Industrial robotic machining: a review
For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this pa...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 103; no. 1-4; pp. 1239 - 1255 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this paper aims to provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works, and an understanding of the future directions in the field. The research works are organised into two operation categories, low material removal rate (MRR) and high MRR, according their machining properties, and the research topics are reviewed and highlighted separately. Then, a set of statistical analysis is carried out in terms of published years and countries. Towards an applicable robotic machining, the future trends and key research points are identified at the end of this paper. |
---|---|
AbstractList | For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this paper aims to provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works, and an understanding of the future directions in the field. The research works are organised into two operation categories, low material removal rate (MRR) and high MRR, according their machining properties, and the research topics are reviewed and highlighted separately. Then, a set of statistical analysis is carried out in terms of published years and countries. Towards an applicable robotic machining, the future trends and key research points are identified at the end of this paper. |
Author | Ji, Wei Wang, Lihui |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9642-6983 surname: Ji fullname: Ji, Wei organization: KTH Royal Institute of Technology – sequence: 2 givenname: Lihui surname: Wang fullname: Wang, Lihui organization: KTH Royal Institute of Technology |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255566$$DView record from Swedish Publication Index |
BookMark | eNp90ctKAzEUBuAgCtbLC7gqCO6iJ_fEnXgtCG7EbchkJjVaJzWZKvr0RlsRXHQVCN8fTs6_gzb71HcIHRA4JgDqpAAQBRiIwcA4MPy5gUaEM4YZELGJRkClxkxJvY12SnmqXBKpR-ho0reLMuToZuOcmjREP35x_jH2sZ-ejt04d2-xe99DW8HNSre_OnfR_dXl_fkNvr27npyf3WIvAAZMjeQMKA_ci8Y7pSnwetEGabwMxAmjg1ShbbwBEoh0uuEtBNGKigywXYSXz5b3br5o7DzHF5c_bHLRXsSHM5vy1D4Pj5YKIaSs_nDp5zm9Lroy2Ke0yH2d0FJuQCvJmF6rqDJcGS3peiWoUmCEqEovlc-plNwF6-Pghpj6Ibs4swTsdyF2WYithdifQuxnjdJ_0d_vrQ2x1UYq7qdd_ptqTeoL0yGcvQ |
CitedBy_id | crossref_primary_10_1016_j_mechmachtheory_2021_104717 crossref_primary_10_1007_s00170_021_08033_y crossref_primary_10_1109_TMECH_2024_3383410 crossref_primary_10_1016_j_cja_2023_03_022 crossref_primary_10_1016_j_rcim_2021_102243 crossref_primary_10_1007_s12008_024_02190_6 crossref_primary_10_1115_1_4056924 crossref_primary_10_3390_sym14102066 crossref_primary_10_1007_s00170_022_10661_x crossref_primary_10_1016_j_rcim_2024_102765 crossref_primary_10_1016_j_rcim_2024_102887 crossref_primary_10_1016_j_rcim_2024_102768 crossref_primary_10_1007_s10845_020_01705_8 crossref_primary_10_1108_RIA_07_2023_0091 crossref_primary_10_1109_TMECH_2023_3329819 crossref_primary_10_3390_machines12080556 crossref_primary_10_1016_j_rcim_2023_102590 crossref_primary_10_1016_j_ymssp_2024_111804 crossref_primary_10_1109_ACCESS_2020_3017561 crossref_primary_10_1016_j_rcim_2021_102235 crossref_primary_10_1007_s00170_024_14533_4 crossref_primary_10_1007_s11431_022_2112_4 crossref_primary_10_1080_0951192X_2024_2428682 crossref_primary_10_1007_s11431_022_2349_7 crossref_primary_10_1016_j_rcim_2022_102419 crossref_primary_10_3390_s23146451 crossref_primary_10_1007_s11370_022_00426_6 crossref_primary_10_1016_j_jmapro_2024_06_029 crossref_primary_10_1016_j_cja_2023_10_001 crossref_primary_10_1108_ECAM_01_2024_0083 crossref_primary_10_1016_j_ymssp_2023_110547 crossref_primary_10_1177_01423312221097738 crossref_primary_10_1016_j_cirp_2023_04_040 crossref_primary_10_1115_1_4063131 crossref_primary_10_1007_s10845_023_02292_0 crossref_primary_10_1007_s00170_021_07497_2 crossref_primary_10_1016_j_oceaneng_2023_116424 crossref_primary_10_1016_j_precisioneng_2023_11_002 crossref_primary_10_1016_j_rcim_2021_102131 crossref_primary_10_1007_s00170_021_08082_3 crossref_primary_10_1007_s11431_023_2625_8 crossref_primary_10_1016_j_rcim_2023_102690 crossref_primary_10_7242_1999_6691_2023_16_3_28 crossref_primary_10_1016_j_rcim_2022_102436 crossref_primary_10_1007_s00170_022_08737_9 crossref_primary_10_1016_j_rcim_2021_102257 crossref_primary_10_1016_j_rcim_2024_102875 crossref_primary_10_3390_mi13101577 crossref_primary_10_1016_j_jmapro_2023_01_004 crossref_primary_10_3390_machines10070531 crossref_primary_10_1109_JSEN_2024_3383499 crossref_primary_10_1109_TMECH_2021_3104477 crossref_primary_10_1007_s11740_020_00975_8 crossref_primary_10_1016_j_rcim_2019_101855 crossref_primary_10_1007_s11071_024_10510_4 crossref_primary_10_1108_IR_10_2024_0482 crossref_primary_10_1016_j_rcim_2023_102681 crossref_primary_10_3390_jcs8120543 crossref_primary_10_1007_s00170_021_07698_9 crossref_primary_10_1007_s00170_021_07001_w crossref_primary_10_1007_s11431_024_2810_2 crossref_primary_10_3390_buildings13112748 crossref_primary_10_1007_s00170_024_13776_5 crossref_primary_10_1155_2022_3217360 crossref_primary_10_20965_ijat_2021_p0567 crossref_primary_10_1016_j_jmapro_2024_05_072 crossref_primary_10_3390_app12178719 crossref_primary_10_15625_0866_7136_21000 crossref_primary_10_3389_frobt_2022_1027173 crossref_primary_10_1016_j_rcim_2021_102275 crossref_primary_10_1177_16878132221082869 crossref_primary_10_3390_polym12020454 crossref_primary_10_1007_s12555_024_0321_6 crossref_primary_10_1016_j_rcim_2023_102558 crossref_primary_10_3390_ma15103566 crossref_primary_10_1007_s00170_023_12899_5 crossref_primary_10_1016_j_rcim_2023_102677 crossref_primary_10_1016_j_procir_2024_09_013 crossref_primary_10_1016_j_jmsy_2023_10_007 crossref_primary_10_1016_j_rcim_2023_102675 crossref_primary_10_1109_JSEN_2023_3322408 crossref_primary_10_1016_j_jmapro_2023_08_032 crossref_primary_10_1038_s41598_024_80540_w crossref_primary_10_1177_09544062211002878 crossref_primary_10_28948_ngumuh_600588 crossref_primary_10_3390_su14084503 crossref_primary_10_1016_j_ijmachtools_2022_103918 crossref_primary_10_3390_math10030520 crossref_primary_10_1016_j_jmapro_2022_12_019 crossref_primary_10_3390_s25030765 crossref_primary_10_1007_s11431_019_1529_x crossref_primary_10_1016_j_mechmachtheory_2021_104331 crossref_primary_10_1016_j_jmsy_2024_02_014 crossref_primary_10_3390_machines10050389 crossref_primary_10_1016_j_rcim_2023_102548 crossref_primary_10_1115_1_4063606 crossref_primary_10_1016_j_rcim_2022_102345 crossref_primary_10_1016_j_rineng_2024_102298 crossref_primary_10_3390_math12020257 crossref_primary_10_1080_23311916_2024_2415670 crossref_primary_10_1016_j_jmsy_2023_05_019 crossref_primary_10_1088_1757_899X_1129_1_012059 crossref_primary_10_1115_1_4056300 crossref_primary_10_1115_1_4057071 crossref_primary_10_1016_j_cja_2021_06_006 crossref_primary_10_1088_1361_6501_ac0d25 crossref_primary_10_5937_fme2304512N crossref_primary_10_1007_s00170_024_13838_8 crossref_primary_10_1109_LRA_2024_3438039 crossref_primary_10_1016_j_rcim_2022_102354 crossref_primary_10_1016_j_promfg_2020_05_145 crossref_primary_10_1080_17480272_2023_2183897 crossref_primary_10_1016_j_ijmecsci_2020_106005 crossref_primary_10_1126_scirobotics_add6864 crossref_primary_10_1007_s10845_024_02451_x crossref_primary_10_1007_s00170_024_14880_2 crossref_primary_10_1016_j_rcim_2022_102476 crossref_primary_10_1080_0305215X_2022_2147519 crossref_primary_10_1109_ACCESS_2022_3201233 crossref_primary_10_3390_s22165963 crossref_primary_10_1016_j_measurement_2024_114866 crossref_primary_10_20965_ijat_2021_p0599 crossref_primary_10_1016_j_ymssp_2021_108523 crossref_primary_10_1002_adem_202001315 crossref_primary_10_1016_j_rcim_2023_102646 crossref_primary_10_2478_ama_2023_0060 crossref_primary_10_1016_j_ijmecsci_2022_107449 crossref_primary_10_1007_s00170_024_14427_5 crossref_primary_10_1016_j_measurement_2023_113381 crossref_primary_10_1016_j_jmsy_2021_11_009 crossref_primary_10_1016_j_rcim_2025_102992 crossref_primary_10_1007_s00170_022_09786_w crossref_primary_10_3390_robotics12060160 crossref_primary_10_3390_jmmp9020066 crossref_primary_10_3390_app10248885 crossref_primary_10_1007_s00170_021_07830_9 crossref_primary_10_3390_app13095328 crossref_primary_10_1016_j_apm_2021_12_031 crossref_primary_10_1016_j_rcim_2020_101966 crossref_primary_10_1016_j_rcim_2024_102814 crossref_primary_10_1080_0951192X_2019_1699256 crossref_primary_10_1088_1757_899X_831_1_012003 crossref_primary_10_3390_robotics13030035 crossref_primary_10_1016_j_measurement_2022_111934 crossref_primary_10_1007_s00170_022_10640_2 crossref_primary_10_1016_j_rcim_2024_102904 crossref_primary_10_1016_j_rcim_2020_102105 crossref_primary_10_1109_ACCESS_2022_3210247 crossref_primary_10_1016_j_rcim_2023_102623 crossref_primary_10_1016_j_rcim_2021_102307 crossref_primary_10_1109_TIM_2025_3542857 crossref_primary_10_1007_s00170_021_08087_y crossref_primary_10_1108_MD_02_2023_0285 crossref_primary_10_1007_s40684_020_00274_8 crossref_primary_10_3390_app10051685 crossref_primary_10_1016_j_cja_2020_12_030 crossref_primary_10_3390_machines10111026 crossref_primary_10_1016_j_engappai_2022_105491 crossref_primary_10_1109_ACCESS_2020_2987807 crossref_primary_10_1016_j_rcim_2019_101908 crossref_primary_10_1016_j_rcim_2020_101947 crossref_primary_10_1007_s11831_021_09570_1 crossref_primary_10_1177_0954405420986093 crossref_primary_10_1007_s00170_022_09526_0 crossref_primary_10_1109_JSEN_2022_3226492 crossref_primary_10_1007_s40799_022_00590_5 crossref_primary_10_3390_app13095259 crossref_primary_10_1016_j_rcim_2020_102047 crossref_primary_10_3390_machines11060655 crossref_primary_10_1016_j_procir_2023_09_126 crossref_primary_10_3390_app13042722 crossref_primary_10_3390_app14177482 crossref_primary_10_1016_j_rcim_2023_102609 crossref_primary_10_1016_j_jii_2024_100696 crossref_primary_10_3390_jmmp4030079 crossref_primary_10_1007_s00170_025_15333_0 crossref_primary_10_1016_j_cja_2019_09_001 crossref_primary_10_1007_s10845_023_02143_y crossref_primary_10_1016_j_ijmecsci_2021_106601 crossref_primary_10_1007_s11431_022_2115_x crossref_primary_10_1016_j_rcim_2023_102713 crossref_primary_10_1016_j_rcim_2021_102310 crossref_primary_10_1007_s00170_022_10275_3 crossref_primary_10_1080_17480272_2024_2366487 crossref_primary_10_1016_j_jestch_2023_101407 crossref_primary_10_1016_j_rcim_2025_103008 crossref_primary_10_1115_1_4056830 crossref_primary_10_1016_j_procir_2022_10_078 crossref_primary_10_1016_j_cirp_2020_04_045 crossref_primary_10_1016_j_aei_2025_103192 crossref_primary_10_3390_machines9070132 crossref_primary_10_1177_09574565231179731 crossref_primary_10_3390_s22197232 crossref_primary_10_1109_ACCESS_2022_3208160 crossref_primary_10_1016_j_precisioneng_2024_08_013 crossref_primary_10_1007_s00170_021_08591_1 crossref_primary_10_1080_17480272_2024_2324437 crossref_primary_10_1016_j_rcim_2022_102508 crossref_primary_10_1016_j_compag_2024_109517 crossref_primary_10_1016_j_fmre_2021_09_013 crossref_primary_10_1016_j_rineng_2023_101049 crossref_primary_10_1007_s00170_021_08503_3 crossref_primary_10_1007_s00170_021_07669_0 crossref_primary_10_1016_j_rcim_2025_102972 crossref_primary_10_3390_robotics11010017 crossref_primary_10_3390_machines13040268 crossref_primary_10_1140_epjp_s13360_024_05577_2 crossref_primary_10_1007_s12541_021_00552_8 crossref_primary_10_1007_s00170_024_14957_y crossref_primary_10_1016_j_jmapro_2023_06_063 crossref_primary_10_1016_j_rcim_2020_101987 crossref_primary_10_1007_s00170_019_04660_8 |
Cites_doi | 10.1016/j.rcim.2017.01.004 10.1007/s10015-015-0221-1 10.1007/s40430-017-0913-7 10.1007/978-3-319-97586-3_25 10.1016/j.rcim.2017.03.007 10.1016/j.rcim.2018.07.003 10.1016/j.ijmecsci.2018.07.004 10.1007/s00170-018-2925-6 10.1016/j.rcim.2011.02.003 10.1016/j.measurement.2016.08.032 10.17559/TV-20150210133556 10.1007/978-3-319-65292-4_17 10.1109/ETFA.2012.6489741 10.1016/j.rcim.2014.03.007 10.1007/s00170-017-0336-8 10.1016/j.jmapro.2018.11.022 10.1016/j.precisioneng.2017.04.001 10.1016/j.rcim.2015.06.002 10.1016/j.rcim.2017.09.004 10.1007/978-3-642-39223-8_3 10.1007/s10845-018-1440-9 10.1016/j.mechmachtheory.2008.06.001 10.1016/j.ijmecsci.2018.12.039 10.1016/j.rcim.2017.11.004 10.1109/EPEPEMC.2016.7752083 10.1109/TMECH.2018.2864652 10.1109/IECON.2015.7392191 10.1007/s11740-017-0771-2 10.1016/j.ifacol.2016.07.591 10.1109/SII.2013.6776741 10.1109/ROBOT.1994.351408 10.1016/j.procir.2017.03.246 10.1109/AUS.2016.7748106 10.3182/20130619-3-RU-3018.00211 10.1007/978-3-642-45540-7 10.1016/j.procir.2018.03.013 10.4028/www.scientific.net/AMM.346.45 10.1080/0951192X.2017.1305507 10.1163/156855387X00066 10.1007/s00170-014-6025-y 10.1016/j.procir.2013.06.170 10.1016/j.promfg.2017.11.010 10.1108/IR-09-2017-0176 10.1108/01439919610130328 10.1007/s00170-014-6021-2 10.1109/ICRA.2013.6630982 10.1109/ICCAS.2015.7364717 10.1243/0954405991516921 10.1007/978-94-009-3125-1 10.1109/TMECH.2016.2574813 10.1109/3477.658578 10.1016/j.proeng.2015.12.577 10.1007/s00170-016-8938-0 10.1108/01439910810843289 10.1007/978-1-84628-368-0 10.1109/AIM.2005.1511161 10.1016/j.cirp.2007.05.090 10.1109/TRO.2005.853492 10.1007/978-3-319-97586-3_28 10.1007/s001700050112 10.1109/IROS.2014.6943194 10.1007/s00170-015-7336-3 10.1109/AIM.2014.6878331 10.1016/j.ijmachtools.2015.11.011 10.1007/s11633-017-1101-z 10.1109/ETFA.2013.6648124 10.1109/EMS.2014.46 10.3390/s18093078 10.1016/j.rcim.2016.05.004 10.1109/ICRA.2016.7487579 10.4028/www.scientific.net/AMM.868.93 10.1007/s11740-014-0570-y 10.1177/0954405418802309 10.1016/j.procir.2013.05.052 10.1007/s00170-017-1466-8 10.1007/978-3-319-65292-4_8 10.1016/j.procir.2014.03.099 10.1016/j.rcim.2017.08.009 10.1504/IJMA.2015.068452 10.1109/CYBER.2017.8446556 10.1016/j.procir.2016.03.241 10.1117/12.2243652 10.1016/j.ymssp.2018.07.051 10.1109/AIM.2017.8014094 10.23919/IConAC.2017.8081984 10.1088/1757-899X/423/1/012032 10.1109/ICRA.2015.7139468 10.1016/S0924-0136(99)00315-5 10.1016/0736-5845(93)90054-N 10.1007/s00170-016-9731-9 10.1007/s001700300032 10.1016/j.measurement.2014.09.052 10.1016/j.rcim.2017.02.002 10.3182/20090909-4-JP-2010.00043 10.1109/IROS.2011.6094846 10.1109/ICMA.2014.6885695 10.1016/j.rcim.2018.07.004 10.1016/j.rcim.2006.08.001 10.1007/s00170-010-2888-8 10.1017/CBO9780511843723 10.1115/IMECE2017-71670 10.1080/0951192X.2018.1447688 10.4236/mme.2013.32A002 10.1007/978-3-642-39223-8_2 10.1109/ROBOT.2004.1302399 10.1016/j.promfg.2017.07.034 10.1007/s00170-016-9461-z 10.1016/j.jmatprotec.2005.11.033 10.1016/j.rcim.2016.12.005 10.1109/ISR.2013.6695731 10.4028/www.scientific.net/AMM.162.413 10.1243/0954405001518332 10.1002/rob.20151 10.3182/20130619-3-RU-3018.00184 10.1007/978-3-319-65292-4_2 10.1016/j.jmapro.2018.12.029 10.1007/s00170-012-4433-4 10.1007/s00170-015-8166-z 10.1109/ROBOT.1995.525481 10.1016/j.rcim.2018.07.001 10.4271/2016-01-2137 10.1016/j.promfg.2016.11.003 10.1007/s00170-018-3099-y 10.1177/1729881418793778 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Copyright Springer Nature B.V. 2019 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Copyright Springer Nature B.V. 2019 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTPV AOWAS D8V |
DOI | 10.1007/s00170-019-03403-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database Engineering Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1255 |
ExternalDocumentID | oai_DiVA_org_kth_255566 10_1007_s00170_019_03403_z |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: H2020-IND-CE-2016-17 funderid: http://dx.doi.org/10.13039/100010661 |
GroupedDBID | -5B -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- ML~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR _50 ~8M ~A9 ~EX -XW -XX -Y2 1SB 28- 2P1 2VQ 5QI 9M8 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADQRH ADRFC AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- PHGZM PHGZT R4E RIG RNI RZK S1Z S26 S28 SCLPG SCV T16 ZY4 ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c500t-29643024f4c5bca78204430df69c6f1a598f67fdbc901f16a8b4d0f5d530d903 |
IEDL.DBID | BENPR |
ISSN | 0268-3768 1433-3015 |
IngestDate | Thu Aug 21 06:10:56 EDT 2025 Fri Jul 25 11:08:32 EDT 2025 Fri Jul 25 11:07:57 EDT 2025 Fri Jul 25 11:05:43 EDT 2025 Tue Jul 01 00:40:17 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 21 02:30:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-4 |
Keywords | Machining process Trajectory planning Robotic machining Machining vibration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-29643024f4c5bca78204430df69c6f1a598f67fdbc901f16a8b4d0f5d530d903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-2 |
ORCID | 0000-0002-9642-6983 |
OpenAccessLink | https://doi.org/10.1007/s00170-019-03403-z |
PQID | 2279479862 |
PQPubID | 2044010 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_255566 proquest_journals_2490876338 proquest_journals_2279479862 proquest_journals_2252770955 crossref_citationtrail_10_1007_s00170_019_03403_z crossref_primary_10_1007_s00170_019_03403_z springer_journals_10_1007_s00170_019_03403_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2019 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Denkena B, Bergmann B, Lepper T (2017) Design and optimization of a machining robot. In: Procedia Manufacturing. Elsevier B.V., pp 89–96 Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. Proc - IEEE Int Conf Robot Autom 2921–2926 . doi: https://doi.org/10.1109/ICRA.2013.6630982 Domrös DF (2014) Towards autonomous robot machining. In: Conference ISR ROBOTIK. pp 448–453 JinnoMOzakiFYoshimiTDevelopment of a force controlled robot for grinding, chamfering and polishingProc - IEEE Int Conf Robot Autom1995214551460 Huynh HN, Kouroussis G, Verlinden O (2018) Modal updating of a 6-axis robot for milling application. In: 25th international congress on sound and vibration. pp 1–8 PanZZZhangHZhuZWangJChatter analysis of robotic machining processJ Mater Process Technol200617330130910.1016/j.jmatprotec.2005.11.033 NagataFOtsukaAWatanabeKHabibMKMachining robot for foamed polystyrene materials using fuzzy feed rate controller Fusaomi Nagata * and Akimasa Otsuka Keigo WatanabeInt J Mechatronics Autom20155344310.1504/IJMA.2015.068452 Nagata F, Hayashi S, Nagatomi T, et al (2015) Robotic trajectory following controller with a capability for generating micro vibrational motion along curved surface. IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc 765–770. doi: https://doi.org/10.1109/IECON.2015.7392191 International Federation of Robotics I (2017) Executive summary world Robotics 2017 Industrial Robots Klimchik A, Bondarenko D, Pashkevich A, et al (2012) Compensation of tool deflection in robotic-based milling. Icinco 113–122 LeeR-STsaiJ-PLeeJ-NKaoYCLinGCILuTFCollaborative virtual cutting verification and remote robot machining through the InternetProc Instn Mech Engre200021463564410.1243/0954405001518332 SlamaniMGauthierSChatelainJFA study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPsMeasurement20155926828310.1016/j.measurement.2014.09.052 Huan J (1982) Bahnregelung zur Bahnerzeugung an numerisch gesteuerten Werkzeugrnaschinen. Un- iversity of Stuttgart Bo H, Azhar M, Mohan DM, Campolo D (2015) Review of robotic control strategies for industrial finishing operations. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA). pp 1–6 KlimchikABondarenkoDPashkevichAFerrierJ-LBernardAGusikhinOMadaniKCompliance error compensation in robotic-based millingInformatics in control, automation and robotics: 9th international conference2012ChamSpringer International Publishing197216 BruneteAGambaoEKoskinenJHeikkiläTKaldestadKBTyapinIHovlandGSurdilovicDHernandoMBotteroAAntonSHard material small-batch industrial machining robotRobot Comput Integr Manuf2017000115 Ding Y, Min X, Fu W, Liang Z (2018) Research and application on force control of industrial robot polishing concave curved surfaces. Proc Inst Mech Eng Part B J Eng Manuf 0954405418802309. doi: https://doi.org/10.1177/0954405418802309 SchneiderUDrustMAnsaloniMLehmannCPellicciariMLealiFGunninkJWVerlAImproving robotic machining accuracy through experimental error investigation and modular compensationInt J Adv Manuf Technol20168531510.1007/s00170-014-6021-2 Sufian M, Chen X, Yu D (2017) Investigating the capability of precision in robotic grinding. In: Proceedings of the 23rd International Conference on Automation & Computing. Huddersfield, UK Villagrossi E (2016) robot dynamics modelling and control for machining applications. Università degli Studi di Brescia DongSLiaoWZhengKLiuJFengJInvestigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacksInt J Mech Sci201915186887610.1016/j.ijmecsci.2018.12.039 He F, Liu Y, Liu K (2018) A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling. Int J Adv Manuf Technol doi: https://doi.org/10.1007/s00170-018-3099-y Ricardo J, Posada D, Kumar S, et al (2016) Automatic programming and control for robotic deburring description of the robot deburring system. In: 47th international symposium on Robotics pp 688–695 Schneider U, Diaz Posada JR, Verl A (2015) Automatic pose optimization for robotic processes. Proc - IEEE Int Conf robot autom 2054–2059. doi: https://doi.org/10.1109/ICRA.2015.7139468 Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization in robotic-based manufacturing. IFAC, Workpiece Placement Optimization in Robotic-based Manufacturing OwenWSCroftEABenhabibBReal-time trajectory resolution for dual robot machiningIEEE Int Conf Robot Autom 2004 Proceedings ICRA2004543324337 HuynhHNRiviere-LorphevreEVerlindenOMilling simulations with a 3-DOF flexibleInt J Mech aerospace Ind Mechatron Manuf Eng20161015431552 TangXYanRPengFLiuGLiHWeiDFanZChenZMendesAYanYChenSDeformation error prediction and compensation for robot multi-axis millingIntelligent robotics and applications2018ChamSpringer International Publishing30931810.1007/978-3-319-97586-3_28 IglesiasISebastiánMAAresJEOverview of the state of robotic machining: current situation and future potentialProcedia Eng201513291191710.1016/j.proeng.2015.12.577 Yuan L (2017) A study of chatter in robotic machining and a semi- active chatter suppression method using magnetorheological elastomers (MREs). University of Wollongong Puzik A, Meyer C, Verl A (2010) Results of robot machining with additional 3D-piezo-actuation-mechanism for error compensation.7th CIRP Int Conf, Intell Comput … 415–421 XieYZouWYangYLiaJDesign of robotic end-effector for milling force controlIOP Conf Ser Mater Sci Eng201842310.1088/1757-899X/423/1/012032 Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press Qin C, Tao J, Wang M, Liu C (2016) A novel approach for the acquisition of vibration signals of the end effector in robotic drilling. AUS 2016–2016 IEEE/CSAA Int Conf Aircr Util Syst 522–526. doi: https://doi.org/10.1109/AUS.2016.7748106 XiongGDingYZhuLMStiffness-based pose optimization of an industrial robot for five-axis millingRobot Comput Integr Manuf201955192810.1016/j.rcim.2018.07.001 DongSZhengKLiaoWStability of lateral vibration in robotic rotary ultrasonic drillingInt J Mech Sci201814534635210.1016/j.ijmecsci.2018.07.004 OwenWSCroftEABenhabibBReal-time trajectory resolution for a two-manipulator machining systemJ Robot Syst200622516310.1002/rob.201511163.70309 SlamaniMGauthierSChatelainJFAnalysis of trajectory deviation during high speed robotic trimming of carbon-fiber reinforced polymersRobot Comput Integr Manuf20143054655510.1016/j.rcim.2014.03.007 DenkenaBLitwinskiKSchönherrMInnovative drive concept for machining robotsProcedia CIRP20139677210.1016/j.procir.2013.06.170 LehmannCPellicciariMDrustMGunninkJWNetoPMoreiraAPMachining with industrial robots: the COMET project approachRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg273610.1007/978-3-642-39223-8_3 SlamaniMChatelainJFAssessment of the suitability of industrial robots for the machining of carbon-fiber reinforced polymers (CFRPs)J Manuf Process20193717719510.1016/j.jmapro.2018.11.022 UhlmannEReinkoberSHollerbachTEnergy efficient usage of industrial robots for machining processesProcedia CIRP20164820621110.1016/j.procir.2016.03.241 MaoYZhaoHZhaoXDingHHuangYWuHLiuHYinZTrajectory and force generation with multi-constraints for robotic belt grindingIntelligent robotics and applications2017ChamSpringer International Publishing142310.1007/978-3-319-65292-4_2 LealiFPellicciariMPiniFBerselliGVergnanoANetoPMoreiraAPAn offline programming method for the robotic deburring of aerospace componentsRobotics in Smart Manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg113 XieSLiSChenBQiJHuangYWuHLiuHYinZResearch on robot grinding technology considering removal rate and roughnessIntelligent robotics and applications2017ChamSpringer International Publishing799010.1007/978-3-319-65292-4_8 TratarJPušavecFKopačJTool wear performance evaluation in MDF machining with anthropomorphic robotTech Gaz201421911915 ChenYDongFRobot machining: recent development and future research issuesInt J Adv Manuf Technol2013661489149710.1007/s00170-012-4433-4 XiongGDingYZhuLHuangYWuHLiuHYinZA feed-direction stiffness based trajectory optimization method for a milling robotIntelligent robotics and applications2017ChamSpringer International Publishing18419510.1007/978-3-319-65292-4_17 Muto S, Shimokura K (1994) Teaching and control of robot contour-tracking using contact point detection. Proc 1994 IEEE Int Conf Robot Autom:674–681. https://doi.org/10.1109/ROBOT.1994.351408 GuoYDongHWangGA robotic boring system for intersection holes in aircraft assemblyInd Robot An Int J20184532833610.1108/IR-09-2017-0176 Karim A, Hitzer J, Lechler A, Verl A (2017) Analysis of the dynamic behavior of a six-axis industrial robot within the entire workspace in respect of machining tasks. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM:670–675. https://doi.org/10.1109/AIM.2017.8014094 PandianJAutomated fixture and robot aided deburring for light aircraft components1998Winnipeg, ManitobaUniversity of Manitoba MatsuokaSIShimizuKYamazakiNOkiYHigh-speed end milling of an articulated robot and its characteristicsJ Mater Process Technol199995838910.1016/S0924-0136(99)00315-5 JiWWangYLiuHWangLInterface architecture design for minimum programming in human-robot collaborationProcedia CIRP20187212913410.1016/j.procir.2018.03.013 HuYNChenYHImplementation of a robot system for sculptured surface cutting. Part 2. Finish machiningInt J Adv Manuf Technol19991563063910.1007/s001700050112 ToquicaJSživanovićSAlvaresAJBonnardRA STEP-NC compliant robotic machining platform for advanced manufacturingInt J Adv Manuf Technol2018953839385410.1007/s00170-017-1466-8 KlimchikAAmbiehlAGarnierSSFuretBPashkevichAEfficiency evaluation of robots in machining applications using industrial performance measureRobot Comput Integr Manuf201748122910.1016/j.rcim.2016.12.005 HuangHGongZMChenXQZhouLSMART robotic system for 3D profile 3403_CR89 T Zhang (3403_CR36) 2018; 15 U Schneider (3403_CR76) 2013; 7 3403_CR81 DGG Rosa (3403_CR135) 2017; 39 JSM Vergeest (3403_CR14) 1996; 23 3403_CR80 F Nagata (3403_CR9) 2014; 2014 HN Huynh (3403_CR143) 2016; 10 E Villagrossi (3403_CR25) 2018; 31 U Schneider (3403_CR79) 2016; 85 3403_CR83 3403_CR82 D Milutinovic (3403_CR7) 2011; 53 3403_CR120 3403_CR121 3403_CR122 A Klimchik (3403_CR54) 2017; 48 3403_CR129 3403_CR78 F Leali (3403_CR137) 2016; 85 3403_CR77 X Tang (3403_CR124) 2018 R-S Lee (3403_CR147) 2000; 214 F Domroes (3403_CR26) 2013; 3 3403_CR70 Y Guo (3403_CR86) 2018; 45 J Brüning (3403_CR106) 2016; 6 3403_CR73 I Iglesias (3403_CR19) 2015; 132 3403_CR72 P Lei (3403_CR149) 2017; 46 Y Lin (3403_CR56) 2017; 48 S Garnier (3403_CR110) 2017; 58 3403_CR131 3403_CR133 Y Guo (3403_CR71) 2016; 101 3403_CR134 S Dong (3403_CR88) 2019; 151 M Slamani (3403_CR92) 2014; 30 G Xiong (3403_CR94) 2017 Y Song (3403_CR6) 1999; 213 JD Barnfather (3403_CR128) 2016; 94 3403_CR139 JS Toquica (3403_CR142) 2018; 95 S Xie (3403_CR32) 2017 3403_CR69 A Klimchik (3403_CR53) 2016; 49 3403_CR61 WS Owen (3403_CR101) 2008; 24 WS Owen (3403_CR97) 2006; 22 3403_CR144 D Katić (3403_CR45) 1998; 28 M Slamani (3403_CR125) 2016; 42 3403_CR148 JD Barnfather (3403_CR127) 2016; 37 LFF Furtado (3403_CR113) 2017; 92 M Slamani (3403_CR126) 2019; 37 B Denkena (3403_CR130) 2013; 9 F Nagata (3403_CR11) 2015; 20 3403_CR52 G Wang (3403_CR84) 2016; 86 3403_CR51 3403_CR50 L Yuan (3403_CR20) 2018; 23 K Subrin (3403_CR55) 2012; 162 W Ji (3403_CR41) 2018; 72 YN Hu (3403_CR5) 1999; 15 Y Mao (3403_CR35) 2017 S Diao (3403_CR43) 2018; 18 J Tratar (3403_CR116) 2013; 16 WS Owen (3403_CR98) 2005; 21 W Li (3403_CR34) 2016; 21 H Xie (3403_CR58) 2018 3403_CR44 M Slamani (3403_CR93) 2015; 59 S Mejri (3403_CR115) 2016; 82 3403_CR42 3403_CR1 3403_CR49 C Lehmann (3403_CR74) 2013 3403_CR48 B Solvang (3403_CR138) 2009; 42 3403_CR46 L Cen (3403_CR107) 2017; 10 C Dumas (3403_CR47) 2011; 27 3403_CR3 SI Matsuoka (3403_CR114) 1999; 95 3403_CR2 3403_CR40 H Huang (3403_CR39) 2003; 21 F Rafieian (3403_CR30) 2014; 14 M Cordes (3403_CR65) 2019; 55 B Denkena (3403_CR146) 2017; 11 W Owen (3403_CR100) 2008; 35 3403_CR33 3403_CR31 M Cordes (3403_CR123) 2017; 90 U Schneider (3403_CR75) 2013 S Yan (3403_CR37) 2019; 37 L Yuan (3403_CR68) 2019; 117 Y Xie (3403_CR132) 2018; 423 F Nagata (3403_CR13) 2018; 15 J Pandian (3403_CR38) 1998 F Leali (3403_CR29) 2013 S Mousavi (3403_CR59) 2017; 88 G Xiong (3403_CR57) 2019; 55 S Mousavi (3403_CR60) 2018; 50 ZZ Pan (3403_CR63) 2006; 173 E Appleton (3403_CR4) 1987 S Dong (3403_CR87) 2018; 145 JH Chin (3403_CR90) 1993; 10 SN Rea Minango (3403_CR140) 2017; 30 S Zivanovic (3403_CR141) 2018; 49 WS Owen (3403_CR99) 2004; 5 3403_CR109 3403_CR22 SM Safi (3403_CR66) 2013; 346 A Klimchik (3403_CR117) 2012 3403_CR27 WS Owen (3403_CR102) 2009; 44 3403_CR24 P Krži (3403_CR91) 2013; 3651 E Uhlmann (3403_CR145) 2016; 48 A Brunete (3403_CR136) 2017; 000 T Izumi (3403_CR21) 1987; 2 Y Bu (3403_CR62) 2017; 49 3403_CR103 3403_CR28 3403_CR104 F Nagata (3403_CR10) 2015; 5 M Jinno (3403_CR23) 1995; 2 G Wang (3403_CR85) 2017; 91 3403_CR108 3403_CR12 M Höfener (3403_CR119) 2014; 8 J Tratar (3403_CR111) 2014; 21 3403_CR15 3403_CR96 3403_CR95 H Vieler (3403_CR67) 2017; 47 C Chen (3403_CR105) 2019; 55 E Abele (3403_CR64) 2007; 56 Y Chen (3403_CR16) 2013; 66 3403_CR112 Z Dimic (3403_CR8) 2016; 23 3403_CR18 3403_CR17 3403_CR118 |
References_xml | – reference: Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. Proc - IEEE Int Conf Robot Autom 2921–2926 . doi: https://doi.org/10.1109/ICRA.2013.6630982 – reference: JinnoMOzakiFYoshimiTDevelopment of a force controlled robot for grinding, chamfering and polishingProc - IEEE Int Conf Robot Autom1995214551460 – reference: Ding Y, Min X, Fu W, Liang Z (2018) Research and application on force control of industrial robot polishing concave curved surfaces. Proc Inst Mech Eng Part B J Eng Manuf 0954405418802309. doi: https://doi.org/10.1177/0954405418802309 – reference: HuYNChenYHImplementation of a robot system for sculptured surface cutting. Part 2. Finish machiningInt J Adv Manuf Technol19991563063910.1007/s001700050112 – reference: DomroesFKrewetCKuhlenkoetterBApplication and analysis of force control strategies to deburring and grindingMod Mech Eng20133111810.4236/mme.2013.32A002 – reference: TangXYanRPengFLiuGLiHWeiDFanZChenZMendesAYanYChenSDeformation error prediction and compensation for robot multi-axis millingIntelligent robotics and applications2018ChamSpringer International Publishing30931810.1007/978-3-319-97586-3_28 – reference: AppletonEWilliamsDJIndustrial robot applications1987New YorkHALSTED PRESS10.1007/978-94-009-3125-1 – reference: OwenWSCroftEABenhabibBAcceleration and torque redistrubution for a dual-manipulator systemIEEE Trans Robot2005211226123010.1109/TRO.2005.853492 – reference: DenkenaBLitwinskiKSchönherrMInnovative drive concept for machining robotsProcedia CIRP20139677210.1016/j.procir.2013.06.170 – reference: LealiFPellicciariMPiniFBerselliGVergnanoANetoPMoreiraAPAn offline programming method for the robotic deburring of aerospace componentsRobotics in Smart Manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg113 – reference: DongSLiaoWZhengKLiuJFengJInvestigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacksInt J Mech Sci201915186887610.1016/j.ijmecsci.2018.12.039 – reference: Garnier S, Dumas C, Caro S, Furet B (2013) Quality certification and productivity optimization in robotic-based manufacturing. IFAC, Quality Certification and Productivity Optimization in Robotic-based Manufacturing – reference: Choi S, Cho CN, Kim H-J (2015) Development of hexapod robot for machining. In: 15th international conference on control, automation and systems. pp 738–740 – reference: BrüningJDenkenaBDittrichMAParkH-SSimulation based planning of machining processes with industrial robotsProcedia Manuf20166172410.1016/j.promfg.2016.11.003 – reference: Klimchik A, Bondarenko D, Pashkevich A, et al (2012) Compensation of tool deflection in robotic-based milling. Icinco 113–122 – reference: SubrinKSabourinLGoguGMezouarYPerformance criteria to evaluate a kinematically redundant robotic cell for machining tasksAppl Mech Mater201216241342210.4028/www.scientific.net/AMM.162.413 – reference: Puzik A, Meyer C, Verl A (2010) Results of robot machining with additional 3D-piezo-actuation-mechanism for error compensation.7th CIRP Int Conf, Intell Comput … 415–421 – reference: LiWXieHZhangGYanSJYinZP3-D shape matching of a blade surface in robotic grinding applicationsIEEE/ASME Trans Mechatronics2016212294230610.1109/TMECH.2016.2574813 – reference: OwenWSCroftEABenhabibBReal-time trajectory resolution for dual robot machiningIEEE Int Conf Robot Autom 2004 Proceedings ICRA2004543324337 – reference: HuynhHNRiviere-LorphevreEVerlindenOMilling simulations with a 3-DOF flexibleInt J Mech aerospace Ind Mechatron Manuf Eng20161015431552 – reference: LinYZhaoHDingHPosture optimization methodology of 6R industrial robots for machining using performance evaluation indexesRobot Comput Integr Manuf201748597210.1016/j.rcim.2017.02.002 – reference: XieSLiSChenBQiJHuangYWuHLiuHYinZResearch on robot grinding technology considering removal rate and roughnessIntelligent robotics and applications2017ChamSpringer International Publishing799010.1007/978-3-319-65292-4_8 – reference: Nagata F, Hayashi S, Nagatomi T, et al (2015) Robotic trajectory following controller with a capability for generating micro vibrational motion along curved surface. IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc 765–770. doi: https://doi.org/10.1109/IECON.2015.7392191 – reference: CordesMHintzeWOffline simulation of path deviation due to joint compliance and hysteresis for robot machiningInt J Adv Manuf Technol2017901075108310.1007/s00170-016-9461-z – reference: Cheng K (2008) Machining dynamics: fundamentals, applications and practices. Springer Science & Business Media – reference: SolvangBRefsahlLKSziebigGSTEP-NC based industrial robot CAM systemIFAC Proc20094224525010.3182/20090909-4-JP-2010.00043 – reference: ZhangTSuJCollision-free planning algorithm of motion path for the robot belt grinding systemInt J Adv Robot Syst20181517298814187937710.1177/1729881418793778 – reference: YuanLSunSPanZDingDGienkeOLiWMode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorberMech Syst Signal Process201911722123710.1016/j.ymssp.2018.07.051 – reference: SlamaniMGauthierSChatelainJFA study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPsMeasurement20155926828310.1016/j.measurement.2014.09.052 – reference: Lijin F, Li LI, Guoxun W (2017) Integration of cutting robot with CAD/CAM system based on STEP-NC. 868:93–98 . doi: https://doi.org/10.4028/www.scientific.net/AMM.868.93 – reference: LehmannCPellicciariMDrustMGunninkJWNetoPMoreiraAPMachining with industrial robots: the COMET project approachRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg273610.1007/978-3-642-39223-8_3 – reference: MousaviSGagnolVBouzgarrouBCRayPDynamic modeling and stability prediction in robotic machiningInt J Adv Manuf Technol2017883053306510.1007/s00170-016-8938-0 – reference: GuoYDongHWangGA robotic boring system for intersection holes in aircraft assemblyInd Robot An Int J20184532833610.1108/IR-09-2017-0176 – reference: TratarJPušavecFKopačJTool wear performance evaluation in MDF machining with anthropomorphic robotTech Gaz201421911915 – reference: SlamaniMChatelainJFAssessment of the suitability of industrial robots for the machining of carbon-fiber reinforced polymers (CFRPs)J Manuf Process20193717719510.1016/j.jmapro.2018.11.022 – reference: OwenWSCroftEABenhabibBOn-line trajectory resolution for two-armed systems with conflicting performance criteriaMech Mach Theory20094494996510.1016/j.mechmachtheory.2008.06.0011350.70015 – reference: MilutinovicDGlavonjicMSlavkovicNDimicZZivanovicSKokotovicBTanovicLReconfigurable robotic machining system controlled and programmed in a machine tool mannerInt J Adv Manuf Technol2011531217122910.1007/s00170-010-2888-8 – reference: KatićDVukobratovićMA neural network-based classification of environment dynamics models for compliant control of manipulation robotsIEEE Trans Syst Man, Cybern Part B Cybern199828586910.1109/3477.658578 – reference: WangGDongHGuoYKeYDynamic cutting force modeling and experimental study of industrial robotic boringInt J Adv Manuf Technol20168617919010.1007/s00170-015-8166-z – reference: BuYLiaoWTianWZhangJZhangLStiffness analysis and optimization in robotic drilling applicationPrecis Eng20174938840010.1016/j.precisioneng.2017.04.001 – reference: He F, Liu Y, Liu K (2018) A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling. Int J Adv Manuf Technol doi: https://doi.org/10.1007/s00170-018-3099-y – reference: Surdilovic D, Zhao H, Schreck G, Krueger J (2012) Advanced methods for small batch robotic machining of hard materials. Robot Proc Robot 2012; 7th Ger Conf 1–6 – reference: AbeleEWeigoldMRothenbücherSModeling and identification of an industrial robot for machining applicationsCIRP Ann - Manuf Technol20075638739010.1016/j.cirp.2007.05.090 – reference: MaoYZhaoHZhaoXDingHHuangYWuHLiuHYinZTrajectory and force generation with multi-constraints for robotic belt grindingIntelligent robotics and applications2017ChamSpringer International Publishing142310.1007/978-3-319-65292-4_2 – reference: SongYChenYHFeature-based robot machining for rapid prototypingProc Inst Mech Eng Part B J Eng Manuf199921345145910.1243/0954405991516921 – reference: GarnierSSubrinKWaiyaganKModelling of robotic drillingProcedia CIRP20175841642110.1016/j.procir.2017.03.246 – reference: Rea MinangoSNFerreiraJCECombining the STEP-NC standard and forward and inverse kinematics methods for generating manufacturing tool paths for serial and hybrid robotsInt J Comput Integr Manuf2017301203122310.1080/0951192X.2017.1305507 – reference: ChinJHTsaiHCA path algorithm for robotic machiningRobot Comput Integr Manuf19931018519810.1016/0736-5845(93)90054-N – reference: Halbauer M, Lehmann C, Städter JP et al (2013) Milling strategies optimized for industrial robots to machine hard materials. IEEE Int Conf Emerg Technol Fact Autom ETFA:1–4. https://doi.org/10.1109/ETFA.2013.6648124 – reference: SchneiderUDrustMPuzikAVerlACompensation of errors in robot machining with a parallel 3D-piezo compensation mechanismProcedia CIRP2013730531010.1016/j.procir.2013.05.052 – reference: NagataFOtsukaAWatanabeKHabibMKFuzzy feed rate controller for a machining robotIEEE Int Conf Mechatronics Autom IEEE ICMA20142014198203 – reference: SafiSMAmirabadiHLirabiIKhaliliKRahnamaSA new approach for chatter prediction in robotic milling based on signal processing in time domainAppl Mech Mater2013346455110.4028/www.scientific.net/AMM.346.45 – reference: JiWWangYLiuHWangLInterface architecture design for minimum programming in human-robot collaborationProcedia CIRP20187212913410.1016/j.procir.2018.03.013 – reference: Karim A, Hitzer J, Lechler A, Verl A (2017) Analysis of the dynamic behavior of a six-axis industrial robot within the entire workspace in respect of machining tasks. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM:670–675. https://doi.org/10.1109/AIM.2017.8014094 – reference: SlamaniMGauthierSChatelainJFAnalysis of trajectory deviation during high speed robotic trimming of carbon-fiber reinforced polymersRobot Comput Integr Manuf20143054655510.1016/j.rcim.2014.03.007 – reference: VergeestJSMTangelderJWHRobot machines rapid prototypeInd Robot An Int J199623172010.1108/01439919610130328 – reference: XieYZouWYangYLiaJDesign of robotic end-effector for milling force controlIOP Conf Ser Mater Sci Eng201842310.1088/1757-899X/423/1/012032 – reference: Kubela T, Pochyly A, Singule V (2016) Assessment of industrial robots accuracy in relation to accuracy improvement in machining processes. Proc - 2016 IEEE Int power Electron motion control Conf PEMC 2016 720–725. doi: doi:https://doi.org/10.1109/EPEPEMC.2016.7752083 – reference: DiaoSChenXLuoJDevelopment and experimental evaluation of a 3D vision system for grinding robotSensors (Switzerland)201818120 – reference: Olofsson B, Sörnmo O, Schneider U, et al (2011) Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. In: 2011 IEEE/RSJ international conference on intelligent robots and systems. pp 4704–4709 – reference: Atmosudiro A, Keinert M, Karim A, et al (2014) Productivity increase through joint space path planning for robot machining. Proc - UKSim-AMSS 8th Eur model Symp Comput model simulation, EMS 2014 257–262 . doi: https://doi.org/10.1109/EMS.2014.46 – reference: SlamaniMGauthierSChatelainJ-FComparison of surface roughness quality obtained by high speed CNC trimming and high speed robotic trimming for CFRP laminateRobot Comput Integr Manuf201642637210.1016/j.rcim.2016.05.004 – reference: Muto S, Shimokura K (1994) Teaching and control of robot contour-tracking using contact point detection. Proc 1994 IEEE Int Conf Robot Autom:674–681. https://doi.org/10.1109/ROBOT.1994.351408 – reference: NagataFHabibMKOtsukaAHayashiSNagatomiTWatanabeKVibrational motion control for foamed polystyrene machining robot and extraction of radius of curvature for fuzzy feed rate controlArtif Life Robot20152019720210.1007/s10015-015-0221-1 – reference: YuanLPanZDingDSunSLiWA review on chatter in robotic machining process regarding both regenerative and mode coupling mechanismIEEE/ASME Trans Mechatronics2018232240225110.1109/TMECH.2018.2864652 – reference: Zhang H, Wang J, Zhang G, et al (2005) Machining with flexible manipulator: toward improving robotic machining performance. Proceedings, 2005 IEEE/ASME Int Conf Adv Intell Mechatronics 1127–1132 . doi: https://doi.org/10.1109/AIM.2005.1511161 – reference: KlimchikABondarenkoDPashkevichAFerrierJ-LBernardAGusikhinOMadaniKCompliance error compensation in robotic-based millingInformatics in control, automation and robotics: 9th international conference2012ChamSpringer International Publishing197216 – reference: ChenYDongFRobot machining: recent development and future research issuesInt J Adv Manuf Technol2013661489149710.1007/s00170-012-4433-4 – reference: Leali F, Pini F, Ansaloni M (2013) Integration of CAM off-line programming in robot high-accuracy machining. In: proceedings of the 2013 IEEE/SICE international symposium on system Integration pp 580–585 – reference: PanZZZhangHZhuZWangJChatter analysis of robotic machining processJ Mater Process Technol200617330130910.1016/j.jmatprotec.2005.11.033 – reference: DimicZMilutinovicDZivanovicSKvrgicVVirtual environment in control and programming system for reconfigurable machining robot 9Teh Vjesn - Tech Gaz20162318211182 – reference: Puzik A, Meyer C, Verl A (2010) Industrial robots for machining processes in combination with a 3D-piezo-compensation mechanism. CIRP Intell Comput Manuf Eng ICME – reference: MatsuokaSIShimizuKYamazakiNOkiYHigh-speed end milling of an articulated robot and its characteristicsJ Mater Process Technol199995838910.1016/S0924-0136(99)00315-5 – reference: Liu H, Wan Y, Zeng Z, et al (2016) Freeform surface grinding and polishing by CCOS based on industrial robot. In: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, – reference: KlimchikAAmbiehlAGarnierSFuretBPashkevichAExperimental study of robotic-based machiningIFAC-PapersOnLine201649174179360976010.1016/j.ifacol.2016.07.591 – reference: Haage M, Halbauer M, Lehmann C, Städter JP (2014) Increasing robotic machining accuracy using offline compensation based on joint-motion SIMULATION Proc Jt Conf ISR 2014 - 45th Int Symp Robot Robot 2014 - 8th Ger Conf Robot ISR/ROBOTIK 2014 347–354 – reference: NagataFOtsukaAWatanabeKHabibMKMachining robot for foamed polystyrene materials using fuzzy feed rate controller Fusaomi Nagata * and Akimasa Otsuka Keigo WatanabeInt J Mechatronics Autom20155344310.1504/IJMA.2015.068452 – reference: IglesiasISebastiánMAAresJEOverview of the state of robotic machining: current situation and future potentialProcedia Eng201513291191710.1016/j.proeng.2015.12.577 – reference: LeiPZhengLAn automated in-situ alignment approach for finish machining assembly interfaces of large-scale componentsRobot Comput Integr Manuf20174613014310.1016/j.rcim.2017.01.004 – reference: PandianJAutomated fixture and robot aided deburring for light aircraft components1998Winnipeg, ManitobaUniversity of Manitoba – reference: Höfener M, Schüppstuhl T (2014) Small industrial robots for on-aircraft repair of composite structures summary/abstract kinematics for on-aircraft machining of composites. In: Conference ISR ROBOTIK. pp 422–427 – reference: SchneiderUAnsaloniMDrustMLealiFVerlANetoPMoreiraAPExperimental investigation of sources of error in robot machiningRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg142610.1007/978-3-642-39223-8_2 – reference: OwenWSCroftEABenhabibBA multi-arm robotic system for optimal sculptingRobot Comput Integr Manuf2008249210410.1016/j.rcim.2006.08.001 – reference: DongSZhengKLiaoWStability of lateral vibration in robotic rotary ultrasonic drillingInt J Mech Sci201814534635210.1016/j.ijmecsci.2018.07.004 – reference: KržiPPušavecFKopaJKinematic constraints and offline programming in robotic machiningTeh Vjesn20133651117124 – reference: Yuan L (2017) A study of chatter in robotic machining and a semi- active chatter suppression method using magnetorheological elastomers (MREs). University of Wollongong – reference: CenLMelkoteSNEffect of robot dynamics on the machining forces in robotic millingProcedia Manuf20171048649610.1016/j.promfg.2017.07.034 – reference: BarnfatherJDGoodfellowMJAbramTDevelopment and testing of an error compensation algorithm for photogrammetry assisted robotic machiningMeasurement20169456157710.1016/j.measurement.2016.08.032 – reference: XiongGDingYZhuLMStiffness-based pose optimization of an industrial robot for five-axis millingRobot Comput Integr Manuf201955192810.1016/j.rcim.2018.07.001 – reference: UhlmannEReinkoberSHollerbachTEnergy efficient usage of industrial robots for machining processesProcedia CIRP20164820621110.1016/j.procir.2016.03.241 – reference: XiongGDingYZhuLHuangYWuHLiuHYinZA feed-direction stiffness based trajectory optimization method for a milling robotIntelligent robotics and applications2017ChamSpringer International Publishing18419510.1007/978-3-319-65292-4_17 – reference: Ricardo J, Posada D, Kumar S, et al (2016) Automatic programming and control for robotic deburring description of the robot deburring system. In: 47th international symposium on Robotics pp 688–695 – reference: GuoYDongHWangGKeYVibration analysis and suppression in robotic boring processInt J Mach Tools Manuf201610110211010.1016/j.ijmachtools.2015.11.011 – reference: Diaz Posada JR, Schneider U, Pidan S, et al (2016) High accurate robotic drilling with external sensor and compliance model-based compensation. Proc - IEEE Int Conf robot autom 3901–3907 . doi: https://doi.org/10.1109/ICRA.2016.7487579 – reference: Villagrossi E (2016) robot dynamics modelling and control for machining applications. Università degli Studi di Brescia – reference: LeeR-STsaiJ-PLeeJ-NKaoYCLinGCILuTFCollaborative virtual cutting verification and remote robot machining through the InternetProc Instn Mech Engre200021463564410.1243/0954405001518332 – reference: Sufian M, Chen X, Yu D (2017) Investigating the capability of precision in robotic grinding. In: Proceedings of the 23rd International Conference on Automation & Computing. Huddersfield, UK – reference: Schneider U, Momeni-K M, Ansaloni M, Verl A (2014) Stiffness modeling of industrial robots for deformation compensation in machining. IEEE Int Conf Intell Robot Syst 4464–4469 . doi: https://doi.org/10.1109/IROS.2014.6943194 – reference: International Federation of Robotics I (2017) Executive summary world Robotics 2017 Industrial Robots – reference: Huynh HN, Riviere-Lorphevre E, Verlinden O (2018) Multibody modelling of a flexible 6-axis robot dedicated to robotic machining. In: the 5th joint international conference on multibody system Dynamics. pp 1–18 – reference: FurtadoLFFVillaniETrabassoLGSutérioRA method to improve the use of 6-dof robots as machine toolsInt J Adv Manuf Technol2017922487250210.1007/s00170-017-0336-8 – reference: OwenWCroftEBenhabibBStiffness optimization for two-armed robotic sculptingInd Robot An Int J200835465710.1108/01439910810843289 – reference: Ji W, Li Y, Wang L (2018) A task-oriented cyber-physical system in manufacturing. In: The 48th international conference on computers and industrial engineering. Auckland, p 8 – reference: RosaDGGFeiteiraJFSLopesAMde AbreuPAFAnalysis and implementation of a force control strategy for drilling operations with an industrial robotJ Braz Soc Mech Sci Eng2017394749475610.1007/s40430-017-0913-7 – reference: Karim A, Verl A (2013) Challenges and obstacles in robot-machining. 2013 44th Int Symp robot ISR 2013. doi: https://doi.org/10.1109/ISR.2013.6695731 – reference: CordesMHintzeWAltintasYChatter stability in robotic millingRobot Comput Integr Manuf201955111810.1016/j.rcim.2018.07.004 – reference: TratarJKopačJRobot milling of welded structuresJ Prod Eng2013162932 – reference: SchneiderUDrustMAnsaloniMLehmannCPellicciariMLealiFGunninkJWVerlAImproving robotic machining accuracy through experimental error investigation and modular compensationInt J Adv Manuf Technol20168531510.1007/s00170-014-6021-2 – reference: OwenWSCroftEABenhabibBReal-time trajectory resolution for a two-manipulator machining systemJ Robot Syst200622516310.1002/rob.201511163.70309 – reference: ChenCPengFYanRLiYWeiDFanZTangXZhuZStiffness performance index based posture and feed orientation optimization in robotic milling processRobot Comput Integr Manuf201955294010.1016/j.rcim.2018.07.003 – reference: Olof S, Schneider U, Robertsson A, et al (2013) High-accuracy milling with industrial robots using a piezo-actuated high-dynamic compensation mechanism. Comet – reference: Ji W, Yin S, Wang L (2018) A big data analytics based machining optimisation approach. J Intell Manuf. https://doi.org/10.1007/s10845-018-1440-9 – reference: ToquicaJSživanovićSAlvaresAJBonnardRA STEP-NC compliant robotic machining platform for advanced manufacturingInt J Adv Manuf Technol2018953839385410.1007/s00170-017-1466-8 – reference: MousaviSGagnolVBouzgarrouBCRayPStability optimization in robotic milling through the control of functional redundanciesRobot Comput Integr Manuf20185018119210.1016/j.rcim.2017.09.004 – reference: RafieianFHazelBLiuZRegenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot armProcedia CIRP20141440641110.1016/j.procir.2014.03.099 – reference: Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press – reference: KATIC D, VUKOBRATOVIC M (1997) Classification and learning of robot-environment dynamic models. In: proceedings of the 1997 EEE Intemational conference on robotics and automation. pp 2632–2637 – reference: Denkena B, Bergmann B, Lepper T (2017) Design and optimization of a machining robot. In: Procedia Manufacturing. Elsevier B.V., pp 89–96 – reference: Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization in robotic-based manufacturing. IFAC, Workpiece Placement Optimization in Robotic-based Manufacturing – reference: VillagrossiEPedrocchiNBeschiMMolinari TosattiLA human mimicking control strategy for robotic deburring of hard materialsInt J Comput Integr Manuf20183186988010.1080/0951192X.2018.1447688 – reference: Caro S, Garnier S, Furet B, et al (2014) Workpiece placement optimization for machining operations with industrial robots. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 1716–1721. doi: https://doi.org/10.1109/AIM.2014.6878331 – reference: HuangHGongZMChenXQZhouLSMART robotic system for 3D profile turbine vane airfoil repairInt J Adv Manuf Technol20032127528310.1007/s001700300032 – reference: NagataFWatanabeKHabibMKMachining robot with vibrational motion and 3D printer-like data interfaceInt J Autom Comput20181511210.1007/s11633-017-1101-z – reference: Pandremenos J, Doukas C, Stavropoulos P, Chryssolouris G (2011) Machining with robots: a critical review. 7th Int Conf Digit Enterp Technol – reference: Huan J (1982) Bahnregelung zur Bahnerzeugung an numerisch gesteuerten Werkzeugrnaschinen. Un- iversity of Stuttgart – reference: Lehmann C, Halbauer M, Euhus D, Overbeck D (2012) Milling with industrial robots: strategies to reduce and compensate process force induced accuracy influences. IEEE Int Conf Emerg Technol Fact Autom ETFA doi: https://doi.org/10.1109/ETFA.2012.6489741 – reference: DenkenaBBrüningJWindelsLEuhusDKirschSOverbeckDLepperTHolistic process planning chain for robot machiningProd Eng20171171572210.1007/s11740-017-0771-2 – reference: Bo H, Azhar M, Mohan DM, Campolo D (2015) Review of robotic control strategies for industrial finishing operations. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA). pp 1–6 – reference: BarnfatherJDGoodfellowMJAbramTA performance evaluation methodology for robotic machine tools used in large volume manufacturingRobot Comput Integr Manuf201637495610.1016/j.rcim.2015.06.002 – reference: BruneteAGambaoEKoskinenJHeikkiläTKaldestadKBTyapinIHovlandGSurdilovicDHernandoMBotteroAAntonSHard material small-batch industrial machining robotRobot Comput Integr Manuf2017000115 – reference: Schneider U, Diaz Posada JR, Verl A (2015) Automatic pose optimization for robotic processes. Proc - IEEE Int Conf robot autom 2054–2059. doi: https://doi.org/10.1109/ICRA.2015.7139468 – reference: Schreck G, Surdilovic D, Krüger J (2014) HEPHESTOS: hard material small-batch industrial machining. Robot Scientif. pp 239–244 – reference: ZivanovicSSlavkovicNMilutinovicDAn approach for applying STEP-NC in robot machiningRobot Comput Integr Manuf20184936137310.1016/j.rcim.2017.08.009 – reference: IzumiTNarikiyoTFukuiYTeachingless grinding robot depending on three force informationAdv Robot19872556710.1163/156855387X00066 – reference: Wang Z, Keogh P (2017) Active vibration control for robotic machining. In: ASME 2017 International Mechanical Engineering Congress and Exposition – reference: YanSXuXYangZZhuDDingHAn improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-offJ Manuf Process20193749650810.1016/j.jmapro.2018.12.029 – reference: HöfenerMSchüppstuhlTA method for increasing the accuracy of “on-workpiece” machining with small industrial robots for composite repairProd Eng2014870170910.1007/s11740-014-0570-y – reference: Kothe S, Stürmer SPV, Schmidt HC, et al (2016) Accuracy analysis and error source identification for optimization of robot-based machining systems for aerospace production. SAE Tech Pap 2016–Octob. doi: https://doi.org/10.4271/2016-01-2137 – reference: Huynh HN, Kouroussis G, Verlinden O (2018) Modal updating of a 6-axis robot for milling application. In: 25th international congress on sound and vibration. pp 1–8 – reference: MejriSGagnolVLeTPDynamic characterization of machining robot and stability analysisInt J Adv Manuf Technol20168235135910.1007/s00170-015-7336-3 – reference: Domrös DF (2014) Towards autonomous robot machining. In: Conference ISR ROBOTIK. pp 448–453 – reference: Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2018) Robotic grinding of a blisk with two degrees of freedom contact force control. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2925-6 – reference: VielerHKarimALechlerADrive based damping for robots with secondary encodersRobot Comput Integr Manuf20174711712210.1016/j.rcim.2017.03.007 – reference: XieHLiWYinZChenZMendesAYanYChenSPosture Optimization Based on Both Joint Parameter Error and Stiffness for Robotic MillingIntelligent robotics and applications2018ChamSpringer International Publishing27728610.1007/978-3-319-97586-3_25 – reference: Qin C, Tao J, Wang M, Liu C (2016) A novel approach for the acquisition of vibration signals of the end effector in robotic drilling. AUS 2016–2016 IEEE/CSAA Int Conf Aircr Util Syst 522–526. doi: https://doi.org/10.1109/AUS.2016.7748106 – reference: DumasCCaroSGarnierSFuretBJoint stiffness identification of six-revolute industrial serial robotsRobot Comput Integr Manuf20112788188810.1016/j.rcim.2011.02.003 – reference: WangGDongHGuoYKeYChatter mechanism and stability analysis of robotic boringInt J Adv Manuf Technol20179141142110.1007/s00170-016-9731-9 – reference: KlimchikAAmbiehlAGarnierSSFuretBPashkevichAEfficiency evaluation of robots in machining applications using industrial performance measureRobot Comput Integr Manuf201748122910.1016/j.rcim.2016.12.005 – reference: LealiFVergnanoAPiniFPellicciariMBerselliGA workcell calibration method for enhancing accuracy in robot machining of aerospace partsInt J Adv Manuf Technol201685475510.1007/s00170-014-6025-y – volume: 46 start-page: 130 year: 2017 ident: 3403_CR149 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.01.004 – volume: 20 start-page: 197 year: 2015 ident: 3403_CR11 publication-title: Artif Life Robot doi: 10.1007/s10015-015-0221-1 – volume: 39 start-page: 4749 year: 2017 ident: 3403_CR135 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-017-0913-7 – start-page: 277 volume-title: Intelligent robotics and applications year: 2018 ident: 3403_CR58 doi: 10.1007/978-3-319-97586-3_25 – volume: 47 start-page: 117 year: 2017 ident: 3403_CR67 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.03.007 – volume: 55 start-page: 29 year: 2019 ident: 3403_CR105 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2018.07.003 – ident: 3403_CR131 – volume: 145 start-page: 346 year: 2018 ident: 3403_CR87 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.07.004 – ident: 3403_CR27 doi: 10.1007/s00170-018-2925-6 – volume: 27 start-page: 881 year: 2011 ident: 3403_CR47 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2011.02.003 – ident: 3403_CR95 – volume: 94 start-page: 561 year: 2016 ident: 3403_CR128 publication-title: Measurement doi: 10.1016/j.measurement.2016.08.032 – volume: 23 start-page: 1821 year: 2016 ident: 3403_CR8 publication-title: Teh Vjesn - Tech Gaz doi: 10.17559/TV-20150210133556 – start-page: 184 volume-title: Intelligent robotics and applications year: 2017 ident: 3403_CR94 doi: 10.1007/978-3-319-65292-4_17 – ident: 3403_CR129 doi: 10.1109/ETFA.2012.6489741 – volume: 30 start-page: 546 year: 2014 ident: 3403_CR92 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2014.03.007 – volume: 92 start-page: 2487 year: 2017 ident: 3403_CR113 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-0336-8 – volume: 37 start-page: 177 year: 2019 ident: 3403_CR126 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.11.022 – volume: 49 start-page: 388 year: 2017 ident: 3403_CR62 publication-title: Precis Eng doi: 10.1016/j.precisioneng.2017.04.001 – volume: 37 start-page: 49 year: 2016 ident: 3403_CR127 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2015.06.002 – volume: 50 start-page: 181 year: 2018 ident: 3403_CR60 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.09.004 – start-page: 27 volume-title: Robotics in smart manufacturing year: 2013 ident: 3403_CR74 doi: 10.1007/978-3-642-39223-8_3 – ident: 3403_CR103 doi: 10.1007/s10845-018-1440-9 – volume: 44 start-page: 949 year: 2009 ident: 3403_CR102 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2008.06.001 – volume: 151 start-page: 868 year: 2019 ident: 3403_CR88 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2018.12.039 – volume: 000 start-page: 1 year: 2017 ident: 3403_CR136 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.11.004 – ident: 3403_CR122 doi: 10.1109/EPEPEMC.2016.7752083 – volume: 23 start-page: 2240 year: 2018 ident: 3403_CR20 publication-title: IEEE/ASME Trans Mechatronics doi: 10.1109/TMECH.2018.2864652 – ident: 3403_CR12 doi: 10.1109/IECON.2015.7392191 – volume: 10 start-page: 1543 year: 2016 ident: 3403_CR143 publication-title: Int J Mech aerospace Ind Mechatron Manuf Eng – ident: 3403_CR72 – volume: 11 start-page: 715 year: 2017 ident: 3403_CR146 publication-title: Prod Eng doi: 10.1007/s11740-017-0771-2 – volume: 49 start-page: 174 year: 2016 ident: 3403_CR53 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.591 – ident: 3403_CR83 doi: 10.1109/SII.2013.6776741 – ident: 3403_CR22 doi: 10.1109/ROBOT.1994.351408 – ident: 3403_CR40 – volume: 58 start-page: 416 year: 2017 ident: 3403_CR110 publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.246 – ident: 3403_CR134 doi: 10.1109/AUS.2016.7748106 – ident: 3403_CR50 doi: 10.3182/20130619-3-RU-3018.00211 – ident: 3403_CR89 doi: 10.1007/978-3-642-45540-7 – volume: 72 start-page: 129 year: 2018 ident: 3403_CR41 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.013 – volume: 346 start-page: 45 year: 2013 ident: 3403_CR66 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.346.45 – volume: 30 start-page: 1203 year: 2017 ident: 3403_CR140 publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2017.1305507 – volume: 2 start-page: 55 year: 1987 ident: 3403_CR21 publication-title: Adv Robot doi: 10.1163/156855387X00066 – volume: 85 start-page: 47 year: 2016 ident: 3403_CR137 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6025-y – volume: 9 start-page: 67 year: 2013 ident: 3403_CR130 publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.06.170 – ident: 3403_CR48 doi: 10.1016/j.promfg.2017.11.010 – volume: 45 start-page: 328 year: 2018 ident: 3403_CR86 publication-title: Ind Robot An Int J doi: 10.1108/IR-09-2017-0176 – volume: 23 start-page: 17 year: 1996 ident: 3403_CR14 publication-title: Ind Robot An Int J doi: 10.1108/01439919610130328 – volume: 85 start-page: 3 year: 2016 ident: 3403_CR79 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6021-2 – ident: 3403_CR49 doi: 10.1109/ICRA.2013.6630982 – ident: 3403_CR148 doi: 10.1109/ICCAS.2015.7364717 – volume: 213 start-page: 451 year: 1999 ident: 3403_CR6 publication-title: Proc Inst Mech Eng Part B J Eng Manuf doi: 10.1243/0954405991516921 – volume: 21 start-page: 911 year: 2014 ident: 3403_CR111 publication-title: Tech Gaz – volume-title: Industrial robot applications year: 1987 ident: 3403_CR4 doi: 10.1007/978-94-009-3125-1 – volume: 21 start-page: 2294 year: 2016 ident: 3403_CR34 publication-title: IEEE/ASME Trans Mechatronics doi: 10.1109/TMECH.2016.2574813 – volume: 28 start-page: 58 year: 1998 ident: 3403_CR45 publication-title: IEEE Trans Syst Man, Cybern Part B Cybern doi: 10.1109/3477.658578 – volume: 132 start-page: 911 year: 2015 ident: 3403_CR19 publication-title: Procedia Eng doi: 10.1016/j.proeng.2015.12.577 – volume: 88 start-page: 3053 year: 2017 ident: 3403_CR59 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-8938-0 – volume: 35 start-page: 46 year: 2008 ident: 3403_CR100 publication-title: Ind Robot An Int J doi: 10.1108/01439910810843289 – ident: 3403_CR1 doi: 10.1007/978-1-84628-368-0 – ident: 3403_CR46 doi: 10.1109/AIM.2005.1511161 – volume: 56 start-page: 387 year: 2007 ident: 3403_CR64 publication-title: CIRP Ann - Manuf Technol doi: 10.1016/j.cirp.2007.05.090 – volume: 21 start-page: 1226 year: 2005 ident: 3403_CR98 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2005.853492 – start-page: 309 volume-title: Intelligent robotics and applications year: 2018 ident: 3403_CR124 doi: 10.1007/978-3-319-97586-3_28 – volume: 15 start-page: 630 year: 1999 ident: 3403_CR5 publication-title: Int J Adv Manuf Technol doi: 10.1007/s001700050112 – ident: 3403_CR78 doi: 10.1109/IROS.2014.6943194 – ident: 3403_CR144 – volume: 82 start-page: 351 year: 2016 ident: 3403_CR115 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7336-3 – ident: 3403_CR51 doi: 10.1109/AIM.2014.6878331 – ident: 3403_CR70 – volume: 101 start-page: 102 year: 2016 ident: 3403_CR71 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2015.11.011 – volume: 15 start-page: 1 year: 2018 ident: 3403_CR13 publication-title: Int J Autom Comput doi: 10.1007/s11633-017-1101-z – ident: 3403_CR82 doi: 10.1109/ETFA.2013.6648124 – ident: 3403_CR104 doi: 10.1109/EMS.2014.46 – ident: 3403_CR42 – start-page: 197 volume-title: Informatics in control, automation and robotics: 9th international conference year: 2012 ident: 3403_CR117 – volume: 18 start-page: 1 year: 2018 ident: 3403_CR43 publication-title: Sensors (Switzerland) doi: 10.3390/s18093078 – volume: 42 start-page: 63 year: 2016 ident: 3403_CR125 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2016.05.004 – ident: 3403_CR133 doi: 10.1109/ICRA.2016.7487579 – ident: 3403_CR139 doi: 10.4028/www.scientific.net/AMM.868.93 – volume: 8 start-page: 701 year: 2014 ident: 3403_CR119 publication-title: Prod Eng doi: 10.1007/s11740-014-0570-y – ident: 3403_CR28 doi: 10.1177/0954405418802309 – volume: 7 start-page: 305 year: 2013 ident: 3403_CR76 publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.05.052 – volume: 95 start-page: 3839 year: 2018 ident: 3403_CR142 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1466-8 – ident: 3403_CR18 – start-page: 79 volume-title: Intelligent robotics and applications year: 2017 ident: 3403_CR32 doi: 10.1007/978-3-319-65292-4_8 – volume: 14 start-page: 406 year: 2014 ident: 3403_CR30 publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.03.099 – volume: 49 start-page: 361 year: 2018 ident: 3403_CR141 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.08.009 – ident: 3403_CR112 – volume: 5 start-page: 34 year: 2015 ident: 3403_CR10 publication-title: Int J Mechatronics Autom doi: 10.1504/IJMA.2015.068452 – ident: 3403_CR24 – ident: 3403_CR69 doi: 10.1109/CYBER.2017.8446556 – volume: 48 start-page: 206 year: 2016 ident: 3403_CR145 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.03.241 – ident: 3403_CR31 doi: 10.1117/12.2243652 – volume: 117 start-page: 221 year: 2019 ident: 3403_CR68 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.07.051 – volume-title: Automated fixture and robot aided deburring for light aircraft components year: 1998 ident: 3403_CR38 – ident: 3403_CR61 doi: 10.1109/AIM.2017.8014094 – ident: 3403_CR33 doi: 10.23919/IConAC.2017.8081984 – volume: 423 year: 2018 ident: 3403_CR132 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/423/1/012032 – ident: 3403_CR81 doi: 10.1109/ICRA.2015.7139468 – volume: 95 start-page: 83 year: 1999 ident: 3403_CR114 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(99)00315-5 – volume: 10 start-page: 185 year: 1993 ident: 3403_CR90 publication-title: Robot Comput Integr Manuf doi: 10.1016/0736-5845(93)90054-N – ident: 3403_CR118 – ident: 3403_CR44 – volume: 91 start-page: 411 year: 2017 ident: 3403_CR85 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9731-9 – volume: 21 start-page: 275 year: 2003 ident: 3403_CR39 publication-title: Int J Adv Manuf Technol doi: 10.1007/s001700300032 – volume: 59 start-page: 268 year: 2015 ident: 3403_CR93 publication-title: Measurement doi: 10.1016/j.measurement.2014.09.052 – volume: 48 start-page: 59 year: 2017 ident: 3403_CR56 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2017.02.002 – ident: 3403_CR77 – volume: 42 start-page: 245 year: 2009 ident: 3403_CR138 publication-title: IFAC Proc doi: 10.3182/20090909-4-JP-2010.00043 – start-page: 1 volume-title: Robotics in Smart Manufacturing year: 2013 ident: 3403_CR29 – ident: 3403_CR73 doi: 10.1109/IROS.2011.6094846 – ident: 3403_CR120 – ident: 3403_CR3 – volume: 2014 start-page: 198 year: 2014 ident: 3403_CR9 publication-title: IEEE Int Conf Mechatronics Autom IEEE ICMA doi: 10.1109/ICMA.2014.6885695 – volume: 55 start-page: 11 year: 2019 ident: 3403_CR65 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2018.07.004 – volume: 24 start-page: 92 year: 2008 ident: 3403_CR101 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2006.08.001 – volume: 53 start-page: 1217 year: 2011 ident: 3403_CR7 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2888-8 – ident: 3403_CR2 doi: 10.1017/CBO9780511843723 – ident: 3403_CR108 doi: 10.1115/IMECE2017-71670 – volume: 31 start-page: 869 year: 2018 ident: 3403_CR25 publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2018.1447688 – volume: 3 start-page: 11 year: 2013 ident: 3403_CR26 publication-title: Mod Mech Eng doi: 10.4236/mme.2013.32A002 – volume: 3651 start-page: 117 year: 2013 ident: 3403_CR91 publication-title: Teh Vjesn – start-page: 14 volume-title: Robotics in smart manufacturing year: 2013 ident: 3403_CR75 doi: 10.1007/978-3-642-39223-8_2 – volume: 5 start-page: 4332 year: 2004 ident: 3403_CR99 publication-title: IEEE Int Conf Robot Autom 2004 Proceedings ICRA doi: 10.1109/ROBOT.2004.1302399 – volume: 10 start-page: 486 year: 2017 ident: 3403_CR107 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2017.07.034 – volume: 90 start-page: 1075 year: 2017 ident: 3403_CR123 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9461-z – volume: 173 start-page: 301 year: 2006 ident: 3403_CR63 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.11.033 – volume: 48 start-page: 12 year: 2017 ident: 3403_CR54 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2016.12.005 – volume: 16 start-page: 29 year: 2013 ident: 3403_CR116 publication-title: J Prod Eng – ident: 3403_CR109 – ident: 3403_CR17 doi: 10.1109/ISR.2013.6695731 – volume: 162 start-page: 413 year: 2012 ident: 3403_CR55 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.162.413 – volume: 214 start-page: 635 year: 2000 ident: 3403_CR147 publication-title: Proc Instn Mech Engre doi: 10.1243/0954405001518332 – ident: 3403_CR15 – volume: 22 start-page: 51 year: 2006 ident: 3403_CR97 publication-title: J Robot Syst doi: 10.1002/rob.20151 – ident: 3403_CR52 doi: 10.3182/20130619-3-RU-3018.00184 – start-page: 14 volume-title: Intelligent robotics and applications year: 2017 ident: 3403_CR35 doi: 10.1007/978-3-319-65292-4_2 – volume: 37 start-page: 496 year: 2019 ident: 3403_CR37 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.12.029 – volume: 66 start-page: 1489 year: 2013 ident: 3403_CR16 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4433-4 – volume: 86 start-page: 179 year: 2016 ident: 3403_CR84 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-8166-z – volume: 2 start-page: 1455 year: 1995 ident: 3403_CR23 publication-title: Proc - IEEE Int Conf Robot Autom doi: 10.1109/ROBOT.1995.525481 – volume: 55 start-page: 19 year: 2019 ident: 3403_CR57 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2018.07.001 – ident: 3403_CR121 doi: 10.4271/2016-01-2137 – volume: 6 start-page: 17 year: 2016 ident: 3403_CR106 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2016.11.003 – ident: 3403_CR80 – ident: 3403_CR96 doi: 10.1007/s00170-018-3099-y – volume: 15 start-page: 172988141879377 year: 2018 ident: 3403_CR36 publication-title: Int J Adv Robot Syst doi: 10.1177/1729881418793778 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.6337068 |
SecondaryResourceType | review_article |
Snippet | For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1239 |
SubjectTerms | CAE) and Design Computer-Aided Engineering (CAD Engineering Industrial and Production Engineering Industrial robots Machining process Machining vibration Material removal rate (machining) Mechanical Engineering Media Management Original Article Robotic machining Robotics Statistical analysis Trajectory planning |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQUAbUBSKSOHZstqpQVUgwFdTN8iMRCGhRCUt_PWfnBVWpxBbl7MQ6n--h832H0LmEIMHICPvaMAhQQAH6MoUnrShxAHbSZUzvH-jwMb4bk3EJk2NrYRby91euRbe9OsX9AMcB9ufraIOEOLFtGvq0X8lOyBPb_7KWrYjbpvON7OKY4CKjVWYYaOjK5CAEYfaQsbKgZvk_fxutxhOtk6cLQKPOOA120HbpVXq9Qgx20Vo62UNbP7AG91G3adLhzaZqCiO9d3eTEsjXnvSKIpYDNBrcjvpDv2yS4GsSBLlv06YYDG0Wa6K0tPB3MbwwGeWaZqEknGU0yYzSYPmzkEqmYhNkxBAYxAN8iFqT6SQ9Ql7AjWE0jShRYNYTJgmTTOI0MMqC3kRtFFZMELoEELd9LN5EDX3sGCeAccIxTszb6KKe81HAZ6wc3al4K8qj9ClA4URJYpHy_iCDRkk4BGbLyTaxCToUsza6rHarIa9aS7fY0XrdFoj75uWpJ0A-xWv-LCAaA2f4-H_fPUGbkZMse-O3g1r57Cs9Bb8mV2dOoL8BcBflFA priority: 102 providerName: Springer Nature |
Title | Industrial robotic machining: a review |
URI | https://link.springer.com/article/10.1007/s00170-019-03403-z https://www.proquest.com/docview/2252770955 https://www.proquest.com/docview/2279479862 https://www.proquest.com/docview/2490876338 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255566 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rIdEGxDK3RVDhOXES1fdhwuqCstFdMQQu0EJ8uxEzYBTWnLpX89z46TAoJeosgfkvX8_D78_H4P4LtAJ0GJIHSlYuigoAB0RYZ_MqXEANgJEzH9c06H4-jsilzZC7e5fVZZyUQjqFUh9R35T410F8UJGuDH0wdXV43S0VVbQmMTmiiCGWtA81f__OKy4ig_iXVVzJrjgkSXol9xdBiRsIxz2bgD9U3yHDomTB89ZtNsTLKdgZpB1ztxcZ4XusuXqmxln9Yh1Vfwo0ZlDbZhy9qaTrdkjh3YyCaf4OMzBMLPcLAq3eHMirTAkc69eV-J3UeOcMrUli8wGvRHvaFrSye4knjewtXB1BDVbx5JkkqhQfEibFA5TSTNfUESltM4V6lEeyD3qWBppLycKIKDEi_chcakmGRfwfESpRjNAkpSVPYxE4QJJsLMU6mGwgla4FdE4NLCiuvqFne8BkQ2hONIOG4Ix5ct-FHPmZagGmtHtyvacnvA5hzFUBDHGj_vne6KW97u1uFOlKwha8FhtVur7nVrOSh3tF63huc--f-3y4vZDb9d_OPoo6GJvLd-VfvwITCcpN_9tqGxmD1m39C6WaQd2GSD0w40u6fXv_sdy9DY2qM9_I6D7hOhAfGd |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJQeqvISS2mbA-UCEUkcOw5SVaHCspTHaam4WY6dQNWy2S5bVeU_8R874zyWIro3blFsR9Z4nhnPNwCbGoMEqyPmGysxQEEF6Oscn0wmuAOw0y5jenYuehfxl0t-OQP3TS0MXatsdKJT1LY09I98l5Du4iRFB_zT8KdPXaMou9q00KjY4iT_8xtDttuPxwd4vh-iqHvY_9zz664CvuFBMPYpz8jQMhWx4ZnRhBcX4wtbiNSIItQ8lYVICpsZNJVFKLTMYhsU3HKclAYMPzsL8zFDQ06F6d2jhn3DNKEWnC17Ryn1vZ-ID4s5q5JqdZJDhK5SD6MgSXIu65oeV9nncG0wzk99XBcw_-5fuzlxhtv87SOsU2cfu6_hVe3YevsVJy7CTD5YgpcP4A6XYWvSJ8QblVmJM70bd5kTh_c87VV1NCvQfw6KrsLcoBzka-AFqbVS5JHgGXoWidRcaqlZHtiMcHeiDoQNEZSpMcyplcYP1aIvO8IpJJxyhFN3Hdhu1wwrBI-pszca2qpamm8V6rwoSQis7z_DDWs-PUy5VVTjTHZgpzmtyfC0vWxVJ9rum7DAD7593Vfl6Ep9H18rDAjRH1-fvqv38KLXPztVp8fnJ29gIXJcRReON2BuPPqVv0W3apy9c8zsgXpm4fkLkYYnfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOLqqj2oFy22TZOmggfZdfGNBxVvIW1aFXV3WSvi_in_opP0sSoqePBWmjSkk5nJfEzmC8CaRJCgpEfsWHEEKOgAbZngUxwxagjspMmYnp6xg0v_6JpeD8FbWQtjTruXKcm8pkGzNLWz7a5Kt6vCN0P7gjA4tB3iO8TuF8cqj5PXFwRtT7uHTVzhdc9r7V80DuziXgE7po6T2TrTSHBvSv2YRrHUjHE-vlApC2OWupKGPGVBqqIYN8vUZZJHvnJSqih2Ch2Cww7DKAIjV6O9BmuUCuyGgb6Es1JwL8R4JhgYEPEpydNqRZqDuaZWD3EQ15bOi6qe73_x8845CIerDO4XtlOzQ7amYLIIba29XBenYShpz8DEB8LDWdgY3BRi9TpRB3taj-Y4JzbvWNLKK2nm4OI_JDoPI-1OO1kAywmV4izxGI0wtgi4pFxySRJHRZp5x6uBWwpBxAWLub5M40FU_MtGcAIFJ4zgRL8Gm9U33ZzD49fe9VK2orDnJ4FezwsCTdf3QzO6tSBEdPh9s86uoiMnvAZb5WoNmn-by0a-otW8NRt48-5qT3R6N-I-uxUICTEiX_zbuKswdt5siZPDs-MlGPeMkukTyHUYyXrPyTLGWVm0YnTbAvHPtvQOS64pAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+robotic+machining%3A+a+review&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Ji%2C+Wei&rft.au=Wang%2C+Lihui&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=103&rft.issue=1-4&rft.spage=1239&rft.epage=1255&rft_id=info:doi/10.1007%2Fs00170-019-03403-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |