Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission

Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large f...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 79; no. 6; pp. 1125 - 1133
Main Authors HENGJAN, Yupadee, PRAMONO, Didik, TAKEMAE, Hitoshi, KOBAYASHI, Ryosuke, IIDA, Keisuke, ANDO, Takeshi, KASMONO, Supratikno, BASRI, Chaerul, FITRIANA, Yuli Sulistya, ARIFIN, Eko M. Z., OHMORI, Yasushige, MAEDA, Ken, AGUNGPRIYONO, Srihadi, HONDO, Eiichi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2017
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11–25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox’s behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.
AbstractList Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.
Flying foxes, the genus Pteropus , are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox ( Pteropus vampyrus ) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11–25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey ( Trachypithecus auratus ) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox’s behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.
Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.
Author PRAMONO, Didik
AGUNGPRIYONO, Srihadi
MAEDA, Ken
IIDA, Keisuke
BASRI, Chaerul
HONDO, Eiichi
TAKEMAE, Hitoshi
KOBAYASHI, Ryosuke
ARIFIN, Eko M. Z.
HENGJAN, Yupadee
FITRIANA, Yuli Sulistya
OHMORI, Yasushige
KASMONO, Supratikno
ANDO, Takeshi
Author_xml – sequence: 1
  fullname: HENGJAN, Yupadee
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
– sequence: 2
  fullname: PRAMONO, Didik
  organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
– sequence: 3
  fullname: TAKEMAE, Hitoshi
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
– sequence: 4
  fullname: KOBAYASHI, Ryosuke
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
– sequence: 5
  fullname: IIDA, Keisuke
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
– sequence: 6
  fullname: ANDO, Takeshi
  organization: Japan International Cooperation Agency (JICA), Jakarta 10270, Indonesia
– sequence: 7
  fullname: KASMONO, Supratikno
  organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
– sequence: 8
  fullname: BASRI, Chaerul
  organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
– sequence: 9
  fullname: FITRIANA, Yuli Sulistya
  organization: Research Center for Biology, Indonesian Institute of Science, Bogor 16911, Indonesia
– sequence: 10
  fullname: ARIFIN, Eko M. Z.
  organization: Livestock, Fisheries and Marine Services, Garut 44118, Indonesia
– sequence: 11
  fullname: OHMORI, Yasushige
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
– sequence: 12
  fullname: MAEDA, Ken
  organization: Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
– sequence: 13
  fullname: AGUNGPRIYONO, Srihadi
  organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia
– sequence: 14
  fullname: HONDO, Eiichi
  organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28496012$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLeFG2eUIwdS_JHYMQekUlpAqgQHuCFZE8dpvErsxXYi7b_HYZcVIHGxrXmfd2Y8c4HOnHcGoecEXxEq6evtMsUrwkvMK_YIbQirRCkqJs_QBsscF7TG5-gixi3GlFRcPkHntKkkx4Ru0Pf3sE92MkVrBlisD4Xviy_JBL-bY7HAtNuH_LCugMJBmgOMxQCtTZDeFGkwRRfsYn65FruKKYCLk43RevcUPe5hjObZ8b5E3-5uv958LO8_f_h0c31f6hrjVFY1Bd61TQ1NS7johBaiq1rR9LihhHa5a2ZMz4isdS1wI1ndNsBxx3QWWmCX6O0h725uJ9Np43IXo9oFO0HYKw9W_a04O6gHv6i6aoSQVU7w8pgg-B-ziUnlH2gzjuCMn6MijZSEMMxpRl_8WetU5PdIM_DqAOjgYwymPyEEq3Vjat2YIlytG8s4_QfX63Dz9HKndvyf6d3BtI0JHsypAoRk9WgOsJCKr8fRdBL1AEEZx34COxq0HA
CitedBy_id crossref_primary_10_1371_journal_pone_0244006
crossref_primary_10_1292_jvms_17_0329
crossref_primary_10_3161_15081109ACC2021_23_1_007
crossref_primary_10_1292_jvms_21_0115
crossref_primary_10_3390_ani13010159
crossref_primary_10_1292_jvms_17_0665
crossref_primary_10_1093_sleep_zsac064
crossref_primary_10_1111_ahe_12442
crossref_primary_10_1292_jvms_17_0719
Cites_doi 10.1073/pnas.1010875108
10.1016/j.ijpara.2007.02.004
10.1071/9780643103757
10.1076/snfe.33.2.76.2152
10.1098/rspb.2014.2124
10.1016/j.virusres.2015.05.006
10.1017/CBO9780511810893
10.1089/vbz.2008.0105
10.1128/CMR.00017-06
10.1111/j.1365-2028.1983.tb00323.x
10.1371/journal.pone.0146891
10.1098/rspb.2007.1260
10.1038/438575a
10.1016/j.jag.2013.06.008
10.1098/rspb.2012.2753
10.1644/1545-1410(2000)642<0001:PV>2.0.CO;2
10.1002/jcp.1030490306
10.3161/001.004.0204
10.1071/AM06002
10.1371/journal.pone.0069544
10.1111/j.1523-1739.1991.tb00352.x
10.1016/j.micinf.2005.04.006
10.1163/156853974X00534
10.1016/0003-3472(65)90118-1
10.1093/oso/9780198540755.001.0001
10.1016/j.biocon.2011.06.021
10.1016/S1386-6532(02)00268-8
10.1098/rsbl.2009.0563
10.1111/zph.12000
10.33321/cdi.1996.20.83
10.2741/e518
10.2307/3284932
10.1163/1568539X-00003410
10.1007/s00360-006-0073-z
ContentType Journal Article
Copyright 2017 by the Japanese Society of Veterinary Science
2017 The Japanese Society of Veterinary Science 2017
Copyright_xml – notice: 2017 by the Japanese Society of Veterinary Science
– notice: 2017 The Japanese Society of Veterinary Science 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1292/jvms.16-0643
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1133
ExternalDocumentID PMC5487794
28496012
10_1292_jvms_16_0643
article_jvms_79_6_79_16_0643_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
ECGQY
EYRJQ
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c500t-452a6db85a8b167d7c77d4b78f08212d2143eef3195c5708935b8a60d3c43eba3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 14:31:58 EDT 2025
Fri Jul 11 02:49:11 EDT 2025
Thu Jan 02 23:09:44 EST 2025
Thu Apr 24 22:55:25 EDT 2025
Tue Aug 05 12:05:11 EDT 2025
Wed Apr 05 08:57:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Pteropus vampyrus
all-occurrence focal sampling
daytime behavior
disease transmission
instantaneous scan sampling
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-452a6db85a8b167d7c77d4b78f08212d2143eef3195c5708935b8a60d3c43eba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.16-0643
PMID 28496012
PQID 1899113062
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5487794
proquest_miscellaneous_1899113062
pubmed_primary_28496012
crossref_primary_10_1292_jvms_16_0643
crossref_citationtrail_10_1292_jvms_16_0643
jstage_primary_article_jvms_79_6_79_16_0643_article_char_en
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2017
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: The Japanese Society of Veterinary Science
References 42. Setiawan, Y., Yoshinol, K. and Prasetyo, L. B. 2014. Characterizing the dynamics change of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS. Int. J. Appl. Earth Obs. Geoinf. 26: 132–144.
30. Olival, K. J., Dick, C. W., Simmons, N. B., Morales, J. C., Melnick, D. J., Dittmar, K., Perkins, S. L., Daszak, P. and Desalle, R. 2013. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia. Parasit. Vectors 6: 231.
5. Chua, K. B. 2003. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26: 265–275.
32. Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L. F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L. F., Epstein, J. H., Marsh, G. A., Kung, N. Y. and McCallum, H. 2015. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282: 20142124.
43. Sidiyasa, K., Sutomo, S. and Prawira, R. S. A. 1990. Structure and composition of a lowland Dipterocarp forest at Leuweung Sancang Nature Reserve, West Java [1985]. AGRIS 471: 37–48.
20. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J. T., Gonzalez, J. P. and Swanepoel, R. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576.
31. Patterson, B. D., Ballard, J. W. O. and Wenzel, R. L. 1998. Distributional evidence for cospeciation between neotropical bats and their bat fly ectoparasites. Stud. Neotrop. Fauna Environ. 33: 76–84.
27. Neuweiler, G. 2000. The Biology of Bats, Oxford University Press, New York.
39. Richards, G., Hall, L. and Parish, S. 2012. A Natural History of Australian Bats: Working the Night Shift, CSIRO Press, Melbourne.
12. Gumert, M. D., Fuentes, A. and Jones-Engel, L. 2011. Monkeys on the Edge: Ecology and Management of Long-tailed Macaques and their Interface with Humans, Cambridge University Press, Cambridge.
18. Kool, K. M. 1992. Food selection by the silver leaf monkey,Trachypithecus auratus sondaicus, in relation to plant chemistry. Oecologia 90: 527–533.
24. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black Flying Fox Pteropus alecto: 2. Territoriality and Courtship. Acta Chiropt. 4: 153–166.
33. Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P. and Foley, J. E. 2008. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. Biol. Sci. 275: 861–869.
4. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545.
8. Dick, C. W. and Patterson, B. D. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37: 871–876.
22. Luis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., Mills, J. N., Timonin, M. E., Willis, C. K., Cunningham, A. A., Fooks, A. R., Rupprecht, C. E., Wood, J. L. N. and Webb, C. T. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753.
19. Kunz, T. H. and Jones, D. P. 2000. Pteropus vampyrus. Mamm. Species 642: 1–6.
35. Rathinakumar, A., Cantor, M., Senthikumar, K., Vimal, P., Kaliraj, P. and Marimuthu, G. 2017. Social grooming among Indian short-nosed fruit bats. Behaviour 154: 37–63.
14. Harrison, M. E., Cheyne, S. M., Darma, F., Ribowo, D. A., Limin, S. H. and Struebig, M. J. 2011. Hunting of flying foxes and perception of disease risk in Indonesian Borneo. Biol. Conserv. 144: 2441–2449.
44. Ter Hofstede, H. M. and Fenton, M. B. 2005. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J. Zool. (Lond.) 266: 333–340.
3. Altringham, J. D. 1996. Bats: Biology and Behaviour, Oxford University Press, New York.
17. Klose, S. M., Welbergen, J. A. and Kalko, E. K. 2009. Testosterone is associated with harem maintenance ability in free-ranging grey-headed flying-foxes, Pteropus poliocephalus. Biol. Lett. 5: 758–761.
25. Martin, P. and Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, Cambridge University Press, Cambridge.
41. Sendow, I., Ratnawati, A., Taylor, T., Adjid, R. M. A., Saepulloh, M., Barr, J., Wong, F., Daniels, P. and Field, H. 2013. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS ONE 8: e69544.
6. Connell, K. A., Munro, U. and Torpy, F. R. 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Aust. Mammal. 28: 7–14.
36. Reeder, D. M., Kosteczko, N. S., Kunz, T. H. and Widmaier, E. P. 2006. The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Horm. Behav. 49: 484–500.
16. Kingma, B., Frijns, A. and van Marken Lichtenbelt, W. 2012. The thermoneutral zone: implications for metabolic studies. Front. Biosci. (Elite Ed.) 4: 1975–1985.
40. Robinson, K. W. and Morrison, P. R. 1957. The reaction to hot atmospheres of various species of Australian marsupial and placental animals. J. Cell. Comp. Physiol. 49: 455–478.
9. Field, H. E., Smith, C. S., de Jong, C. E., Melville, D., Broos, A., Kung, N., Thompson, J. and Dechmann, D. K. 2016. Landscape utilization, animal behaviour and hendra virus risk. EcoHealth 13: 26–38.
13. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6.
23. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black flying fox Pteropus alecto: 1. An ethogram of behaviour, and preliminary characterisation of mother-infant interactions. Acta Chiropt. 4: 137–152.
38. Reisland, M. A. and Lambert, J. E.
22
44
23
45
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
4597405 - Behaviour. 1974;49(3):227-67
19402762 - Vector Borne Zoonotic Dis. 2010 Mar;10(2):183-90
16319873 - Nature. 2005 Dec 1;438(7068):575-6
16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45
13481078 - J Cell Comp Physiol. 1957 Jun;49(3):455-78
23924629 - Parasit Vectors. 2013 Aug 08;6:231
26403793 - Ecohealth. 2016 Mar;13(1):26-38
23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753
16380123 - Horm Behav. 2006 Apr;49(4):484-500
19689980 - Biol Lett. 2009 Dec 23;5(6):758-61
25997928 - Virus Res. 2015 Jul 2;205:1-6
25392474 - Proc Biol Sci. 2015 Jan 7;282(1798):20142124
17382332 - Int J Parasitol. 2007 Jul;37(8-9):871-6
12637075 - J Clin Virol. 2003 Apr;26(3):265-75
16002313 - Microbes Infect. 2005 Jun;7(7-8):1005-14
23894501 - PLoS One. 2013 Jul 22;8(7):e69544
16496155 - J Comp Physiol B. 2006 Aug;176(6):513-9
26790025 - PLoS One. 2016 Jan 20;11(1):e0146891
22202013 - Front Biosci (Elite Ed). 2012 Jan 01;4:1975-85
22958281 - Zoonoses Public Health. 2013 Feb;60(1):2-21
10701585 - J Parasitol. 2000 Feb;86(1):167-70
21646516 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10208-13
28313572 - Oecologia. 1992 Jul;90(4):527-533
18198149 - Proc Biol Sci. 2008 Apr 7;275(1636):861-9
5882814 - Anim Behav. 1965 Oct;13(4):544-57
References_xml – reference: 23. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black flying fox Pteropus alecto: 1. An ethogram of behaviour, and preliminary characterisation of mother-infant interactions. Acta Chiropt. 4: 137–152.
– reference: 27. Neuweiler, G. 2000. The Biology of Bats, Oxford University Press, New York.
– reference: 16. Kingma, B., Frijns, A. and van Marken Lichtenbelt, W. 2012. The thermoneutral zone: implications for metabolic studies. Front. Biosci. (Elite Ed.) 4: 1975–1985.
– reference: 29. Nowak, R. M. 1994. Walkers Bats of the World, Johns Hopkins University Press, Baltimore.
– reference: 18. Kool, K. M. 1992. Food selection by the silver leaf monkey,Trachypithecus auratus sondaicus, in relation to plant chemistry. Oecologia 90: 527–533.
– reference: 26. Nelson, J. E. 1965. Behaviour of Australian pteropodidae (Megachiroptera). Anim. Behav. 13: 544–557.
– reference: 31. Patterson, B. D., Ballard, J. W. O. and Wenzel, R. L. 1998. Distributional evidence for cospeciation between neotropical bats and their bat fly ectoparasites. Stud. Neotrop. Fauna Environ. 33: 76–84.
– reference: 33. Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P. and Foley, J. E. 2008. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. Biol. Sci. 275: 861–869.
– reference: 42. Setiawan, Y., Yoshinol, K. and Prasetyo, L. B. 2014. Characterizing the dynamics change of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS. Int. J. Appl. Earth Obs. Geoinf. 26: 132–144.
– reference: 43. Sidiyasa, K., Sutomo, S. and Prawira, R. S. A. 1990. Structure and composition of a lowland Dipterocarp forest at Leuweung Sancang Nature Reserve, West Java [1985]. AGRIS 471: 37–48.
– reference: 41. Sendow, I., Ratnawati, A., Taylor, T., Adjid, R. M. A., Saepulloh, M., Barr, J., Wong, F., Daniels, P. and Field, H. 2013. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS ONE 8: e69544.
– reference: 35. Rathinakumar, A., Cantor, M., Senthikumar, K., Vimal, P., Kaliraj, P. and Marimuthu, G. 2017. Social grooming among Indian short-nosed fruit bats. Behaviour 154: 37–63.
– reference: 14. Harrison, M. E., Cheyne, S. M., Darma, F., Ribowo, D. A., Limin, S. H. and Struebig, M. J. 2011. Hunting of flying foxes and perception of disease risk in Indonesian Borneo. Biol. Conserv. 144: 2441–2449.
– reference: 39. Richards, G., Hall, L. and Parish, S. 2012. A Natural History of Australian Bats: Working the Night Shift, CSIRO Press, Melbourne.
– reference: 36. Reeder, D. M., Kosteczko, N. S., Kunz, T. H. and Widmaier, E. P. 2006. The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Horm. Behav. 49: 484–500.
– reference: 37. Reeder, D. M., Raff, H., Kunz, T. H. and Widmaier, E. P. 2006. Characterization of pituitary-adrenocortical activity in the Malayan flying fox (Pteropus vampyrus). J. Comp. Physiol. B 176: 513–519.
– reference: 11. George, D. B., Webb, C. T., Farnsworth, M. L. O., O’Shea, T. J., Bowen, R. A., Smith, D. L., Stanley, T. R., Ellison, L. E. and Rupprecht, C. E. 2011. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. U.S.A. 108: 10208–10213 Nat. Ac.
– reference: 2. Altmann, J. 1974. Observational study of behavior: sampling methods. Behaviour 49: 227–267.
– reference: 21. Linhares, A. X. and Komeno, C. A. 2000. Trichobius joblingi, Aspidoptera falcata, and Megistopoda proxima (Diptera : Streblidae) parasitic on Carollia perspicallata and Sturnia lillium (Chiroptera : Phyllostomidae) in southeastern Brazil: sex ratios, seasonality, host site preference, and effect of parasitism on the host. J. Parasitol. 86: 167–170.
– reference: 40. Robinson, K. W. and Morrison, P. R. 1957. The reaction to hot atmospheres of various species of Australian marsupial and placental animals. J. Cell. Comp. Physiol. 49: 455–478.
– reference: 15. Hayman, D. T., Bowen, R. A., Cryan, P. M., McCracken, G. F., O’Shea, T. J., Peel, A. J., Gilbert, A., Webb, C. T. and Wood, J. L. N. 2013. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 60: 2–21.
– reference: 12. Gumert, M. D., Fuentes, A. and Jones-Engel, L. 2011. Monkeys on the Edge: Ecology and Management of Long-tailed Macaques and their Interface with Humans, Cambridge University Press, Cambridge.
– reference: 44. Ter Hofstede, H. M. and Fenton, M. B. 2005. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J. Zool. (Lond.) 266: 333–340.
– reference: 38. Reisland, M. A. and Lambert, J. E. 2016. Sympatric apes in sacred forests: shared space and habitat use by humans and endangered Javan gibbons (Hylobates moloch). PLOS ONE 11: e0146891.
– reference: 4. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545.
– reference: 34. Pourrut, X., Kumulungui, B., Wittmann, T., Moussavou, G., Délicat, A., Yaba, P., Nkoghe, D., Gonzalez, J. P. and Leroy, E. M. 2005. The natural history of Ebola virus in Africa. Microbes Infect. 7: 1005–1014.
– reference: 17. Klose, S. M., Welbergen, J. A. and Kalko, E. K. 2009. Testosterone is associated with harem maintenance ability in free-ranging grey-headed flying-foxes, Pteropus poliocephalus. Biol. Lett. 5: 758–761.
– reference: 25. Martin, P. and Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, Cambridge University Press, Cambridge.
– reference: 7. Demment, M. W. 1983. Feeding ecology and the evolution of body size of baboons. Afr. J. Ecol. 21: 219–233.
– reference: 45. Wacharapluesadee, S., Boongird, K., Wanghongsa, S., Ratanasetyuth, N., Supavonwong, P., Saengsen, D., Gongal, G. N. and Hemachudha, T. 2010. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 10: 183–190.
– reference: 6. Connell, K. A., Munro, U. and Torpy, F. R. 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Aust. Mammal. 28: 7–14.
– reference: 10. Fujita, M. S. and Tuttle, M. D. 1991. Flying foxes (Chiroptera: Pteropodidea): threatened animal of key ecological and economic importance. Conserv. Biol. 5: 455–463.
– reference: 3. Altringham, J. D. 1996. Bats: Biology and Behaviour, Oxford University Press, New York.
– reference: 30. Olival, K. J., Dick, C. W., Simmons, N. B., Morales, J. C., Melnick, D. J., Dittmar, K., Perkins, S. L., Daszak, P. and Desalle, R. 2013. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia. Parasit. Vectors 6: 231.
– reference: 13. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6.
– reference: 32. Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L. F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L. F., Epstein, J. H., Marsh, G. A., Kung, N. Y. and McCallum, H. 2015. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282: 20142124.
– reference: 1. Allworth, A., Murray, K. and Morgan, J. 1996. A human case of encephalitis due to a lyssavirus recently identified in fruit bats. CDI 20: 504.
– reference: 9. Field, H. E., Smith, C. S., de Jong, C. E., Melville, D., Broos, A., Kung, N., Thompson, J. and Dechmann, D. K. 2016. Landscape utilization, animal behaviour and hendra virus risk. EcoHealth 13: 26–38.
– reference: 22. Luis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., Mills, J. N., Timonin, M. E., Willis, C. K., Cunningham, A. A., Fooks, A. R., Rupprecht, C. E., Wood, J. L. N. and Webb, C. T. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753.
– reference: 28. Nijman, V. 2000. Geographic distribution of ebony leaf monkey Trachypithecus auratus (E. Geoffroy Saint-Hilaire, 1812) (Mammalia: Primates: Cercopithecidae). Contrib. Zool. 69: 157–177.
– reference: 5. Chua, K. B. 2003. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26: 265–275.
– reference: 19. Kunz, T. H. and Jones, D. P. 2000. Pteropus vampyrus. Mamm. Species 642: 1–6.
– reference: 24. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black Flying Fox Pteropus alecto: 2. Territoriality and Courtship. Acta Chiropt. 4: 153–166.
– reference: 20. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J. T., Gonzalez, J. P. and Swanepoel, R. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576.
– reference: 8. Dick, C. W. and Patterson, B. D. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37: 871–876.
– ident: 18
– ident: 43
– ident: 11
  doi: 10.1073/pnas.1010875108
– ident: 8
  doi: 10.1016/j.ijpara.2007.02.004
– ident: 39
  doi: 10.1071/9780643103757
– ident: 31
  doi: 10.1076/snfe.33.2.76.2152
– ident: 12
– ident: 32
  doi: 10.1098/rspb.2014.2124
– ident: 13
  doi: 10.1016/j.virusres.2015.05.006
– ident: 25
  doi: 10.1017/CBO9780511810893
– ident: 45
  doi: 10.1089/vbz.2008.0105
– ident: 4
  doi: 10.1128/CMR.00017-06
– ident: 7
  doi: 10.1111/j.1365-2028.1983.tb00323.x
– ident: 38
  doi: 10.1371/journal.pone.0146891
– ident: 28
– ident: 33
  doi: 10.1098/rspb.2007.1260
– ident: 20
  doi: 10.1038/438575a
– ident: 42
  doi: 10.1016/j.jag.2013.06.008
– ident: 22
  doi: 10.1098/rspb.2012.2753
– ident: 9
– ident: 19
  doi: 10.1644/1545-1410(2000)642<0001:PV>2.0.CO;2
– ident: 40
  doi: 10.1002/jcp.1030490306
– ident: 24
  doi: 10.3161/001.004.0204
– ident: 6
  doi: 10.1071/AM06002
– ident: 41
  doi: 10.1371/journal.pone.0069544
– ident: 10
  doi: 10.1111/j.1523-1739.1991.tb00352.x
– ident: 34
  doi: 10.1016/j.micinf.2005.04.006
– ident: 36
– ident: 2
  doi: 10.1163/156853974X00534
– ident: 26
  doi: 10.1016/0003-3472(65)90118-1
– ident: 29
– ident: 30
– ident: 3
  doi: 10.1093/oso/9780198540755.001.0001
– ident: 14
  doi: 10.1016/j.biocon.2011.06.021
– ident: 5
  doi: 10.1016/S1386-6532(02)00268-8
– ident: 17
  doi: 10.1098/rsbl.2009.0563
– ident: 15
  doi: 10.1111/zph.12000
– ident: 1
  doi: 10.33321/cdi.1996.20.83
– ident: 16
  doi: 10.2741/e518
– ident: 21
  doi: 10.2307/3284932
– ident: 35
  doi: 10.1163/1568539X-00003410
– ident: 37
  doi: 10.1007/s00360-006-0073-z
– ident: 27
– ident: 44
– ident: 23
– reference: 16319873 - Nature. 2005 Dec 1;438(7068):575-6
– reference: 5882814 - Anim Behav. 1965 Oct;13(4):544-57
– reference: 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45
– reference: 19402762 - Vector Borne Zoonotic Dis. 2010 Mar;10(2):183-90
– reference: 12637075 - J Clin Virol. 2003 Apr;26(3):265-75
– reference: 25392474 - Proc Biol Sci. 2015 Jan 7;282(1798):20142124
– reference: 4597405 - Behaviour. 1974;49(3):227-67
– reference: 25997928 - Virus Res. 2015 Jul 2;205:1-6
– reference: 16002313 - Microbes Infect. 2005 Jun;7(7-8):1005-14
– reference: 16380123 - Horm Behav. 2006 Apr;49(4):484-500
– reference: 23894501 - PLoS One. 2013 Jul 22;8(7):e69544
– reference: 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753
– reference: 26403793 - Ecohealth. 2016 Mar;13(1):26-38
– reference: 22958281 - Zoonoses Public Health. 2013 Feb;60(1):2-21
– reference: 23924629 - Parasit Vectors. 2013 Aug 08;6:231
– reference: 19689980 - Biol Lett. 2009 Dec 23;5(6):758-61
– reference: 26790025 - PLoS One. 2016 Jan 20;11(1):e0146891
– reference: 22202013 - Front Biosci (Elite Ed). 2012 Jan 01;4:1975-85
– reference: 28313572 - Oecologia. 1992 Jul;90(4):527-533
– reference: 21646516 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10208-13
– reference: 18198149 - Proc Biol Sci. 2008 Apr 7;275(1636):861-9
– reference: 17382332 - Int J Parasitol. 2007 Jul;37(8-9):871-6
– reference: 16496155 - J Comp Physiol B. 2006 Aug;176(6):513-9
– reference: 10701585 - J Parasitol. 2000 Feb;86(1):167-70
– reference: 13481078 - J Cell Comp Physiol. 1957 Jun;49(3):455-78
SSID ssj0021469
Score 2.1713493
Snippet Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses...
Flying foxes, the genus Pteropus , are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1125
SubjectTerms all-occurrence focal sampling
Animals
Animals, Wild - psychology
Animals, Wild - virology
Behavior, Animal
Cercopithecidae - psychology
Cercopithecidae - virology
Chiroptera - psychology
Chiroptera - virology
daytime behavior
Disease Reservoirs - virology
disease transmission
Female
Indonesia
instantaneous scan sampling
Male
Pteropus vampyrus
Social Behavior
Virus Diseases - transmission
Virus Diseases - veterinary
Wildlife Science
Title Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission
URI https://www.jstage.jst.go.jp/article/jvms/79/6/79_16-0643/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/28496012
https://www.proquest.com/docview/1899113062
https://pubmed.ncbi.nlm.nih.gov/PMC5487794
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2017, Vol.79(6), pp.1125-1133
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB5q9cEXsfVHT21ZQZ8kNcntZnOWIqKWqlR88KQPQtjN7mrLNXfej-L9936T5IJXKvgSDnaScDPZfN9kZ78helYq7U3MPQB9GiIZHKaUGtioDKBzqZGsYcbVFp-z46H8eKpON2jVbbR14Oza1I77SQ2no_3fv5avMeEPa22EQfry_PJitp8gMQa63qCbwCTNvQxOZLeewN2rG9U9mGmgflsCf_XsNXC6dQ5-9sNfRz2vVlD-BUlHd-lOyyXFmyb4W7Thq23a_sYFLvUuW3HSLpzfo-_vzJLbyIvVtnwxDuILDMeTxUxcmovJcoofZ5Uwotb6xHVZwhtU9JUARxRuygUcfBZXBY_EnDEOzwh_bLtPw6P3X98eR21jhahUcTyPpEpN5myuTG6TTDtdau2k1XkAIUhSB3f1vQ-YnQqxjEFplM1NFrt-iQFr-g9osxpXfoeEDAF4Z3KdxkFKrQcucU47axPE2SrXoxcrjxZlqzrOzS9GBWcf8H_B_i-SrGD_9-h5Zz1p1Db-YXfQBKezaudZY6UHRcaH1rob5I1seBv06OkqogUcxSskpvLjBS6P7DMBqmdpjx42Ee7uABxHtpdgRK_FvjNgoe71kersZy3YzVkh3nuP_vPfPabbKZOH-kPPE9qcTxd-F9RnbvdA-j982quf7T92NAeL
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+behavior+of+Pteropus+vampyrus+in+a+natural+habitat%3A+the+driver+of+viral+transmission&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=HENGJAN%2C+Yupadee&rft.au=PRAMONO%2C+Didik&rft.au=TAKEMAE%2C+Hitoshi&rft.au=KOBAYASHI%2C+Ryosuke&rft.date=2017&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=79&rft.issue=6&rft.spage=1125&rft.epage=1133&rft_id=info:doi/10.1292%2Fjvms.16-0643&rft.externalDBID=n%2Fa&rft.externalDocID=10_1292_jvms_16_0643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon