Analysis of the running-in phase of a Passively Safe Thorium Breeder Pebble Bed Reactor
•This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is pa...
Saved in:
Published in | Annals of nuclear energy Vol. 81; pp. 227 - 239 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is passively safe during the running-in phase.
The present work investigates the running-in phase of a 100MWth Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated.
For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme.
Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation.
The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400°C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600°C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600°C. |
---|---|
AbstractList | The present work investigates the running-in phase of a 100MW th Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated. For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme. Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation. The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400 degree C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600 degree C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600 degree C. •This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission product pair.•Breeding U-233 is achieved in 7years by cleverly adjusting the feed fuel enrichment.•A safety analysis shows the thorium PBR is passively safe during the running-in phase. The present work investigates the running-in phase of a 100MWth Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in previous equilibrium core design studies by the authors. Since U-233 is not available in nature, an alternative fuel, e.g. U-235/U-238, is required to start such a reactor. This work investigates how long it takes to converge to the equilibrium core composition and to achieve a net production of U-233, and how this can be accelerated. For this purpose, a fast and flexible calculation scheme was developed to analyze these aspects of the running-in phase. Depletion equations with an axial fuel movement term are solved in MATLAB for the most relevant actinides (Th-232, Pa-233, U-233, U-234, U-235, U-236 and U-238) and the fission products are lumped into a fission product pair. A finite difference discretization is used for the axial coordinate in combination with an implicit Euler time discretization scheme. Results show that a time dependent adjustment scheme for the enrichment (in case of U-235/U-238 start-up fuel) or U-233 weight fraction of the feed driver fuel helps to restrict excess reactivity, to improve the fuel economy and to achieve a net production of U-233 faster. After using U-235/U-238 startup fuel for 1300days, the system starts to work as a breeder, i.e. the U-233 (and Pa-233) extraction rate exceeds the U-233 feed rate, within 7years after start of reactor operation. The final part of the work presents a basic safety analysis, which shows that the thorium PBR fulfills the same passive safety requirements as the equilibrium core during every stage of the running-in phase. The maximum fuel temperature during a Depressurized Loss of Forced Cooling (DLOFC) with scram remains below 1400°C throughout the running-in phase, quite a bit below the TRISO failure temperature of 1600°C. The uniform reactivity coefficients of cores with U-235/U-238 driver fuel are much stronger negative compared to U-233/Th driver fuel, which implies that the stronger reactivity insertion by water ingress and the reactivity addition by xenon decay during a DLOFC without scram can be compensated without fuel temperatures exceeding 1600°C. |
Author | Wols, F.J. Lathouwers, D. van der Hagen, T.H.J.J. Kloosterman, J.L. |
Author_xml | – sequence: 1 givenname: F.J. surname: Wols fullname: Wols, F.J. email: f.j.wols@tudelft.nl – sequence: 2 givenname: J.L. surname: Kloosterman fullname: Kloosterman, J.L. – sequence: 3 givenname: D. surname: Lathouwers fullname: Lathouwers, D. – sequence: 4 givenname: T.H.J.J. surname: van der Hagen fullname: van der Hagen, T.H.J.J. |
BookMark | eNqFkE1LxDAYhIMouKv-BCFHL61vmjZtTqKLXyAofuAxvG3eulm66Zq0wv57u6x3TwPDzMA8c3boe0-MnQtIBQh1uUrRjw15SjMQRQpZCrk8YDNRlTLJBMAhm4EEleRFro_ZPMYVgMiqPJ-xz2uP3Ta6yPuWD0viYfTe-a_Eeb5ZYqSdj_wFY3Q_1G35G7bE35d9cOOa3wQiS4G_UF13xG_I8lfCZujDKTtqsYt09qcn7OPu9n3xkDw93z8urp-SpgAYkrwEXaha6apACblShS4zjcpmiKBqrKVCK6kmqZVudVGrzOY1tLZtLUiU8oRd7Hc3of8eKQ5m7WJDXYee-jEaUZYgKxCVmKLFPtqEPsZArdkEt8awNQLMDqRZmT-QZgfSQGYmkFPvat-j6cePo2Bi48g3ZF2gZjC2d_8s_AKLWX_P |
CitedBy_id | crossref_primary_10_1088_1742_6596_1493_1_012004 crossref_primary_10_3139_124_110636 crossref_primary_10_1016_j_pnucene_2018_05_013 |
Cites_doi | 10.1016/S1007-0214(06)70257-7 10.1016/0022-3115(90)90342-K 10.1115/HTR2008-58299 10.1016/S0029-5493(99)00222-8 10.13182/NT13-A15786 10.1016/j.anucene.2009.02.007 10.1016/j.anucene.2014.09.012 10.13182/NT13-14 10.1299/jsmeicone.2011.19._ICONE1943_341 10.1016/j.nucengdes.2014.09.015 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1016/j.anucene.2015.02.043 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2100 |
EndPage | 239 |
ExternalDocumentID | 10_1016_j_anucene_2015_02_043 S0306454915001206 |
GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JM 9JN A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K UHS WUQ ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c500t-470956b6985a3046659729a6d2aa06bab36ad3ebe3969f95b62d4b0fdffd03a33 |
IEDL.DBID | AIKHN |
ISSN | 0306-4549 |
IngestDate | Fri Oct 25 05:06:54 EDT 2024 Thu Sep 26 18:29:52 EDT 2024 Fri Feb 23 02:18:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Running-in phase Passive safety Pebble Bed Reactor Thorium breeder |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-470956b6985a3046659729a6d2aa06bab36ad3ebe3969f95b62d4b0fdffd03a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://repository.tudelft.nl/islandora/object/uuid%3Aa1bcd2b6-74b6-4247-b543-9a0fc65b268a/datastream/OBJ/download |
PQID | 1770380181 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1770380181 crossref_primary_10_1016_j_anucene_2015_02_043 elsevier_sciencedirect_doi_10_1016_j_anucene_2015_02_043 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Annals of nuclear energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | ORNL, 2009. SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluations, vols. I–III, Version 6, CCC-750; ORNL/TM-2005/39. Radiation Safety Information Computational Center, Oak Ridge National Laboratory. Rütten, Haas (b0035) 2000; 195 Rütten, H., Haas, K.A., Brockmann, H., Ohlig, U., Pohl, C., Scherer, W., 2010. V.S.O.P. 99/09: Computer Code System for Reactor Physics and Fuel Cycle Simulation; Version 2009. Forschungszentrum Jülich. Wols, F.J., Kloosterman, J.L., Lathouwers, D., van der Hagen, T.H.J.J., 2014b. Preliminary safety analysis of a thorium breeder pebble bed reactor. In: PHYSOR 2014, Kyoto, Japan. Xia, B., Li, F., Wu, Z., 2011. The simulation of the running-in phase of the HTR-10. In: ICONE-19. The 19th International Conference On Nuclear Engineering, Osaka, Japan. Mulder, E., Serfontein, D., van der Merwe, W., Teuchert, E., 2010. Thorium and uranium fuel cycle symbiosis in a pebble bed high temperature reactor. In: High temperature Reactor Conference 2012, Prague, Czech Republic. MW pebble-bed modular high temperature gas-cooled reactor in depressurized loss of coolant accidents. In: High Temperature Reactor Conference 2008, Washington, DC, USA. HTR2008-58299. Marmier, Fütterer, Tucek, Kuijper, Oppe, Petrov, Jonnet, Kloosterman, Boer (b0010) 2013; 181 Wols, Kloosterman, Lathouwers, van der Hagen (b0065) 2015; 75 Zheng, Y., Shi, L., 2008. Characteristics of the 250 Wols, Kloosterman, Lathouwers, van der Hagen (b0050) 2014; 186 Schenk, Pott, Nabielek (b0045) 1990; 171 Zheng, Shi, Dong (b0080) 2009; 36 Oppe, J., Kuijper, J.C., de Haas, J.B.M., Verkerk, E.C., Klippel, H.T., 2001. Modeling of continuous reload HTR systems by the PANTHERMIX code system. In: M&C 2001, Salt Lake City, Utah, USA. Chang, Yang, Jing, Xu (b0005) 2006; 11 Wols, Kloosterman, Lathouwers, van der Hagen (b0060) 2014; 280 Massimo (b0015) 1976 Schenk (10.1016/j.anucene.2015.02.043_b0045) 1990; 171 Wols (10.1016/j.anucene.2015.02.043_b0060) 2014; 280 10.1016/j.anucene.2015.02.043_b0070 Rütten (10.1016/j.anucene.2015.02.043_b0035) 2000; 195 10.1016/j.anucene.2015.02.043_b0025 Wols (10.1016/j.anucene.2015.02.043_b0050) 2014; 186 Wols (10.1016/j.anucene.2015.02.043_b0065) 2015; 75 10.1016/j.anucene.2015.02.043_b0040 Chang (10.1016/j.anucene.2015.02.043_b0005) 2006; 11 10.1016/j.anucene.2015.02.043_b0020 10.1016/j.anucene.2015.02.043_b0075 10.1016/j.anucene.2015.02.043_b0030 10.1016/j.anucene.2015.02.043_b0055 Marmier (10.1016/j.anucene.2015.02.043_b0010) 2013; 181 Massimo (10.1016/j.anucene.2015.02.043_b0015) 1976 Zheng (10.1016/j.anucene.2015.02.043_b0080) 2009; 36 |
References_xml | – volume: 75 start-page: 542 year: 2015 end-page: 558 ident: b0065 article-title: Conceptual design of a passively safe thorium breeder pebble bed reactor publication-title: Ann. Nucl. Energy contributor: fullname: van der Hagen – volume: 36 start-page: 742 year: 2009 end-page: 751 ident: b0080 article-title: Thermohydraulic transient studies of the Chinese 200MWe HTR-PM for loss of forced cooling accidents publication-title: Ann. Nucl. Energy contributor: fullname: Dong – volume: 195 start-page: 353 year: 2000 end-page: 360 ident: b0035 article-title: Research on the incineration of plutonium in a modular HTR using thorium-based fuel publication-title: Nucl. Eng. Des. contributor: fullname: Haas – volume: 171 start-page: 19 year: 1990 end-page: 30 ident: b0045 article-title: Fuel accident performance testing for small HTRs publication-title: J. Nucl. Mater. contributor: fullname: Nabielek – volume: 11 start-page: 731 year: 2006 end-page: 738 ident: b0005 article-title: Thorium-based fuel cycles in the modular high temperature reactor publication-title: Tsinghua Sci. Technol. contributor: fullname: Xu – volume: 181 start-page: 317 year: 2013 end-page: 330 ident: b0010 article-title: Fuel cycle investigation for wallpaper-type HTR fuel publication-title: Nucl. Technol. contributor: fullname: Boer – year: 1976 ident: b0015 article-title: Physics of High-Temperature Reactors contributor: fullname: Massimo – volume: 186 start-page: 1 year: 2014 end-page: 16 ident: b0050 article-title: Core design and fuel management studies of a thorium-breeder pebble bed high-temperature reactor publication-title: Nucl. Technol. contributor: fullname: van der Hagen – volume: 280 start-page: 598 year: 2014 end-page: 607 ident: b0060 article-title: Reactivity control system of a passively safe thorium breeder pebble bed reactor publication-title: Nucl. Eng. Des. contributor: fullname: van der Hagen – volume: 11 start-page: 731 year: 2006 ident: 10.1016/j.anucene.2015.02.043_b0005 article-title: Thorium-based fuel cycles in the modular high temperature reactor publication-title: Tsinghua Sci. Technol. doi: 10.1016/S1007-0214(06)70257-7 contributor: fullname: Chang – volume: 171 start-page: 19 year: 1990 ident: 10.1016/j.anucene.2015.02.043_b0045 article-title: Fuel accident performance testing for small HTRs publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(90)90342-K contributor: fullname: Schenk – ident: 10.1016/j.anucene.2015.02.043_b0075 doi: 10.1115/HTR2008-58299 – volume: 195 start-page: 353 year: 2000 ident: 10.1016/j.anucene.2015.02.043_b0035 article-title: Research on the incineration of plutonium in a modular HTR using thorium-based fuel publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(99)00222-8 contributor: fullname: Rütten – ident: 10.1016/j.anucene.2015.02.043_b0055 – ident: 10.1016/j.anucene.2015.02.043_b0025 – ident: 10.1016/j.anucene.2015.02.043_b0030 – volume: 181 start-page: 317 year: 2013 ident: 10.1016/j.anucene.2015.02.043_b0010 article-title: Fuel cycle investigation for wallpaper-type HTR fuel publication-title: Nucl. Technol. doi: 10.13182/NT13-A15786 contributor: fullname: Marmier – volume: 36 start-page: 742 year: 2009 ident: 10.1016/j.anucene.2015.02.043_b0080 article-title: Thermohydraulic transient studies of the Chinese 200MWe HTR-PM for loss of forced cooling accidents publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2009.02.007 contributor: fullname: Zheng – volume: 75 start-page: 542 year: 2015 ident: 10.1016/j.anucene.2015.02.043_b0065 article-title: Conceptual design of a passively safe thorium breeder pebble bed reactor publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.09.012 contributor: fullname: Wols – year: 1976 ident: 10.1016/j.anucene.2015.02.043_b0015 contributor: fullname: Massimo – ident: 10.1016/j.anucene.2015.02.043_b0020 – ident: 10.1016/j.anucene.2015.02.043_b0040 – volume: 186 start-page: 1 year: 2014 ident: 10.1016/j.anucene.2015.02.043_b0050 article-title: Core design and fuel management studies of a thorium-breeder pebble bed high-temperature reactor publication-title: Nucl. Technol. doi: 10.13182/NT13-14 contributor: fullname: Wols – ident: 10.1016/j.anucene.2015.02.043_b0070 doi: 10.1299/jsmeicone.2011.19._ICONE1943_341 – volume: 280 start-page: 598 year: 2014 ident: 10.1016/j.anucene.2015.02.043_b0060 article-title: Reactivity control system of a passively safe thorium breeder pebble bed reactor publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.09.015 contributor: fullname: Wols |
SSID | ssj0012844 |
Score | 2.0969212 |
Snippet | •This work analyzes important trends of the running-in phase of a thorium breeder PBR.•Depletion equations are solved for important actinides and a fission... The present work investigates the running-in phase of a 100MW th Passively Safe Thorium Breeder Pebble Bed Reactor (PBR), a conceptual design introduced in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 227 |
SubjectTerms | Fuels Mathematical analysis Nuclear engineering Nuclear power generation Nuclear reactor components Nuclear reactors Passive safety Pebble Bed Reactor Running-in phase Thorium Thorium breeder Uranium |
Title | Analysis of the running-in phase of a Passively Safe Thorium Breeder Pebble Bed Reactor |
URI | https://dx.doi.org/10.1016/j.anucene.2015.02.043 https://search.proquest.com/docview/1770380181 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WXQQ9iE9cX0TwWrfbNGl7VFFWBREf6C1M2gR3WbvLunvw4m930ocvEMFjU1LKl-SbGWbmC8CB6Ea-1dx6mKUUoAhDPMgN90yMUZGZ07qo8r2Svfvw4lE8NuCk7oVxZZUV95ecXrB1NdKp0OyM-_3OrfN2QwpvyKVxHaByDlpkjoK4Ca2j88ve1UcygRi4VJGi4NlN-Gzk6Qxcg29KrOKKvESh3hny30zUD7IuLNDZMixVriM7Kv9uBRomX4XFL4KCqzBfFHSmL2vwUKuNsJFl5OSxyay4nMjr52z8RKbLjSO7Jt-Z-G74ym7RGnb3NJr0Z8_seGKcyAS7NloPDTs2Gbsxxc0863B_dnp30vOqSxS8lHCZemHkpAa1TGKBLgsqKYIIEpRZgOhLjZpLzDgtJU9kYhOhZZCF2reZtZnPkfMNaOaj3GwCo4n0UscpNyLErtEisjpB5FlgJApsw2GNmxqXWhmqLiIbqApo5YBWfqAI6DbENbrq26Ir4vO_pu7Xq6HoQLgsB-ZmNHtR3Yg2Wex0yLb-__ltWHBPZV3uDjSnk5nZJe9jqvdg7vCtu1ftsXfqF9kN |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48EPVBPPE2gq91u02Tto8qynotoiv6FiZtwq5od1l3H_z3Tnp4gQi-JqSUSfLNN8zMF4AD0Yx8q7n1MEspQBGGcJAb7pkYoyIzp3VR5duWrfvw4lE8TsBJ3Qvjyior7C8xvUDraqRRWbMx6PUad47thhTeEKVxHaByEqaJDSR0O6ePzi9b7Y9kAiFwqSJFwbNb8NnI03hyDb4poYor8hKFemfIf3NRP8C68EBni7BQUUd2VP7dEkyYfBnmvwgKLsNMUdCZvq7AQ602wvqWEcljw3HxOJHXy9mgS67LjSO7Ie5MePf8xu7QGtbp9oe98Qs7HhonMsFujNbPhh2bjN2a4mWeVbg_O-2ctLzqEQUvJbuMvDByUoNaJrFAlwWVFEEECcosQPSlRs0lZpy2kicysYnQMshC7dvM2sznyPkaTOX93KwDo4U0qeOUGxFi02gRWZ0g8iwwEgVuwGFtNzUotTJUXUT2pCpDK2do5QeKDL0BcW1d9W3TFeH5X0v3691QdCFclgNz0x-_qmZEhyx2OmSb___8Hsy2OtdX6uq8fbkFc26mrNHdhqnRcGx2iImM9G510t4BLUbbAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+running-in+phase+of+a+Passively+Safe+Thorium+Breeder+Pebble+Bed+Reactor&rft.jtitle=Annals+of+nuclear+energy&rft.au=Wols%2C+F.J.&rft.au=Kloosterman%2C+J.L.&rft.au=Lathouwers%2C+D.&rft.au=van+der+Hagen%2C+T.H.J.J.&rft.date=2015-07-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=81&rft.spage=227&rft.epage=239&rft_id=info:doi/10.1016%2Fj.anucene.2015.02.043&rft.externalDocID=S0306454915001206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |