Industrial robotic machining: a review

For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this pa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 103; no. 1-4; pp. 1239 - 1255
Main Authors Ji, Wei, Wang, Lihui
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this paper aims to provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works, and an understanding of the future directions in the field. The research works are organised into two operation categories, low material removal rate (MRR) and high MRR, according their machining properties, and the research topics are reviewed and highlighted separately. Then, a set of statistical analysis is carried out in terms of published years and countries. Towards an applicable robotic machining, the future trends and key research points are identified at the end of this paper.
AbstractList For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and multi-functionality of industrial robot. Covering articles published on the subjects of robotic machining in the past 30 years or so; this paper aims to provide an up-to-date review of robotic machining research works, a critical analysis of publications that publish the research works, and an understanding of the future directions in the field. The research works are organised into two operation categories, low material removal rate (MRR) and high MRR, according their machining properties, and the research topics are reviewed and highlighted separately. Then, a set of statistical analysis is carried out in terms of published years and countries. Towards an applicable robotic machining, the future trends and key research points are identified at the end of this paper.
Author Ji, Wei
Wang, Lihui
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-9642-6983
  surname: Ji
  fullname: Ji, Wei
  organization: KTH Royal Institute of Technology
– sequence: 2
  givenname: Lihui
  surname: Wang
  fullname: Wang, Lihui
  organization: KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255566$$DView record from Swedish Publication Index
BookMark eNp90ctKAzEUBuAgCtbLC7gqCO6iJ_fEnXgtCG7EbchkJjVaJzWZKvr0RlsRXHQVCN8fTs6_gzb71HcIHRA4JgDqpAAQBRiIwcA4MPy5gUaEM4YZELGJRkClxkxJvY12SnmqXBKpR-ho0reLMuToZuOcmjREP35x_jH2sZ-ejt04d2-xe99DW8HNSre_OnfR_dXl_fkNvr27npyf3WIvAAZMjeQMKA_ci8Y7pSnwetEGabwMxAmjg1ShbbwBEoh0uuEtBNGKigywXYSXz5b3br5o7DzHF5c_bHLRXsSHM5vy1D4Pj5YKIaSs_nDp5zm9Lroy2Ke0yH2d0FJuQCvJmF6rqDJcGS3peiWoUmCEqEovlc-plNwF6-Pghpj6Ibs4swTsdyF2WYithdifQuxnjdJ_0d_vrQ2x1UYq7qdd_ptqTeoL0yGcvQ
CitedBy_id crossref_primary_10_1016_j_mechmachtheory_2021_104717
crossref_primary_10_1007_s00170_021_08033_y
crossref_primary_10_1109_TMECH_2024_3383410
crossref_primary_10_1016_j_cja_2023_03_022
crossref_primary_10_1016_j_rcim_2021_102243
crossref_primary_10_1007_s12008_024_02190_6
crossref_primary_10_1115_1_4056924
crossref_primary_10_3390_sym14102066
crossref_primary_10_1007_s00170_022_10661_x
crossref_primary_10_1016_j_rcim_2024_102765
crossref_primary_10_1016_j_rcim_2024_102887
crossref_primary_10_1016_j_rcim_2024_102768
crossref_primary_10_1007_s10845_020_01705_8
crossref_primary_10_1108_RIA_07_2023_0091
crossref_primary_10_1109_TMECH_2023_3329819
crossref_primary_10_3390_machines12080556
crossref_primary_10_1016_j_rcim_2023_102590
crossref_primary_10_1016_j_ymssp_2024_111804
crossref_primary_10_1109_ACCESS_2020_3017561
crossref_primary_10_1016_j_rcim_2021_102235
crossref_primary_10_1007_s00170_024_14533_4
crossref_primary_10_1007_s11431_022_2112_4
crossref_primary_10_1080_0951192X_2024_2428682
crossref_primary_10_1007_s11431_022_2349_7
crossref_primary_10_1016_j_rcim_2022_102419
crossref_primary_10_3390_s23146451
crossref_primary_10_1007_s11370_022_00426_6
crossref_primary_10_1016_j_jmapro_2024_06_029
crossref_primary_10_1016_j_cja_2023_10_001
crossref_primary_10_1108_ECAM_01_2024_0083
crossref_primary_10_1016_j_ymssp_2023_110547
crossref_primary_10_1177_01423312221097738
crossref_primary_10_1016_j_cirp_2023_04_040
crossref_primary_10_1115_1_4063131
crossref_primary_10_1007_s10845_023_02292_0
crossref_primary_10_1007_s00170_021_07497_2
crossref_primary_10_1016_j_oceaneng_2023_116424
crossref_primary_10_1016_j_precisioneng_2023_11_002
crossref_primary_10_1016_j_rcim_2021_102131
crossref_primary_10_1007_s00170_021_08082_3
crossref_primary_10_1007_s11431_023_2625_8
crossref_primary_10_1016_j_rcim_2023_102690
crossref_primary_10_7242_1999_6691_2023_16_3_28
crossref_primary_10_1016_j_rcim_2022_102436
crossref_primary_10_1007_s00170_022_08737_9
crossref_primary_10_1016_j_rcim_2021_102257
crossref_primary_10_1016_j_rcim_2024_102875
crossref_primary_10_3390_mi13101577
crossref_primary_10_1016_j_jmapro_2023_01_004
crossref_primary_10_3390_machines10070531
crossref_primary_10_1109_JSEN_2024_3383499
crossref_primary_10_1109_TMECH_2021_3104477
crossref_primary_10_1007_s11740_020_00975_8
crossref_primary_10_1016_j_rcim_2019_101855
crossref_primary_10_1007_s11071_024_10510_4
crossref_primary_10_1108_IR_10_2024_0482
crossref_primary_10_1016_j_rcim_2023_102681
crossref_primary_10_3390_jcs8120543
crossref_primary_10_1007_s00170_021_07698_9
crossref_primary_10_1007_s00170_021_07001_w
crossref_primary_10_1007_s11431_024_2810_2
crossref_primary_10_3390_buildings13112748
crossref_primary_10_1007_s00170_024_13776_5
crossref_primary_10_1155_2022_3217360
crossref_primary_10_20965_ijat_2021_p0567
crossref_primary_10_1016_j_jmapro_2024_05_072
crossref_primary_10_3390_app12178719
crossref_primary_10_15625_0866_7136_21000
crossref_primary_10_3389_frobt_2022_1027173
crossref_primary_10_1016_j_rcim_2021_102275
crossref_primary_10_1177_16878132221082869
crossref_primary_10_3390_polym12020454
crossref_primary_10_1007_s12555_024_0321_6
crossref_primary_10_1016_j_rcim_2023_102558
crossref_primary_10_3390_ma15103566
crossref_primary_10_1007_s00170_023_12899_5
crossref_primary_10_1016_j_rcim_2023_102677
crossref_primary_10_1016_j_procir_2024_09_013
crossref_primary_10_1016_j_jmsy_2023_10_007
crossref_primary_10_1016_j_rcim_2023_102675
crossref_primary_10_1109_JSEN_2023_3322408
crossref_primary_10_1016_j_jmapro_2023_08_032
crossref_primary_10_1038_s41598_024_80540_w
crossref_primary_10_1177_09544062211002878
crossref_primary_10_28948_ngumuh_600588
crossref_primary_10_3390_su14084503
crossref_primary_10_1016_j_ijmachtools_2022_103918
crossref_primary_10_3390_math10030520
crossref_primary_10_1016_j_jmapro_2022_12_019
crossref_primary_10_3390_s25030765
crossref_primary_10_1007_s11431_019_1529_x
crossref_primary_10_1016_j_mechmachtheory_2021_104331
crossref_primary_10_1016_j_jmsy_2024_02_014
crossref_primary_10_3390_machines10050389
crossref_primary_10_1016_j_rcim_2023_102548
crossref_primary_10_1115_1_4063606
crossref_primary_10_1016_j_rcim_2022_102345
crossref_primary_10_1016_j_rineng_2024_102298
crossref_primary_10_3390_math12020257
crossref_primary_10_1080_23311916_2024_2415670
crossref_primary_10_1016_j_jmsy_2023_05_019
crossref_primary_10_1088_1757_899X_1129_1_012059
crossref_primary_10_1115_1_4056300
crossref_primary_10_1115_1_4057071
crossref_primary_10_1016_j_cja_2021_06_006
crossref_primary_10_1088_1361_6501_ac0d25
crossref_primary_10_5937_fme2304512N
crossref_primary_10_1007_s00170_024_13838_8
crossref_primary_10_1109_LRA_2024_3438039
crossref_primary_10_1016_j_rcim_2022_102354
crossref_primary_10_1016_j_promfg_2020_05_145
crossref_primary_10_1080_17480272_2023_2183897
crossref_primary_10_1016_j_ijmecsci_2020_106005
crossref_primary_10_1126_scirobotics_add6864
crossref_primary_10_1007_s10845_024_02451_x
crossref_primary_10_1007_s00170_024_14880_2
crossref_primary_10_1016_j_rcim_2022_102476
crossref_primary_10_1080_0305215X_2022_2147519
crossref_primary_10_1109_ACCESS_2022_3201233
crossref_primary_10_3390_s22165963
crossref_primary_10_1016_j_measurement_2024_114866
crossref_primary_10_20965_ijat_2021_p0599
crossref_primary_10_1016_j_ymssp_2021_108523
crossref_primary_10_1002_adem_202001315
crossref_primary_10_1016_j_rcim_2023_102646
crossref_primary_10_2478_ama_2023_0060
crossref_primary_10_1016_j_ijmecsci_2022_107449
crossref_primary_10_1007_s00170_024_14427_5
crossref_primary_10_1016_j_measurement_2023_113381
crossref_primary_10_1016_j_jmsy_2021_11_009
crossref_primary_10_1016_j_rcim_2025_102992
crossref_primary_10_1007_s00170_022_09786_w
crossref_primary_10_3390_robotics12060160
crossref_primary_10_3390_jmmp9020066
crossref_primary_10_3390_app10248885
crossref_primary_10_1007_s00170_021_07830_9
crossref_primary_10_3390_app13095328
crossref_primary_10_1016_j_apm_2021_12_031
crossref_primary_10_1016_j_rcim_2020_101966
crossref_primary_10_1016_j_rcim_2024_102814
crossref_primary_10_1080_0951192X_2019_1699256
crossref_primary_10_1088_1757_899X_831_1_012003
crossref_primary_10_3390_robotics13030035
crossref_primary_10_1016_j_measurement_2022_111934
crossref_primary_10_1007_s00170_022_10640_2
crossref_primary_10_1016_j_rcim_2024_102904
crossref_primary_10_1016_j_rcim_2020_102105
crossref_primary_10_1109_ACCESS_2022_3210247
crossref_primary_10_1016_j_rcim_2023_102623
crossref_primary_10_1016_j_rcim_2021_102307
crossref_primary_10_1109_TIM_2025_3542857
crossref_primary_10_1007_s00170_021_08087_y
crossref_primary_10_1108_MD_02_2023_0285
crossref_primary_10_1007_s40684_020_00274_8
crossref_primary_10_3390_app10051685
crossref_primary_10_1016_j_cja_2020_12_030
crossref_primary_10_3390_machines10111026
crossref_primary_10_1016_j_engappai_2022_105491
crossref_primary_10_1109_ACCESS_2020_2987807
crossref_primary_10_1016_j_rcim_2019_101908
crossref_primary_10_1016_j_rcim_2020_101947
crossref_primary_10_1007_s11831_021_09570_1
crossref_primary_10_1177_0954405420986093
crossref_primary_10_1007_s00170_022_09526_0
crossref_primary_10_1109_JSEN_2022_3226492
crossref_primary_10_1007_s40799_022_00590_5
crossref_primary_10_3390_app13095259
crossref_primary_10_1016_j_rcim_2020_102047
crossref_primary_10_3390_machines11060655
crossref_primary_10_1016_j_procir_2023_09_126
crossref_primary_10_3390_app13042722
crossref_primary_10_3390_app14177482
crossref_primary_10_1016_j_rcim_2023_102609
crossref_primary_10_1016_j_jii_2024_100696
crossref_primary_10_3390_jmmp4030079
crossref_primary_10_1007_s00170_025_15333_0
crossref_primary_10_1016_j_cja_2019_09_001
crossref_primary_10_1007_s10845_023_02143_y
crossref_primary_10_1016_j_ijmecsci_2021_106601
crossref_primary_10_1007_s11431_022_2115_x
crossref_primary_10_1016_j_rcim_2023_102713
crossref_primary_10_1016_j_rcim_2021_102310
crossref_primary_10_1007_s00170_022_10275_3
crossref_primary_10_1080_17480272_2024_2366487
crossref_primary_10_1016_j_jestch_2023_101407
crossref_primary_10_1016_j_rcim_2025_103008
crossref_primary_10_1115_1_4056830
crossref_primary_10_1016_j_procir_2022_10_078
crossref_primary_10_1016_j_cirp_2020_04_045
crossref_primary_10_1016_j_aei_2025_103192
crossref_primary_10_3390_machines9070132
crossref_primary_10_1177_09574565231179731
crossref_primary_10_3390_s22197232
crossref_primary_10_1109_ACCESS_2022_3208160
crossref_primary_10_1016_j_precisioneng_2024_08_013
crossref_primary_10_1007_s00170_021_08591_1
crossref_primary_10_1080_17480272_2024_2324437
crossref_primary_10_1016_j_rcim_2022_102508
crossref_primary_10_1016_j_compag_2024_109517
crossref_primary_10_1016_j_fmre_2021_09_013
crossref_primary_10_1016_j_rineng_2023_101049
crossref_primary_10_1007_s00170_021_08503_3
crossref_primary_10_1007_s00170_021_07669_0
crossref_primary_10_1016_j_rcim_2025_102972
crossref_primary_10_3390_robotics11010017
crossref_primary_10_3390_machines13040268
crossref_primary_10_1140_epjp_s13360_024_05577_2
crossref_primary_10_1007_s12541_021_00552_8
crossref_primary_10_1007_s00170_024_14957_y
crossref_primary_10_1016_j_jmapro_2023_06_063
crossref_primary_10_1016_j_rcim_2020_101987
crossref_primary_10_1007_s00170_019_04660_8
Cites_doi 10.1016/j.rcim.2017.01.004
10.1007/s10015-015-0221-1
10.1007/s40430-017-0913-7
10.1007/978-3-319-97586-3_25
10.1016/j.rcim.2017.03.007
10.1016/j.rcim.2018.07.003
10.1016/j.ijmecsci.2018.07.004
10.1007/s00170-018-2925-6
10.1016/j.rcim.2011.02.003
10.1016/j.measurement.2016.08.032
10.17559/TV-20150210133556
10.1007/978-3-319-65292-4_17
10.1109/ETFA.2012.6489741
10.1016/j.rcim.2014.03.007
10.1007/s00170-017-0336-8
10.1016/j.jmapro.2018.11.022
10.1016/j.precisioneng.2017.04.001
10.1016/j.rcim.2015.06.002
10.1016/j.rcim.2017.09.004
10.1007/978-3-642-39223-8_3
10.1007/s10845-018-1440-9
10.1016/j.mechmachtheory.2008.06.001
10.1016/j.ijmecsci.2018.12.039
10.1016/j.rcim.2017.11.004
10.1109/EPEPEMC.2016.7752083
10.1109/TMECH.2018.2864652
10.1109/IECON.2015.7392191
10.1007/s11740-017-0771-2
10.1016/j.ifacol.2016.07.591
10.1109/SII.2013.6776741
10.1109/ROBOT.1994.351408
10.1016/j.procir.2017.03.246
10.1109/AUS.2016.7748106
10.3182/20130619-3-RU-3018.00211
10.1007/978-3-642-45540-7
10.1016/j.procir.2018.03.013
10.4028/www.scientific.net/AMM.346.45
10.1080/0951192X.2017.1305507
10.1163/156855387X00066
10.1007/s00170-014-6025-y
10.1016/j.procir.2013.06.170
10.1016/j.promfg.2017.11.010
10.1108/IR-09-2017-0176
10.1108/01439919610130328
10.1007/s00170-014-6021-2
10.1109/ICRA.2013.6630982
10.1109/ICCAS.2015.7364717
10.1243/0954405991516921
10.1007/978-94-009-3125-1
10.1109/TMECH.2016.2574813
10.1109/3477.658578
10.1016/j.proeng.2015.12.577
10.1007/s00170-016-8938-0
10.1108/01439910810843289
10.1007/978-1-84628-368-0
10.1109/AIM.2005.1511161
10.1016/j.cirp.2007.05.090
10.1109/TRO.2005.853492
10.1007/978-3-319-97586-3_28
10.1007/s001700050112
10.1109/IROS.2014.6943194
10.1007/s00170-015-7336-3
10.1109/AIM.2014.6878331
10.1016/j.ijmachtools.2015.11.011
10.1007/s11633-017-1101-z
10.1109/ETFA.2013.6648124
10.1109/EMS.2014.46
10.3390/s18093078
10.1016/j.rcim.2016.05.004
10.1109/ICRA.2016.7487579
10.4028/www.scientific.net/AMM.868.93
10.1007/s11740-014-0570-y
10.1177/0954405418802309
10.1016/j.procir.2013.05.052
10.1007/s00170-017-1466-8
10.1007/978-3-319-65292-4_8
10.1016/j.procir.2014.03.099
10.1016/j.rcim.2017.08.009
10.1504/IJMA.2015.068452
10.1109/CYBER.2017.8446556
10.1016/j.procir.2016.03.241
10.1117/12.2243652
10.1016/j.ymssp.2018.07.051
10.1109/AIM.2017.8014094
10.23919/IConAC.2017.8081984
10.1088/1757-899X/423/1/012032
10.1109/ICRA.2015.7139468
10.1016/S0924-0136(99)00315-5
10.1016/0736-5845(93)90054-N
10.1007/s00170-016-9731-9
10.1007/s001700300032
10.1016/j.measurement.2014.09.052
10.1016/j.rcim.2017.02.002
10.3182/20090909-4-JP-2010.00043
10.1109/IROS.2011.6094846
10.1109/ICMA.2014.6885695
10.1016/j.rcim.2018.07.004
10.1016/j.rcim.2006.08.001
10.1007/s00170-010-2888-8
10.1017/CBO9780511843723
10.1115/IMECE2017-71670
10.1080/0951192X.2018.1447688
10.4236/mme.2013.32A002
10.1007/978-3-642-39223-8_2
10.1109/ROBOT.2004.1302399
10.1016/j.promfg.2017.07.034
10.1007/s00170-016-9461-z
10.1016/j.jmatprotec.2005.11.033
10.1016/j.rcim.2016.12.005
10.1109/ISR.2013.6695731
10.4028/www.scientific.net/AMM.162.413
10.1243/0954405001518332
10.1002/rob.20151
10.3182/20130619-3-RU-3018.00184
10.1007/978-3-319-65292-4_2
10.1016/j.jmapro.2018.12.029
10.1007/s00170-012-4433-4
10.1007/s00170-015-8166-z
10.1109/ROBOT.1995.525481
10.1016/j.rcim.2018.07.001
10.4271/2016-01-2137
10.1016/j.promfg.2016.11.003
10.1007/s00170-018-3099-y
10.1177/1729881418793778
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTPV
AOWAS
D8V
DOI 10.1007/s00170-019-03403-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Engineering Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1255
ExternalDocumentID oai_DiVA_org_kth_255566
10_1007_s00170_019_03403_z
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: H2020-IND-CE-2016-17
  funderid: http://dx.doi.org/10.13039/100010661
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
_50
~8M
~A9
~EX
-XW
-XX
-Y2
1SB
28-
2P1
2VQ
5QI
9M8
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADQRH
ADRFC
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
PHGZM
PHGZT
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
T16
ZY4
ABRTQ
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c500t-29643024f4c5bca78204430df69c6f1a598f67fdbc901f16a8b4d0f5d530d903
IEDL.DBID BENPR
ISSN 0268-3768
1433-3015
IngestDate Thu Aug 21 06:10:56 EDT 2025
Fri Jul 25 11:08:32 EDT 2025
Fri Jul 25 11:07:57 EDT 2025
Fri Jul 25 11:05:43 EDT 2025
Tue Jul 01 00:40:17 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 21 02:30:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Machining process
Trajectory planning
Robotic machining
Machining vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-29643024f4c5bca78204430df69c6f1a598f67fdbc901f16a8b4d0f5d530d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-2
ORCID 0000-0002-9642-6983
OpenAccessLink https://doi.org/10.1007/s00170-019-03403-z
PQID 2279479862
PQPubID 2044010
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_kth_255566
proquest_journals_2490876338
proquest_journals_2279479862
proquest_journals_2252770955
crossref_citationtrail_10_1007_s00170_019_03403_z
crossref_primary_10_1007_s00170_019_03403_z
springer_journals_10_1007_s00170_019_03403_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Denkena B, Bergmann B, Lepper T (2017) Design and optimization of a machining robot. In: Procedia Manufacturing. Elsevier B.V., pp 89–96
Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. Proc - IEEE Int Conf Robot Autom 2921–2926 . doi: https://doi.org/10.1109/ICRA.2013.6630982
Domrös DF (2014) Towards autonomous robot machining. In: Conference ISR ROBOTIK. pp 448–453
JinnoMOzakiFYoshimiTDevelopment of a force controlled robot for grinding, chamfering and polishingProc - IEEE Int Conf Robot Autom1995214551460
Huynh HN, Kouroussis G, Verlinden O (2018) Modal updating of a 6-axis robot for milling application. In: 25th international congress on sound and vibration. pp 1–8
PanZZZhangHZhuZWangJChatter analysis of robotic machining processJ Mater Process Technol200617330130910.1016/j.jmatprotec.2005.11.033
NagataFOtsukaAWatanabeKHabibMKMachining robot for foamed polystyrene materials using fuzzy feed rate controller Fusaomi Nagata * and Akimasa Otsuka Keigo WatanabeInt J Mechatronics Autom20155344310.1504/IJMA.2015.068452
Nagata F, Hayashi S, Nagatomi T, et al (2015) Robotic trajectory following controller with a capability for generating micro vibrational motion along curved surface. IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc 765–770. doi: https://doi.org/10.1109/IECON.2015.7392191
International Federation of Robotics I (2017) Executive summary world Robotics 2017 Industrial Robots
Klimchik A, Bondarenko D, Pashkevich A, et al (2012) Compensation of tool deflection in robotic-based milling. Icinco 113–122
LeeR-STsaiJ-PLeeJ-NKaoYCLinGCILuTFCollaborative virtual cutting verification and remote robot machining through the InternetProc Instn Mech Engre200021463564410.1243/0954405001518332
SlamaniMGauthierSChatelainJFA study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPsMeasurement20155926828310.1016/j.measurement.2014.09.052
Huan J (1982) Bahnregelung zur Bahnerzeugung an numerisch gesteuerten Werkzeugrnaschinen. Un- iversity of Stuttgart
Bo H, Azhar M, Mohan DM, Campolo D (2015) Review of robotic control strategies for industrial finishing operations. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA). pp 1–6
KlimchikABondarenkoDPashkevichAFerrierJ-LBernardAGusikhinOMadaniKCompliance error compensation in robotic-based millingInformatics in control, automation and robotics: 9th international conference2012ChamSpringer International Publishing197216
BruneteAGambaoEKoskinenJHeikkiläTKaldestadKBTyapinIHovlandGSurdilovicDHernandoMBotteroAAntonSHard material small-batch industrial machining robotRobot Comput Integr Manuf2017000115
Ding Y, Min X, Fu W, Liang Z (2018) Research and application on force control of industrial robot polishing concave curved surfaces. Proc Inst Mech Eng Part B J Eng Manuf 0954405418802309. doi: https://doi.org/10.1177/0954405418802309
SchneiderUDrustMAnsaloniMLehmannCPellicciariMLealiFGunninkJWVerlAImproving robotic machining accuracy through experimental error investigation and modular compensationInt J Adv Manuf Technol20168531510.1007/s00170-014-6021-2
Sufian M, Chen X, Yu D (2017) Investigating the capability of precision in robotic grinding. In: Proceedings of the 23rd International Conference on Automation & Computing. Huddersfield, UK
Villagrossi E (2016) robot dynamics modelling and control for machining applications. Università degli Studi di Brescia
DongSLiaoWZhengKLiuJFengJInvestigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacksInt J Mech Sci201915186887610.1016/j.ijmecsci.2018.12.039
He F, Liu Y, Liu K (2018) A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling. Int J Adv Manuf Technol doi: https://doi.org/10.1007/s00170-018-3099-y
Ricardo J, Posada D, Kumar S, et al (2016) Automatic programming and control for robotic deburring description of the robot deburring system. In: 47th international symposium on Robotics pp 688–695
Schneider U, Diaz Posada JR, Verl A (2015) Automatic pose optimization for robotic processes. Proc - IEEE Int Conf robot autom 2054–2059. doi: https://doi.org/10.1109/ICRA.2015.7139468
Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization in robotic-based manufacturing. IFAC, Workpiece Placement Optimization in Robotic-based Manufacturing
OwenWSCroftEABenhabibBReal-time trajectory resolution for dual robot machiningIEEE Int Conf Robot Autom 2004 Proceedings ICRA2004543324337
HuynhHNRiviere-LorphevreEVerlindenOMilling simulations with a 3-DOF flexibleInt J Mech aerospace Ind Mechatron Manuf Eng20161015431552
TangXYanRPengFLiuGLiHWeiDFanZChenZMendesAYanYChenSDeformation error prediction and compensation for robot multi-axis millingIntelligent robotics and applications2018ChamSpringer International Publishing30931810.1007/978-3-319-97586-3_28
IglesiasISebastiánMAAresJEOverview of the state of robotic machining: current situation and future potentialProcedia Eng201513291191710.1016/j.proeng.2015.12.577
Yuan L (2017) A study of chatter in robotic machining and a semi- active chatter suppression method using magnetorheological elastomers (MREs). University of Wollongong
Puzik A, Meyer C, Verl A (2010) Results of robot machining with additional 3D-piezo-actuation-mechanism for error compensation.7th CIRP Int Conf, Intell Comput … 415–421
XieYZouWYangYLiaJDesign of robotic end-effector for milling force controlIOP Conf Ser Mater Sci Eng201842310.1088/1757-899X/423/1/012032
Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press
Qin C, Tao J, Wang M, Liu C (2016) A novel approach for the acquisition of vibration signals of the end effector in robotic drilling. AUS 2016–2016 IEEE/CSAA Int Conf Aircr Util Syst 522–526. doi: https://doi.org/10.1109/AUS.2016.7748106
XiongGDingYZhuLMStiffness-based pose optimization of an industrial robot for five-axis millingRobot Comput Integr Manuf201955192810.1016/j.rcim.2018.07.001
DongSZhengKLiaoWStability of lateral vibration in robotic rotary ultrasonic drillingInt J Mech Sci201814534635210.1016/j.ijmecsci.2018.07.004
OwenWSCroftEABenhabibBReal-time trajectory resolution for a two-manipulator machining systemJ Robot Syst200622516310.1002/rob.201511163.70309
SlamaniMGauthierSChatelainJFAnalysis of trajectory deviation during high speed robotic trimming of carbon-fiber reinforced polymersRobot Comput Integr Manuf20143054655510.1016/j.rcim.2014.03.007
DenkenaBLitwinskiKSchönherrMInnovative drive concept for machining robotsProcedia CIRP20139677210.1016/j.procir.2013.06.170
LehmannCPellicciariMDrustMGunninkJWNetoPMoreiraAPMachining with industrial robots: the COMET project approachRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg273610.1007/978-3-642-39223-8_3
SlamaniMChatelainJFAssessment of the suitability of industrial robots for the machining of carbon-fiber reinforced polymers (CFRPs)J Manuf Process20193717719510.1016/j.jmapro.2018.11.022
UhlmannEReinkoberSHollerbachTEnergy efficient usage of industrial robots for machining processesProcedia CIRP20164820621110.1016/j.procir.2016.03.241
MaoYZhaoHZhaoXDingHHuangYWuHLiuHYinZTrajectory and force generation with multi-constraints for robotic belt grindingIntelligent robotics and applications2017ChamSpringer International Publishing142310.1007/978-3-319-65292-4_2
LealiFPellicciariMPiniFBerselliGVergnanoANetoPMoreiraAPAn offline programming method for the robotic deburring of aerospace componentsRobotics in Smart Manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg113
XieSLiSChenBQiJHuangYWuHLiuHYinZResearch on robot grinding technology considering removal rate and roughnessIntelligent robotics and applications2017ChamSpringer International Publishing799010.1007/978-3-319-65292-4_8
TratarJPušavecFKopačJTool wear performance evaluation in MDF machining with anthropomorphic robotTech Gaz201421911915
ChenYDongFRobot machining: recent development and future research issuesInt J Adv Manuf Technol2013661489149710.1007/s00170-012-4433-4
XiongGDingYZhuLHuangYWuHLiuHYinZA feed-direction stiffness based trajectory optimization method for a milling robotIntelligent robotics and applications2017ChamSpringer International Publishing18419510.1007/978-3-319-65292-4_17
Muto S, Shimokura K (1994) Teaching and control of robot contour-tracking using contact point detection. Proc 1994 IEEE Int Conf Robot Autom:674–681. https://doi.org/10.1109/ROBOT.1994.351408
GuoYDongHWangGA robotic boring system for intersection holes in aircraft assemblyInd Robot An Int J20184532833610.1108/IR-09-2017-0176
Karim A, Hitzer J, Lechler A, Verl A (2017) Analysis of the dynamic behavior of a six-axis industrial robot within the entire workspace in respect of machining tasks. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM:670–675. https://doi.org/10.1109/AIM.2017.8014094
PandianJAutomated fixture and robot aided deburring for light aircraft components1998Winnipeg, ManitobaUniversity of Manitoba
MatsuokaSIShimizuKYamazakiNOkiYHigh-speed end milling of an articulated robot and its characteristicsJ Mater Process Technol199995838910.1016/S0924-0136(99)00315-5
JiWWangYLiuHWangLInterface architecture design for minimum programming in human-robot collaborationProcedia CIRP20187212913410.1016/j.procir.2018.03.013
HuYNChenYHImplementation of a robot system for sculptured surface cutting. Part 2. Finish machiningInt J Adv Manuf Technol19991563063910.1007/s001700050112
ToquicaJSživanovićSAlvaresAJBonnardRA STEP-NC compliant robotic machining platform for advanced manufacturingInt J Adv Manuf Technol2018953839385410.1007/s00170-017-1466-8
KlimchikAAmbiehlAGarnierSSFuretBPashkevichAEfficiency evaluation of robots in machining applications using industrial performance measureRobot Comput Integr Manuf201748122910.1016/j.rcim.2016.12.005
HuangHGongZMChenXQZhouLSMART robotic system for 3D profile
3403_CR89
T Zhang (3403_CR36) 2018; 15
U Schneider (3403_CR76) 2013; 7
3403_CR81
DGG Rosa (3403_CR135) 2017; 39
JSM Vergeest (3403_CR14) 1996; 23
3403_CR80
F Nagata (3403_CR9) 2014; 2014
HN Huynh (3403_CR143) 2016; 10
E Villagrossi (3403_CR25) 2018; 31
U Schneider (3403_CR79) 2016; 85
3403_CR83
3403_CR82
D Milutinovic (3403_CR7) 2011; 53
3403_CR120
3403_CR121
3403_CR122
A Klimchik (3403_CR54) 2017; 48
3403_CR129
3403_CR78
F Leali (3403_CR137) 2016; 85
3403_CR77
X Tang (3403_CR124) 2018
R-S Lee (3403_CR147) 2000; 214
F Domroes (3403_CR26) 2013; 3
3403_CR70
Y Guo (3403_CR86) 2018; 45
J Brüning (3403_CR106) 2016; 6
3403_CR73
I Iglesias (3403_CR19) 2015; 132
3403_CR72
P Lei (3403_CR149) 2017; 46
Y Lin (3403_CR56) 2017; 48
S Garnier (3403_CR110) 2017; 58
3403_CR131
3403_CR133
Y Guo (3403_CR71) 2016; 101
3403_CR134
S Dong (3403_CR88) 2019; 151
M Slamani (3403_CR92) 2014; 30
G Xiong (3403_CR94) 2017
Y Song (3403_CR6) 1999; 213
JD Barnfather (3403_CR128) 2016; 94
3403_CR139
JS Toquica (3403_CR142) 2018; 95
S Xie (3403_CR32) 2017
3403_CR69
A Klimchik (3403_CR53) 2016; 49
3403_CR61
WS Owen (3403_CR101) 2008; 24
WS Owen (3403_CR97) 2006; 22
3403_CR144
D Katić (3403_CR45) 1998; 28
M Slamani (3403_CR125) 2016; 42
3403_CR148
JD Barnfather (3403_CR127) 2016; 37
LFF Furtado (3403_CR113) 2017; 92
M Slamani (3403_CR126) 2019; 37
B Denkena (3403_CR130) 2013; 9
F Nagata (3403_CR11) 2015; 20
3403_CR52
G Wang (3403_CR84) 2016; 86
3403_CR51
3403_CR50
L Yuan (3403_CR20) 2018; 23
K Subrin (3403_CR55) 2012; 162
W Ji (3403_CR41) 2018; 72
YN Hu (3403_CR5) 1999; 15
Y Mao (3403_CR35) 2017
S Diao (3403_CR43) 2018; 18
J Tratar (3403_CR116) 2013; 16
WS Owen (3403_CR98) 2005; 21
W Li (3403_CR34) 2016; 21
H Xie (3403_CR58) 2018
3403_CR44
M Slamani (3403_CR93) 2015; 59
S Mejri (3403_CR115) 2016; 82
3403_CR42
3403_CR1
3403_CR49
C Lehmann (3403_CR74) 2013
3403_CR48
B Solvang (3403_CR138) 2009; 42
3403_CR46
L Cen (3403_CR107) 2017; 10
C Dumas (3403_CR47) 2011; 27
3403_CR3
SI Matsuoka (3403_CR114) 1999; 95
3403_CR2
3403_CR40
H Huang (3403_CR39) 2003; 21
F Rafieian (3403_CR30) 2014; 14
M Cordes (3403_CR65) 2019; 55
B Denkena (3403_CR146) 2017; 11
W Owen (3403_CR100) 2008; 35
3403_CR33
3403_CR31
M Cordes (3403_CR123) 2017; 90
U Schneider (3403_CR75) 2013
S Yan (3403_CR37) 2019; 37
L Yuan (3403_CR68) 2019; 117
Y Xie (3403_CR132) 2018; 423
F Nagata (3403_CR13) 2018; 15
J Pandian (3403_CR38) 1998
F Leali (3403_CR29) 2013
S Mousavi (3403_CR59) 2017; 88
G Xiong (3403_CR57) 2019; 55
S Mousavi (3403_CR60) 2018; 50
ZZ Pan (3403_CR63) 2006; 173
E Appleton (3403_CR4) 1987
S Dong (3403_CR87) 2018; 145
JH Chin (3403_CR90) 1993; 10
SN Rea Minango (3403_CR140) 2017; 30
S Zivanovic (3403_CR141) 2018; 49
WS Owen (3403_CR99) 2004; 5
3403_CR109
3403_CR22
SM Safi (3403_CR66) 2013; 346
A Klimchik (3403_CR117) 2012
3403_CR27
WS Owen (3403_CR102) 2009; 44
3403_CR24
P Krži (3403_CR91) 2013; 3651
E Uhlmann (3403_CR145) 2016; 48
A Brunete (3403_CR136) 2017; 000
T Izumi (3403_CR21) 1987; 2
Y Bu (3403_CR62) 2017; 49
3403_CR103
3403_CR28
3403_CR104
F Nagata (3403_CR10) 2015; 5
M Jinno (3403_CR23) 1995; 2
G Wang (3403_CR85) 2017; 91
3403_CR108
3403_CR12
M Höfener (3403_CR119) 2014; 8
J Tratar (3403_CR111) 2014; 21
3403_CR15
3403_CR96
3403_CR95
H Vieler (3403_CR67) 2017; 47
C Chen (3403_CR105) 2019; 55
E Abele (3403_CR64) 2007; 56
Y Chen (3403_CR16) 2013; 66
3403_CR112
Z Dimic (3403_CR8) 2016; 23
3403_CR18
3403_CR17
3403_CR118
References_xml – reference: Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. Proc - IEEE Int Conf Robot Autom 2921–2926 . doi: https://doi.org/10.1109/ICRA.2013.6630982
– reference: JinnoMOzakiFYoshimiTDevelopment of a force controlled robot for grinding, chamfering and polishingProc - IEEE Int Conf Robot Autom1995214551460
– reference: Ding Y, Min X, Fu W, Liang Z (2018) Research and application on force control of industrial robot polishing concave curved surfaces. Proc Inst Mech Eng Part B J Eng Manuf 0954405418802309. doi: https://doi.org/10.1177/0954405418802309
– reference: HuYNChenYHImplementation of a robot system for sculptured surface cutting. Part 2. Finish machiningInt J Adv Manuf Technol19991563063910.1007/s001700050112
– reference: DomroesFKrewetCKuhlenkoetterBApplication and analysis of force control strategies to deburring and grindingMod Mech Eng20133111810.4236/mme.2013.32A002
– reference: TangXYanRPengFLiuGLiHWeiDFanZChenZMendesAYanYChenSDeformation error prediction and compensation for robot multi-axis millingIntelligent robotics and applications2018ChamSpringer International Publishing30931810.1007/978-3-319-97586-3_28
– reference: AppletonEWilliamsDJIndustrial robot applications1987New YorkHALSTED PRESS10.1007/978-94-009-3125-1
– reference: OwenWSCroftEABenhabibBAcceleration and torque redistrubution for a dual-manipulator systemIEEE Trans Robot2005211226123010.1109/TRO.2005.853492
– reference: DenkenaBLitwinskiKSchönherrMInnovative drive concept for machining robotsProcedia CIRP20139677210.1016/j.procir.2013.06.170
– reference: LealiFPellicciariMPiniFBerselliGVergnanoANetoPMoreiraAPAn offline programming method for the robotic deburring of aerospace componentsRobotics in Smart Manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg113
– reference: DongSLiaoWZhengKLiuJFengJInvestigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacksInt J Mech Sci201915186887610.1016/j.ijmecsci.2018.12.039
– reference: Garnier S, Dumas C, Caro S, Furet B (2013) Quality certification and productivity optimization in robotic-based manufacturing. IFAC, Quality Certification and Productivity Optimization in Robotic-based Manufacturing
– reference: Choi S, Cho CN, Kim H-J (2015) Development of hexapod robot for machining. In: 15th international conference on control, automation and systems. pp 738–740
– reference: BrüningJDenkenaBDittrichMAParkH-SSimulation based planning of machining processes with industrial robotsProcedia Manuf20166172410.1016/j.promfg.2016.11.003
– reference: Klimchik A, Bondarenko D, Pashkevich A, et al (2012) Compensation of tool deflection in robotic-based milling. Icinco 113–122
– reference: SubrinKSabourinLGoguGMezouarYPerformance criteria to evaluate a kinematically redundant robotic cell for machining tasksAppl Mech Mater201216241342210.4028/www.scientific.net/AMM.162.413
– reference: Puzik A, Meyer C, Verl A (2010) Results of robot machining with additional 3D-piezo-actuation-mechanism for error compensation.7th CIRP Int Conf, Intell Comput … 415–421
– reference: LiWXieHZhangGYanSJYinZP3-D shape matching of a blade surface in robotic grinding applicationsIEEE/ASME Trans Mechatronics2016212294230610.1109/TMECH.2016.2574813
– reference: OwenWSCroftEABenhabibBReal-time trajectory resolution for dual robot machiningIEEE Int Conf Robot Autom 2004 Proceedings ICRA2004543324337
– reference: HuynhHNRiviere-LorphevreEVerlindenOMilling simulations with a 3-DOF flexibleInt J Mech aerospace Ind Mechatron Manuf Eng20161015431552
– reference: LinYZhaoHDingHPosture optimization methodology of 6R industrial robots for machining using performance evaluation indexesRobot Comput Integr Manuf201748597210.1016/j.rcim.2017.02.002
– reference: XieSLiSChenBQiJHuangYWuHLiuHYinZResearch on robot grinding technology considering removal rate and roughnessIntelligent robotics and applications2017ChamSpringer International Publishing799010.1007/978-3-319-65292-4_8
– reference: Nagata F, Hayashi S, Nagatomi T, et al (2015) Robotic trajectory following controller with a capability for generating micro vibrational motion along curved surface. IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc 765–770. doi: https://doi.org/10.1109/IECON.2015.7392191
– reference: CordesMHintzeWOffline simulation of path deviation due to joint compliance and hysteresis for robot machiningInt J Adv Manuf Technol2017901075108310.1007/s00170-016-9461-z
– reference: Cheng K (2008) Machining dynamics: fundamentals, applications and practices. Springer Science & Business Media
– reference: SolvangBRefsahlLKSziebigGSTEP-NC based industrial robot CAM systemIFAC Proc20094224525010.3182/20090909-4-JP-2010.00043
– reference: ZhangTSuJCollision-free planning algorithm of motion path for the robot belt grinding systemInt J Adv Robot Syst20181517298814187937710.1177/1729881418793778
– reference: YuanLSunSPanZDingDGienkeOLiWMode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorberMech Syst Signal Process201911722123710.1016/j.ymssp.2018.07.051
– reference: SlamaniMGauthierSChatelainJFA study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPsMeasurement20155926828310.1016/j.measurement.2014.09.052
– reference: Lijin F, Li LI, Guoxun W (2017) Integration of cutting robot with CAD/CAM system based on STEP-NC. 868:93–98 . doi: https://doi.org/10.4028/www.scientific.net/AMM.868.93
– reference: LehmannCPellicciariMDrustMGunninkJWNetoPMoreiraAPMachining with industrial robots: the COMET project approachRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg273610.1007/978-3-642-39223-8_3
– reference: MousaviSGagnolVBouzgarrouBCRayPDynamic modeling and stability prediction in robotic machiningInt J Adv Manuf Technol2017883053306510.1007/s00170-016-8938-0
– reference: GuoYDongHWangGA robotic boring system for intersection holes in aircraft assemblyInd Robot An Int J20184532833610.1108/IR-09-2017-0176
– reference: TratarJPušavecFKopačJTool wear performance evaluation in MDF machining with anthropomorphic robotTech Gaz201421911915
– reference: SlamaniMChatelainJFAssessment of the suitability of industrial robots for the machining of carbon-fiber reinforced polymers (CFRPs)J Manuf Process20193717719510.1016/j.jmapro.2018.11.022
– reference: OwenWSCroftEABenhabibBOn-line trajectory resolution for two-armed systems with conflicting performance criteriaMech Mach Theory20094494996510.1016/j.mechmachtheory.2008.06.0011350.70015
– reference: MilutinovicDGlavonjicMSlavkovicNDimicZZivanovicSKokotovicBTanovicLReconfigurable robotic machining system controlled and programmed in a machine tool mannerInt J Adv Manuf Technol2011531217122910.1007/s00170-010-2888-8
– reference: KatićDVukobratovićMA neural network-based classification of environment dynamics models for compliant control of manipulation robotsIEEE Trans Syst Man, Cybern Part B Cybern199828586910.1109/3477.658578
– reference: WangGDongHGuoYKeYDynamic cutting force modeling and experimental study of industrial robotic boringInt J Adv Manuf Technol20168617919010.1007/s00170-015-8166-z
– reference: BuYLiaoWTianWZhangJZhangLStiffness analysis and optimization in robotic drilling applicationPrecis Eng20174938840010.1016/j.precisioneng.2017.04.001
– reference: He F, Liu Y, Liu K (2018) A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling. Int J Adv Manuf Technol doi: https://doi.org/10.1007/s00170-018-3099-y
– reference: Surdilovic D, Zhao H, Schreck G, Krueger J (2012) Advanced methods for small batch robotic machining of hard materials. Robot Proc Robot 2012; 7th Ger Conf 1–6
– reference: AbeleEWeigoldMRothenbücherSModeling and identification of an industrial robot for machining applicationsCIRP Ann - Manuf Technol20075638739010.1016/j.cirp.2007.05.090
– reference: MaoYZhaoHZhaoXDingHHuangYWuHLiuHYinZTrajectory and force generation with multi-constraints for robotic belt grindingIntelligent robotics and applications2017ChamSpringer International Publishing142310.1007/978-3-319-65292-4_2
– reference: SongYChenYHFeature-based robot machining for rapid prototypingProc Inst Mech Eng Part B J Eng Manuf199921345145910.1243/0954405991516921
– reference: GarnierSSubrinKWaiyaganKModelling of robotic drillingProcedia CIRP20175841642110.1016/j.procir.2017.03.246
– reference: Rea MinangoSNFerreiraJCECombining the STEP-NC standard and forward and inverse kinematics methods for generating manufacturing tool paths for serial and hybrid robotsInt J Comput Integr Manuf2017301203122310.1080/0951192X.2017.1305507
– reference: ChinJHTsaiHCA path algorithm for robotic machiningRobot Comput Integr Manuf19931018519810.1016/0736-5845(93)90054-N
– reference: Halbauer M, Lehmann C, Städter JP et al (2013) Milling strategies optimized for industrial robots to machine hard materials. IEEE Int Conf Emerg Technol Fact Autom ETFA:1–4. https://doi.org/10.1109/ETFA.2013.6648124
– reference: SchneiderUDrustMPuzikAVerlACompensation of errors in robot machining with a parallel 3D-piezo compensation mechanismProcedia CIRP2013730531010.1016/j.procir.2013.05.052
– reference: NagataFOtsukaAWatanabeKHabibMKFuzzy feed rate controller for a machining robotIEEE Int Conf Mechatronics Autom IEEE ICMA20142014198203
– reference: SafiSMAmirabadiHLirabiIKhaliliKRahnamaSA new approach for chatter prediction in robotic milling based on signal processing in time domainAppl Mech Mater2013346455110.4028/www.scientific.net/AMM.346.45
– reference: JiWWangYLiuHWangLInterface architecture design for minimum programming in human-robot collaborationProcedia CIRP20187212913410.1016/j.procir.2018.03.013
– reference: Karim A, Hitzer J, Lechler A, Verl A (2017) Analysis of the dynamic behavior of a six-axis industrial robot within the entire workspace in respect of machining tasks. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM:670–675. https://doi.org/10.1109/AIM.2017.8014094
– reference: SlamaniMGauthierSChatelainJFAnalysis of trajectory deviation during high speed robotic trimming of carbon-fiber reinforced polymersRobot Comput Integr Manuf20143054655510.1016/j.rcim.2014.03.007
– reference: VergeestJSMTangelderJWHRobot machines rapid prototypeInd Robot An Int J199623172010.1108/01439919610130328
– reference: XieYZouWYangYLiaJDesign of robotic end-effector for milling force controlIOP Conf Ser Mater Sci Eng201842310.1088/1757-899X/423/1/012032
– reference: Kubela T, Pochyly A, Singule V (2016) Assessment of industrial robots accuracy in relation to accuracy improvement in machining processes. Proc - 2016 IEEE Int power Electron motion control Conf PEMC 2016 720–725. doi: doi:https://doi.org/10.1109/EPEPEMC.2016.7752083
– reference: DiaoSChenXLuoJDevelopment and experimental evaluation of a 3D vision system for grinding robotSensors (Switzerland)201818120
– reference: Olofsson B, Sörnmo O, Schneider U, et al (2011) Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots. In: 2011 IEEE/RSJ international conference on intelligent robots and systems. pp 4704–4709
– reference: Atmosudiro A, Keinert M, Karim A, et al (2014) Productivity increase through joint space path planning for robot machining. Proc - UKSim-AMSS 8th Eur model Symp Comput model simulation, EMS 2014 257–262 . doi: https://doi.org/10.1109/EMS.2014.46
– reference: SlamaniMGauthierSChatelainJ-FComparison of surface roughness quality obtained by high speed CNC trimming and high speed robotic trimming for CFRP laminateRobot Comput Integr Manuf201642637210.1016/j.rcim.2016.05.004
– reference: Muto S, Shimokura K (1994) Teaching and control of robot contour-tracking using contact point detection. Proc 1994 IEEE Int Conf Robot Autom:674–681. https://doi.org/10.1109/ROBOT.1994.351408
– reference: NagataFHabibMKOtsukaAHayashiSNagatomiTWatanabeKVibrational motion control for foamed polystyrene machining robot and extraction of radius of curvature for fuzzy feed rate controlArtif Life Robot20152019720210.1007/s10015-015-0221-1
– reference: YuanLPanZDingDSunSLiWA review on chatter in robotic machining process regarding both regenerative and mode coupling mechanismIEEE/ASME Trans Mechatronics2018232240225110.1109/TMECH.2018.2864652
– reference: Zhang H, Wang J, Zhang G, et al (2005) Machining with flexible manipulator: toward improving robotic machining performance. Proceedings, 2005 IEEE/ASME Int Conf Adv Intell Mechatronics 1127–1132 . doi: https://doi.org/10.1109/AIM.2005.1511161
– reference: KlimchikABondarenkoDPashkevichAFerrierJ-LBernardAGusikhinOMadaniKCompliance error compensation in robotic-based millingInformatics in control, automation and robotics: 9th international conference2012ChamSpringer International Publishing197216
– reference: ChenYDongFRobot machining: recent development and future research issuesInt J Adv Manuf Technol2013661489149710.1007/s00170-012-4433-4
– reference: Leali F, Pini F, Ansaloni M (2013) Integration of CAM off-line programming in robot high-accuracy machining. In: proceedings of the 2013 IEEE/SICE international symposium on system Integration pp 580–585
– reference: PanZZZhangHZhuZWangJChatter analysis of robotic machining processJ Mater Process Technol200617330130910.1016/j.jmatprotec.2005.11.033
– reference: DimicZMilutinovicDZivanovicSKvrgicVVirtual environment in control and programming system for reconfigurable machining robot 9Teh Vjesn - Tech Gaz20162318211182
– reference: Puzik A, Meyer C, Verl A (2010) Industrial robots for machining processes in combination with a 3D-piezo-compensation mechanism. CIRP Intell Comput Manuf Eng ICME
– reference: MatsuokaSIShimizuKYamazakiNOkiYHigh-speed end milling of an articulated robot and its characteristicsJ Mater Process Technol199995838910.1016/S0924-0136(99)00315-5
– reference: Liu H, Wan Y, Zeng Z, et al (2016) Freeform surface grinding and polishing by CCOS based on industrial robot. In: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies,
– reference: KlimchikAAmbiehlAGarnierSFuretBPashkevichAExperimental study of robotic-based machiningIFAC-PapersOnLine201649174179360976010.1016/j.ifacol.2016.07.591
– reference: Haage M, Halbauer M, Lehmann C, Städter JP (2014) Increasing robotic machining accuracy using offline compensation based on joint-motion SIMULATION Proc Jt Conf ISR 2014 - 45th Int Symp Robot Robot 2014 - 8th Ger Conf Robot ISR/ROBOTIK 2014 347–354
– reference: NagataFOtsukaAWatanabeKHabibMKMachining robot for foamed polystyrene materials using fuzzy feed rate controller Fusaomi Nagata * and Akimasa Otsuka Keigo WatanabeInt J Mechatronics Autom20155344310.1504/IJMA.2015.068452
– reference: IglesiasISebastiánMAAresJEOverview of the state of robotic machining: current situation and future potentialProcedia Eng201513291191710.1016/j.proeng.2015.12.577
– reference: LeiPZhengLAn automated in-situ alignment approach for finish machining assembly interfaces of large-scale componentsRobot Comput Integr Manuf20174613014310.1016/j.rcim.2017.01.004
– reference: PandianJAutomated fixture and robot aided deburring for light aircraft components1998Winnipeg, ManitobaUniversity of Manitoba
– reference: Höfener M, Schüppstuhl T (2014) Small industrial robots for on-aircraft repair of composite structures summary/abstract kinematics for on-aircraft machining of composites. In: Conference ISR ROBOTIK. pp 422–427
– reference: SchneiderUAnsaloniMDrustMLealiFVerlANetoPMoreiraAPExperimental investigation of sources of error in robot machiningRobotics in smart manufacturing2013Berlin, HeidelbergSpringer Berlin Heidelberg142610.1007/978-3-642-39223-8_2
– reference: OwenWSCroftEABenhabibBA multi-arm robotic system for optimal sculptingRobot Comput Integr Manuf2008249210410.1016/j.rcim.2006.08.001
– reference: DongSZhengKLiaoWStability of lateral vibration in robotic rotary ultrasonic drillingInt J Mech Sci201814534635210.1016/j.ijmecsci.2018.07.004
– reference: KržiPPušavecFKopaJKinematic constraints and offline programming in robotic machiningTeh Vjesn20133651117124
– reference: Yuan L (2017) A study of chatter in robotic machining and a semi- active chatter suppression method using magnetorheological elastomers (MREs). University of Wollongong
– reference: CenLMelkoteSNEffect of robot dynamics on the machining forces in robotic millingProcedia Manuf20171048649610.1016/j.promfg.2017.07.034
– reference: BarnfatherJDGoodfellowMJAbramTDevelopment and testing of an error compensation algorithm for photogrammetry assisted robotic machiningMeasurement20169456157710.1016/j.measurement.2016.08.032
– reference: XiongGDingYZhuLMStiffness-based pose optimization of an industrial robot for five-axis millingRobot Comput Integr Manuf201955192810.1016/j.rcim.2018.07.001
– reference: UhlmannEReinkoberSHollerbachTEnergy efficient usage of industrial robots for machining processesProcedia CIRP20164820621110.1016/j.procir.2016.03.241
– reference: XiongGDingYZhuLHuangYWuHLiuHYinZA feed-direction stiffness based trajectory optimization method for a milling robotIntelligent robotics and applications2017ChamSpringer International Publishing18419510.1007/978-3-319-65292-4_17
– reference: Ricardo J, Posada D, Kumar S, et al (2016) Automatic programming and control for robotic deburring description of the robot deburring system. In: 47th international symposium on Robotics pp 688–695
– reference: GuoYDongHWangGKeYVibration analysis and suppression in robotic boring processInt J Mach Tools Manuf201610110211010.1016/j.ijmachtools.2015.11.011
– reference: Diaz Posada JR, Schneider U, Pidan S, et al (2016) High accurate robotic drilling with external sensor and compliance model-based compensation. Proc - IEEE Int Conf robot autom 3901–3907 . doi: https://doi.org/10.1109/ICRA.2016.7487579
– reference: Villagrossi E (2016) robot dynamics modelling and control for machining applications. Università degli Studi di Brescia
– reference: LeeR-STsaiJ-PLeeJ-NKaoYCLinGCILuTFCollaborative virtual cutting verification and remote robot machining through the InternetProc Instn Mech Engre200021463564410.1243/0954405001518332
– reference: Sufian M, Chen X, Yu D (2017) Investigating the capability of precision in robotic grinding. In: Proceedings of the 23rd International Conference on Automation & Computing. Huddersfield, UK
– reference: Schneider U, Momeni-K M, Ansaloni M, Verl A (2014) Stiffness modeling of industrial robots for deformation compensation in machining. IEEE Int Conf Intell Robot Syst 4464–4469 . doi: https://doi.org/10.1109/IROS.2014.6943194
– reference: International Federation of Robotics I (2017) Executive summary world Robotics 2017 Industrial Robots
– reference: Huynh HN, Riviere-Lorphevre E, Verlinden O (2018) Multibody modelling of a flexible 6-axis robot dedicated to robotic machining. In: the 5th joint international conference on multibody system Dynamics. pp 1–18
– reference: FurtadoLFFVillaniETrabassoLGSutérioRA method to improve the use of 6-dof robots as machine toolsInt J Adv Manuf Technol2017922487250210.1007/s00170-017-0336-8
– reference: OwenWCroftEBenhabibBStiffness optimization for two-armed robotic sculptingInd Robot An Int J200835465710.1108/01439910810843289
– reference: Ji W, Li Y, Wang L (2018) A task-oriented cyber-physical system in manufacturing. In: The 48th international conference on computers and industrial engineering. Auckland, p 8
– reference: RosaDGGFeiteiraJFSLopesAMde AbreuPAFAnalysis and implementation of a force control strategy for drilling operations with an industrial robotJ Braz Soc Mech Sci Eng2017394749475610.1007/s40430-017-0913-7
– reference: Karim A, Verl A (2013) Challenges and obstacles in robot-machining. 2013 44th Int Symp robot ISR 2013. doi: https://doi.org/10.1109/ISR.2013.6695731
– reference: CordesMHintzeWAltintasYChatter stability in robotic millingRobot Comput Integr Manuf201955111810.1016/j.rcim.2018.07.004
– reference: TratarJKopačJRobot milling of welded structuresJ Prod Eng2013162932
– reference: SchneiderUDrustMAnsaloniMLehmannCPellicciariMLealiFGunninkJWVerlAImproving robotic machining accuracy through experimental error investigation and modular compensationInt J Adv Manuf Technol20168531510.1007/s00170-014-6021-2
– reference: OwenWSCroftEABenhabibBReal-time trajectory resolution for a two-manipulator machining systemJ Robot Syst200622516310.1002/rob.201511163.70309
– reference: ChenCPengFYanRLiYWeiDFanZTangXZhuZStiffness performance index based posture and feed orientation optimization in robotic milling processRobot Comput Integr Manuf201955294010.1016/j.rcim.2018.07.003
– reference: Olof S, Schneider U, Robertsson A, et al (2013) High-accuracy milling with industrial robots using a piezo-actuated high-dynamic compensation mechanism. Comet
– reference: Ji W, Yin S, Wang L (2018) A big data analytics based machining optimisation approach. J Intell Manuf. https://doi.org/10.1007/s10845-018-1440-9
– reference: ToquicaJSživanovićSAlvaresAJBonnardRA STEP-NC compliant robotic machining platform for advanced manufacturingInt J Adv Manuf Technol2018953839385410.1007/s00170-017-1466-8
– reference: MousaviSGagnolVBouzgarrouBCRayPStability optimization in robotic milling through the control of functional redundanciesRobot Comput Integr Manuf20185018119210.1016/j.rcim.2017.09.004
– reference: RafieianFHazelBLiuZRegenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot armProcedia CIRP20141440641110.1016/j.procir.2014.03.099
– reference: Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press
– reference: KATIC D, VUKOBRATOVIC M (1997) Classification and learning of robot-environment dynamic models. In: proceedings of the 1997 EEE Intemational conference on robotics and automation. pp 2632–2637
– reference: Denkena B, Bergmann B, Lepper T (2017) Design and optimization of a machining robot. In: Procedia Manufacturing. Elsevier B.V., pp 89–96
– reference: Caro S, Dumas C, Garnier S, Furet B (2013) Workpiece placement optimization in robotic-based manufacturing. IFAC, Workpiece Placement Optimization in Robotic-based Manufacturing
– reference: VillagrossiEPedrocchiNBeschiMMolinari TosattiLA human mimicking control strategy for robotic deburring of hard materialsInt J Comput Integr Manuf20183186988010.1080/0951192X.2018.1447688
– reference: Caro S, Garnier S, Furet B, et al (2014) Workpiece placement optimization for machining operations with industrial robots. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 1716–1721. doi: https://doi.org/10.1109/AIM.2014.6878331
– reference: HuangHGongZMChenXQZhouLSMART robotic system for 3D profile turbine vane airfoil repairInt J Adv Manuf Technol20032127528310.1007/s001700300032
– reference: NagataFWatanabeKHabibMKMachining robot with vibrational motion and 3D printer-like data interfaceInt J Autom Comput20181511210.1007/s11633-017-1101-z
– reference: Pandremenos J, Doukas C, Stavropoulos P, Chryssolouris G (2011) Machining with robots: a critical review. 7th Int Conf Digit Enterp Technol
– reference: Huan J (1982) Bahnregelung zur Bahnerzeugung an numerisch gesteuerten Werkzeugrnaschinen. Un- iversity of Stuttgart
– reference: Lehmann C, Halbauer M, Euhus D, Overbeck D (2012) Milling with industrial robots: strategies to reduce and compensate process force induced accuracy influences. IEEE Int Conf Emerg Technol Fact Autom ETFA doi: https://doi.org/10.1109/ETFA.2012.6489741
– reference: DenkenaBBrüningJWindelsLEuhusDKirschSOverbeckDLepperTHolistic process planning chain for robot machiningProd Eng20171171572210.1007/s11740-017-0771-2
– reference: Bo H, Azhar M, Mohan DM, Campolo D (2015) Review of robotic control strategies for industrial finishing operations. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA). pp 1–6
– reference: BarnfatherJDGoodfellowMJAbramTA performance evaluation methodology for robotic machine tools used in large volume manufacturingRobot Comput Integr Manuf201637495610.1016/j.rcim.2015.06.002
– reference: BruneteAGambaoEKoskinenJHeikkiläTKaldestadKBTyapinIHovlandGSurdilovicDHernandoMBotteroAAntonSHard material small-batch industrial machining robotRobot Comput Integr Manuf2017000115
– reference: Schneider U, Diaz Posada JR, Verl A (2015) Automatic pose optimization for robotic processes. Proc - IEEE Int Conf robot autom 2054–2059. doi: https://doi.org/10.1109/ICRA.2015.7139468
– reference: Schreck G, Surdilovic D, Krüger J (2014) HEPHESTOS: hard material small-batch industrial machining. Robot Scientif. pp 239–244
– reference: ZivanovicSSlavkovicNMilutinovicDAn approach for applying STEP-NC in robot machiningRobot Comput Integr Manuf20184936137310.1016/j.rcim.2017.08.009
– reference: IzumiTNarikiyoTFukuiYTeachingless grinding robot depending on three force informationAdv Robot19872556710.1163/156855387X00066
– reference: Wang Z, Keogh P (2017) Active vibration control for robotic machining. In: ASME 2017 International Mechanical Engineering Congress and Exposition
– reference: YanSXuXYangZZhuDDingHAn improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-offJ Manuf Process20193749650810.1016/j.jmapro.2018.12.029
– reference: HöfenerMSchüppstuhlTA method for increasing the accuracy of “on-workpiece” machining with small industrial robots for composite repairProd Eng2014870170910.1007/s11740-014-0570-y
– reference: Kothe S, Stürmer SPV, Schmidt HC, et al (2016) Accuracy analysis and error source identification for optimization of robot-based machining systems for aerospace production. SAE Tech Pap 2016–Octob. doi: https://doi.org/10.4271/2016-01-2137
– reference: Huynh HN, Kouroussis G, Verlinden O (2018) Modal updating of a 6-axis robot for milling application. In: 25th international congress on sound and vibration. pp 1–8
– reference: MejriSGagnolVLeTPDynamic characterization of machining robot and stability analysisInt J Adv Manuf Technol20168235135910.1007/s00170-015-7336-3
– reference: Domrös DF (2014) Towards autonomous robot machining. In: Conference ISR ROBOTIK. pp 448–453
– reference: Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2018) Robotic grinding of a blisk with two degrees of freedom contact force control. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2925-6
– reference: VielerHKarimALechlerADrive based damping for robots with secondary encodersRobot Comput Integr Manuf20174711712210.1016/j.rcim.2017.03.007
– reference: XieHLiWYinZChenZMendesAYanYChenSPosture Optimization Based on Both Joint Parameter Error and Stiffness for Robotic MillingIntelligent robotics and applications2018ChamSpringer International Publishing27728610.1007/978-3-319-97586-3_25
– reference: Qin C, Tao J, Wang M, Liu C (2016) A novel approach for the acquisition of vibration signals of the end effector in robotic drilling. AUS 2016–2016 IEEE/CSAA Int Conf Aircr Util Syst 522–526. doi: https://doi.org/10.1109/AUS.2016.7748106
– reference: DumasCCaroSGarnierSFuretBJoint stiffness identification of six-revolute industrial serial robotsRobot Comput Integr Manuf20112788188810.1016/j.rcim.2011.02.003
– reference: WangGDongHGuoYKeYChatter mechanism and stability analysis of robotic boringInt J Adv Manuf Technol20179141142110.1007/s00170-016-9731-9
– reference: KlimchikAAmbiehlAGarnierSSFuretBPashkevichAEfficiency evaluation of robots in machining applications using industrial performance measureRobot Comput Integr Manuf201748122910.1016/j.rcim.2016.12.005
– reference: LealiFVergnanoAPiniFPellicciariMBerselliGA workcell calibration method for enhancing accuracy in robot machining of aerospace partsInt J Adv Manuf Technol201685475510.1007/s00170-014-6025-y
– volume: 46
  start-page: 130
  year: 2017
  ident: 3403_CR149
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.01.004
– volume: 20
  start-page: 197
  year: 2015
  ident: 3403_CR11
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-015-0221-1
– volume: 39
  start-page: 4749
  year: 2017
  ident: 3403_CR135
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-017-0913-7
– start-page: 277
  volume-title: Intelligent robotics and applications
  year: 2018
  ident: 3403_CR58
  doi: 10.1007/978-3-319-97586-3_25
– volume: 47
  start-page: 117
  year: 2017
  ident: 3403_CR67
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.03.007
– volume: 55
  start-page: 29
  year: 2019
  ident: 3403_CR105
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.07.003
– ident: 3403_CR131
– volume: 145
  start-page: 346
  year: 2018
  ident: 3403_CR87
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.07.004
– ident: 3403_CR27
  doi: 10.1007/s00170-018-2925-6
– volume: 27
  start-page: 881
  year: 2011
  ident: 3403_CR47
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2011.02.003
– ident: 3403_CR95
– volume: 94
  start-page: 561
  year: 2016
  ident: 3403_CR128
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.08.032
– volume: 23
  start-page: 1821
  year: 2016
  ident: 3403_CR8
  publication-title: Teh Vjesn - Tech Gaz
  doi: 10.17559/TV-20150210133556
– start-page: 184
  volume-title: Intelligent robotics and applications
  year: 2017
  ident: 3403_CR94
  doi: 10.1007/978-3-319-65292-4_17
– ident: 3403_CR129
  doi: 10.1109/ETFA.2012.6489741
– volume: 30
  start-page: 546
  year: 2014
  ident: 3403_CR92
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2014.03.007
– volume: 92
  start-page: 2487
  year: 2017
  ident: 3403_CR113
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-0336-8
– volume: 37
  start-page: 177
  year: 2019
  ident: 3403_CR126
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.11.022
– volume: 49
  start-page: 388
  year: 2017
  ident: 3403_CR62
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2017.04.001
– volume: 37
  start-page: 49
  year: 2016
  ident: 3403_CR127
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2015.06.002
– volume: 50
  start-page: 181
  year: 2018
  ident: 3403_CR60
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.09.004
– start-page: 27
  volume-title: Robotics in smart manufacturing
  year: 2013
  ident: 3403_CR74
  doi: 10.1007/978-3-642-39223-8_3
– ident: 3403_CR103
  doi: 10.1007/s10845-018-1440-9
– volume: 44
  start-page: 949
  year: 2009
  ident: 3403_CR102
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2008.06.001
– volume: 151
  start-page: 868
  year: 2019
  ident: 3403_CR88
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2018.12.039
– volume: 000
  start-page: 1
  year: 2017
  ident: 3403_CR136
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.11.004
– ident: 3403_CR122
  doi: 10.1109/EPEPEMC.2016.7752083
– volume: 23
  start-page: 2240
  year: 2018
  ident: 3403_CR20
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2018.2864652
– ident: 3403_CR12
  doi: 10.1109/IECON.2015.7392191
– volume: 10
  start-page: 1543
  year: 2016
  ident: 3403_CR143
  publication-title: Int J Mech aerospace Ind Mechatron Manuf Eng
– ident: 3403_CR72
– volume: 11
  start-page: 715
  year: 2017
  ident: 3403_CR146
  publication-title: Prod Eng
  doi: 10.1007/s11740-017-0771-2
– volume: 49
  start-page: 174
  year: 2016
  ident: 3403_CR53
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.591
– ident: 3403_CR83
  doi: 10.1109/SII.2013.6776741
– ident: 3403_CR22
  doi: 10.1109/ROBOT.1994.351408
– ident: 3403_CR40
– volume: 58
  start-page: 416
  year: 2017
  ident: 3403_CR110
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.246
– ident: 3403_CR134
  doi: 10.1109/AUS.2016.7748106
– ident: 3403_CR50
  doi: 10.3182/20130619-3-RU-3018.00211
– ident: 3403_CR89
  doi: 10.1007/978-3-642-45540-7
– volume: 72
  start-page: 129
  year: 2018
  ident: 3403_CR41
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.013
– volume: 346
  start-page: 45
  year: 2013
  ident: 3403_CR66
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.346.45
– volume: 30
  start-page: 1203
  year: 2017
  ident: 3403_CR140
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2017.1305507
– volume: 2
  start-page: 55
  year: 1987
  ident: 3403_CR21
  publication-title: Adv Robot
  doi: 10.1163/156855387X00066
– volume: 85
  start-page: 47
  year: 2016
  ident: 3403_CR137
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6025-y
– volume: 9
  start-page: 67
  year: 2013
  ident: 3403_CR130
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.06.170
– ident: 3403_CR48
  doi: 10.1016/j.promfg.2017.11.010
– volume: 45
  start-page: 328
  year: 2018
  ident: 3403_CR86
  publication-title: Ind Robot An Int J
  doi: 10.1108/IR-09-2017-0176
– volume: 23
  start-page: 17
  year: 1996
  ident: 3403_CR14
  publication-title: Ind Robot An Int J
  doi: 10.1108/01439919610130328
– volume: 85
  start-page: 3
  year: 2016
  ident: 3403_CR79
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6021-2
– ident: 3403_CR49
  doi: 10.1109/ICRA.2013.6630982
– ident: 3403_CR148
  doi: 10.1109/ICCAS.2015.7364717
– volume: 213
  start-page: 451
  year: 1999
  ident: 3403_CR6
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1243/0954405991516921
– volume: 21
  start-page: 911
  year: 2014
  ident: 3403_CR111
  publication-title: Tech Gaz
– volume-title: Industrial robot applications
  year: 1987
  ident: 3403_CR4
  doi: 10.1007/978-94-009-3125-1
– volume: 21
  start-page: 2294
  year: 2016
  ident: 3403_CR34
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2016.2574813
– volume: 28
  start-page: 58
  year: 1998
  ident: 3403_CR45
  publication-title: IEEE Trans Syst Man, Cybern Part B Cybern
  doi: 10.1109/3477.658578
– volume: 132
  start-page: 911
  year: 2015
  ident: 3403_CR19
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2015.12.577
– volume: 88
  start-page: 3053
  year: 2017
  ident: 3403_CR59
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-8938-0
– volume: 35
  start-page: 46
  year: 2008
  ident: 3403_CR100
  publication-title: Ind Robot An Int J
  doi: 10.1108/01439910810843289
– ident: 3403_CR1
  doi: 10.1007/978-1-84628-368-0
– ident: 3403_CR46
  doi: 10.1109/AIM.2005.1511161
– volume: 56
  start-page: 387
  year: 2007
  ident: 3403_CR64
  publication-title: CIRP Ann - Manuf Technol
  doi: 10.1016/j.cirp.2007.05.090
– volume: 21
  start-page: 1226
  year: 2005
  ident: 3403_CR98
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2005.853492
– start-page: 309
  volume-title: Intelligent robotics and applications
  year: 2018
  ident: 3403_CR124
  doi: 10.1007/978-3-319-97586-3_28
– volume: 15
  start-page: 630
  year: 1999
  ident: 3403_CR5
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700050112
– ident: 3403_CR78
  doi: 10.1109/IROS.2014.6943194
– ident: 3403_CR144
– volume: 82
  start-page: 351
  year: 2016
  ident: 3403_CR115
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7336-3
– ident: 3403_CR51
  doi: 10.1109/AIM.2014.6878331
– ident: 3403_CR70
– volume: 101
  start-page: 102
  year: 2016
  ident: 3403_CR71
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2015.11.011
– volume: 15
  start-page: 1
  year: 2018
  ident: 3403_CR13
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-017-1101-z
– ident: 3403_CR82
  doi: 10.1109/ETFA.2013.6648124
– ident: 3403_CR104
  doi: 10.1109/EMS.2014.46
– ident: 3403_CR42
– start-page: 197
  volume-title: Informatics in control, automation and robotics: 9th international conference
  year: 2012
  ident: 3403_CR117
– volume: 18
  start-page: 1
  year: 2018
  ident: 3403_CR43
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18093078
– volume: 42
  start-page: 63
  year: 2016
  ident: 3403_CR125
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2016.05.004
– ident: 3403_CR133
  doi: 10.1109/ICRA.2016.7487579
– ident: 3403_CR139
  doi: 10.4028/www.scientific.net/AMM.868.93
– volume: 8
  start-page: 701
  year: 2014
  ident: 3403_CR119
  publication-title: Prod Eng
  doi: 10.1007/s11740-014-0570-y
– ident: 3403_CR28
  doi: 10.1177/0954405418802309
– volume: 7
  start-page: 305
  year: 2013
  ident: 3403_CR76
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.05.052
– volume: 95
  start-page: 3839
  year: 2018
  ident: 3403_CR142
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1466-8
– ident: 3403_CR18
– start-page: 79
  volume-title: Intelligent robotics and applications
  year: 2017
  ident: 3403_CR32
  doi: 10.1007/978-3-319-65292-4_8
– volume: 14
  start-page: 406
  year: 2014
  ident: 3403_CR30
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2014.03.099
– volume: 49
  start-page: 361
  year: 2018
  ident: 3403_CR141
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.08.009
– ident: 3403_CR112
– volume: 5
  start-page: 34
  year: 2015
  ident: 3403_CR10
  publication-title: Int J Mechatronics Autom
  doi: 10.1504/IJMA.2015.068452
– ident: 3403_CR24
– ident: 3403_CR69
  doi: 10.1109/CYBER.2017.8446556
– volume: 48
  start-page: 206
  year: 2016
  ident: 3403_CR145
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.03.241
– ident: 3403_CR31
  doi: 10.1117/12.2243652
– volume: 117
  start-page: 221
  year: 2019
  ident: 3403_CR68
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.051
– volume-title: Automated fixture and robot aided deburring for light aircraft components
  year: 1998
  ident: 3403_CR38
– ident: 3403_CR61
  doi: 10.1109/AIM.2017.8014094
– ident: 3403_CR33
  doi: 10.23919/IConAC.2017.8081984
– volume: 423
  year: 2018
  ident: 3403_CR132
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/423/1/012032
– ident: 3403_CR81
  doi: 10.1109/ICRA.2015.7139468
– volume: 95
  start-page: 83
  year: 1999
  ident: 3403_CR114
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(99)00315-5
– volume: 10
  start-page: 185
  year: 1993
  ident: 3403_CR90
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/0736-5845(93)90054-N
– ident: 3403_CR118
– ident: 3403_CR44
– volume: 91
  start-page: 411
  year: 2017
  ident: 3403_CR85
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9731-9
– volume: 21
  start-page: 275
  year: 2003
  ident: 3403_CR39
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700300032
– volume: 59
  start-page: 268
  year: 2015
  ident: 3403_CR93
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.052
– volume: 48
  start-page: 59
  year: 2017
  ident: 3403_CR56
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2017.02.002
– ident: 3403_CR77
– volume: 42
  start-page: 245
  year: 2009
  ident: 3403_CR138
  publication-title: IFAC Proc
  doi: 10.3182/20090909-4-JP-2010.00043
– start-page: 1
  volume-title: Robotics in Smart Manufacturing
  year: 2013
  ident: 3403_CR29
– ident: 3403_CR73
  doi: 10.1109/IROS.2011.6094846
– ident: 3403_CR120
– ident: 3403_CR3
– volume: 2014
  start-page: 198
  year: 2014
  ident: 3403_CR9
  publication-title: IEEE Int Conf Mechatronics Autom IEEE ICMA
  doi: 10.1109/ICMA.2014.6885695
– volume: 55
  start-page: 11
  year: 2019
  ident: 3403_CR65
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.07.004
– volume: 24
  start-page: 92
  year: 2008
  ident: 3403_CR101
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2006.08.001
– volume: 53
  start-page: 1217
  year: 2011
  ident: 3403_CR7
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2888-8
– ident: 3403_CR2
  doi: 10.1017/CBO9780511843723
– ident: 3403_CR108
  doi: 10.1115/IMECE2017-71670
– volume: 31
  start-page: 869
  year: 2018
  ident: 3403_CR25
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2018.1447688
– volume: 3
  start-page: 11
  year: 2013
  ident: 3403_CR26
  publication-title: Mod Mech Eng
  doi: 10.4236/mme.2013.32A002
– volume: 3651
  start-page: 117
  year: 2013
  ident: 3403_CR91
  publication-title: Teh Vjesn
– start-page: 14
  volume-title: Robotics in smart manufacturing
  year: 2013
  ident: 3403_CR75
  doi: 10.1007/978-3-642-39223-8_2
– volume: 5
  start-page: 4332
  year: 2004
  ident: 3403_CR99
  publication-title: IEEE Int Conf Robot Autom 2004 Proceedings ICRA
  doi: 10.1109/ROBOT.2004.1302399
– volume: 10
  start-page: 486
  year: 2017
  ident: 3403_CR107
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2017.07.034
– volume: 90
  start-page: 1075
  year: 2017
  ident: 3403_CR123
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9461-z
– volume: 173
  start-page: 301
  year: 2006
  ident: 3403_CR63
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.11.033
– volume: 48
  start-page: 12
  year: 2017
  ident: 3403_CR54
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2016.12.005
– volume: 16
  start-page: 29
  year: 2013
  ident: 3403_CR116
  publication-title: J Prod Eng
– ident: 3403_CR109
– ident: 3403_CR17
  doi: 10.1109/ISR.2013.6695731
– volume: 162
  start-page: 413
  year: 2012
  ident: 3403_CR55
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.162.413
– volume: 214
  start-page: 635
  year: 2000
  ident: 3403_CR147
  publication-title: Proc Instn Mech Engre
  doi: 10.1243/0954405001518332
– ident: 3403_CR15
– volume: 22
  start-page: 51
  year: 2006
  ident: 3403_CR97
  publication-title: J Robot Syst
  doi: 10.1002/rob.20151
– ident: 3403_CR52
  doi: 10.3182/20130619-3-RU-3018.00184
– start-page: 14
  volume-title: Intelligent robotics and applications
  year: 2017
  ident: 3403_CR35
  doi: 10.1007/978-3-319-65292-4_2
– volume: 37
  start-page: 496
  year: 2019
  ident: 3403_CR37
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2018.12.029
– volume: 66
  start-page: 1489
  year: 2013
  ident: 3403_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4433-4
– volume: 86
  start-page: 179
  year: 2016
  ident: 3403_CR84
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-8166-z
– volume: 2
  start-page: 1455
  year: 1995
  ident: 3403_CR23
  publication-title: Proc - IEEE Int Conf Robot Autom
  doi: 10.1109/ROBOT.1995.525481
– volume: 55
  start-page: 19
  year: 2019
  ident: 3403_CR57
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.07.001
– ident: 3403_CR121
  doi: 10.4271/2016-01-2137
– volume: 6
  start-page: 17
  year: 2016
  ident: 3403_CR106
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2016.11.003
– ident: 3403_CR80
– ident: 3403_CR96
  doi: 10.1007/s00170-018-3099-y
– volume: 15
  start-page: 172988141879377
  year: 2018
  ident: 3403_CR36
  publication-title: Int J Adv Robot Syst
  doi: 10.1177/1729881418793778
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.6337068
SecondaryResourceType review_article
Snippet For the past three decades, robotic machining has attracted a large amount of research interest owning to the benefit of cost efficiency, high flexibility and...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1239
SubjectTerms CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Industrial robots
Machining process
Machining vibration
Material removal rate (machining)
Mechanical Engineering
Media Management
Original Article
Robotic machining
Robotics
Statistical analysis
Trajectory planning
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQUAbUBSKSOHZstqpQVUgwFdTN8iMRCGhRCUt_PWfnBVWpxBbl7MQ6n--h832H0LmEIMHICPvaMAhQQAH6MoUnrShxAHbSZUzvH-jwMb4bk3EJk2NrYRby91euRbe9OsX9AMcB9ufraIOEOLFtGvq0X8lOyBPb_7KWrYjbpvON7OKY4CKjVWYYaOjK5CAEYfaQsbKgZvk_fxutxhOtk6cLQKPOOA120HbpVXq9Qgx20Vo62UNbP7AG91G3adLhzaZqCiO9d3eTEsjXnvSKIpYDNBrcjvpDv2yS4GsSBLlv06YYDG0Wa6K0tPB3MbwwGeWaZqEknGU0yYzSYPmzkEqmYhNkxBAYxAN8iFqT6SQ9Ql7AjWE0jShRYNYTJgmTTOI0MMqC3kRtFFZMELoEELd9LN5EDX3sGCeAccIxTszb6KKe81HAZ6wc3al4K8qj9ClA4URJYpHy_iCDRkk4BGbLyTaxCToUsza6rHarIa9aS7fY0XrdFoj75uWpJ0A-xWv-LCAaA2f4-H_fPUGbkZMse-O3g1r57Cs9Bb8mV2dOoL8BcBflFA
  priority: 102
  providerName: Springer Nature
Title Industrial robotic machining: a review
URI https://link.springer.com/article/10.1007/s00170-019-03403-z
https://www.proquest.com/docview/2252770955
https://www.proquest.com/docview/2279479862
https://www.proquest.com/docview/2490876338
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255566
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rIdEGxDK3RVDhOXES1fdhwuqCstFdMQQu0EJ8uxEzYBTWnLpX89z46TAoJeosgfkvX8_D78_H4P4LtAJ0GJIHSlYuigoAB0RYZ_MqXEANgJEzH9c06H4-jsilzZC7e5fVZZyUQjqFUh9R35T410F8UJGuDH0wdXV43S0VVbQmMTmiiCGWtA81f__OKy4ig_iXVVzJrjgkSXol9xdBiRsIxz2bgD9U3yHDomTB89ZtNsTLKdgZpB1ztxcZ4XusuXqmxln9Yh1Vfwo0ZlDbZhy9qaTrdkjh3YyCaf4OMzBMLPcLAq3eHMirTAkc69eV-J3UeOcMrUli8wGvRHvaFrSye4knjewtXB1BDVbx5JkkqhQfEibFA5TSTNfUESltM4V6lEeyD3qWBppLycKIKDEi_chcakmGRfwfESpRjNAkpSVPYxE4QJJsLMU6mGwgla4FdE4NLCiuvqFne8BkQ2hONIOG4Ix5ct-FHPmZagGmtHtyvacnvA5hzFUBDHGj_vne6KW97u1uFOlKwha8FhtVur7nVrOSh3tF63huc--f-3y4vZDb9d_OPoo6GJvLd-VfvwITCcpN_9tqGxmD1m39C6WaQd2GSD0w40u6fXv_sdy9DY2qM9_I6D7hOhAfGd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJQeqvISS2mbA-UCEUkcOw5SVaHCspTHaam4WY6dQNWy2S5bVeU_8R874zyWIro3blFsR9Z4nhnPNwCbGoMEqyPmGysxQEEF6Oscn0wmuAOw0y5jenYuehfxl0t-OQP3TS0MXatsdKJT1LY09I98l5Du4iRFB_zT8KdPXaMou9q00KjY4iT_8xtDttuPxwd4vh-iqHvY_9zz664CvuFBMPYpz8jQMhWx4ZnRhBcX4wtbiNSIItQ8lYVICpsZNJVFKLTMYhsU3HKclAYMPzsL8zFDQ06F6d2jhn3DNKEWnC17Ryn1vZ-ID4s5q5JqdZJDhK5SD6MgSXIu65oeV9nncG0wzk99XBcw_-5fuzlxhtv87SOsU2cfu6_hVe3YevsVJy7CTD5YgpcP4A6XYWvSJ8QblVmJM70bd5kTh_c87VV1NCvQfw6KrsLcoBzka-AFqbVS5JHgGXoWidRcaqlZHtiMcHeiDoQNEZSpMcyplcYP1aIvO8IpJJxyhFN3Hdhu1wwrBI-pszca2qpamm8V6rwoSQis7z_DDWs-PUy5VVTjTHZgpzmtyfC0vWxVJ9rum7DAD7593Vfl6Ep9H18rDAjRH1-fvqv38KLXPztVp8fnJ29gIXJcRReON2BuPPqVv0W3apy9c8zsgXpm4fkLkYYnfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOLqqj2oFy22TZOmggfZdfGNBxVvIW1aFXV3WSvi_in_opP0sSoqePBWmjSkk5nJfEzmC8CaRJCgpEfsWHEEKOgAbZngUxwxagjspMmYnp6xg0v_6JpeD8FbWQtjTruXKcm8pkGzNLWz7a5Kt6vCN0P7gjA4tB3iO8TuF8cqj5PXFwRtT7uHTVzhdc9r7V80DuziXgE7po6T2TrTSHBvSv2YRrHUjHE-vlApC2OWupKGPGVBqqIYN8vUZZJHvnJSqih2Ch2Cww7DKAIjV6O9BmuUCuyGgb6Es1JwL8R4JhgYEPEpydNqRZqDuaZWD3EQ15bOi6qe73_x8845CIerDO4XtlOzQ7amYLIIba29XBenYShpz8DEB8LDWdgY3BRi9TpRB3taj-Y4JzbvWNLKK2nm4OI_JDoPI-1OO1kAywmV4izxGI0wtgi4pFxySRJHRZp5x6uBWwpBxAWLub5M40FU_MtGcAIFJ4zgRL8Gm9U33ZzD49fe9VK2orDnJ4FezwsCTdf3QzO6tSBEdPh9s86uoiMnvAZb5WoNmn-by0a-otW8NRt48-5qT3R6N-I-uxUICTEiX_zbuKswdt5siZPDs-MlGPeMkukTyHUYyXrPyTLGWVm0YnTbAvHPtvQOS64pAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+robotic+machining%3A+a+review&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Ji%2C+Wei&rft.au=Wang%2C+Lihui&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=103&rft.issue=1-4&rft.spage=1239&rft.epage=1255&rft_id=info:doi/10.1007%2Fs00170-019-03403-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon