Analysis of the running-in phase of a Passively Safe Thorium Breeder Pebble Bed Reactor

•This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is pa...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 81; pp. 227 - 239
Main Authors Wols, F.J., Kloosterman, J.L., Lathouwers, D., van der Hagen, T.H.J.J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is passively safe during the running-in phase. The present work investigates the running-in phase of a 100MWth Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated. For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme. Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation. The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400°C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600°C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600°C.
AbstractList The present work investigates the running-in phase of a 100MW th Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated. For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme. Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation. The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400 degree C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600 degree C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600 degree C.
•This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is passively safe during the running-in phase. The present work investigates the running-in phase of a 100MWth Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated. For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme. Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation. The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400°C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600°C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600°C.
Author Wols, F.J.
Lathouwers, D.
van der Hagen, T.H.J.J.
Kloosterman, J.L.
Author_xml – sequence: 1
  givenname: F.J.
  surname: Wols
  fullname: Wols, F.J.
  email: f.j.wols@tudelft.nl
– sequence: 2
  givenname: J.L.
  surname: Kloosterman
  fullname: Kloosterman, J.L.
– sequence: 3
  givenname: D.
  surname: Lathouwers
  fullname: Lathouwers, D.
– sequence: 4
  givenname: T.H.J.J.
  surname: van der Hagen
  fullname: van der Hagen, T.H.J.J.
BookMark eNqFkE1LxDAYhIMouKv-BCFHL61vmjZtTqKLXyAofuAxvG3eulm66Zq0wv57u6x3TwPDzMA8c3boe0-MnQtIBQh1uUrRjw15SjMQRQpZCrk8YDNRlTLJBMAhm4EEleRFro_ZPMYVgMiqPJ-xz2uP3Ta6yPuWD0viYfTe-a_Eeb5ZYqSdj_wFY3Q_1G35G7bE35d9cOOa3wQiS4G_UF13xG_I8lfCZujDKTtqsYt09qcn7OPu9n3xkDw93z8urp-SpgAYkrwEXaha6apACblShS4zjcpmiKBqrKVCK6kmqZVudVGrzOY1tLZtLUiU8oRd7Hc3of8eKQ5m7WJDXYee-jEaUZYgKxCVmKLFPtqEPsZArdkEt8awNQLMDqRZmT-QZgfSQGYmkFPvat-j6cePo2Bi48g3ZF2gZjC2d_8s_AKLWX_P
CitedBy_id crossref_primary_10_1088_1742_6596_1493_1_012004
crossref_primary_10_3139_124_110636
crossref_primary_10_1016_j_pnucene_2018_05_013
Cites_doi 10.1016/S1007-0214(06)70257-7
10.1016/0022-3115(90)90342-K
10.1115/HTR2008-58299
10.1016/S0029-5493(99)00222-8
10.13182/NT13-A15786
10.1016/j.anucene.2009.02.007
10.1016/j.anucene.2014.09.012
10.13182/NT13-14
10.1299/jsmeicone.2011.19._ICONE1943_341
10.1016/j.nucengdes.2014.09.015
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1016/j.anucene.2015.02.043
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
EndPage 239
ExternalDocumentID 10_1016_j_anucene_2015_02_043
S0306454915001206
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JM
9JN
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
UHS
WUQ
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c500t-470956b6985a3046659729a6d2aa06bab36ad3ebe3969f95b62d4b0fdffd03a33
IEDL.DBID AIKHN
ISSN 0306-4549
IngestDate Fri Oct 25 05:06:54 EDT 2024
Thu Sep 26 18:29:52 EDT 2024
Fri Feb 23 02:18:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Running-in phase
Passive safety
Pebble Bed Reactor
Thorium breeder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-470956b6985a3046659729a6d2aa06bab36ad3ebe3969f95b62d4b0fdffd03a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://repository.tudelft.nl/islandora/object/uuid%3Aa1bcd2b6-74b6-4247-b543-9a0fc65b268a/datastream/OBJ/download
PQID 1770380181
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1770380181
crossref_primary_10_1016_j_anucene_2015_02_043
elsevier_sciencedirect_doi_10_1016_j_anucene_2015_02_043
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Annals of nuclear energy
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References ORNL, 2009. SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluations, vols. I–III, Version 6, CCC-750; ORNL/TM-2005/39. Radiation Safety Information Computational Center, Oak Ridge National Laboratory.
Rütten, Haas (b0035) 2000; 195
Rütten, H., Haas, K.A., Brockmann, H., Ohlig, U., Pohl, C., Scherer, W., 2010. V.S.O.P. 99/09: Computer Code System for Reactor Physics and Fuel Cycle Simulation; Version 2009. Forschungszentrum Jülich.
Wols, F.J., Kloosterman, J.L., Lathouwers, D., van der Hagen, T.H.J.J., 2014b. Preliminary safety analysis of a thorium breeder pebble bed reactor. In: PHYSOR 2014, Kyoto, Japan.
Xia, B., Li, F., Wu, Z., 2011. The simulation of the running-in phase of the HTR-10. In: ICONE-19. The 19th International Conference On Nuclear Engineering, Osaka, Japan.
Mulder, E., Serfontein, D., van der Merwe, W., Teuchert, E., 2010. Thorium and uranium fuel cycle symbiosis in a pebble bed high temperature reactor. In: High temperature Reactor Conference 2012, Prague, Czech Republic.
MW pebble-bed modular high temperature gas-cooled reactor in depressurized loss of coolant accidents. In: High Temperature Reactor Conference 2008, Washington, DC, USA. HTR2008-58299.
Marmier, Fütterer, Tucek, Kuijper, Oppe, Petrov, Jonnet, Kloosterman, Boer (b0010) 2013; 181
Wols, Kloosterman, Lathouwers, van der Hagen (b0065) 2015; 75
Zheng, Y., Shi, L., 2008. Characteristics of the 250
Wols, Kloosterman, Lathouwers, van der Hagen (b0050) 2014; 186
Schenk, Pott, Nabielek (b0045) 1990; 171
Zheng, Shi, Dong (b0080) 2009; 36
Oppe, J., Kuijper, J.C., de Haas, J.B.M., Verkerk, E.C., Klippel, H.T., 2001. Modeling of continuous reload HTR systems by the PANTHERMIX code system. In: M&C 2001, Salt Lake City, Utah, USA.
Chang, Yang, Jing, Xu (b0005) 2006; 11
Wols, Kloosterman, Lathouwers, van der Hagen (b0060) 2014; 280
Massimo (b0015) 1976
Schenk (10.1016/j.anucene.2015.02.043_b0045) 1990; 171
Wols (10.1016/j.anucene.2015.02.043_b0060) 2014; 280
10.1016/j.anucene.2015.02.043_b0070
Rütten (10.1016/j.anucene.2015.02.043_b0035) 2000; 195
10.1016/j.anucene.2015.02.043_b0025
Wols (10.1016/j.anucene.2015.02.043_b0050) 2014; 186
Wols (10.1016/j.anucene.2015.02.043_b0065) 2015; 75
10.1016/j.anucene.2015.02.043_b0040
Chang (10.1016/j.anucene.2015.02.043_b0005) 2006; 11
10.1016/j.anucene.2015.02.043_b0020
10.1016/j.anucene.2015.02.043_b0075
10.1016/j.anucene.2015.02.043_b0030
10.1016/j.anucene.2015.02.043_b0055
Marmier (10.1016/j.anucene.2015.02.043_b0010) 2013; 181
Massimo (10.1016/j.anucene.2015.02.043_b0015) 1976
Zheng (10.1016/j.anucene.2015.02.043_b0080) 2009; 36
References_xml – volume: 75
  start-page: 542
  year: 2015
  end-page: 558
  ident: b0065
  article-title: Conceptual design of a passively safe thorium breeder pebble bed reactor
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: van der Hagen
– volume: 36
  start-page: 742
  year: 2009
  end-page: 751
  ident: b0080
  article-title: Thermohydraulic transient studies of the Chinese 200MWe HTR-PM for loss of forced cooling accidents
  publication-title: Ann. Nucl. Energy
  contributor:
    fullname: Dong
– volume: 195
  start-page: 353
  year: 2000
  end-page: 360
  ident: b0035
  article-title: Research on the incineration of plutonium in a modular HTR using thorium-based fuel
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: Haas
– volume: 171
  start-page: 19
  year: 1990
  end-page: 30
  ident: b0045
  article-title: Fuel accident performance testing for small HTRs
  publication-title: J. Nucl. Mater.
  contributor:
    fullname: Nabielek
– volume: 11
  start-page: 731
  year: 2006
  end-page: 738
  ident: b0005
  article-title: Thorium-based fuel cycles in the modular high temperature reactor
  publication-title: Tsinghua Sci. Technol.
  contributor:
    fullname: Xu
– volume: 181
  start-page: 317
  year: 2013
  end-page: 330
  ident: b0010
  article-title: Fuel cycle investigation for wallpaper-type HTR fuel
  publication-title: Nucl. Technol.
  contributor:
    fullname: Boer
– year: 1976
  ident: b0015
  article-title: Physics of High-Temperature Reactors
  contributor:
    fullname: Massimo
– volume: 186
  start-page: 1
  year: 2014
  end-page: 16
  ident: b0050
  article-title: Core design and fuel management studies of a thorium-breeder pebble bed high-temperature reactor
  publication-title: Nucl. Technol.
  contributor:
    fullname: van der Hagen
– volume: 280
  start-page: 598
  year: 2014
  end-page: 607
  ident: b0060
  article-title: Reactivity control system of a passively safe thorium breeder pebble bed reactor
  publication-title: Nucl. Eng. Des.
  contributor:
    fullname: van der Hagen
– volume: 11
  start-page: 731
  year: 2006
  ident: 10.1016/j.anucene.2015.02.043_b0005
  article-title: Thorium-based fuel cycles in the modular high temperature reactor
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1016/S1007-0214(06)70257-7
  contributor:
    fullname: Chang
– volume: 171
  start-page: 19
  year: 1990
  ident: 10.1016/j.anucene.2015.02.043_b0045
  article-title: Fuel accident performance testing for small HTRs
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(90)90342-K
  contributor:
    fullname: Schenk
– ident: 10.1016/j.anucene.2015.02.043_b0075
  doi: 10.1115/HTR2008-58299
– volume: 195
  start-page: 353
  year: 2000
  ident: 10.1016/j.anucene.2015.02.043_b0035
  article-title: Research on the incineration of plutonium in a modular HTR using thorium-based fuel
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(99)00222-8
  contributor:
    fullname: Rütten
– ident: 10.1016/j.anucene.2015.02.043_b0055
– ident: 10.1016/j.anucene.2015.02.043_b0025
– ident: 10.1016/j.anucene.2015.02.043_b0030
– volume: 181
  start-page: 317
  year: 2013
  ident: 10.1016/j.anucene.2015.02.043_b0010
  article-title: Fuel cycle investigation for wallpaper-type HTR fuel
  publication-title: Nucl. Technol.
  doi: 10.13182/NT13-A15786
  contributor:
    fullname: Marmier
– volume: 36
  start-page: 742
  year: 2009
  ident: 10.1016/j.anucene.2015.02.043_b0080
  article-title: Thermohydraulic transient studies of the Chinese 200MWe HTR-PM for loss of forced cooling accidents
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2009.02.007
  contributor:
    fullname: Zheng
– volume: 75
  start-page: 542
  year: 2015
  ident: 10.1016/j.anucene.2015.02.043_b0065
  article-title: Conceptual design of a passively safe thorium breeder pebble bed reactor
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2014.09.012
  contributor:
    fullname: Wols
– year: 1976
  ident: 10.1016/j.anucene.2015.02.043_b0015
  contributor:
    fullname: Massimo
– ident: 10.1016/j.anucene.2015.02.043_b0020
– ident: 10.1016/j.anucene.2015.02.043_b0040
– volume: 186
  start-page: 1
  year: 2014
  ident: 10.1016/j.anucene.2015.02.043_b0050
  article-title: Core design and fuel management studies of a thorium-breeder pebble bed high-temperature reactor
  publication-title: Nucl. Technol.
  doi: 10.13182/NT13-14
  contributor:
    fullname: Wols
– ident: 10.1016/j.anucene.2015.02.043_b0070
  doi: 10.1299/jsmeicone.2011.19._ICONE1943_341
– volume: 280
  start-page: 598
  year: 2014
  ident: 10.1016/j.anucene.2015.02.043_b0060
  article-title: Reactivity control system of a passively safe thorium breeder pebble bed reactor
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.09.015
  contributor:
    fullname: Wols
SSID ssj0012844
Score 2.0969212
Snippet •This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission...
The present work investigates the running-in phase of a 100MW th Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 227
SubjectTerms Fuels
Mathematical analysis
Nuclear engineering
Nuclear power generation
Nuclear reactor components
Nuclear reactors
Passive safety
Pebble Bed Reactor
Running-in phase
Thorium
Thorium breeder
Uranium
Title Analysis of the running-in phase of a Passively Safe Thorium Breeder Pebble Bed Reactor
URI https://dx.doi.org/10.1016/j.anucene.2015.02.043
https://search.proquest.com/docview/1770380181
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WXQQ9iE9cX0TwWrfbNGl7VFFWBREf6C1M2gR3WbvLunvw4m930ocvEMFjU1LKl-SbGWbmC8CB6Ea-1dx6mKUUoAhDPMgN90yMUZGZ07qo8r2Svfvw4lE8NuCk7oVxZZUV95ecXrB1NdKp0OyM-_3OrfN2QwpvyKVxHaByDlpkjoK4Ca2j88ve1UcygRi4VJGi4NlN-Gzk6Qxcg29KrOKKvESh3hny30zUD7IuLNDZMixVriM7Kv9uBRomX4XFL4KCqzBfFHSmL2vwUKuNsJFl5OSxyay4nMjr52z8RKbLjSO7Jt-Z-G74ym7RGnb3NJr0Z8_seGKcyAS7NloPDTs2Gbsxxc0863B_dnp30vOqSxS8lHCZemHkpAa1TGKBLgsqKYIIEpRZgOhLjZpLzDgtJU9kYhOhZZCF2reZtZnPkfMNaOaj3GwCo4n0UscpNyLErtEisjpB5FlgJApsw2GNmxqXWhmqLiIbqApo5YBWfqAI6DbENbrq26Ir4vO_pu7Xq6HoQLgsB-ZmNHtR3Yg2Wex0yLb-__ltWHBPZV3uDjSnk5nZJe9jqvdg7vCtu1ftsXfqF9kN
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48EPVBPPE2gq91u02Tto8qynotoiv6FiZtwq5od1l3H_z3Tnp4gQi-JqSUSfLNN8zMF4AD0Yx8q7n1MEspQBGGcJAb7pkYoyIzp3VR5duWrfvw4lE8TsBJ3Qvjyior7C8xvUDraqRRWbMx6PUad47thhTeEKVxHaByEqaJDSR0O6ePzi9b7Y9kAiFwqSJFwbNb8NnI03hyDb4poYor8hKFemfIf3NRP8C68EBni7BQUUd2VP7dEkyYfBnmvwgKLsNMUdCZvq7AQ602wvqWEcljw3HxOJHXy9mgS67LjSO7Ie5MePf8xu7QGtbp9oe98Qs7HhonMsFujNbPhh2bjN2a4mWeVbg_O-2ctLzqEQUvJbuMvDByUoNaJrFAlwWVFEEECcosQPSlRs0lZpy2kicysYnQMshC7dvM2sznyPkaTOX93KwDo4U0qeOUGxFi02gRWZ0g8iwwEgVuwGFtNzUotTJUXUT2pCpDK2do5QeKDL0BcW1d9W3TFeH5X0v3691QdCFclgNz0x-_qmZEhyx2OmSb___8Hsy2OtdX6uq8fbkFc26mrNHdhqnRcGx2iImM9G510t4BLUbbAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+running-in+phase+of+a+Passively+Safe+Thorium+Breeder+Pebble+Bed+Reactor&rft.jtitle=Annals+of+nuclear+energy&rft.au=Wols%2C+F.J.&rft.au=Kloosterman%2C+J.L.&rft.au=Lathouwers%2C+D.&rft.au=van+der+Hagen%2C+T.H.J.J.&rft.date=2015-07-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=81&rft.spage=227&rft.epage=239&rft_id=info:doi/10.1016%2Fj.anucene.2015.02.043&rft.externalDocID=S0306454915001206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon