 - Magn Reson Med. 2003 Apr;49(4):638-45 16200557 - Magn Reson Med. 2005 Nov;54(5):1072-81 6685237 - Neurology. 1983 Nov;33(11):1444-52 18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41 24515972 - Magn Reson Med. 2015 Jan;73(1):223-32 19215297 - FEBS J. 2009 Feb;276(4):903-22 18565455 - Lancet Neurol. 2008 Jul;7(7):615-25 22884937 - Neuroimage. 2012 Nov 15;63(3):1038-53 21987489 - J Magn Reson Imaging. 2012 Feb;35(2):300-8 25463455 - Neuroimage. 2015 Feb 1;106:404-13 23940653 - PLoS One. 2013 Aug 05;8(8):e70864 |
References_xml | – volume: 31 start-page: 581 year: 2002 ident: B6 article-title: The effects of normal aging on myelin and nerve fibers: a review publication-title: J Neurocytol doi: 10.1023/A:1024157522651 – volume: 53 start-page: 237 year: 2005 ident: B29 article-title: High resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med doi: 10.1002/mrm.20314 – volume: 21 start-page: 701 year: 2005 ident: B17 article-title: Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20335 – volume: 11 start-page: 337 year: 1989 ident: B18 article-title: Assessment of demyelineation, edema and gliosis by in-vivo determination of T1 and T2 in the brain of patients with acute attack of multiple sclerosis publication-title: Magn Reson Med doi: 10.1002/mrm.1910110308 – volume: 19 start-page: 1667 year: 2013 ident: B33 article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging publication-title: Nat Med doi: 10.1038/nm.3390 – volume: 63 start-page: 1038 year: 2012 ident: B14 article-title: Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.07.037 – volume: 24 start-page: 33 year: 2006 ident: B36 article-title: Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2005.10.016 – volume: 60 start-page: 320 year: 2008 ident: B20 article-title: Rapid magnetic resonance quantification on the brain: optimization for clinical usage publication-title: Magn Reson Med doi: 10.1002/mrm.21635 – volume: 42 start-page: 1094 year: 2008 ident: B32 article-title: Fast quantitative mapping of absolute water content with full brain coverage publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.060 – volume: 70 start-page: 147 year: 2013 ident: B23 article-title: One component? Two components? Three? The effect of including a nonexchanging “free” water component in multi-component driven equilibrium single pulse observation of T1 and T2 publication-title: Magn Reson Med doi: 10.1002/mrm.24429 – volume: 31 start-page: 361 year: 2008 ident: B2 article-title: White matter in learning, cognition and psychiatric disorders publication-title: Trends Neurosci doi: 10.1016/j.tins.2008.04.001 – volume: 54 start-page: 20 year: 2005 ident: B30 article-title: Fast high-resolution T1 mapping of the human brain publication-title: Magn Reson Med doi: 10.1002/mrm.20552 – volume: 60 start-page: 1372 year: 2008 ident: B13 article-title: Gleaning multicomponent T1 and T2 information from steady-state imaging data publication-title: Magn Reson Med doi: 10.1002/mrm.21704 – volume: 211 start-page: 489 year: 1999 ident: B19 article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson’s disease and patients with multiple system athrophy: relation to iron content publication-title: Radiology doi: 10.1148/radiology.211.2.r99ma53489 – volume: 35 start-page: 300 year: 2012 ident: B15 article-title: Age-related regional brain T2-relaxation changes in healthy adults publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22831 – volume: 8 start-page: e70864 year: 2013 ident: B26 article-title: Brain characterization using normalised quantitative magnetic resonance imaging publication-title: PLoS One doi: 10.1371/journal.pone.0070864 – volume: 276 start-page: 903 year: 2009 ident: B27 article-title: Systems biology: model based evaluation and comparison of potential explanations for given biological data publication-title: FEBS J doi: 10.1111/j.1742-4658.2008.06845.x – volume: 7 start-page: 615 year: 2008 ident: B4 article-title: MRI in multiple sclerosis: current status and future prospects publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70137-6 – volume: 17 start-page: 16S year: 2007 ident: B16 article-title: T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis publication-title: J Neuroimaging doi: 10.1111/j.1552-6569.2007.00131.x – volume: 62 start-page: 1487 year: 2009 ident: B22 article-title: Characterizing healthy and diseased white matter using quantitative magnetisation transfer and multicomponent T2 relaxometry: a unified view via a four-pool model publication-title: Magn Reson Med doi: 10.1002/mrm.22131 – volume: 73 start-page: 223 year: 2015 ident: B35 article-title: Comparison of myelin water fraction from multiecho T2 decay curve and steady-state methods publication-title: Magn Reson Med doi: 10.1002/mrm.25125 – volume: 37 start-page: 34 year: 1997 ident: B8 article-title: In vivo measurement of T2 distributions and water contents in normal human brain publication-title: Magn Reson Med doi: 10.1002/mrm.1910370107 – volume: 106 start-page: 404 year: 2015 ident: B34 article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.017 – volume: 251 start-page: 284 year: 2004 ident: B38 article-title: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study publication-title: J Neurol doi: 10.1007/s00415-004-0306-6 – volume: 24 start-page: 515 year: 2006 ident: B10 article-title: Insights into brain microstructure from the T2 distribution publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2005.12.037 – volume: 49 start-page: 48 year: 1995 ident: B25 article-title: Teaching about approximate confidence regions based on maximum likelihood estimation publication-title: Am Stat doi: 10.1080/00031305.1995.10476112 – volume: 5 start-page: 99 year: 2006 ident: B7 article-title: White matter changes in elderly people: MR-pathologic correlations publication-title: Magn Reson Med Sci doi: 10.2463/mrms.5.99 – volume: 54 start-page: 1072 year: 2005 ident: B11 article-title: Characterization of the NMR behaviour of white matter in bovine brain publication-title: Magn Reson Med doi: 10.1002/mrm.20680 – volume: 102 start-page: 1 year: 1993 ident: B31 article-title: Absolute quantitation of water and metabolites in the human brain. 1: compartments and water publication-title: J Magn Reson B doi: 10.1006/jmrb.1993.1055 – volume: 32 start-page: 60 year: 2010 ident: B37 article-title: Reproducibility of in vivo magnetic resonance imaging-based measurement of myelin water publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22170 – volume: 33 start-page: 584 year: 2015 ident: B28 article-title: Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2015.02.013 – volume: 38 start-page: 724 year: 2007 ident: B1 article-title: Maturation-dependent vulnerability of perinatal white matter in premature birth publication-title: Stroke doi: 10.1161/01.STR.0000254729.27386.05 – volume: 125 start-page: 1676 year: 2002 ident: B3 article-title: Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance publication-title: Brain doi: 10.1093/brain/awf177 – volume: 33 start-page: 1444 year: 1983 ident: B24 article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) publication-title: Neurology doi: 10.1212/WNL.33.11.1444 – volume: 12 start-page: 747 year: 2006 ident: B12 article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology publication-title: Mult Scler doi: 10.1177/1352458506070928 – volume: 49 start-page: 638 year: 2003 ident: B9 article-title: Is multicomponent T2 a good measure of myelin content in peripheral nerve? publication-title: Magn Reson Med doi: 10.1002/mrm.10411 – volume: 9 start-page: e111688 year: 2014 ident: B21 article-title: Multi-parametric representation of voxel-based quantitative magnetic resonance imaging publication-title: PLoS One doi: 10.1371/journal.pone.0111688 – volume: 32 start-page: 2023 year: 2007 ident: B5 article-title: What’s behind the decline? The role of white matter in brain aging publication-title: Neurochem Res doi: 10.1007/s11064-007-9341-x – reference: 15015007 - J Neurol. 2004 Mar;251(3):284-93 – reference: 25463455 - Neuroimage. 2015 Feb 1;106:404-13 – reference: 19215297 - FEBS J. 2009 Feb;276(4):903-22 – reference: 18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109 – reference: 19025904 - Magn Reson Med. 2008 Dec;60(6):1372-87 – reference: 18565455 - Lancet Neurol. 2008 Jul;7(7):615-25 – reference: 18538868 - Trends Neurosci. 2008 Jul;31(7):361-70 – reference: 15968665 - Magn Reson Med. 2005 Jul;54(1):20-7 – reference: 12135961 - Brain. 2002 Aug;125(Pt 8):1676-95 – reference: 20578011 - J Magn Reson Imaging. 2010 Jul;32(1):60-8 – reference: 8978630 - Magn Reson Med. 1997 Jan;37(1):34-43 – reference: 24185694 - Nat Med. 2013 Dec;19(12 ):1667-72 – reference: 22884937 - Neuroimage. 2012 Nov 15;63(3):1038-53 – reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52 – reference: 23940653 - PLoS One. 2013 Aug 05;8(8):e70864 – reference: 24515972 - Magn Reson Med. 2015 Jan;73(1):223-32 – reference: 2779421 - Magn Reson Med. 1989 Sep;11(3):337-48 – reference: 19859946 - Magn Reson Med. 2009 Dec;62(6):1487-96 – reference: 16410176 - Magn Reson Imaging. 2006 Jan;24(1):33-43 – reference: 21987489 - J Magn Reson Imaging. 2012 Feb;35(2):300-8 – reference: 15906339 - J Magn Reson Imaging. 2005 Jun;21(6):701-8 – reference: 16200557 - Magn Reson Med. 2005 Nov;54(5):1072-81 – reference: 10228533 - Radiology. 1999 May;211(2):489-95 – reference: 14501200 - J Neurocytol. 2002 Sep-Nov;31(8-9):581-93 – reference: 17447140 - Neurochem Res. 2007 Dec;32(12):2023-31 – reference: 25393722 - PLoS One. 2014 Nov 13;9(11):e111688 – reference: 22915316 - Magn Reson Med. 2013 Jul;70(1):147-54 – reference: 17263002 - Mult Scler. 2006 Dec;12(6):747-53 – reference: 17261726 - Stroke. 2007 Feb;38(2 Suppl):724-30 – reference: 17008766 - Magn Reson Med Sci. 2006 Jul;5(2):99-104 – reference: 16677958 - Magn Reson Imaging. 2006 May;24(4):515-25 – reference: 17425729 - J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S – reference: 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41 – reference: 18666127 - Magn Reson Med. 2008 Aug;60(2):320-9 – reference: 12652534 - Magn Reson Med. 2003 Apr;49(4):638-45 – reference: 25708264 - Magn Reson Imaging. 2015 Jun;33(5):584-91 |
SSID | ssj0000399363 |
Score | 2.36569 |
Snippet | The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model... |
SourceID | swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16 |
SubjectTerms | Neuroscience |
Title | Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26925030 https://www.proquest.com/docview/1769628635 https://pubmed.ncbi.nlm.nih.gov/PMC4756127 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126132 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB60gvgi_m5aLSuI4EPs5Ta7e_tQpNWWKkSqeNK3sMnO6sGZtNc7sP99Zza506PFB18CSXYTsrO7801m5huAVzbkduArn-Y8gwkR-5T1TupxpCtUXo4MJzgXn_XxOP90qk7_pEf3A3hxo2nH9aTGs-nb3-eX72jB77HFSfp2NzD1I0dpsV-BjrfhDuklzaZY0YP9uC-zLtay81Xe2JGZgbUlUMAx0X-rqWvY83oI5RrRaFRORw_gfo8qxX43DR7CLWwewd2i95s_BsclzzjxXBDeEycx5ahG0QZRXPJ14RovDj3-coJOuM0Bl44QB6TjvGgbEfN00xPHoVzM6S--LFwT89NotxTF149PYHx0-O39cdoXV0hrNRjMUxXkwOdOo66r2gadqypXViFa7cIooJcZcpB4wJEzQydrtBYzDGhqr9VQy6ew0bQNboKgdioQ7tKZYz-uqRCVxMqQrVYPM-kS2F2OZVn3zONcAGNakgXCgiijIEoWRHSG6wTerHqcdawb_2j7cimekpYG-ztcg-3iosyMtpx5K1UCzzpxrZ62lHMCZk2QqwZMu71-p5n8jPTbueGKoiaB153I17p8mHzfL9vZj3I6YZZuAkvDrf9-xTbc4-_kIPHMPIeN-WyBLwgDzaud-O9gJ07wKxgFCSU |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Presence+of+Myelin+and+Edema+in+the+Brain+Based+on+Multi-Parametric+Quantitative+MRI&rft.jtitle=Frontiers+in+neurology&rft.au=Warntjes%2C+Marcel&rft.au=Engstr%C3%B6m%2C+Maria&rft.au=Tisell%2C+Anders&rft.au=Lundberg%2C+Peter&rft.date=2016-02-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-2295&rft.volume=7&rft_id=info:doi/10.3389%2Ffneur.2016.00016&rft_id=info%3Apmid%2F26925030&rft.externalDocID=PMC4756127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon |