Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission
Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large f...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 79; no. 6; pp. 1125 - 1133 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2017
The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11–25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox’s behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild. |
---|---|
AbstractList | Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild. Flying foxes, the genus Pteropus , are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox ( Pteropus vampyrus ) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11–25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey ( Trachypithecus auratus ) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox’s behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild. Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild. |
Author | PRAMONO, Didik AGUNGPRIYONO, Srihadi MAEDA, Ken IIDA, Keisuke BASRI, Chaerul HONDO, Eiichi TAKEMAE, Hitoshi KOBAYASHI, Ryosuke ARIFIN, Eko M. Z. HENGJAN, Yupadee FITRIANA, Yuli Sulistya OHMORI, Yasushige KASMONO, Supratikno ANDO, Takeshi |
Author_xml | – sequence: 1 fullname: HENGJAN, Yupadee organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan – sequence: 2 fullname: PRAMONO, Didik organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia – sequence: 3 fullname: TAKEMAE, Hitoshi organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan – sequence: 4 fullname: KOBAYASHI, Ryosuke organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan – sequence: 5 fullname: IIDA, Keisuke organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan – sequence: 6 fullname: ANDO, Takeshi organization: Japan International Cooperation Agency (JICA), Jakarta 10270, Indonesia – sequence: 7 fullname: KASMONO, Supratikno organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia – sequence: 8 fullname: BASRI, Chaerul organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia – sequence: 9 fullname: FITRIANA, Yuli Sulistya organization: Research Center for Biology, Indonesian Institute of Science, Bogor 16911, Indonesia – sequence: 10 fullname: ARIFIN, Eko M. Z. organization: Livestock, Fisheries and Marine Services, Garut 44118, Indonesia – sequence: 11 fullname: OHMORI, Yasushige organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan – sequence: 12 fullname: MAEDA, Ken organization: Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan – sequence: 13 fullname: AGUNGPRIYONO, Srihadi organization: Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor 16680, Indonesia – sequence: 14 fullname: HONDO, Eiichi organization: Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28496012$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLeFG2eUIwdS_JHYMQekUlpAqgQHuCFZE8dpvErsxXYi7b_HYZcVIHGxrXmfd2Y8c4HOnHcGoecEXxEq6evtMsUrwkvMK_YIbQirRCkqJs_QBsscF7TG5-gixi3GlFRcPkHntKkkx4Ru0Pf3sE92MkVrBlisD4Xviy_JBL-bY7HAtNuH_LCugMJBmgOMxQCtTZDeFGkwRRfsYn65FruKKYCLk43RevcUPe5hjObZ8b5E3-5uv958LO8_f_h0c31f6hrjVFY1Bd61TQ1NS7johBaiq1rR9LihhHa5a2ZMz4isdS1wI1ndNsBxx3QWWmCX6O0h725uJ9Np43IXo9oFO0HYKw9W_a04O6gHv6i6aoSQVU7w8pgg-B-ziUnlH2gzjuCMn6MijZSEMMxpRl_8WetU5PdIM_DqAOjgYwymPyEEq3Vjat2YIlytG8s4_QfX63Dz9HKndvyf6d3BtI0JHsypAoRk9WgOsJCKr8fRdBL1AEEZx34COxq0HA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0244006 crossref_primary_10_1292_jvms_17_0329 crossref_primary_10_3161_15081109ACC2021_23_1_007 crossref_primary_10_1292_jvms_21_0115 crossref_primary_10_3390_ani13010159 crossref_primary_10_1292_jvms_17_0665 crossref_primary_10_1093_sleep_zsac064 crossref_primary_10_1111_ahe_12442 crossref_primary_10_1292_jvms_17_0719 |
Cites_doi | 10.1073/pnas.1010875108 10.1016/j.ijpara.2007.02.004 10.1071/9780643103757 10.1076/snfe.33.2.76.2152 10.1098/rspb.2014.2124 10.1016/j.virusres.2015.05.006 10.1017/CBO9780511810893 10.1089/vbz.2008.0105 10.1128/CMR.00017-06 10.1111/j.1365-2028.1983.tb00323.x 10.1371/journal.pone.0146891 10.1098/rspb.2007.1260 10.1038/438575a 10.1016/j.jag.2013.06.008 10.1098/rspb.2012.2753 10.1644/1545-1410(2000)642<0001:PV>2.0.CO;2 10.1002/jcp.1030490306 10.3161/001.004.0204 10.1071/AM06002 10.1371/journal.pone.0069544 10.1111/j.1523-1739.1991.tb00352.x 10.1016/j.micinf.2005.04.006 10.1163/156853974X00534 10.1016/0003-3472(65)90118-1 10.1093/oso/9780198540755.001.0001 10.1016/j.biocon.2011.06.021 10.1016/S1386-6532(02)00268-8 10.1098/rsbl.2009.0563 10.1111/zph.12000 10.33321/cdi.1996.20.83 10.2741/e518 10.2307/3284932 10.1163/1568539X-00003410 10.1007/s00360-006-0073-z |
ContentType | Journal Article |
Copyright | 2017 by the Japanese Society of Veterinary Science 2017 The Japanese Society of Veterinary Science 2017 |
Copyright_xml | – notice: 2017 by the Japanese Society of Veterinary Science – notice: 2017 The Japanese Society of Veterinary Science 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1292/jvms.16-0643 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 1133 |
ExternalDocumentID | PMC5487794 28496012 10_1292_jvms_16_0643 article_jvms_79_6_79_16_0643_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION ECGQY EYRJQ OVT PGMZT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c500t-452a6db85a8b167d7c77d4b78f08212d2143eef3195c5708935b8a60d3c43eba3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 14:31:58 EDT 2025 Fri Jul 11 02:49:11 EDT 2025 Thu Jan 02 23:09:44 EST 2025 Thu Apr 24 22:55:25 EDT 2025 Tue Aug 05 12:05:11 EDT 2025 Wed Apr 05 08:57:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Pteropus vampyrus all-occurrence focal sampling daytime behavior disease transmission instantaneous scan sampling |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-452a6db85a8b167d7c77d4b78f08212d2143eef3195c5708935b8a60d3c43eba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.16-0643 |
PMID | 28496012 |
PQID | 1899113062 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5487794 proquest_miscellaneous_1899113062 pubmed_primary_28496012 crossref_primary_10_1292_jvms_16_0643 crossref_citationtrail_10_1292_jvms_16_0643 jstage_primary_article_jvms_79_6_79_16_0643_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2017 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: The Japanese Society of Veterinary Science |
References | 42. Setiawan, Y., Yoshinol, K. and Prasetyo, L. B. 2014. Characterizing the dynamics change of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS. Int. J. Appl. Earth Obs. Geoinf. 26: 132–144. 30. Olival, K. J., Dick, C. W., Simmons, N. B., Morales, J. C., Melnick, D. J., Dittmar, K., Perkins, S. L., Daszak, P. and Desalle, R. 2013. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia. Parasit. Vectors 6: 231. 5. Chua, K. B. 2003. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26: 265–275. 32. Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L. F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L. F., Epstein, J. H., Marsh, G. A., Kung, N. Y. and McCallum, H. 2015. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282: 20142124. 43. Sidiyasa, K., Sutomo, S. and Prawira, R. S. A. 1990. Structure and composition of a lowland Dipterocarp forest at Leuweung Sancang Nature Reserve, West Java [1985]. AGRIS 471: 37–48. 20. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J. T., Gonzalez, J. P. and Swanepoel, R. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576. 31. Patterson, B. D., Ballard, J. W. O. and Wenzel, R. L. 1998. Distributional evidence for cospeciation between neotropical bats and their bat fly ectoparasites. Stud. Neotrop. Fauna Environ. 33: 76–84. 27. Neuweiler, G. 2000. The Biology of Bats, Oxford University Press, New York. 39. Richards, G., Hall, L. and Parish, S. 2012. A Natural History of Australian Bats: Working the Night Shift, CSIRO Press, Melbourne. 12. Gumert, M. D., Fuentes, A. and Jones-Engel, L. 2011. Monkeys on the Edge: Ecology and Management of Long-tailed Macaques and their Interface with Humans, Cambridge University Press, Cambridge. 18. Kool, K. M. 1992. Food selection by the silver leaf monkey,Trachypithecus auratus sondaicus, in relation to plant chemistry. Oecologia 90: 527–533. 24. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black Flying Fox Pteropus alecto: 2. Territoriality and Courtship. Acta Chiropt. 4: 153–166. 33. Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P. and Foley, J. E. 2008. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. Biol. Sci. 275: 861–869. 4. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545. 8. Dick, C. W. and Patterson, B. D. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37: 871–876. 22. Luis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., Mills, J. N., Timonin, M. E., Willis, C. K., Cunningham, A. A., Fooks, A. R., Rupprecht, C. E., Wood, J. L. N. and Webb, C. T. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753. 19. Kunz, T. H. and Jones, D. P. 2000. Pteropus vampyrus. Mamm. Species 642: 1–6. 35. Rathinakumar, A., Cantor, M., Senthikumar, K., Vimal, P., Kaliraj, P. and Marimuthu, G. 2017. Social grooming among Indian short-nosed fruit bats. Behaviour 154: 37–63. 14. Harrison, M. E., Cheyne, S. M., Darma, F., Ribowo, D. A., Limin, S. H. and Struebig, M. J. 2011. Hunting of flying foxes and perception of disease risk in Indonesian Borneo. Biol. Conserv. 144: 2441–2449. 44. Ter Hofstede, H. M. and Fenton, M. B. 2005. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J. Zool. (Lond.) 266: 333–340. 3. Altringham, J. D. 1996. Bats: Biology and Behaviour, Oxford University Press, New York. 17. Klose, S. M., Welbergen, J. A. and Kalko, E. K. 2009. Testosterone is associated with harem maintenance ability in free-ranging grey-headed flying-foxes, Pteropus poliocephalus. Biol. Lett. 5: 758–761. 25. Martin, P. and Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, Cambridge University Press, Cambridge. 41. Sendow, I., Ratnawati, A., Taylor, T., Adjid, R. M. A., Saepulloh, M., Barr, J., Wong, F., Daniels, P. and Field, H. 2013. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS ONE 8: e69544. 6. Connell, K. A., Munro, U. and Torpy, F. R. 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Aust. Mammal. 28: 7–14. 36. Reeder, D. M., Kosteczko, N. S., Kunz, T. H. and Widmaier, E. P. 2006. The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Horm. Behav. 49: 484–500. 16. Kingma, B., Frijns, A. and van Marken Lichtenbelt, W. 2012. The thermoneutral zone: implications for metabolic studies. Front. Biosci. (Elite Ed.) 4: 1975–1985. 40. Robinson, K. W. and Morrison, P. R. 1957. The reaction to hot atmospheres of various species of Australian marsupial and placental animals. J. Cell. Comp. Physiol. 49: 455–478. 9. Field, H. E., Smith, C. S., de Jong, C. E., Melville, D., Broos, A., Kung, N., Thompson, J. and Dechmann, D. K. 2016. Landscape utilization, animal behaviour and hendra virus risk. EcoHealth 13: 26–38. 13. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6. 23. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black flying fox Pteropus alecto: 1. An ethogram of behaviour, and preliminary characterisation of mother-infant interactions. Acta Chiropt. 4: 137–152. 38. Reisland, M. A. and Lambert, J. E. 22 44 23 45 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 4597405 - Behaviour. 1974;49(3):227-67 19402762 - Vector Borne Zoonotic Dis. 2010 Mar;10(2):183-90 16319873 - Nature. 2005 Dec 1;438(7068):575-6 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45 13481078 - J Cell Comp Physiol. 1957 Jun;49(3):455-78 23924629 - Parasit Vectors. 2013 Aug 08;6:231 26403793 - Ecohealth. 2016 Mar;13(1):26-38 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753 16380123 - Horm Behav. 2006 Apr;49(4):484-500 19689980 - Biol Lett. 2009 Dec 23;5(6):758-61 25997928 - Virus Res. 2015 Jul 2;205:1-6 25392474 - Proc Biol Sci. 2015 Jan 7;282(1798):20142124 17382332 - Int J Parasitol. 2007 Jul;37(8-9):871-6 12637075 - J Clin Virol. 2003 Apr;26(3):265-75 16002313 - Microbes Infect. 2005 Jun;7(7-8):1005-14 23894501 - PLoS One. 2013 Jul 22;8(7):e69544 16496155 - J Comp Physiol B. 2006 Aug;176(6):513-9 26790025 - PLoS One. 2016 Jan 20;11(1):e0146891 22202013 - Front Biosci (Elite Ed). 2012 Jan 01;4:1975-85 22958281 - Zoonoses Public Health. 2013 Feb;60(1):2-21 10701585 - J Parasitol. 2000 Feb;86(1):167-70 21646516 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10208-13 28313572 - Oecologia. 1992 Jul;90(4):527-533 18198149 - Proc Biol Sci. 2008 Apr 7;275(1636):861-9 5882814 - Anim Behav. 1965 Oct;13(4):544-57 |
References_xml | – reference: 23. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black flying fox Pteropus alecto: 1. An ethogram of behaviour, and preliminary characterisation of mother-infant interactions. Acta Chiropt. 4: 137–152. – reference: 27. Neuweiler, G. 2000. The Biology of Bats, Oxford University Press, New York. – reference: 16. Kingma, B., Frijns, A. and van Marken Lichtenbelt, W. 2012. The thermoneutral zone: implications for metabolic studies. Front. Biosci. (Elite Ed.) 4: 1975–1985. – reference: 29. Nowak, R. M. 1994. Walkers Bats of the World, Johns Hopkins University Press, Baltimore. – reference: 18. Kool, K. M. 1992. Food selection by the silver leaf monkey,Trachypithecus auratus sondaicus, in relation to plant chemistry. Oecologia 90: 527–533. – reference: 26. Nelson, J. E. 1965. Behaviour of Australian pteropodidae (Megachiroptera). Anim. Behav. 13: 544–557. – reference: 31. Patterson, B. D., Ballard, J. W. O. and Wenzel, R. L. 1998. Distributional evidence for cospeciation between neotropical bats and their bat fly ectoparasites. Stud. Neotrop. Fauna Environ. 33: 76–84. – reference: 33. Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P. and Foley, J. E. 2008. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. Biol. Sci. 275: 861–869. – reference: 42. Setiawan, Y., Yoshinol, K. and Prasetyo, L. B. 2014. Characterizing the dynamics change of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS. Int. J. Appl. Earth Obs. Geoinf. 26: 132–144. – reference: 43. Sidiyasa, K., Sutomo, S. and Prawira, R. S. A. 1990. Structure and composition of a lowland Dipterocarp forest at Leuweung Sancang Nature Reserve, West Java [1985]. AGRIS 471: 37–48. – reference: 41. Sendow, I., Ratnawati, A., Taylor, T., Adjid, R. M. A., Saepulloh, M., Barr, J., Wong, F., Daniels, P. and Field, H. 2013. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS ONE 8: e69544. – reference: 35. Rathinakumar, A., Cantor, M., Senthikumar, K., Vimal, P., Kaliraj, P. and Marimuthu, G. 2017. Social grooming among Indian short-nosed fruit bats. Behaviour 154: 37–63. – reference: 14. Harrison, M. E., Cheyne, S. M., Darma, F., Ribowo, D. A., Limin, S. H. and Struebig, M. J. 2011. Hunting of flying foxes and perception of disease risk in Indonesian Borneo. Biol. Conserv. 144: 2441–2449. – reference: 39. Richards, G., Hall, L. and Parish, S. 2012. A Natural History of Australian Bats: Working the Night Shift, CSIRO Press, Melbourne. – reference: 36. Reeder, D. M., Kosteczko, N. S., Kunz, T. H. and Widmaier, E. P. 2006. The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Horm. Behav. 49: 484–500. – reference: 37. Reeder, D. M., Raff, H., Kunz, T. H. and Widmaier, E. P. 2006. Characterization of pituitary-adrenocortical activity in the Malayan flying fox (Pteropus vampyrus). J. Comp. Physiol. B 176: 513–519. – reference: 11. George, D. B., Webb, C. T., Farnsworth, M. L. O., O’Shea, T. J., Bowen, R. A., Smith, D. L., Stanley, T. R., Ellison, L. E. and Rupprecht, C. E. 2011. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. U.S.A. 108: 10208–10213 Nat. Ac. – reference: 2. Altmann, J. 1974. Observational study of behavior: sampling methods. Behaviour 49: 227–267. – reference: 21. Linhares, A. X. and Komeno, C. A. 2000. Trichobius joblingi, Aspidoptera falcata, and Megistopoda proxima (Diptera : Streblidae) parasitic on Carollia perspicallata and Sturnia lillium (Chiroptera : Phyllostomidae) in southeastern Brazil: sex ratios, seasonality, host site preference, and effect of parasitism on the host. J. Parasitol. 86: 167–170. – reference: 40. Robinson, K. W. and Morrison, P. R. 1957. The reaction to hot atmospheres of various species of Australian marsupial and placental animals. J. Cell. Comp. Physiol. 49: 455–478. – reference: 15. Hayman, D. T., Bowen, R. A., Cryan, P. M., McCracken, G. F., O’Shea, T. J., Peel, A. J., Gilbert, A., Webb, C. T. and Wood, J. L. N. 2013. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 60: 2–21. – reference: 12. Gumert, M. D., Fuentes, A. and Jones-Engel, L. 2011. Monkeys on the Edge: Ecology and Management of Long-tailed Macaques and their Interface with Humans, Cambridge University Press, Cambridge. – reference: 44. Ter Hofstede, H. M. and Fenton, M. B. 2005. Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J. Zool. (Lond.) 266: 333–340. – reference: 38. Reisland, M. A. and Lambert, J. E. 2016. Sympatric apes in sacred forests: shared space and habitat use by humans and endangered Javan gibbons (Hylobates moloch). PLOS ONE 11: e0146891. – reference: 4. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545. – reference: 34. Pourrut, X., Kumulungui, B., Wittmann, T., Moussavou, G., Délicat, A., Yaba, P., Nkoghe, D., Gonzalez, J. P. and Leroy, E. M. 2005. The natural history of Ebola virus in Africa. Microbes Infect. 7: 1005–1014. – reference: 17. Klose, S. M., Welbergen, J. A. and Kalko, E. K. 2009. Testosterone is associated with harem maintenance ability in free-ranging grey-headed flying-foxes, Pteropus poliocephalus. Biol. Lett. 5: 758–761. – reference: 25. Martin, P. and Bateson, P. 2007. Measuring Behaviour: An Introductory Guide, Cambridge University Press, Cambridge. – reference: 7. Demment, M. W. 1983. Feeding ecology and the evolution of body size of baboons. Afr. J. Ecol. 21: 219–233. – reference: 45. Wacharapluesadee, S., Boongird, K., Wanghongsa, S., Ratanasetyuth, N., Supavonwong, P., Saengsen, D., Gongal, G. N. and Hemachudha, T. 2010. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis. 10: 183–190. – reference: 6. Connell, K. A., Munro, U. and Torpy, F. R. 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Aust. Mammal. 28: 7–14. – reference: 10. Fujita, M. S. and Tuttle, M. D. 1991. Flying foxes (Chiroptera: Pteropodidea): threatened animal of key ecological and economic importance. Conserv. Biol. 5: 455–463. – reference: 3. Altringham, J. D. 1996. Bats: Biology and Behaviour, Oxford University Press, New York. – reference: 30. Olival, K. J., Dick, C. W., Simmons, N. B., Morales, J. C., Melnick, D. J., Dittmar, K., Perkins, S. L., Daszak, P. and Desalle, R. 2013. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia. Parasit. Vectors 6: 231. – reference: 13. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6. – reference: 32. Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L. F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L. F., Epstein, J. H., Marsh, G. A., Kung, N. Y. and McCallum, H. 2015. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282: 20142124. – reference: 1. Allworth, A., Murray, K. and Morgan, J. 1996. A human case of encephalitis due to a lyssavirus recently identified in fruit bats. CDI 20: 504. – reference: 9. Field, H. E., Smith, C. S., de Jong, C. E., Melville, D., Broos, A., Kung, N., Thompson, J. and Dechmann, D. K. 2016. Landscape utilization, animal behaviour and hendra virus risk. EcoHealth 13: 26–38. – reference: 22. Luis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., Mills, J. N., Timonin, M. E., Willis, C. K., Cunningham, A. A., Fooks, A. R., Rupprecht, C. E., Wood, J. L. N. and Webb, C. T. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753. – reference: 28. Nijman, V. 2000. Geographic distribution of ebony leaf monkey Trachypithecus auratus (E. Geoffroy Saint-Hilaire, 1812) (Mammalia: Primates: Cercopithecidae). Contrib. Zool. 69: 157–177. – reference: 5. Chua, K. B. 2003. Nipah virus outbreak in Malaysia. J. Clin. Virol. 26: 265–275. – reference: 19. Kunz, T. H. and Jones, D. P. 2000. Pteropus vampyrus. Mamm. Species 642: 1–6. – reference: 24. Markus, N. and Blackshaw, J. K. 2002. Behaviour of the Black Flying Fox Pteropus alecto: 2. Territoriality and Courtship. Acta Chiropt. 4: 153–166. – reference: 20. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Paweska, J. T., Gonzalez, J. P. and Swanepoel, R. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576. – reference: 8. Dick, C. W. and Patterson, B. D. 2007. Against all odds: explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37: 871–876. – ident: 18 – ident: 43 – ident: 11 doi: 10.1073/pnas.1010875108 – ident: 8 doi: 10.1016/j.ijpara.2007.02.004 – ident: 39 doi: 10.1071/9780643103757 – ident: 31 doi: 10.1076/snfe.33.2.76.2152 – ident: 12 – ident: 32 doi: 10.1098/rspb.2014.2124 – ident: 13 doi: 10.1016/j.virusres.2015.05.006 – ident: 25 doi: 10.1017/CBO9780511810893 – ident: 45 doi: 10.1089/vbz.2008.0105 – ident: 4 doi: 10.1128/CMR.00017-06 – ident: 7 doi: 10.1111/j.1365-2028.1983.tb00323.x – ident: 38 doi: 10.1371/journal.pone.0146891 – ident: 28 – ident: 33 doi: 10.1098/rspb.2007.1260 – ident: 20 doi: 10.1038/438575a – ident: 42 doi: 10.1016/j.jag.2013.06.008 – ident: 22 doi: 10.1098/rspb.2012.2753 – ident: 9 – ident: 19 doi: 10.1644/1545-1410(2000)642<0001:PV>2.0.CO;2 – ident: 40 doi: 10.1002/jcp.1030490306 – ident: 24 doi: 10.3161/001.004.0204 – ident: 6 doi: 10.1071/AM06002 – ident: 41 doi: 10.1371/journal.pone.0069544 – ident: 10 doi: 10.1111/j.1523-1739.1991.tb00352.x – ident: 34 doi: 10.1016/j.micinf.2005.04.006 – ident: 36 – ident: 2 doi: 10.1163/156853974X00534 – ident: 26 doi: 10.1016/0003-3472(65)90118-1 – ident: 29 – ident: 30 – ident: 3 doi: 10.1093/oso/9780198540755.001.0001 – ident: 14 doi: 10.1016/j.biocon.2011.06.021 – ident: 5 doi: 10.1016/S1386-6532(02)00268-8 – ident: 17 doi: 10.1098/rsbl.2009.0563 – ident: 15 doi: 10.1111/zph.12000 – ident: 1 doi: 10.33321/cdi.1996.20.83 – ident: 16 doi: 10.2741/e518 – ident: 21 doi: 10.2307/3284932 – ident: 35 doi: 10.1163/1568539X-00003410 – ident: 37 doi: 10.1007/s00360-006-0073-z – ident: 27 – ident: 44 – ident: 23 – reference: 16319873 - Nature. 2005 Dec 1;438(7068):575-6 – reference: 5882814 - Anim Behav. 1965 Oct;13(4):544-57 – reference: 16847084 - Clin Microbiol Rev. 2006 Jul;19(3):531-45 – reference: 19402762 - Vector Borne Zoonotic Dis. 2010 Mar;10(2):183-90 – reference: 12637075 - J Clin Virol. 2003 Apr;26(3):265-75 – reference: 25392474 - Proc Biol Sci. 2015 Jan 7;282(1798):20142124 – reference: 4597405 - Behaviour. 1974;49(3):227-67 – reference: 25997928 - Virus Res. 2015 Jul 2;205:1-6 – reference: 16002313 - Microbes Infect. 2005 Jun;7(7-8):1005-14 – reference: 16380123 - Horm Behav. 2006 Apr;49(4):484-500 – reference: 23894501 - PLoS One. 2013 Jul 22;8(7):e69544 – reference: 23378666 - Proc Biol Sci. 2013 Feb 01;280(1756):20122753 – reference: 26403793 - Ecohealth. 2016 Mar;13(1):26-38 – reference: 22958281 - Zoonoses Public Health. 2013 Feb;60(1):2-21 – reference: 23924629 - Parasit Vectors. 2013 Aug 08;6:231 – reference: 19689980 - Biol Lett. 2009 Dec 23;5(6):758-61 – reference: 26790025 - PLoS One. 2016 Jan 20;11(1):e0146891 – reference: 22202013 - Front Biosci (Elite Ed). 2012 Jan 01;4:1975-85 – reference: 28313572 - Oecologia. 1992 Jul;90(4):527-533 – reference: 21646516 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10208-13 – reference: 18198149 - Proc Biol Sci. 2008 Apr 7;275(1636):861-9 – reference: 17382332 - Int J Parasitol. 2007 Jul;37(8-9):871-6 – reference: 16496155 - J Comp Physiol B. 2006 Aug;176(6):513-9 – reference: 10701585 - J Parasitol. 2000 Feb;86(1):167-70 – reference: 13481078 - J Cell Comp Physiol. 1957 Jun;49(3):455-78 |
SSID | ssj0021469 |
Score | 2.1713493 |
Snippet | Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses... Flying foxes, the genus Pteropus , are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1125 |
SubjectTerms | all-occurrence focal sampling Animals Animals, Wild - psychology Animals, Wild - virology Behavior, Animal Cercopithecidae - psychology Cercopithecidae - virology Chiroptera - psychology Chiroptera - virology daytime behavior Disease Reservoirs - virology disease transmission Female Indonesia instantaneous scan sampling Male Pteropus vampyrus Social Behavior Virus Diseases - transmission Virus Diseases - veterinary Wildlife Science |
Title | Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission |
URI | https://www.jstage.jst.go.jp/article/jvms/79/6/79_16-0643/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/28496012 https://www.proquest.com/docview/1899113062 https://pubmed.ncbi.nlm.nih.gov/PMC5487794 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2017, Vol.79(6), pp.1125-1133 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB5q9cEXsfVHT21ZQZ8kNcntZnOWIqKWqlR88KQPQtjN7mrLNXfej-L9936T5IJXKvgSDnaScDPZfN9kZ78helYq7U3MPQB9GiIZHKaUGtioDKBzqZGsYcbVFp-z46H8eKpON2jVbbR14Oza1I77SQ2no_3fv5avMeEPa22EQfry_PJitp8gMQa63qCbwCTNvQxOZLeewN2rG9U9mGmgflsCf_XsNXC6dQ5-9sNfRz2vVlD-BUlHd-lOyyXFmyb4W7Thq23a_sYFLvUuW3HSLpzfo-_vzJLbyIvVtnwxDuILDMeTxUxcmovJcoofZ5Uwotb6xHVZwhtU9JUARxRuygUcfBZXBY_EnDEOzwh_bLtPw6P3X98eR21jhahUcTyPpEpN5myuTG6TTDtdau2k1XkAIUhSB3f1vQ-YnQqxjEFplM1NFrt-iQFr-g9osxpXfoeEDAF4Z3KdxkFKrQcucU47axPE2SrXoxcrjxZlqzrOzS9GBWcf8H_B_i-SrGD_9-h5Zz1p1Db-YXfQBKezaudZY6UHRcaH1rob5I1seBv06OkqogUcxSskpvLjBS6P7DMBqmdpjx42Ee7uABxHtpdgRK_FvjNgoe71kersZy3YzVkh3nuP_vPfPabbKZOH-kPPE9qcTxd-F9RnbvdA-j982quf7T92NAeL |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+behavior+of+Pteropus+vampyrus+in+a+natural+habitat%3A+the+driver+of+viral+transmission&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=HENGJAN%2C+Yupadee&rft.au=PRAMONO%2C+Didik&rft.au=TAKEMAE%2C+Hitoshi&rft.au=KOBAYASHI%2C+Ryosuke&rft.date=2017&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=79&rft.issue=6&rft.spage=1125&rft.epage=1133&rft_id=info:doi/10.1292%2Fjvms.16-0643&rft.externalDBID=n%2Fa&rft.externalDocID=10_1292_jvms_16_0643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |