Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants

Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In...

Full description

Saved in:
Bibliographic Details
Published inTrends in hearing Vol. 19
Main Authors Hu, Hongmei, Lutman, Mark E., Ewert, Stephan D., Li, Guoping, Bleeck, Stefan
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 30.12.2015
SAGE Publishing
Subjects
Online AccessGet full text
ISSN2331-2165
2331-2165
DOI10.1177/2331216515616941

Cover

Loading…
Abstract Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.
AbstractList Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix ( envelopogram ) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.
Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix ( envelopogram ) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.
Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.
Author Bleeck, Stefan
Hu, Hongmei
Li, Guoping
Lutman, Mark E.
Ewert, Stephan D.
AuthorAffiliation 1 Institute of Sound and Vibration Research, University of Southampton, UK
2 Medizinische Physik, Universität Oldenburg and Cluster of Excellence “Hearing4all”, Oldenburg, Germany
3 The Ear Institute, Faculty of Brain Sciences, University College London, UK
AuthorAffiliation_xml – name: 2 Medizinische Physik, Universität Oldenburg and Cluster of Excellence “Hearing4all”, Oldenburg, Germany
– name: 3 The Ear Institute, Faculty of Brain Sciences, University College London, UK
– name: 1 Institute of Sound and Vibration Research, University of Southampton, UK
Author_xml – sequence: 1
  givenname: Hongmei
  surname: Hu
  fullname: Hu, Hongmei
  email: hongmei.hu@uni-oldenburg.de
– sequence: 2
  givenname: Mark E.
  surname: Lutman
  fullname: Lutman, Mark E.
– sequence: 3
  givenname: Stephan D.
  surname: Ewert
  fullname: Ewert, Stephan D.
– sequence: 4
  givenname: Guoping
  surname: Li
  fullname: Li, Guoping
– sequence: 5
  givenname: Stefan
  surname: Bleeck
  fullname: Bleeck, Stefan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26721919$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vEzEUtFCrtrS9c0J75BLw8_dekFDUQKRSDoWz5XVeto4262A7FeXX4zSlaivByda8mXkf85ocjHFEQt4AfQ-g9QfGOTBQEqQC1Qp4RU520GSHHTz5H5PznFeUUmBSasWOyDFTmkEL7QmZXW9cythcxXHE3pVwi81XV1L41cycLzGF3xWMY3NdkivY3zXLmJpp9DcDutTM15vBjSWfkcOlGzKeP7yn5Mfs4vv0y-Ty2-f59NPlxEtKSx2n9Z4uOcjOdMJpqsCAYp61XcdRGSOM4Lrl3mvmPXLDDSwApDbUo3EdPyXzve8iupXdpLB26c5GF-w9EFNvXSrBD2hpJ52UtDPMSGFAGKeM7Lz3plbQYfX6uPfabLs1LjyOdcXhmenzyhhubB9vrdAaqJDV4N2DQYo_t5iLXYfscagXwbjNFrTkQjDNdKW-fdrrscnfICqB7gk-xZwTLh8pQO0ubvsy7ipRLyQ-lPuw6rRh-J9wshdm16NdxW0aa2b_5v8BuMO43Q
CitedBy_id crossref_primary_10_1051_aacus_2023036
crossref_primary_10_1121_1_5030918
crossref_primary_10_1121_1_5031112
crossref_primary_10_1177_2331216515623374
crossref_primary_10_1109_TNSRE_2021_3128064
crossref_primary_10_1109_TCDS_2023_3275587
Cites_doi 10.1121/1.384464
10.1159/000094648
10.1109/TASL.2006.889753
10.1097/mao.0b013e318162512c
10.1097/AUD.0b013e3181ff3515
10.1121/1.3502473
10.1121/1.3665990
10.1007/978-3-642-15995-4_18
10.1038/352236a0
10.1121/1.1804628
10.1044/1092-4388(2002/063)
10.1109/TBME.2007.893505
10.1177/108471380400800102
10.1097/00003446-200110000-00006
10.1121/1.393844
10.1121/1.3083233
10.1162/neco.2008.04-08-771
10.1038/44565
10.1109/NNSP.2002.1030067
10.1007/0-387-21575-1_1
10.1088/1741-2560/9/6/065007
10.1109/TBME.2012.2187650
10.1121/1.2166600
10.1121/1.1498855
10.1016/j.conb.2004.07.007
10.1109/TSP.2009.2016881
10.1109/ICASSP.2006.1661352
10.1109/ASPAA.2003.1285860
10.3109/00206097909072618
10.1109/ISCAS.2008.4541673
10.1080/14992020500271712
10.1109/ASPAA.2011.6082303
10.1109/TASL.2011.2114881
10.1007/b97263
10.1155/2008/947438
10.3390/s131013861
10.1007/978-3-540-71505-4_12
10.1121/1.2065847
10.3109/03005367909078884
10.1002/9780470747278
10.1109/TASL.2006.885253
10.1179/1754762811Y0000000009
10.1155/2008/939567
10.3109/14992027.2011.625984
10.1177/1084713806296386
10.1109/ICASSP.2008.4517989
ContentType Journal Article
Copyright The Author(s) 2015
The Author(s) 2015.
The Author(s) 2015 2015 SAGE Publications
Copyright_xml – notice: The Author(s) 2015
– notice: The Author(s) 2015.
– notice: The Author(s) 2015 2015 SAGE Publications
DBID AFRWT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1177/2331216515616941
DatabaseName Sage Journals Online Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: AFRWT
  name: Sage Journals Online Open Access
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2331-2165
ExternalDocumentID oai_doaj_org_article_0b5a550b828548148a685bccc80b5eae
PMC4771045
26721919
10_1177_2331216515616941
10.1177_2331216515616941
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
54M
5VS
AANEX
AASGM
ABAWP
ABQXT
ABVFX
ACARO
ACDXX
ACGFS
ACROE
ADBBV
ADEBD
ADOGD
ADRAZ
AENEX
AERKM
AEUHG
AEWDL
AFCOW
AFKRG
AFRWT
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
AUTPY
AYAKG
BAWUL
BCNDV
BDDNI
BSEHC
DC.
DIK
EBD
EBS
EJD
EMB
EMOBN
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
HYE
IPNFZ
J8X
K.F
KQ8
M48
M~E
O9-
RIG
ROL
RPM
S01
SAUOL
SCDPB
SCNPE
SFC
SFH
SV3
AAYXX
ACHEB
CITATION
31X
AATBZ
ABHQH
ACGZU
ACSBE
ACSIQ
AEUIJ
AEWHI
B8Z
CGR
CUY
CVF
DV7
ECM
EIF
M4V
NPM
OK1
RHX
SFK
SFT
SGV
SPJ
7X8
5PM
ID FETCH-LOGICAL-c500t-219cc0f315b8b4a70618162c29bb3e6884843793cc72cce38381d115780ce8ab3
IEDL.DBID M48
ISSN 2331-2165
IngestDate Wed Aug 27 01:32:12 EDT 2025
Thu Aug 21 14:08:44 EDT 2025
Thu Sep 04 15:00:36 EDT 2025
Wed Feb 19 02:00:33 EST 2025
Thu Apr 24 22:59:08 EDT 2025
Tue Jul 01 05:25:26 EDT 2025
Tue Jun 17 22:30:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords babble noise
speech recognition
cochlear implant
vocoder
nonnegative matrix factorization
speech enhancement
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s) 2015.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-219cc0f315b8b4a70618162c29bb3e6884843793cc72cce38381d115780ce8ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1177/2331216515616941
PMID 26721919
PQID 1753442727
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0b5a550b828548148a685bccc80b5eae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771045
proquest_miscellaneous_1753442727
pubmed_primary_26721919
crossref_primary_10_1177_2331216515616941
crossref_citationtrail_10_1177_2331216515616941
sage_journals_10_1177_2331216515616941
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-30
PublicationDateYYYYMMDD 2015-12-30
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-30
  day: 30
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Trends in hearing
PublicationTitleAlternate Trends Amplif
PublicationYear 2015
Publisher SAGE Publications
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: SAGE Publishing
References Buchner, Nogueira, Edler, Battmer, Lenarz 2008; 29
Bench, Kowal, Bamford 1979; 13
Cooke 2006; 119
Wilson, Finley, Lawson, Wolford, Eddington, Rabinowitz 1991; 352
Hendriks, Martin 2007; 15
Lutman, Clark 1986; 80
Goldsworthy, Greenberg 2004; 116
Mauger, Dawson, Hersbach 2012; 131
Kasturi, Loizou, Dorman, Spahr 2002; 112
Virtanen 2007; 15
Wilson, Dorman 2007; 54
Lee, Seung 1999; 401
Hu, Krasoulis, Lutman, Bleeck 2013; 13
Steeneken, Houtgast 1980; 67
Olshausen, Field 2004; 14
ur Rehman Qazi, van Dijk, Moonen, Wouters 2012; 59
Févotte, Bertin, Durrieu 2009; 21
Hoyer 2004; 5
Chen, Loizou 2010; 128
Li, Lutman, Wang, Bleeck 2012; 51
Mauger, Arora, Dawson 2012; 9
Patrick, Busby, Gibson 2006; 10
Plomp, Mimpen 1979; 18
Chen, Loizou 2011; 32
Dahlquist, Lutman, Wood, Leijon 2005; 44
Wang, Kjems, Pedersen, Boldt, Lunner 2009; 125
Buechner, Beynon, Szyfter, Niemczyk, Hoppe, Hey, Smoorenburg 2011; 12
Dorman, Loizou, Spahr, Maloff 2002; 45
Wang, Cichocki, Chambers 2009; 57
Taal, Hendriks, Heusdens, Jensen 2011; 19
Loizou, Lobo, Hu 2005; 118
Spratling 2006; 7
Seligman, McDermott 1995; 104
Wouters, Berghe 2001; 22
Shashanka, Raj, Smaragdis 2008; 2008
Zeng 2004; 8
Zdunek, Cichocki 2008; 2008
bibr4-2331216515616941
bibr26-2331216515616941
bibr34-2331216515616941
bibr51-2331216515616941
bibr42-2331216515616941
bibr18-2331216515616941
bibr60-2331216515616941
bibr35-2331216515616941
bibr25-2331216515616941
bibr3-2331216515616941
bibr52-2331216515616941
bibr17-2331216515616941
bibr15-2331216515616941
bibr28-2331216515616941
bibr10-2331216515616941
bibr2-2331216515616941
bibr23-2331216515616941
Spratling M. W. (bibr48-2331216515616941) 2006; 7
bibr31-2331216515616941
bibr7-2331216515616941
Nie K. (bibr37-2331216515616941) 2009
bibr57-2331216515616941
bibr59-2331216515616941
bibr44-2331216515616941
bibr46-2331216515616941
bibr33-2331216515616941
bibr41-2331216515616941
Hoyer P. O. (bibr20-2331216515616941) 2004; 5
bibr5-2331216515616941
bibr54-2331216515616941
Roberts W. J. J. (bibr43-2331216515616941) 2006
bibr36-2331216515616941
bibr49-2331216515616941
bibr39-2331216515616941
bibr21-2331216515616941
bibr12-2331216515616941
bibr55-2331216515616941
bibr22-2331216515616941
bibr38-2331216515616941
bibr56-2331216515616941
bibr8-2331216515616941
Faulkner A. (bibr13-2331216515616941) 1998
bibr47-2331216515616941
bibr30-2331216515616941
bibr58-2331216515616941
bibr53-2331216515616941
bibr40-2331216515616941
Cochlear Technology (bibr9-2331216515616941) 2002
bibr29-2331216515616941
bibr16-2331216515616941
Seligman P. M. (bibr45-2331216515616941) 1995; 104
bibr14-2331216515616941
bibr27-2331216515616941
bibr50-2331216515616941
bibr1-2331216515616941
bibr24-2331216515616941
bibr11-2331216515616941
bibr6-2331216515616941
bibr32-2331216515616941
bibr19-2331216515616941
16583901 - J Acoust Soc Am. 2006 Mar;119(3):1562-73
21206363 - Ear Hear. 2011 May-Jun;32(3):331-8
15658718 - J Acoust Soc Am. 2004 Dec;116(6):3679-89
23187159 - J Neural Eng. 2012 Dec;9(6):065007
1857418 - Nature. 1991 Jul 18;352(6332):236-8
16334894 - J Acoust Soc Am. 2005 Nov;118(5):2791-3
12199407 - J Speech Lang Hear Res. 2002 Aug;45(4):783-8
21218903 - J Acoust Soc Am. 2010 Dec;128(6):3715-23
15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7
7354199 - J Acoust Soc Am. 1980 Jan;67(1):318-26
24129021 - Sensors (Basel). 2013;13(10):13861-78
22345522 - IEEE Trans Biomed Eng. 2012 May;59(5):1364-73
11605949 - Ear Hear. 2001 Oct;22(5):420-30
18509481 - Comput Intell Neurosci. 2008;:947438
22107445 - Int J Audiol. 2012 Feb;51(2):75-82
22280595 - J Acoust Soc Am. 2012 Jan;131(1):327-36
486816 - Br J Audiol. 1979 Aug;13(3):108-12
18628948 - Comput Intell Neurosci. 2008;2008:939567
18785855 - Neural Comput. 2009 Mar;21(3):793-830
3771923 - J Acoust Soc Am. 1986 Oct;80(4):1030-40
12243158 - J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1102-11
760724 - Audiology. 1979 Jan-Feb;18(1):43-52
22251806 - Cochlear Implants Int. 2011 Nov;12(4):194-204
17172547 - Trends Amplif. 2006 Dec;10(4):175-200
10548103 - Nature. 1999 Oct 21;401(6755):788-91
16891839 - Adv Otorhinolaryngol. 2006;64:109-43
19354408 - J Acoust Soc Am. 2009 Apr;125(4):2336-47
7668606 - Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:139-41
17554816 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):969-72
18223445 - Otol Neurotol. 2008 Feb;29(2):189-92
16450924 - Int J Audiol. 2005 Dec;44(12):721-32
15247993 - Trends Amplif. 2004;8(1):1-34
References_xml – volume: 22
  start-page: 420
  issue: 5
  year: 2001
  end-page: 430
  article-title: Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system
  publication-title: Ear and Hearing
– volume: 9
  start-page: 065007
  issue: 6
  year: 2012
  article-title: Cochlear implant optimized noise reduction
  publication-title: Journal of Neural Engineering
– volume: 15
  start-page: 918
  issue: 3
  year: 2007
  end-page: 927
  article-title: MAP estimators for speech enhancement under normal and Rayleigh inverse Gaussian distributions
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 118
  start-page: 2791
  issue: 5
  year: 2005
  end-page: 2793
  article-title: Subspace algorithms for noise reduction in cochlear implants
  publication-title: The Journal of the Acoustical Society of America
– volume: 67
  start-page: 318
  issue: 1
  year: 1980
  end-page: 326
  article-title: A physical method for measuring speech transmission quality
  publication-title: The Journal of the Acoustical Society of America
– volume: 125
  start-page: 2336
  issue: 4
  year: 2009
  end-page: 2347
  article-title: Speech intelligibility in background noise with ideal binary time-frequency masking
  publication-title: The Journal of the Acoustical Society of America
– volume: 14
  start-page: 481
  year: 2004
  end-page: 487
  article-title: Sparse coding of sensory inputs
  publication-title: Current Opinion in Neurobiology
– volume: 7
  start-page: 793
  year: 2006
  end-page: 815
  article-title: Learning image components for object recognition
  publication-title: The Journal of Machine Learning Research
– volume: 10
  start-page: 175
  issue: 4
  year: 2006
  end-page: 200
  article-title: The development of the nucleus freedom cochlear implant system
  publication-title: Trends in Amplification
– volume: 128
  start-page: 3715
  issue: 6
  year: 2010
  end-page: 3723
  article-title: Analysis of a simplified normalized covariance measure based on binary weighting functions for predicting the intelligibility of noise-suppressed speech
  publication-title: The Journal of the Acoustical Society of America
– volume: 32
  start-page: 331
  issue: 3
  year: 2011
  end-page: 338
  article-title: Predicting the intelligibility of vocoded speech
  publication-title: Ear and Hearing
– volume: 51
  start-page: 75
  issue: 2
  year: 2012
  end-page: 82
  article-title: Relationship between speech recognition in noise and sparseness
  publication-title: International Journal of Audiology
– volume: 57
  start-page: 2858
  issue: 7
  year: 2009
  end-page: 2864
  article-title: A multiplicative algorithm for convolutive non-negative matrix factorization based on squared Euclidean distance
  publication-title: IEEE Transactions on Signal Processing
– volume: 45
  start-page: 783
  issue: 4
  year: 2002
  end-page: 788
  article-title: A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants
  publication-title: Journal of Speech Language and Hearing Research
– volume: 13
  start-page: 108
  issue: 3
  year: 1979
  end-page: 112
  article-title: The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children
  publication-title: British Journal of Audiology
– volume: 5
  start-page: 1457
  year: 2004
  end-page: 1469
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: The Journal of Machine Learning Research
– volume: 18
  start-page: 43
  issue: 1
  year: 1979
  end-page: 52
  article-title: Improving the reliability of testing the speech reception threshold for sentences
  publication-title: International Journal of Audiology
– volume: 15
  start-page: 1066
  issue: 3
  year: 2007
  end-page: 1074
  article-title: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 19
  start-page: 2125
  issue: 7
  year: 2011
  end-page: 2136
  article-title: An algorithm for intelligibility prediction of time frequency weighted noisy speech
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– volume: 2008
  start-page: 9
  year: 2008
  article-title: Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems
  publication-title: Computational Intelligence and Neuroscience
– volume: 104
  start-page: 139
  issue: suppl. 166
  year: 1995
  end-page: 141
  article-title: Architecture of the spectra 22 speech processor
  publication-title: Annals of Otology, Rhinology and Laryngology
– volume: 131
  start-page: 327
  issue: 1
  year: 2012
  end-page: 336
  article-title: Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction
  publication-title: The Journal of the Acoustical Society of America
– volume: 352
  start-page: 236
  issue: 6332
  year: 1991
  end-page: 238
  article-title: Better speech recognition with cochlear implants
  publication-title: Nature
– volume: 2008
  start-page: 9
  year: 2008
  article-title: Probabilistic latent variable models as nonnegative factorizations
  publication-title: Computational Intelligence and Neuroscience
– volume: 54
  start-page: 969
  issue: 6
  year: 2007
  end-page: 972
  article-title: The surprising performance of present-day cochlear implants
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 8
  start-page: 1
  issue: 1
  year: 2004
  end-page: 34
  article-title: Trends in cochlear implants
  publication-title: Trends in Amplification
– volume: 29
  start-page: 189
  issue: 2
  year: 2008
  end-page: 192
  article-title: Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants
  publication-title: Otology & Neurotology
– volume: 12
  start-page: 194
  issue: 4
  year: 2011
  end-page: 204
  article-title: Clinical evaluation of cochlear implant sound coding taking into account conjectural masking functions, MP3000
  publication-title: Cochlear Implants International
– volume: 13
  start-page: 13861
  issue: 10
  year: 2013
  end-page: 13878
  article-title: Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC Target
  publication-title: Sensors
– volume: 59
  start-page: 1364
  issue: 5
  year: 2012
  end-page: 1373
  article-title: Speech understanding performance of cochlear implant subjects using time-frequency masking-based noise reduction
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 119
  start-page: 1562
  year: 2006
  end-page: 1573
  article-title: A glimpsing model of speech perception in noise
  publication-title: The Journal of the Acoustical Society of America
– volume: 116
  start-page: 3679
  issue: 6
  year: 2004
  end-page: 3689
  article-title: Analysis of speech-based speech transmission index methods with implications for nonlinear operations
  publication-title: The Journal of the Acoustical Society of America
– volume: 112
  start-page: 1102
  issue: 3
  year: 2002
  end-page: 1111
  article-title: The intelligibility of speech with “holes” in the spectrum
  publication-title: The Journal of the Acoustical Society of America
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 44
  start-page: 721
  issue: 12
  year: 2005
  end-page: 732
  article-title: Methodology for quantifying perceptual effects from noise suppression systems
  publication-title: International Journal of Audiology
– volume: 80
  start-page: 1030
  issue: 4
  year: 1986
  end-page: 1040
  article-title: Speech identification under simulated hearing-aid frequency response characteristics in relation to sensitivity, frequency resolution, and temporal resolution
  publication-title: The Journal of the Acoustical Society of America
– volume: 21
  start-page: 793
  issue: 3
  year: 2009
  end-page: 830
  article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
  publication-title: Neural Computation
– ident: bibr49-2331216515616941
  doi: 10.1121/1.384464
– ident: bibr27-2331216515616941
– ident: bibr30-2331216515616941
  doi: 10.1159/000094648
– ident: bibr44-2331216515616941
– ident: bibr18-2331216515616941
  doi: 10.1109/TASL.2006.889753
– ident: bibr2-2331216515616941
  doi: 10.1097/mao.0b013e318162512c
– ident: bibr5-2331216515616941
  doi: 10.1097/AUD.0b013e3181ff3515
– ident: bibr22-2331216515616941
– ident: bibr4-2331216515616941
  doi: 10.1121/1.3502473
– ident: bibr34-2331216515616941
  doi: 10.1121/1.3665990
– ident: bibr36-2331216515616941
  doi: 10.1007/978-3-642-15995-4_18
– ident: bibr57-2331216515616941
  doi: 10.1038/352236a0
– ident: bibr16-2331216515616941
  doi: 10.1121/1.1804628
– start-page: 389
  volume-title: Ballenger’s otorhinolaryngology head and neck surgery
  year: 2009
  ident: bibr37-2331216515616941
– ident: bibr12-2331216515616941
  doi: 10.1044/1092-4388(2002/063)
– ident: bibr56-2331216515616941
  doi: 10.1109/TBME.2007.893505
– ident: bibr60-2331216515616941
  doi: 10.1177/108471380400800102
– ident: bibr23-2331216515616941
– ident: bibr28-2331216515616941
– ident: bibr50-2331216515616941
– ident: bibr15-2331216515616941
– volume-title: BKB and IHRSL sentence lists and NWAS continuous speech
  year: 1998
  ident: bibr13-2331216515616941
– start-page: 1
  volume-title: Microelectronics
  year: 2006
  ident: bibr43-2331216515616941
– ident: bibr58-2331216515616941
  doi: 10.1097/00003446-200110000-00006
– ident: bibr32-2331216515616941
  doi: 10.1121/1.393844
– ident: bibr55-2331216515616941
  doi: 10.1121/1.3083233
– ident: bibr14-2331216515616941
  doi: 10.1162/neco.2008.04-08-771
– ident: bibr26-2331216515616941
  doi: 10.1038/44565
– ident: bibr19-2331216515616941
  doi: 10.1109/NNSP.2002.1030067
– volume: 7
  start-page: 793
  year: 2006
  ident: bibr48-2331216515616941
  publication-title: The Journal of Machine Learning Research
– volume-title: Nucleus MATLAB toolbox 4.2 software user manual (Vol. N95246F)
  year: 2002
  ident: bibr9-2331216515616941
– ident: bibr17-2331216515616941
  doi: 10.1007/0-387-21575-1_1
– ident: bibr33-2331216515616941
  doi: 10.1088/1741-2560/9/6/065007
– ident: bibr52-2331216515616941
  doi: 10.1109/TBME.2012.2187650
– ident: bibr10-2331216515616941
  doi: 10.1121/1.2166600
– ident: bibr25-2331216515616941
  doi: 10.1121/1.1498855
– volume: 5
  start-page: 1457
  year: 2004
  ident: bibr20-2331216515616941
  publication-title: The Journal of Machine Learning Research
– ident: bibr38-2331216515616941
  doi: 10.1016/j.conb.2004.07.007
– ident: bibr54-2331216515616941
  doi: 10.1109/TSP.2009.2016881
– ident: bibr6-2331216515616941
  doi: 10.1109/ICASSP.2006.1661352
– ident: bibr47-2331216515616941
  doi: 10.1109/ASPAA.2003.1285860
– ident: bibr40-2331216515616941
  doi: 10.3109/00206097909072618
– ident: bibr41-2331216515616941
  doi: 10.1109/ISCAS.2008.4541673
– ident: bibr11-2331216515616941
  doi: 10.1080/14992020500271712
– ident: bibr35-2331216515616941
  doi: 10.1109/ASPAA.2011.6082303
– ident: bibr51-2331216515616941
  doi: 10.1109/TASL.2011.2114881
– ident: bibr8-2331216515616941
  doi: 10.1007/b97263
– ident: bibr46-2331216515616941
  doi: 10.1155/2008/947438
– ident: bibr21-2331216515616941
  doi: 10.3390/s131013861
– ident: bibr24-2331216515616941
  doi: 10.1007/978-3-540-71505-4_12
– ident: bibr31-2331216515616941
  doi: 10.1121/1.2065847
– ident: bibr1-2331216515616941
  doi: 10.3109/03005367909078884
– ident: bibr7-2331216515616941
  doi: 10.1002/9780470747278
– volume: 104
  start-page: 139
  issue: 166
  year: 1995
  ident: bibr45-2331216515616941
  publication-title: Annals of Otology, Rhinology and Laryngology
– ident: bibr53-2331216515616941
  doi: 10.1109/TASL.2006.885253
– ident: bibr3-2331216515616941
  doi: 10.1179/1754762811Y0000000009
– ident: bibr59-2331216515616941
  doi: 10.1155/2008/939567
– ident: bibr29-2331216515616941
  doi: 10.3109/14992027.2011.625984
– ident: bibr39-2331216515616941
  doi: 10.1177/1084713806296386
– ident: bibr42-2331216515616941
  doi: 10.1109/ICASSP.2008.4517989
– reference: 7668606 - Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:139-41
– reference: 16334894 - J Acoust Soc Am. 2005 Nov;118(5):2791-3
– reference: 21218903 - J Acoust Soc Am. 2010 Dec;128(6):3715-23
– reference: 16583901 - J Acoust Soc Am. 2006 Mar;119(3):1562-73
– reference: 24129021 - Sensors (Basel). 2013;13(10):13861-78
– reference: 22280595 - J Acoust Soc Am. 2012 Jan;131(1):327-36
– reference: 18785855 - Neural Comput. 2009 Mar;21(3):793-830
– reference: 22345522 - IEEE Trans Biomed Eng. 2012 May;59(5):1364-73
– reference: 760724 - Audiology. 1979 Jan-Feb;18(1):43-52
– reference: 23187159 - J Neural Eng. 2012 Dec;9(6):065007
– reference: 18628948 - Comput Intell Neurosci. 2008;2008:939567
– reference: 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7
– reference: 11605949 - Ear Hear. 2001 Oct;22(5):420-30
– reference: 12199407 - J Speech Lang Hear Res. 2002 Aug;45(4):783-8
– reference: 16450924 - Int J Audiol. 2005 Dec;44(12):721-32
– reference: 21206363 - Ear Hear. 2011 May-Jun;32(3):331-8
– reference: 12243158 - J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1102-11
– reference: 15247993 - Trends Amplif. 2004;8(1):1-34
– reference: 3771923 - J Acoust Soc Am. 1986 Oct;80(4):1030-40
– reference: 15658718 - J Acoust Soc Am. 2004 Dec;116(6):3679-89
– reference: 1857418 - Nature. 1991 Jul 18;352(6332):236-8
– reference: 19354408 - J Acoust Soc Am. 2009 Apr;125(4):2336-47
– reference: 18223445 - Otol Neurotol. 2008 Feb;29(2):189-92
– reference: 17172547 - Trends Amplif. 2006 Dec;10(4):175-200
– reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91
– reference: 16891839 - Adv Otorhinolaryngol. 2006;64:109-43
– reference: 18509481 - Comput Intell Neurosci. 2008;:947438
– reference: 7354199 - J Acoust Soc Am. 1980 Jan;67(1):318-26
– reference: 17554816 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):969-72
– reference: 22251806 - Cochlear Implants Int. 2011 Nov;12(4):194-204
– reference: 22107445 - Int J Audiol. 2012 Feb;51(2):75-82
– reference: 486816 - Br J Audiol. 1979 Aug;13(3):108-12
SSID ssj0001255762
Score 2.0999959
Snippet Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Acoustic Stimulation - methods
Adult
Aged
Aged, 80 and over
Algorithms
Cochlear Implantation - methods
Cochlear Implants
Cohort Studies
Female
Humans
Male
Middle Aged
Prosthesis Design
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Sound Spectrography - methods
Special Issue
Speech Perception - physiology
Speech Recognition Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-KD9IXsVp1tUoKpeDDcZuv3exjKx5SuHtpD3xbNkNOBdkT7wT9753JxuudH-2Lr5sNm8xMMr_ZTH4D8K1UxQQDhSVVKSlA0arpeZl7WvEVEoAmlxKTaIaj4mxsfp3b86VSX5wT1tEDd4Lr5942hKI9M60ZR-C9KZz1iOioJTSBd1_yeUvBVPd3xRKQVn_PJftKa6kkF_4uJF_eXPFDka7_NYz5MlVyKd8ruqDBJmwk7Ch-dGP-BB9CuwXrw3Q6vg2D3zcUpgYx4uSVi8joLYZMwX8vBrGsTrpzKRIl7YMgxCpOpnjJtSMEEwVzVsxnGA9O_5yc9VKdhB7aPJ_3aNNBzCdaWu-8aUpy0U4WClXlvQ6Fc8Yx66BGLBVioJiUQCqT7Lgcg2u83oG1dtqGPRCu0GZig6buwQRjKydJ0iR0g7lBYzLoP0mtxkQizrUsrmuZeMOfyzmD40WPm45A4x_v_mRFLN5j6uv4gAyiTgZR_88gMvj6pMaalgqffzRtmN7NaiYlNUYRYstgt1Pr4lOqoFC4klUG5YrCV8ay2tJeXUY6blMSSjM2g-9sGnXaA2ZvznL_PWZ5AB8JutlIOZl_gbX57V04JHg090dxJTwCQkcFcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Sage Journals Online Open Access
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qC-KLtH5ua2UFEXxYb_O52SepxaUI1wdtsW_LZsi1BbtX2juw_31nctmzZ1V83STkYzKb32QmvwF4W0k7wUBmSV0JMlCU7AovSk8aXyMBaDpSYhDN-NAeHOsvJ-ZkDfrhLUxawesPHFZFI4o_a9Zuvo0eJSfjSColpOAs3lbwS8yP89lFu7jtHpJq8Bd2T88v2LONHA95Uwyv2x7AhqysJi3Y2Gu-fj-6cytjCIDLmJFOiYL7-OXbvNftylkWKf__hFPvh1veiRmLx1izCY8T_sz3FhtmC9ZC_wQejpOH_Sk03y7J1A35IQfAnEZW8HzMNP4_8yam5knvNvNEa3uTE-rN96d4xvknciYb5siaZ3DcfD7aPyhSroUCTVnOaKY1YjlRwnjndVfRMe-ElShr71WwzmnHzIUKsZKIgexaArpM1ONKDK7z6jms99M-vITcWaUnJihqHnTQpnYCkdp3GkuNWmcwGlatxUREzvkwfrQicY__vs4ZvF-2uFyQcPyj7icWxLIe02fHD9Or0zZpY1t605Fp5pm-TzuyCDvrjEcaJpWELmTwZhBjS-rGPpSuD9P5dcvEplpLQn0ZvFiIddmVtGRO16LOoFoR-MpYVkv687NI6a0rQnraZPCOt0Y7aMFfZ7n9vxV34BFBPBOpKctXsD67moddglEz_zrt_VvU8hHh
  priority: 102
  providerName: SAGE Publications
Title Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants
URI https://journals.sagepub.com/doi/full/10.1177/2331216515616941
https://www.ncbi.nlm.nih.gov/pubmed/26721919
https://www.proquest.com/docview/1753442727
https://pubmed.ncbi.nlm.nih.gov/PMC4771045
https://doaj.org/article/0b5a550b828548148a685bccc80b5eae
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC40AfEivh0fSwsieFgz_Zyeg0gMDkHYHDSLuQ3TRW8SCLNxs4Hk31vV27vJmujB6_Q0_aqivuqq_grgXaXcBCO5JXUlyUHRqhsGWQbS-BoJQJNJSUk0oz23OzbfDuzB1fPovIFnt7p2XE9qPDv5ePHr8jMp_KccctxSWksluaa3k_wu8y5skl1yLOOjDPYXNy6WwLW6ilXe6MjMwI5copp5d66ZqcTmfxsEvZlJeS0dLFmo5iE8yNBSbC9k4RHcif1juDfKwfMn0Pw4paVGsce5LYeJ8FuMmKH_QjSp6k5-kikyY-2lIEArdqZ4xKUlBPMIc9LMUxg3X_d3doe5jMIQbVnOh7QexHKipQ0-mK4iC-6lU6jqEHR03hvPpIQasVKIkVxWwrDMweNLjL4L-hls9NM-vgDhnTYTGzV1jyYaW3uJSP07g6VBYwrYWu5ai5ljnEtdnLQy04r_ueUFfFj1OF3wa_zj3y98EKv_mBk7fZjODtusaG0ZbEdeV2BmPuPJ2euctwFpmtQSu1jA2-UxtqRJHB7p-jg9P2uZs9QYRYCugOeLY10NtRSLAqq1A1-by3pLf3yU2LpNRSDO2ALes2i0Swn_6ypf_vcQr-A-wTmbaCjL17Axn53HNwSZ5mEAm9vN95_7g3TlMEh68RsW6g9x
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTYK9IMZn-BhGQkg8lMVfifM4pkUdrH2ATuwtik_uhoTSaeuk8d9z57qlZWzaa-JLbJ8v97v4_DuA96UqxhgoLKlKSQGKVm3Py9yTxVdIAJpcSkyiGQyL_pH5cmyPl0p9pRm8-MRpVdSj-LFeWHdZ7iitpZJcwLuQfAjzHmwYcloUd23s1t9-jJZ-sFjC0ioWl9OyxzJ_tymvPWbFLUX2_v9BzuuZk0vpX9Ej1Y_gYYKSYnem-y1YC91juD9Im-VPoP5-RlFrEEPOZTmJBN9iwIz8V6KOVXbSEUyRGGp_CwKwYm-Cp1xKQjBvMCfJPIWjen-01--lsgk9tHk-pZFWiPlYS-udN21JHtvJQqGqvNehcM44JiHUiKVCDBSiEmZlzh2XY3Ct189gvZt04QUIV2gztkGTeDDB2MpJRJJvDeYGjclgZz5rDSZOcS5t8auRiUb833nO4ONC4mzGp3FL28-siEU7ZsKOFybnJ00yrCb3tqUoyzMTn3EU3LWFsx6pm3QntCGDd3M1NmQ5vB3SdmFyedEwR6kxigBcBs9nal28ShUUGVeyyqBcUfhKX1bvdD9PIzu3KQm0GZvBB14azXxB3zjKl3dt-BYe9EeDw-bwYPj1FWwScrORcTJ_DevT88vwhtDR1G8nO_gDxmn_Mg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJk28IGB8ZAzwJITEQ2n8lTiPYxANRisEm9hbFB_uhjSl1dZJ8N_vznW7lcG018SX2D5f_Lvc-XcAr0tVjDCQW1KVkhwUrdqel7kni6-QADRtKTGJZjAsdg_M50N7mHJz-CxMmsGzd5xWRT2KH2u27snPUT_FGPtKa6kkF_EuJB_EvAurxpSaFvXqdv3tx_6VnyyW8LSKBea07LHMZajy2mOWtqbI4P8v2Hk9e_JKCljcleoHcD_BSbE90_9DuBO6R7A2SAHzdai_T8hzDWLI-SxHkeRbDJiV_7eoY6WddAxTJJbaP4JArNgZ4zGXkxDMHcyJMo_hoP64v7PbS6UTemjzfEojrRDzkZbWO2_aknZtJwuFqvJeh8I545iIUCOWCjGQm0q4lXl3XI7BtV4_gZVu3IVnIFyhzcgGTeLBBGMrJxFJvjWYGzQmg_581hpMvOJc3uKkkYlK_O95zuDtQmIy49S4oe17VsSiHbNhxwvj06MmGVeTe9uSp-WZjc84cvDawlmP1E26E9qQwdZcjQ1ZD4dE2i6Mz88a5ik1RhGIy-DpTK2LV6mCvONKVhmUSwpf6svyne7XcWToNiUBN2MzeMNLo5kv6v-OcuO2DV_B2tcPdfPl03DvOdwj8GYj6WS-CSvT0_PwggDS1L9MZnAByRQAWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Nonnegative+Matrix+Factorization+Strategy+for+Cochlear+Implants&rft.jtitle=Trends+in+hearing&rft.au=Hu%2C+Hongmei&rft.au=Lutman%2C+Mark+E.&rft.au=Ewert%2C+Stephan+D.&rft.au=Li%2C+Guoping&rft.date=2015-12-30&rft.pub=SAGE+Publications&rft.eissn=2331-2165&rft.volume=19&rft_id=info:doi/10.1177%2F2331216515616941&rft_id=info%3Apmid%2F26721919&rft.externalDocID=PMC4771045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-2165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-2165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-2165&client=summon