Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI

The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin pa...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurology Vol. 7; no. 16; p. 16
Main Authors Warntjes, Marcel, Engström, Maria, Tisell, Anders, Lundberg, Peter
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.02.2016
Subjects
Online AccessGet full text
ISSN1664-2295
1664-2295
DOI10.3389/fneur.2016.00016

Cover

Abstract The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time.
AbstractList The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R 1 and R 2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time.
The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 ± 1.5% lower for gray matter (GM) structures and 2.8 ± 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 ± 10% larger for GM and 5 ± 2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time.
The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R-1 and R-2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 +/- 1.5% lower for gray matter (GM) structures and 2.8 +/- 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 +/- 10% larger for GM and 5 +/- 2% larger for WM. Manually placed ROls indicated that the results using the template ROls may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time.
Author Warntjes, Marcel
Tisell, Anders
Engström, Maria
Lundberg, Peter
AuthorAffiliation 2 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
4 Radiation Physics, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
3 Radiology, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
1 Center for Medical Image Science and Visualization (CMIV), Linköping University , Linköping , Sweden
AuthorAffiliation_xml – name: 2 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
– name: 1 Center for Medical Image Science and Visualization (CMIV), Linköping University , Linköping , Sweden
– name: 4 Radiation Physics, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
– name: 3 Radiology, Department of Medical and Health Sciences, Linköping University , Linköping , Sweden
Author_xml – sequence: 1
  givenname: Marcel
  surname: Warntjes
  fullname: Warntjes, Marcel
– sequence: 2
  givenname: Maria
  surname: Engström
  fullname: Engström, Maria
– sequence: 3
  givenname: Anders
  surname: Tisell
  fullname: Tisell, Anders
– sequence: 4
  givenname: Peter
  surname: Lundberg
  fullname: Lundberg, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26925030$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126132$$DView record from Swedish Publication Index
BookMark eNp1kc9vFCEUx4mpsbX27slw9DIrPwZmuZi0tWqTbqxGvRKWeWwxM9ACU9P_Xma3Nq2JF3gPPt_vI3xfor0QAyD0mpIF50v1zgWY0oIRKheE1PUZOqBStg1jSuw9qvfRUc6_KkK4UlzyF2ifScUE4eQAmVXsYfBhg8sV4MsEGYIFHB1e3c3n2IQen_UwGlybmTlJplYnJkOPY8CraSi-uTTJjFCSt_jrZELxxRR_C3j17fwVeu7MkOHofj9EPz6efT_93Fx8-XR-enzRWEFIaYTjpG-NBGnXVjnZinUrlABQ0rilg55TYJx0DpamY4ZbUAooOOhsLwWT_BA1O9_8G66ntb5OfjTpTkfj9Qf_81jHtNGDnzRlknJW-fc7vsIj9BZCSWZ4Int6E_yV3sRb3XZCUtZVg7f3BineTJCLHn22MAwmQJyypp1Uki0lFxV983jWw5C_OVSA7ACbYs4J3ANCiZ7T1tu09Zy23qZdJfIfid3-epxf64f_C_8AfFKxJw
CitedBy_id crossref_primary_10_1007_s00062_023_01374_z
crossref_primary_10_1016_j_mri_2019_08_031
crossref_primary_10_1016_j_pediatrneurol_2019_03_001
crossref_primary_10_1038_s41598_018_28852_6
crossref_primary_10_1016_j_neurad_2019_02_005
crossref_primary_10_1007_s00247_022_05389_5
crossref_primary_10_1002_brb3_2449
crossref_primary_10_1016_j_ejrad_2021_109782
crossref_primary_10_1002_mrm_28427
crossref_primary_10_1007_s00234_021_02781_0
crossref_primary_10_1016_j_nicl_2022_103166
crossref_primary_10_13104_imri_2021_25_2_76
crossref_primary_10_1016_j_nicl_2022_103244
crossref_primary_10_1093_brain_awab029
crossref_primary_10_1002_ana_25705
crossref_primary_10_1093_brain_awac436
crossref_primary_10_3389_fneur_2021_679881
crossref_primary_10_1007_s00234_017_1889_9
crossref_primary_10_1002_mrm_28509
crossref_primary_10_1111_jon_12725
crossref_primary_10_2463_mrms_rev_2024_0001
crossref_primary_10_1093_braincomms_fcac172
crossref_primary_10_3389_fphys_2023_1104838
crossref_primary_10_1002_jnr_25035
crossref_primary_10_1016_j_ejrad_2022_110525
crossref_primary_10_1007_s00415_023_11621_5
crossref_primary_10_1016_j_phro_2023_100451
crossref_primary_10_1148_radiol_220941
crossref_primary_10_1177_02841851211044970
crossref_primary_10_1016_j_neuroimage_2025_121103
crossref_primary_10_3390_cells9020393
crossref_primary_10_1002_jmri_27059
crossref_primary_10_1007_s13246_022_01128_0
crossref_primary_10_1016_j_jns_2024_123337
crossref_primary_10_2463_mrms_tn_2022_0161
crossref_primary_10_1007_s00330_018_5836_x
crossref_primary_10_1111_jon_13222
crossref_primary_10_3174_ajnr_A4977
crossref_primary_10_1002_mp_15686
crossref_primary_10_1002_nbm_4277
crossref_primary_10_1161_STROKEAHA_124_049851
crossref_primary_10_3174_ajnr_A5398
crossref_primary_10_1097_RMR_0000000000000189
crossref_primary_10_3174_ajnr_A5476
crossref_primary_10_1007_s00234_019_02241_w
crossref_primary_10_3174_ajnr_A5312
crossref_primary_10_3174_ajnr_A7214
crossref_primary_10_1016_j_neurobiolaging_2020_08_009
crossref_primary_10_2463_mrms_mp_2019_0075
crossref_primary_10_3345_cep_2023_00514
crossref_primary_10_1007_s00247_017_3913_y
crossref_primary_10_3174_ajnr_A6209
crossref_primary_10_1007_s00234_021_02824_6
crossref_primary_10_1016_j_neuroimage_2022_118963
crossref_primary_10_1016_j_nicl_2019_101875
crossref_primary_10_1002_nbm_5114
crossref_primary_10_1016_j_jneumeth_2020_108990
crossref_primary_10_1016_j_nicl_2023_103427
crossref_primary_10_6009_jjrt_2023_2243
crossref_primary_10_1002_brb3_3619
crossref_primary_10_26416_Med_145_1_2022_6215
crossref_primary_10_1038_s41598_019_44615_3
crossref_primary_10_3174_ajnr_A5168
crossref_primary_10_1002_mrm_27108
crossref_primary_10_13104_imri_2019_23_2_148
crossref_primary_10_3174_ajnr_A5566
crossref_primary_10_3389_fnins_2021_711528
crossref_primary_10_1002_nbm_4668
crossref_primary_10_3174_ajnr_A5921
crossref_primary_10_1002_jmri_27440
crossref_primary_10_1002_mrm_27947
crossref_primary_10_1016_j_neurad_2017_10_002
Cites_doi 10.1023/A:1024157522651
10.1002/mrm.20314
10.1002/jmri.20335
10.1002/mrm.1910110308
10.1038/nm.3390
10.1016/j.neuroimage.2012.07.037
10.1016/j.mri.2005.10.016
10.1002/mrm.21635
10.1016/j.neuroimage.2008.03.060
10.1002/mrm.24429
10.1016/j.tins.2008.04.001
10.1002/mrm.20552
10.1002/mrm.21704
10.1148/radiology.211.2.r99ma53489
10.1002/jmri.22831
10.1371/journal.pone.0070864
10.1111/j.1742-4658.2008.06845.x
10.1016/S1474-4422(08)70137-6
10.1111/j.1552-6569.2007.00131.x
10.1002/mrm.22131
10.1002/mrm.25125
10.1002/mrm.1910370107
10.1016/j.neuroimage.2014.11.017
10.1007/s00415-004-0306-6
10.1016/j.mri.2005.12.037
10.1080/00031305.1995.10476112
10.2463/mrms.5.99
10.1002/mrm.20680
10.1006/jmrb.1993.1055
10.1002/jmri.22170
10.1016/j.mri.2015.02.013
10.1161/01.STR.0000254729.27386.05
10.1093/brain/awf177
10.1212/WNL.33.11.1444
10.1177/1352458506070928
10.1002/mrm.10411
10.1371/journal.pone.0111688
10.1007/s11064-007-9341-x
ContentType Journal Article
Copyright Copyright © 2016 Warntjes, Engström, Tisell and Lundberg. 2016 Warntjes, Engström, Tisell and Lundberg
Copyright_xml – notice: Copyright © 2016 Warntjes, Engström, Tisell and Lundberg. 2016 Warntjes, Engström, Tisell and Lundberg
DBID AAYXX
CITATION
NPM
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.3389/fneur.2016.00016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
EndPage 16
ExternalDocumentID oai_DiVA_org_liu_126132
PMC4756127
26925030
10_3389_fneur_2016_00016
Genre Journal Article
GrantInformation_xml – fundername: Linköpings Universitet
– fundername: Länsstyrelsen Östergötland
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c500t-5f30d4a6e6cbc9f645b4595ee96af8fed31e2307fe8a72a3ce99e1efe7cd65263
IEDL.DBID M48
ISSN 1664-2295
IngestDate Thu Aug 21 06:51:49 EDT 2025
Thu Aug 21 18:12:52 EDT 2025
Fri Sep 05 09:14:49 EDT 2025
Thu Apr 03 06:57:42 EDT 2025
Tue Jul 01 03:19:11 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords myelin
edema
proton density
quantitative magnetic resonance imaging
brain tissue modeling
T2 relaxation
T1 relaxation
T-2 relaxation
T-1 relaxation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-5f30d4a6e6cbc9f645b4595ee96af8fed31e2307fe8a72a3ce99e1efe7cd65263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Nicholas Bock, McMaster University, Canada; Lipeng Ning, Brigham and Women’s Hospital, USA
Specialty section: This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neurology
Edited by: Yogesh Rathi, Harvard Medical School, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fneur.2016.00016
PMID 26925030
PQID 1769628635
PQPubID 23479
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_liu_126132
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4756127
proquest_miscellaneous_1769628635
pubmed_primary_26925030
crossref_primary_10_3389_fneur_2016_00016
crossref_citationtrail_10_3389_fneur_2016_00016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-17
PublicationDateYYYYMMDD 2016-02-17
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neurology
PublicationTitleAlternate Front Neurol
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Bakshi (B4) 2008; 7
Abbas (B34) 2015; 106
Krauss (B28) 2015; 33
Kurtzke (B24) 1983; 33
Deoni (B14) 2012; 63
Hinman (B5) 2007; 32
Laule (B38) 2004; 251
Larsson (B18) 1989; 11
Neeb (B32) 2008; 42
Miller (B3) 2002; 125
Fields (B2) 2008; 31
Meeker (B25) 1995; 49
Peters (B6) 2002; 31
Back (B1) 2007; 38
Whittall (B8) 1997; 37
Mezer (B33) 2013; 19
Deoni (B29) 2005; 53
Warntjes (B20) 2008; 60
Warntjes (B26) 2013; 8
Cedersund (B27) 2009; 276
Deoni (B23) 2013; 70
Bjarnason (B11) 2005; 54
Deoni (B13) 2008; 60
Deichmann (B30) 2005; 54
Ernst (B31) 1993; 102
Levesque (B37) 2010; 32
Matsusue (B7) 2006; 5
Engström (B21) 2014; 9
Webb (B9) 2003; 49
Neema (B16) 2007; 17
Levesque (B22) 2009; 62
Zhang (B35) 2015; 73
MacKay (B10) 2006; 24
Vymazal (B19) 1999; 211
Oh (B17) 2005; 21
Kumar (B15) 2012; 35
Oh (B36) 2006; 24
Laule (B12) 2006; 12
22915316 - Magn Reson Med. 2013 Jul;70(1):147-54
19859946 - Magn Reson Med. 2009 Dec;62(6):1487-96
17008766 - Magn Reson Med Sci. 2006 Jul;5(2):99-104
15906339 - J Magn Reson Imaging. 2005 Jun;21(6):701-8
16410176 - Magn Reson Imaging. 2006 Jan;24(1):33-43
18538868 - Trends Neurosci. 2008 Jul;31(7):361-70
15968665 - Magn Reson Med. 2005 Jul;54(1):20-7
8978630 - Magn Reson Med. 1997 Jan;37(1):34-43
10228533 - Radiology. 1999 May;211(2):489-95
17263002 - Mult Scler. 2006 Dec;12(6):747-53
2779421 - Magn Reson Med. 1989 Sep;11(3):337-48
25393722 - PLoS One. 2014 Nov 13;9(11):e111688
17261726 - Stroke. 2007 Feb;38(2 Suppl):724-30
20578011 - J Magn Reson Imaging. 2010 Jul;32(1):60-8
17425729 - J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S
25708264 - Magn Reson Imaging. 2015 Jun;33(5):584-91
12135961 - Brain. 2002 Aug;125(Pt 8):1676-95
19025904 - Magn Reson Med. 2008 Dec;60(6):1372-87
24185694 - Nat Med. 2013 Dec;19(12 ):1667-72
18666127 - Magn Reson Med. 2008 Aug;60(2):320-9
15015007 - J Neurol. 2004 Mar;251(3):284-93
14501200 - J Neurocytol. 2002 Sep-Nov;31(8-9):581-93
17447140 - Neurochem Res. 2007 Dec;32(12):2023-31
16677958 - Magn Reson Imaging. 2006 May;24(4):515-25
12652534 - Magn Reson Med. 2003 Apr;49(4):638-45
16200557 - Magn Reson Med. 2005 Nov;54(5):1072-81
6685237 - Neurology. 1983 Nov;33(11):1444-52
18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109
15690526 - Magn Reson Med. 2005 Jan;53(1):237-41
24515972 - Magn Reson Med. 2015 Jan;73(1):223-32
19215297 - FEBS J. 2009 Feb;276(4):903-22
18565455 - Lancet Neurol. 2008 Jul;7(7):615-25
22884937 - Neuroimage. 2012 Nov 15;63(3):1038-53
21987489 - J Magn Reson Imaging. 2012 Feb;35(2):300-8
25463455 - Neuroimage. 2015 Feb 1;106:404-13
23940653 - PLoS One. 2013 Aug 05;8(8):e70864
References_xml – volume: 31
  start-page: 581
  year: 2002
  ident: B6
  article-title: The effects of normal aging on myelin and nerve fibers: a review
  publication-title: J Neurocytol
  doi: 10.1023/A:1024157522651
– volume: 53
  start-page: 237
  year: 2005
  ident: B29
  article-title: High resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20314
– volume: 21
  start-page: 701
  year: 2005
  ident: B17
  article-title: Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20335
– volume: 11
  start-page: 337
  year: 1989
  ident: B18
  article-title: Assessment of demyelineation, edema and gliosis by in-vivo determination of T1 and T2 in the brain of patients with acute attack of multiple sclerosis
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910110308
– volume: 19
  start-page: 1667
  year: 2013
  ident: B33
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat Med
  doi: 10.1038/nm.3390
– volume: 63
  start-page: 1038
  year: 2012
  ident: B14
  article-title: Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.037
– volume: 24
  start-page: 33
  year: 2006
  ident: B36
  article-title: Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2005.10.016
– volume: 60
  start-page: 320
  year: 2008
  ident: B20
  article-title: Rapid magnetic resonance quantification on the brain: optimization for clinical usage
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21635
– volume: 42
  start-page: 1094
  year: 2008
  ident: B32
  article-title: Fast quantitative mapping of absolute water content with full brain coverage
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.060
– volume: 70
  start-page: 147
  year: 2013
  ident: B23
  article-title: One component? Two components? Three? The effect of including a nonexchanging “free” water component in multi-component driven equilibrium single pulse observation of T1 and T2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24429
– volume: 31
  start-page: 361
  year: 2008
  ident: B2
  article-title: White matter in learning, cognition and psychiatric disorders
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2008.04.001
– volume: 54
  start-page: 20
  year: 2005
  ident: B30
  article-title: Fast high-resolution T1 mapping of the human brain
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20552
– volume: 60
  start-page: 1372
  year: 2008
  ident: B13
  article-title: Gleaning multicomponent T1 and T2 information from steady-state imaging data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21704
– volume: 211
  start-page: 489
  year: 1999
  ident: B19
  article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson’s disease and patients with multiple system athrophy: relation to iron content
  publication-title: Radiology
  doi: 10.1148/radiology.211.2.r99ma53489
– volume: 35
  start-page: 300
  year: 2012
  ident: B15
  article-title: Age-related regional brain T2-relaxation changes in healthy adults
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22831
– volume: 8
  start-page: e70864
  year: 2013
  ident: B26
  article-title: Brain characterization using normalised quantitative magnetic resonance imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070864
– volume: 276
  start-page: 903
  year: 2009
  ident: B27
  article-title: Systems biology: model based evaluation and comparison of potential explanations for given biological data
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2008.06845.x
– volume: 7
  start-page: 615
  year: 2008
  ident: B4
  article-title: MRI in multiple sclerosis: current status and future prospects
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70137-6
– volume: 17
  start-page: 16S
  year: 2007
  ident: B16
  article-title: T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis
  publication-title: J Neuroimaging
  doi: 10.1111/j.1552-6569.2007.00131.x
– volume: 62
  start-page: 1487
  year: 2009
  ident: B22
  article-title: Characterizing healthy and diseased white matter using quantitative magnetisation transfer and multicomponent T2 relaxometry: a unified view via a four-pool model
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22131
– volume: 73
  start-page: 223
  year: 2015
  ident: B35
  article-title: Comparison of myelin water fraction from multiecho T2 decay curve and steady-state methods
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25125
– volume: 37
  start-page: 34
  year: 1997
  ident: B8
  article-title: In vivo measurement of T2 distributions and water contents in normal human brain
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370107
– volume: 106
  start-page: 404
  year: 2015
  ident: B34
  article-title: Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.017
– volume: 251
  start-page: 284
  year: 2004
  ident: B38
  article-title: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study
  publication-title: J Neurol
  doi: 10.1007/s00415-004-0306-6
– volume: 24
  start-page: 515
  year: 2006
  ident: B10
  article-title: Insights into brain microstructure from the T2 distribution
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2005.12.037
– volume: 49
  start-page: 48
  year: 1995
  ident: B25
  article-title: Teaching about approximate confidence regions based on maximum likelihood estimation
  publication-title: Am Stat
  doi: 10.1080/00031305.1995.10476112
– volume: 5
  start-page: 99
  year: 2006
  ident: B7
  article-title: White matter changes in elderly people: MR-pathologic correlations
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.5.99
– volume: 54
  start-page: 1072
  year: 2005
  ident: B11
  article-title: Characterization of the NMR behaviour of white matter in bovine brain
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20680
– volume: 102
  start-page: 1
  year: 1993
  ident: B31
  article-title: Absolute quantitation of water and metabolites in the human brain. 1: compartments and water
  publication-title: J Magn Reson B
  doi: 10.1006/jmrb.1993.1055
– volume: 32
  start-page: 60
  year: 2010
  ident: B37
  article-title: Reproducibility of in vivo magnetic resonance imaging-based measurement of myelin water
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22170
– volume: 33
  start-page: 584
  year: 2015
  ident: B28
  article-title: Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2015.02.013
– volume: 38
  start-page: 724
  year: 2007
  ident: B1
  article-title: Maturation-dependent vulnerability of perinatal white matter in premature birth
  publication-title: Stroke
  doi: 10.1161/01.STR.0000254729.27386.05
– volume: 125
  start-page: 1676
  year: 2002
  ident: B3
  article-title: Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance
  publication-title: Brain
  doi: 10.1093/brain/awf177
– volume: 33
  start-page: 1444
  year: 1983
  ident: B24
  article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)
  publication-title: Neurology
  doi: 10.1212/WNL.33.11.1444
– volume: 12
  start-page: 747
  year: 2006
  ident: B12
  article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology
  publication-title: Mult Scler
  doi: 10.1177/1352458506070928
– volume: 49
  start-page: 638
  year: 2003
  ident: B9
  article-title: Is multicomponent T2 a good measure of myelin content in peripheral nerve?
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10411
– volume: 9
  start-page: e111688
  year: 2014
  ident: B21
  article-title: Multi-parametric representation of voxel-based quantitative magnetic resonance imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111688
– volume: 32
  start-page: 2023
  year: 2007
  ident: B5
  article-title: What’s behind the decline? The role of white matter in brain aging
  publication-title: Neurochem Res
  doi: 10.1007/s11064-007-9341-x
– reference: 15015007 - J Neurol. 2004 Mar;251(3):284-93
– reference: 25463455 - Neuroimage. 2015 Feb 1;106:404-13
– reference: 19215297 - FEBS J. 2009 Feb;276(4):903-22
– reference: 18632287 - Neuroimage. 2008 Sep 1;42(3):1094-109
– reference: 19025904 - Magn Reson Med. 2008 Dec;60(6):1372-87
– reference: 18565455 - Lancet Neurol. 2008 Jul;7(7):615-25
– reference: 18538868 - Trends Neurosci. 2008 Jul;31(7):361-70
– reference: 15968665 - Magn Reson Med. 2005 Jul;54(1):20-7
– reference: 12135961 - Brain. 2002 Aug;125(Pt 8):1676-95
– reference: 20578011 - J Magn Reson Imaging. 2010 Jul;32(1):60-8
– reference: 8978630 - Magn Reson Med. 1997 Jan;37(1):34-43
– reference: 24185694 - Nat Med. 2013 Dec;19(12 ):1667-72
– reference: 22884937 - Neuroimage. 2012 Nov 15;63(3):1038-53
– reference: 6685237 - Neurology. 1983 Nov;33(11):1444-52
– reference: 23940653 - PLoS One. 2013 Aug 05;8(8):e70864
– reference: 24515972 - Magn Reson Med. 2015 Jan;73(1):223-32
– reference: 2779421 - Magn Reson Med. 1989 Sep;11(3):337-48
– reference: 19859946 - Magn Reson Med. 2009 Dec;62(6):1487-96
– reference: 16410176 - Magn Reson Imaging. 2006 Jan;24(1):33-43
– reference: 21987489 - J Magn Reson Imaging. 2012 Feb;35(2):300-8
– reference: 15906339 - J Magn Reson Imaging. 2005 Jun;21(6):701-8
– reference: 16200557 - Magn Reson Med. 2005 Nov;54(5):1072-81
– reference: 10228533 - Radiology. 1999 May;211(2):489-95
– reference: 14501200 - J Neurocytol. 2002 Sep-Nov;31(8-9):581-93
– reference: 17447140 - Neurochem Res. 2007 Dec;32(12):2023-31
– reference: 25393722 - PLoS One. 2014 Nov 13;9(11):e111688
– reference: 22915316 - Magn Reson Med. 2013 Jul;70(1):147-54
– reference: 17263002 - Mult Scler. 2006 Dec;12(6):747-53
– reference: 17261726 - Stroke. 2007 Feb;38(2 Suppl):724-30
– reference: 17008766 - Magn Reson Med Sci. 2006 Jul;5(2):99-104
– reference: 16677958 - Magn Reson Imaging. 2006 May;24(4):515-25
– reference: 17425729 - J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S
– reference: 15690526 - Magn Reson Med. 2005 Jan;53(1):237-41
– reference: 18666127 - Magn Reson Med. 2008 Aug;60(2):320-9
– reference: 12652534 - Magn Reson Med. 2003 Apr;49(4):638-45
– reference: 25708264 - Magn Reson Imaging. 2015 Jun;33(5):584-91
SSID ssj0000399363
Score 2.36569
Snippet The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16
SubjectTerms Neuroscience
Title Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/26925030
https://www.proquest.com/docview/1769628635
https://pubmed.ncbi.nlm.nih.gov/PMC4756127
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126132
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB60gvgi_m5aLSuI4EPs5Ta7e_tQpNWWKkSqeNK3sMnO6sGZtNc7sP99Zza506PFB18CSXYTsrO7801m5huAVzbkduArn-Y8gwkR-5T1TupxpCtUXo4MJzgXn_XxOP90qk7_pEf3A3hxo2nH9aTGs-nb3-eX72jB77HFSfp2NzD1I0dpsV-BjrfhDuklzaZY0YP9uC-zLtay81Xe2JGZgbUlUMAx0X-rqWvY83oI5RrRaFRORw_gfo8qxX43DR7CLWwewd2i95s_BsclzzjxXBDeEycx5ahG0QZRXPJ14RovDj3-coJOuM0Bl44QB6TjvGgbEfN00xPHoVzM6S--LFwT89NotxTF149PYHx0-O39cdoXV0hrNRjMUxXkwOdOo66r2gadqypXViFa7cIooJcZcpB4wJEzQydrtBYzDGhqr9VQy6ew0bQNboKgdioQ7tKZYz-uqRCVxMqQrVYPM-kS2F2OZVn3zONcAGNakgXCgiijIEoWRHSG6wTerHqcdawb_2j7cimekpYG-ztcg-3iosyMtpx5K1UCzzpxrZ62lHMCZk2QqwZMu71-p5n8jPTbueGKoiaB153I17p8mHzfL9vZj3I6YZZuAkvDrf9-xTbc4-_kIPHMPIeN-WyBLwgDzaud-O9gJ07wKxgFCSU
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Presence+of+Myelin+and+Edema+in+the+Brain+Based+on+Multi-Parametric+Quantitative+MRI&rft.jtitle=Frontiers+in+neurology&rft.au=Warntjes%2C+Marcel&rft.au=Engstr%C3%B6m%2C+Maria&rft.au=Tisell%2C+Anders&rft.au=Lundberg%2C+Peter&rft.date=2016-02-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-2295&rft.volume=7&rft_id=info:doi/10.3389%2Ffneur.2016.00016&rft_id=info%3Apmid%2F26925030&rft.externalDocID=PMC4756127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon