Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants
Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In...
Saved in:
Published in | Trends in hearing Vol. 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
30.12.2015
SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 2331-2165 2331-2165 |
DOI | 10.1177/2331216515616941 |
Cover
Loading…
Abstract | Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed. |
---|---|
AbstractList | Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (
envelopogram
) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed. Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix ( envelopogram ) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed. Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed. |
Author | Bleeck, Stefan Hu, Hongmei Li, Guoping Lutman, Mark E. Ewert, Stephan D. |
AuthorAffiliation | 1 Institute of Sound and Vibration Research, University of Southampton, UK 2 Medizinische Physik, Universität Oldenburg and Cluster of Excellence “Hearing4all”, Oldenburg, Germany 3 The Ear Institute, Faculty of Brain Sciences, University College London, UK |
AuthorAffiliation_xml | – name: 2 Medizinische Physik, Universität Oldenburg and Cluster of Excellence “Hearing4all”, Oldenburg, Germany – name: 3 The Ear Institute, Faculty of Brain Sciences, University College London, UK – name: 1 Institute of Sound and Vibration Research, University of Southampton, UK |
Author_xml | – sequence: 1 givenname: Hongmei surname: Hu fullname: Hu, Hongmei email: hongmei.hu@uni-oldenburg.de – sequence: 2 givenname: Mark E. surname: Lutman fullname: Lutman, Mark E. – sequence: 3 givenname: Stephan D. surname: Ewert fullname: Ewert, Stephan D. – sequence: 4 givenname: Guoping surname: Li fullname: Li, Guoping – sequence: 5 givenname: Stefan surname: Bleeck fullname: Bleeck, Stefan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26721919$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vEzEUtFCrtrS9c0J75BLw8_dekFDUQKRSDoWz5XVeto4262A7FeXX4zSlaivByda8mXkf85ocjHFEQt4AfQ-g9QfGOTBQEqQC1Qp4RU520GSHHTz5H5PznFeUUmBSasWOyDFTmkEL7QmZXW9cythcxXHE3pVwi81XV1L41cycLzGF3xWMY3NdkivY3zXLmJpp9DcDutTM15vBjSWfkcOlGzKeP7yn5Mfs4vv0y-Ty2-f59NPlxEtKSx2n9Z4uOcjOdMJpqsCAYp61XcdRGSOM4Lrl3mvmPXLDDSwApDbUo3EdPyXzve8iupXdpLB26c5GF-w9EFNvXSrBD2hpJ52UtDPMSGFAGKeM7Lz3plbQYfX6uPfabLs1LjyOdcXhmenzyhhubB9vrdAaqJDV4N2DQYo_t5iLXYfscagXwbjNFrTkQjDNdKW-fdrrscnfICqB7gk-xZwTLh8pQO0ubvsy7ipRLyQ-lPuw6rRh-J9wshdm16NdxW0aa2b_5v8BuMO43Q |
CitedBy_id | crossref_primary_10_1051_aacus_2023036 crossref_primary_10_1121_1_5030918 crossref_primary_10_1121_1_5031112 crossref_primary_10_1177_2331216515623374 crossref_primary_10_1109_TNSRE_2021_3128064 crossref_primary_10_1109_TCDS_2023_3275587 |
Cites_doi | 10.1121/1.384464 10.1159/000094648 10.1109/TASL.2006.889753 10.1097/mao.0b013e318162512c 10.1097/AUD.0b013e3181ff3515 10.1121/1.3502473 10.1121/1.3665990 10.1007/978-3-642-15995-4_18 10.1038/352236a0 10.1121/1.1804628 10.1044/1092-4388(2002/063) 10.1109/TBME.2007.893505 10.1177/108471380400800102 10.1097/00003446-200110000-00006 10.1121/1.393844 10.1121/1.3083233 10.1162/neco.2008.04-08-771 10.1038/44565 10.1109/NNSP.2002.1030067 10.1007/0-387-21575-1_1 10.1088/1741-2560/9/6/065007 10.1109/TBME.2012.2187650 10.1121/1.2166600 10.1121/1.1498855 10.1016/j.conb.2004.07.007 10.1109/TSP.2009.2016881 10.1109/ICASSP.2006.1661352 10.1109/ASPAA.2003.1285860 10.3109/00206097909072618 10.1109/ISCAS.2008.4541673 10.1080/14992020500271712 10.1109/ASPAA.2011.6082303 10.1109/TASL.2011.2114881 10.1007/b97263 10.1155/2008/947438 10.3390/s131013861 10.1007/978-3-540-71505-4_12 10.1121/1.2065847 10.3109/03005367909078884 10.1002/9780470747278 10.1109/TASL.2006.885253 10.1179/1754762811Y0000000009 10.1155/2008/939567 10.3109/14992027.2011.625984 10.1177/1084713806296386 10.1109/ICASSP.2008.4517989 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 The Author(s) 2015. The Author(s) 2015 2015 SAGE Publications |
Copyright_xml | – notice: The Author(s) 2015 – notice: The Author(s) 2015. – notice: The Author(s) 2015 2015 SAGE Publications |
DBID | AFRWT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1177/2331216515616941 |
DatabaseName | Sage Journals Online Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: AFRWT name: Sage Journals Online Open Access url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2331-2165 |
ExternalDocumentID | oai_doaj_org_article_0b5a550b828548148a685bccc80b5eae PMC4771045 26721919 10_1177_2331216515616941 10.1177_2331216515616941 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 54M 5VS AANEX AASGM ABAWP ABQXT ABVFX ACARO ACDXX ACGFS ACROE ADBBV ADEBD ADOGD ADRAZ AENEX AERKM AEUHG AEWDL AFCOW AFKRG AFRWT AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV AUTPY AYAKG BAWUL BCNDV BDDNI BSEHC DC. DIK EBD EBS EJD EMB EMOBN GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 HYE IPNFZ J8X K.F KQ8 M48 M~E O9- RIG ROL RPM S01 SAUOL SCDPB SCNPE SFC SFH SV3 AAYXX ACHEB CITATION 31X AATBZ ABHQH ACGZU ACSBE ACSIQ AEUIJ AEWHI B8Z CGR CUY CVF DV7 ECM EIF M4V NPM OK1 RHX SFK SFT SGV SPJ 7X8 5PM |
ID | FETCH-LOGICAL-c500t-219cc0f315b8b4a70618162c29bb3e6884843793cc72cce38381d115780ce8ab3 |
IEDL.DBID | M48 |
ISSN | 2331-2165 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Thu Aug 21 14:08:44 EDT 2025 Thu Sep 04 15:00:36 EDT 2025 Wed Feb 19 02:00:33 EST 2025 Thu Apr 24 22:59:08 EDT 2025 Tue Jul 01 05:25:26 EDT 2025 Tue Jun 17 22:30:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | babble noise speech recognition cochlear implant vocoder nonnegative matrix factorization speech enhancement |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(https://us.sagepub.com/en-us/nam/open-access-at-sage). The Author(s) 2015. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-219cc0f315b8b4a70618162c29bb3e6884843793cc72cce38381d115780ce8ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1177/2331216515616941 |
PMID | 26721919 |
PQID | 1753442727 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b5a550b828548148a685bccc80b5eae pubmedcentral_primary_oai_pubmedcentral_nih_gov_4771045 proquest_miscellaneous_1753442727 pubmed_primary_26721919 crossref_primary_10_1177_2331216515616941 crossref_citationtrail_10_1177_2331216515616941 sage_journals_10_1177_2331216515616941 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-30 |
PublicationDateYYYYMMDD | 2015-12-30 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Sage CA: Los Angeles, CA |
PublicationTitle | Trends in hearing |
PublicationTitleAlternate | Trends Amplif |
PublicationYear | 2015 |
Publisher | SAGE Publications SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: SAGE Publishing |
References | Buchner, Nogueira, Edler, Battmer, Lenarz 2008; 29 Bench, Kowal, Bamford 1979; 13 Cooke 2006; 119 Wilson, Finley, Lawson, Wolford, Eddington, Rabinowitz 1991; 352 Hendriks, Martin 2007; 15 Lutman, Clark 1986; 80 Goldsworthy, Greenberg 2004; 116 Mauger, Dawson, Hersbach 2012; 131 Kasturi, Loizou, Dorman, Spahr 2002; 112 Virtanen 2007; 15 Wilson, Dorman 2007; 54 Lee, Seung 1999; 401 Hu, Krasoulis, Lutman, Bleeck 2013; 13 Steeneken, Houtgast 1980; 67 Olshausen, Field 2004; 14 ur Rehman Qazi, van Dijk, Moonen, Wouters 2012; 59 Févotte, Bertin, Durrieu 2009; 21 Hoyer 2004; 5 Chen, Loizou 2010; 128 Li, Lutman, Wang, Bleeck 2012; 51 Mauger, Arora, Dawson 2012; 9 Patrick, Busby, Gibson 2006; 10 Plomp, Mimpen 1979; 18 Chen, Loizou 2011; 32 Dahlquist, Lutman, Wood, Leijon 2005; 44 Wang, Kjems, Pedersen, Boldt, Lunner 2009; 125 Buechner, Beynon, Szyfter, Niemczyk, Hoppe, Hey, Smoorenburg 2011; 12 Dorman, Loizou, Spahr, Maloff 2002; 45 Wang, Cichocki, Chambers 2009; 57 Taal, Hendriks, Heusdens, Jensen 2011; 19 Loizou, Lobo, Hu 2005; 118 Spratling 2006; 7 Seligman, McDermott 1995; 104 Wouters, Berghe 2001; 22 Shashanka, Raj, Smaragdis 2008; 2008 Zeng 2004; 8 Zdunek, Cichocki 2008; 2008 bibr4-2331216515616941 bibr26-2331216515616941 bibr34-2331216515616941 bibr51-2331216515616941 bibr42-2331216515616941 bibr18-2331216515616941 bibr60-2331216515616941 bibr35-2331216515616941 bibr25-2331216515616941 bibr3-2331216515616941 bibr52-2331216515616941 bibr17-2331216515616941 bibr15-2331216515616941 bibr28-2331216515616941 bibr10-2331216515616941 bibr2-2331216515616941 bibr23-2331216515616941 Spratling M. W. (bibr48-2331216515616941) 2006; 7 bibr31-2331216515616941 bibr7-2331216515616941 Nie K. (bibr37-2331216515616941) 2009 bibr57-2331216515616941 bibr59-2331216515616941 bibr44-2331216515616941 bibr46-2331216515616941 bibr33-2331216515616941 bibr41-2331216515616941 Hoyer P. O. (bibr20-2331216515616941) 2004; 5 bibr5-2331216515616941 bibr54-2331216515616941 Roberts W. J. J. (bibr43-2331216515616941) 2006 bibr36-2331216515616941 bibr49-2331216515616941 bibr39-2331216515616941 bibr21-2331216515616941 bibr12-2331216515616941 bibr55-2331216515616941 bibr22-2331216515616941 bibr38-2331216515616941 bibr56-2331216515616941 bibr8-2331216515616941 Faulkner A. (bibr13-2331216515616941) 1998 bibr47-2331216515616941 bibr30-2331216515616941 bibr58-2331216515616941 bibr53-2331216515616941 bibr40-2331216515616941 Cochlear Technology (bibr9-2331216515616941) 2002 bibr29-2331216515616941 bibr16-2331216515616941 Seligman P. M. (bibr45-2331216515616941) 1995; 104 bibr14-2331216515616941 bibr27-2331216515616941 bibr50-2331216515616941 bibr1-2331216515616941 bibr24-2331216515616941 bibr11-2331216515616941 bibr6-2331216515616941 bibr32-2331216515616941 bibr19-2331216515616941 16583901 - J Acoust Soc Am. 2006 Mar;119(3):1562-73 21206363 - Ear Hear. 2011 May-Jun;32(3):331-8 15658718 - J Acoust Soc Am. 2004 Dec;116(6):3679-89 23187159 - J Neural Eng. 2012 Dec;9(6):065007 1857418 - Nature. 1991 Jul 18;352(6332):236-8 16334894 - J Acoust Soc Am. 2005 Nov;118(5):2791-3 12199407 - J Speech Lang Hear Res. 2002 Aug;45(4):783-8 21218903 - J Acoust Soc Am. 2010 Dec;128(6):3715-23 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7 7354199 - J Acoust Soc Am. 1980 Jan;67(1):318-26 24129021 - Sensors (Basel). 2013;13(10):13861-78 22345522 - IEEE Trans Biomed Eng. 2012 May;59(5):1364-73 11605949 - Ear Hear. 2001 Oct;22(5):420-30 18509481 - Comput Intell Neurosci. 2008;:947438 22107445 - Int J Audiol. 2012 Feb;51(2):75-82 22280595 - J Acoust Soc Am. 2012 Jan;131(1):327-36 486816 - Br J Audiol. 1979 Aug;13(3):108-12 18628948 - Comput Intell Neurosci. 2008;2008:939567 18785855 - Neural Comput. 2009 Mar;21(3):793-830 3771923 - J Acoust Soc Am. 1986 Oct;80(4):1030-40 12243158 - J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1102-11 760724 - Audiology. 1979 Jan-Feb;18(1):43-52 22251806 - Cochlear Implants Int. 2011 Nov;12(4):194-204 17172547 - Trends Amplif. 2006 Dec;10(4):175-200 10548103 - Nature. 1999 Oct 21;401(6755):788-91 16891839 - Adv Otorhinolaryngol. 2006;64:109-43 19354408 - J Acoust Soc Am. 2009 Apr;125(4):2336-47 7668606 - Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:139-41 17554816 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):969-72 18223445 - Otol Neurotol. 2008 Feb;29(2):189-92 16450924 - Int J Audiol. 2005 Dec;44(12):721-32 15247993 - Trends Amplif. 2004;8(1):1-34 |
References_xml | – volume: 22 start-page: 420 issue: 5 year: 2001 end-page: 430 article-title: Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system publication-title: Ear and Hearing – volume: 9 start-page: 065007 issue: 6 year: 2012 article-title: Cochlear implant optimized noise reduction publication-title: Journal of Neural Engineering – volume: 15 start-page: 918 issue: 3 year: 2007 end-page: 927 article-title: MAP estimators for speech enhancement under normal and Rayleigh inverse Gaussian distributions publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 118 start-page: 2791 issue: 5 year: 2005 end-page: 2793 article-title: Subspace algorithms for noise reduction in cochlear implants publication-title: The Journal of the Acoustical Society of America – volume: 67 start-page: 318 issue: 1 year: 1980 end-page: 326 article-title: A physical method for measuring speech transmission quality publication-title: The Journal of the Acoustical Society of America – volume: 125 start-page: 2336 issue: 4 year: 2009 end-page: 2347 article-title: Speech intelligibility in background noise with ideal binary time-frequency masking publication-title: The Journal of the Acoustical Society of America – volume: 14 start-page: 481 year: 2004 end-page: 487 article-title: Sparse coding of sensory inputs publication-title: Current Opinion in Neurobiology – volume: 7 start-page: 793 year: 2006 end-page: 815 article-title: Learning image components for object recognition publication-title: The Journal of Machine Learning Research – volume: 10 start-page: 175 issue: 4 year: 2006 end-page: 200 article-title: The development of the nucleus freedom cochlear implant system publication-title: Trends in Amplification – volume: 128 start-page: 3715 issue: 6 year: 2010 end-page: 3723 article-title: Analysis of a simplified normalized covariance measure based on binary weighting functions for predicting the intelligibility of noise-suppressed speech publication-title: The Journal of the Acoustical Society of America – volume: 32 start-page: 331 issue: 3 year: 2011 end-page: 338 article-title: Predicting the intelligibility of vocoded speech publication-title: Ear and Hearing – volume: 51 start-page: 75 issue: 2 year: 2012 end-page: 82 article-title: Relationship between speech recognition in noise and sparseness publication-title: International Journal of Audiology – volume: 57 start-page: 2858 issue: 7 year: 2009 end-page: 2864 article-title: A multiplicative algorithm for convolutive non-negative matrix factorization based on squared Euclidean distance publication-title: IEEE Transactions on Signal Processing – volume: 45 start-page: 783 issue: 4 year: 2002 end-page: 788 article-title: A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants publication-title: Journal of Speech Language and Hearing Research – volume: 13 start-page: 108 issue: 3 year: 1979 end-page: 112 article-title: The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children publication-title: British Journal of Audiology – volume: 5 start-page: 1457 year: 2004 end-page: 1469 article-title: Non-negative matrix factorization with sparseness constraints publication-title: The Journal of Machine Learning Research – volume: 18 start-page: 43 issue: 1 year: 1979 end-page: 52 article-title: Improving the reliability of testing the speech reception threshold for sentences publication-title: International Journal of Audiology – volume: 15 start-page: 1066 issue: 3 year: 2007 end-page: 1074 article-title: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 19 start-page: 2125 issue: 7 year: 2011 end-page: 2136 article-title: An algorithm for intelligibility prediction of time frequency weighted noisy speech publication-title: IEEE Transactions on Audio, Speech, and Language Processing – volume: 2008 start-page: 9 year: 2008 article-title: Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems publication-title: Computational Intelligence and Neuroscience – volume: 104 start-page: 139 issue: suppl. 166 year: 1995 end-page: 141 article-title: Architecture of the spectra 22 speech processor publication-title: Annals of Otology, Rhinology and Laryngology – volume: 131 start-page: 327 issue: 1 year: 2012 end-page: 336 article-title: Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction publication-title: The Journal of the Acoustical Society of America – volume: 352 start-page: 236 issue: 6332 year: 1991 end-page: 238 article-title: Better speech recognition with cochlear implants publication-title: Nature – volume: 2008 start-page: 9 year: 2008 article-title: Probabilistic latent variable models as nonnegative factorizations publication-title: Computational Intelligence and Neuroscience – volume: 54 start-page: 969 issue: 6 year: 2007 end-page: 972 article-title: The surprising performance of present-day cochlear implants publication-title: IEEE Transactions on Biomedical Engineering – volume: 8 start-page: 1 issue: 1 year: 2004 end-page: 34 article-title: Trends in cochlear implants publication-title: Trends in Amplification – volume: 29 start-page: 189 issue: 2 year: 2008 end-page: 192 article-title: Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants publication-title: Otology & Neurotology – volume: 12 start-page: 194 issue: 4 year: 2011 end-page: 204 article-title: Clinical evaluation of cochlear implant sound coding taking into account conjectural masking functions, MP3000 publication-title: Cochlear Implants International – volume: 13 start-page: 13861 issue: 10 year: 2013 end-page: 13878 article-title: Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC Target publication-title: Sensors – volume: 59 start-page: 1364 issue: 5 year: 2012 end-page: 1373 article-title: Speech understanding performance of cochlear implant subjects using time-frequency masking-based noise reduction publication-title: IEEE Transactions on Biomedical Engineering – volume: 119 start-page: 1562 year: 2006 end-page: 1573 article-title: A glimpsing model of speech perception in noise publication-title: The Journal of the Acoustical Society of America – volume: 116 start-page: 3679 issue: 6 year: 2004 end-page: 3689 article-title: Analysis of speech-based speech transmission index methods with implications for nonlinear operations publication-title: The Journal of the Acoustical Society of America – volume: 112 start-page: 1102 issue: 3 year: 2002 end-page: 1111 article-title: The intelligibility of speech with “holes” in the spectrum publication-title: The Journal of the Acoustical Society of America – volume: 401 start-page: 788 issue: 6755 year: 1999 end-page: 791 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 44 start-page: 721 issue: 12 year: 2005 end-page: 732 article-title: Methodology for quantifying perceptual effects from noise suppression systems publication-title: International Journal of Audiology – volume: 80 start-page: 1030 issue: 4 year: 1986 end-page: 1040 article-title: Speech identification under simulated hearing-aid frequency response characteristics in relation to sensitivity, frequency resolution, and temporal resolution publication-title: The Journal of the Acoustical Society of America – volume: 21 start-page: 793 issue: 3 year: 2009 end-page: 830 article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis publication-title: Neural Computation – ident: bibr49-2331216515616941 doi: 10.1121/1.384464 – ident: bibr27-2331216515616941 – ident: bibr30-2331216515616941 doi: 10.1159/000094648 – ident: bibr44-2331216515616941 – ident: bibr18-2331216515616941 doi: 10.1109/TASL.2006.889753 – ident: bibr2-2331216515616941 doi: 10.1097/mao.0b013e318162512c – ident: bibr5-2331216515616941 doi: 10.1097/AUD.0b013e3181ff3515 – ident: bibr22-2331216515616941 – ident: bibr4-2331216515616941 doi: 10.1121/1.3502473 – ident: bibr34-2331216515616941 doi: 10.1121/1.3665990 – ident: bibr36-2331216515616941 doi: 10.1007/978-3-642-15995-4_18 – ident: bibr57-2331216515616941 doi: 10.1038/352236a0 – ident: bibr16-2331216515616941 doi: 10.1121/1.1804628 – start-page: 389 volume-title: Ballenger’s otorhinolaryngology head and neck surgery year: 2009 ident: bibr37-2331216515616941 – ident: bibr12-2331216515616941 doi: 10.1044/1092-4388(2002/063) – ident: bibr56-2331216515616941 doi: 10.1109/TBME.2007.893505 – ident: bibr60-2331216515616941 doi: 10.1177/108471380400800102 – ident: bibr23-2331216515616941 – ident: bibr28-2331216515616941 – ident: bibr50-2331216515616941 – ident: bibr15-2331216515616941 – volume-title: BKB and IHRSL sentence lists and NWAS continuous speech year: 1998 ident: bibr13-2331216515616941 – start-page: 1 volume-title: Microelectronics year: 2006 ident: bibr43-2331216515616941 – ident: bibr58-2331216515616941 doi: 10.1097/00003446-200110000-00006 – ident: bibr32-2331216515616941 doi: 10.1121/1.393844 – ident: bibr55-2331216515616941 doi: 10.1121/1.3083233 – ident: bibr14-2331216515616941 doi: 10.1162/neco.2008.04-08-771 – ident: bibr26-2331216515616941 doi: 10.1038/44565 – ident: bibr19-2331216515616941 doi: 10.1109/NNSP.2002.1030067 – volume: 7 start-page: 793 year: 2006 ident: bibr48-2331216515616941 publication-title: The Journal of Machine Learning Research – volume-title: Nucleus MATLAB toolbox 4.2 software user manual (Vol. N95246F) year: 2002 ident: bibr9-2331216515616941 – ident: bibr17-2331216515616941 doi: 10.1007/0-387-21575-1_1 – ident: bibr33-2331216515616941 doi: 10.1088/1741-2560/9/6/065007 – ident: bibr52-2331216515616941 doi: 10.1109/TBME.2012.2187650 – ident: bibr10-2331216515616941 doi: 10.1121/1.2166600 – ident: bibr25-2331216515616941 doi: 10.1121/1.1498855 – volume: 5 start-page: 1457 year: 2004 ident: bibr20-2331216515616941 publication-title: The Journal of Machine Learning Research – ident: bibr38-2331216515616941 doi: 10.1016/j.conb.2004.07.007 – ident: bibr54-2331216515616941 doi: 10.1109/TSP.2009.2016881 – ident: bibr6-2331216515616941 doi: 10.1109/ICASSP.2006.1661352 – ident: bibr47-2331216515616941 doi: 10.1109/ASPAA.2003.1285860 – ident: bibr40-2331216515616941 doi: 10.3109/00206097909072618 – ident: bibr41-2331216515616941 doi: 10.1109/ISCAS.2008.4541673 – ident: bibr11-2331216515616941 doi: 10.1080/14992020500271712 – ident: bibr35-2331216515616941 doi: 10.1109/ASPAA.2011.6082303 – ident: bibr51-2331216515616941 doi: 10.1109/TASL.2011.2114881 – ident: bibr8-2331216515616941 doi: 10.1007/b97263 – ident: bibr46-2331216515616941 doi: 10.1155/2008/947438 – ident: bibr21-2331216515616941 doi: 10.3390/s131013861 – ident: bibr24-2331216515616941 doi: 10.1007/978-3-540-71505-4_12 – ident: bibr31-2331216515616941 doi: 10.1121/1.2065847 – ident: bibr1-2331216515616941 doi: 10.3109/03005367909078884 – ident: bibr7-2331216515616941 doi: 10.1002/9780470747278 – volume: 104 start-page: 139 issue: 166 year: 1995 ident: bibr45-2331216515616941 publication-title: Annals of Otology, Rhinology and Laryngology – ident: bibr53-2331216515616941 doi: 10.1109/TASL.2006.885253 – ident: bibr3-2331216515616941 doi: 10.1179/1754762811Y0000000009 – ident: bibr59-2331216515616941 doi: 10.1155/2008/939567 – ident: bibr29-2331216515616941 doi: 10.3109/14992027.2011.625984 – ident: bibr39-2331216515616941 doi: 10.1177/1084713806296386 – ident: bibr42-2331216515616941 doi: 10.1109/ICASSP.2008.4517989 – reference: 7668606 - Ann Otol Rhinol Laryngol Suppl. 1995 Sep;166:139-41 – reference: 16334894 - J Acoust Soc Am. 2005 Nov;118(5):2791-3 – reference: 21218903 - J Acoust Soc Am. 2010 Dec;128(6):3715-23 – reference: 16583901 - J Acoust Soc Am. 2006 Mar;119(3):1562-73 – reference: 24129021 - Sensors (Basel). 2013;13(10):13861-78 – reference: 22280595 - J Acoust Soc Am. 2012 Jan;131(1):327-36 – reference: 18785855 - Neural Comput. 2009 Mar;21(3):793-830 – reference: 22345522 - IEEE Trans Biomed Eng. 2012 May;59(5):1364-73 – reference: 760724 - Audiology. 1979 Jan-Feb;18(1):43-52 – reference: 23187159 - J Neural Eng. 2012 Dec;9(6):065007 – reference: 18628948 - Comput Intell Neurosci. 2008;2008:939567 – reference: 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7 – reference: 11605949 - Ear Hear. 2001 Oct;22(5):420-30 – reference: 12199407 - J Speech Lang Hear Res. 2002 Aug;45(4):783-8 – reference: 16450924 - Int J Audiol. 2005 Dec;44(12):721-32 – reference: 21206363 - Ear Hear. 2011 May-Jun;32(3):331-8 – reference: 12243158 - J Acoust Soc Am. 2002 Sep;112(3 Pt 1):1102-11 – reference: 15247993 - Trends Amplif. 2004;8(1):1-34 – reference: 3771923 - J Acoust Soc Am. 1986 Oct;80(4):1030-40 – reference: 15658718 - J Acoust Soc Am. 2004 Dec;116(6):3679-89 – reference: 1857418 - Nature. 1991 Jul 18;352(6332):236-8 – reference: 19354408 - J Acoust Soc Am. 2009 Apr;125(4):2336-47 – reference: 18223445 - Otol Neurotol. 2008 Feb;29(2):189-92 – reference: 17172547 - Trends Amplif. 2006 Dec;10(4):175-200 – reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91 – reference: 16891839 - Adv Otorhinolaryngol. 2006;64:109-43 – reference: 18509481 - Comput Intell Neurosci. 2008;:947438 – reference: 7354199 - J Acoust Soc Am. 1980 Jan;67(1):318-26 – reference: 17554816 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):969-72 – reference: 22251806 - Cochlear Implants Int. 2011 Nov;12(4):194-204 – reference: 22107445 - Int J Audiol. 2012 Feb;51(2):75-82 – reference: 486816 - Br J Audiol. 1979 Aug;13(3):108-12 |
SSID | ssj0001255762 |
Score | 2.0999959 |
Snippet | Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to... |
SourceID | doaj pubmedcentral proquest pubmed crossref sage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Acoustic Stimulation - methods Adult Aged Aged, 80 and over Algorithms Cochlear Implantation - methods Cochlear Implants Cohort Studies Female Humans Male Middle Aged Prosthesis Design Signal Processing, Computer-Assisted Signal-To-Noise Ratio Sound Spectrography - methods Special Issue Speech Perception - physiology Speech Recognition Software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-KD9IXsVp1tUoKpeDDcZuv3exjKx5SuHtpD3xbNkNOBdkT7wT9753JxuudH-2Lr5sNm8xMMr_ZTH4D8K1UxQQDhSVVKSlA0arpeZl7WvEVEoAmlxKTaIaj4mxsfp3b86VSX5wT1tEDd4Lr5942hKI9M60ZR-C9KZz1iOioJTSBd1_yeUvBVPd3xRKQVn_PJftKa6kkF_4uJF_eXPFDka7_NYz5MlVyKd8ruqDBJmwk7Ch-dGP-BB9CuwXrw3Q6vg2D3zcUpgYx4uSVi8joLYZMwX8vBrGsTrpzKRIl7YMgxCpOpnjJtSMEEwVzVsxnGA9O_5yc9VKdhB7aPJ_3aNNBzCdaWu-8aUpy0U4WClXlvQ6Fc8Yx66BGLBVioJiUQCqT7Lgcg2u83oG1dtqGPRCu0GZig6buwQRjKydJ0iR0g7lBYzLoP0mtxkQizrUsrmuZeMOfyzmD40WPm45A4x_v_mRFLN5j6uv4gAyiTgZR_88gMvj6pMaalgqffzRtmN7NaiYlNUYRYstgt1Pr4lOqoFC4klUG5YrCV8ay2tJeXUY6blMSSjM2g-9sGnXaA2ZvznL_PWZ5AB8JutlIOZl_gbX57V04JHg090dxJTwCQkcFcA priority: 102 providerName: Directory of Open Access Journals – databaseName: Sage Journals Online Open Access dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qC-KLtH5ua2UFEXxYb_O52SepxaUI1wdtsW_LZsi1BbtX2juw_31nctmzZ1V83STkYzKb32QmvwF4W0k7wUBmSV0JMlCU7AovSk8aXyMBaDpSYhDN-NAeHOsvJ-ZkDfrhLUxawesPHFZFI4o_a9Zuvo0eJSfjSColpOAs3lbwS8yP89lFu7jtHpJq8Bd2T88v2LONHA95Uwyv2x7AhqysJi3Y2Gu-fj-6cytjCIDLmJFOiYL7-OXbvNftylkWKf__hFPvh1veiRmLx1izCY8T_sz3FhtmC9ZC_wQejpOH_Sk03y7J1A35IQfAnEZW8HzMNP4_8yam5knvNvNEa3uTE-rN96d4xvknciYb5siaZ3DcfD7aPyhSroUCTVnOaKY1YjlRwnjndVfRMe-ElShr71WwzmnHzIUKsZKIgexaArpM1ONKDK7z6jms99M-vITcWaUnJihqHnTQpnYCkdp3GkuNWmcwGlatxUREzvkwfrQicY__vs4ZvF-2uFyQcPyj7icWxLIe02fHD9Or0zZpY1t605Fp5pm-TzuyCDvrjEcaJpWELmTwZhBjS-rGPpSuD9P5dcvEplpLQn0ZvFiIddmVtGRO16LOoFoR-MpYVkv687NI6a0rQnraZPCOt0Y7aMFfZ7n9vxV34BFBPBOpKctXsD67moddglEz_zrt_VvU8hHh priority: 102 providerName: SAGE Publications |
Title | Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants |
URI | https://journals.sagepub.com/doi/full/10.1177/2331216515616941 https://www.ncbi.nlm.nih.gov/pubmed/26721919 https://www.proquest.com/docview/1753442727 https://pubmed.ncbi.nlm.nih.gov/PMC4771045 https://doaj.org/article/0b5a550b828548148a685bccc80b5eae |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC40AfEivh0fSwsieFgz_Zyeg0gMDkHYHDSLuQ3TRW8SCLNxs4Hk31vV27vJmujB6_Q0_aqivuqq_grgXaXcBCO5JXUlyUHRqhsGWQbS-BoJQJNJSUk0oz23OzbfDuzB1fPovIFnt7p2XE9qPDv5ePHr8jMp_KccctxSWksluaa3k_wu8y5skl1yLOOjDPYXNy6WwLW6ilXe6MjMwI5copp5d66ZqcTmfxsEvZlJeS0dLFmo5iE8yNBSbC9k4RHcif1juDfKwfMn0Pw4paVGsce5LYeJ8FuMmKH_QjSp6k5-kikyY-2lIEArdqZ4xKUlBPMIc9LMUxg3X_d3doe5jMIQbVnOh7QexHKipQ0-mK4iC-6lU6jqEHR03hvPpIQasVKIkVxWwrDMweNLjL4L-hls9NM-vgDhnTYTGzV1jyYaW3uJSP07g6VBYwrYWu5ai5ljnEtdnLQy04r_ueUFfFj1OF3wa_zj3y98EKv_mBk7fZjODtusaG0ZbEdeV2BmPuPJ2euctwFpmtQSu1jA2-UxtqRJHB7p-jg9P2uZs9QYRYCugOeLY10NtRSLAqq1A1-by3pLf3yU2LpNRSDO2ALes2i0Swn_6ypf_vcQr-A-wTmbaCjL17Axn53HNwSZ5mEAm9vN95_7g3TlMEh68RsW6g9x |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTYK9IMZn-BhGQkg8lMVfifM4pkUdrH2ATuwtik_uhoTSaeuk8d9z57qlZWzaa-JLbJ8v97v4_DuA96UqxhgoLKlKSQGKVm3Py9yTxVdIAJpcSkyiGQyL_pH5cmyPl0p9pRm8-MRpVdSj-LFeWHdZ7iitpZJcwLuQfAjzHmwYcloUd23s1t9-jJZ-sFjC0ioWl9OyxzJ_tymvPWbFLUX2_v9BzuuZk0vpX9Ej1Y_gYYKSYnem-y1YC91juD9Im-VPoP5-RlFrEEPOZTmJBN9iwIz8V6KOVXbSEUyRGGp_CwKwYm-Cp1xKQjBvMCfJPIWjen-01--lsgk9tHk-pZFWiPlYS-udN21JHtvJQqGqvNehcM44JiHUiKVCDBSiEmZlzh2XY3Ct189gvZt04QUIV2gztkGTeDDB2MpJRJJvDeYGjclgZz5rDSZOcS5t8auRiUb833nO4ONC4mzGp3FL28-siEU7ZsKOFybnJ00yrCb3tqUoyzMTn3EU3LWFsx6pm3QntCGDd3M1NmQ5vB3SdmFyedEwR6kxigBcBs9nal28ShUUGVeyyqBcUfhKX1bvdD9PIzu3KQm0GZvBB14azXxB3zjKl3dt-BYe9EeDw-bwYPj1FWwScrORcTJ_DevT88vwhtDR1G8nO_gDxmn_Mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJk28IGB8ZAzwJITEQ2n8lTiPYxANRisEm9hbFB_uhjSl1dZJ8N_vznW7lcG018SX2D5f_Lvc-XcAr0tVjDCQW1KVkhwUrdqel7kni6-QADRtKTGJZjAsdg_M50N7mHJz-CxMmsGzd5xWRT2KH2u27snPUT_FGPtKa6kkF_EuJB_EvAurxpSaFvXqdv3tx_6VnyyW8LSKBea07LHMZajy2mOWtqbI4P8v2Hk9e_JKCljcleoHcD_BSbE90_9DuBO6R7A2SAHzdai_T8hzDWLI-SxHkeRbDJiV_7eoY6WddAxTJJbaP4JArNgZ4zGXkxDMHcyJMo_hoP64v7PbS6UTemjzfEojrRDzkZbWO2_aknZtJwuFqvJeh8I545iIUCOWCjGQm0q4lXl3XI7BtV4_gZVu3IVnIFyhzcgGTeLBBGMrJxFJvjWYGzQmg_581hpMvOJc3uKkkYlK_O95zuDtQmIy49S4oe17VsSiHbNhxwvj06MmGVeTe9uSp-WZjc84cvDawlmP1E26E9qQwdZcjQ1ZD4dE2i6Mz88a5ik1RhGIy-DpTK2LV6mCvONKVhmUSwpf6svyne7XcWToNiUBN2MzeMNLo5kv6v-OcuO2DV_B2tcPdfPl03DvOdwj8GYj6WS-CSvT0_PwggDS1L9MZnAByRQAWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Nonnegative+Matrix+Factorization+Strategy+for+Cochlear+Implants&rft.jtitle=Trends+in+hearing&rft.au=Hu%2C+Hongmei&rft.au=Lutman%2C+Mark+E.&rft.au=Ewert%2C+Stephan+D.&rft.au=Li%2C+Guoping&rft.date=2015-12-30&rft.pub=SAGE+Publications&rft.eissn=2331-2165&rft.volume=19&rft_id=info:doi/10.1177%2F2331216515616941&rft_id=info%3Apmid%2F26721919&rft.externalDocID=PMC4771045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-2165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-2165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-2165&client=summon |