Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system

Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanopar...

Full description

Saved in:
Bibliographic Details
Published inCalphad Vol. 49; pp. 101 - 109
Main Authors Roshanghias, Ali, Vrestal, Jan, Yakymovych, Andriy, Richter, Klaus W., Ipser, Herbert
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.06.2015
Elsevier B.V
Subjects
Online AccessGet full text
ISSN0364-5916
1873-2984
DOI10.1016/j.calphad.2015.04.003

Cover

Loading…
Abstract Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. •The first CALPHAD-type modeling of a ternary system that includes the size effect.•Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction.•The liquidus projection in the Sn-rich corner was calculated as a function of particle size.•The size dependent melting depression behavior of nanoparticles was verified.•The eutectic composition changed towards the Sn-rich corner with decreasing particle size.
AbstractList Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. •The first CALPHAD-type modeling of a ternary system that includes the size effect.•Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction.•The liquidus projection in the Sn-rich corner was calculated as a function of particle size.•The size dependent melting depression behavior of nanoparticles was verified.•The eutectic composition changed towards the Sn-rich corner with decreasing particle size.
Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. • The first CALPHAD-type modeling of a ternary system that includes the size effect. • Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction. • The liquidus projection in the Sn-rich corner was calculated as a function of particle size. • The size dependent melting depression behavior of nanoparticles was verified. • The eutectic composition changed towards the Sn-rich corner with decreasing particle size.
Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.
Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.
Author Roshanghias, Ali
Ipser, Herbert
Yakymovych, Andriy
Richter, Klaus W.
Vrestal, Jan
AuthorAffiliation b Masaryk University, CEITEC MU, Brno, Czech Republic
a Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
AuthorAffiliation_xml – name: a Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
– name: b Masaryk University, CEITEC MU, Brno, Czech Republic
Author_xml – sequence: 1
  givenname: Ali
  surname: Roshanghias
  fullname: Roshanghias, Ali
  email: Ali.roshanghias@univie.ac.at
  organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
– sequence: 2
  givenname: Jan
  surname: Vrestal
  fullname: Vrestal, Jan
  organization: Masaryk University, CEITEC MU, Brno, Czech Republic
– sequence: 3
  givenname: Andriy
  surname: Yakymovych
  fullname: Yakymovych, Andriy
  organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
– sequence: 4
  givenname: Klaus W.
  surname: Richter
  fullname: Richter, Klaus W.
  organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
– sequence: 5
  givenname: Herbert
  surname: Ipser
  fullname: Ipser, Herbert
  organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26082567$$D View this record in MEDLINE/PubMed
BookMark eNqFUs2O0zAYtNAitlt4BJCPXBLsxD8JSKBVxZ-0iMPC2XLsz42rxC52WmlvvANvyJOQ0i4CLr3Ykr-Z-UaeuUIXIQZA6CklJSVUvNiURg_bXtuyIpSXhJWE1A_QgjayLqq2YRdoQWrBCt5ScYmuct4QQmRds0foshKkqbiQC5Rvw8_vP67X87Ha4aBDzHGwkPJL_AmGyYc17qDXex8T1sHieWMGbL1eJz3ibQLrzeRjwD7gqQd8G4rkTY9NTAESju736wQp6HSH812eYHyMHjo9ZHhyupfo67u3X1YfipvP7z-urm8KwwmZCuqYtK4WXacbWxOgunOcttJywzpXtYxQWTedocRS7UzHbdu0smLAhCMOeL1Er4-62103gjUQpqQHtU1-nM2oqL36dxJ8r9Zxrxjjgs7iS_T8JJDitx3kSY0-GxgGHSDusqJNJQSVomLnoZI2rWiIPKg--9vWHz_3ocyAV0eASTHnBE4ZP-nDL88u_aAoUYcKqI06VUAdKqAIU3MFZjb_j32_4BzvzZEHcyR7D0ll4yGYOeEEZlI2-jMKvwDVlNHX
CitedBy_id crossref_primary_10_1016_j_matchemphys_2023_127399
crossref_primary_10_1142_S1793292018500819
crossref_primary_10_1016_j_jallcom_2018_03_020
crossref_primary_10_1007_s11664_016_4584_4
crossref_primary_10_1021_acs_jpcc_6b12995
crossref_primary_10_1134_S1063783417070253
crossref_primary_10_1039_C7NR01402C
crossref_primary_10_1007_s12598_019_01248_9
crossref_primary_10_3390_ma14112929
crossref_primary_10_1016_j_calphad_2020_101741
crossref_primary_10_1103_PhysRevMaterials_7_043601
crossref_primary_10_1016_j_mtcomm_2024_109002
crossref_primary_10_1016_j_msea_2017_07_024
crossref_primary_10_3390_mi9120644
crossref_primary_10_1134_S1063783418070120
crossref_primary_10_1016_j_jallcom_2020_155160
crossref_primary_10_1007_s10854_017_6518_1
crossref_primary_10_1016_j_vacuum_2018_07_052
crossref_primary_10_1039_C5NR04014K
crossref_primary_10_1557_s43578_021_00395_z
crossref_primary_10_1007_s10854_016_5250_6
crossref_primary_10_1016_j_rinma_2024_100553
crossref_primary_10_1016_j_microrel_2017_07_069
crossref_primary_10_1557_s43578_022_00777_x
crossref_primary_10_7121_msi_eureka_10_16022_3_9
crossref_primary_10_1016_j_calphad_2017_04_003
crossref_primary_10_3390_met8110900
crossref_primary_10_1007_s12520_018_0761_0
crossref_primary_10_1108_SSMT_07_2022_0046
crossref_primary_10_1007_s10854_018_8727_7
Cites_doi 10.2320/matertrans.M2012112
10.1007/s11661-000-0111-5
10.1007/s11664-000-0003-x
10.1016/S0167-577X(02)01094-7
10.1016/j.calphad.2014.10.002
10.1016/j.actamat.2005.07.016
10.1016/j.calphad.2007.07.004
10.1016/j.jallcom.2013.12.101
10.1557/JMR.2004.0296
10.1007/s10765-004-5757-6
10.1016/S0927-796X(00)00010-3
10.1149/1.1954928
10.1016/j.intermet.2013.07.012
10.1007/s10948-012-1805-9
10.1016/j.microrel.2013.04.005
10.1016/j.jallcom.2014.08.122
10.1021/je800717a
10.1016/j.calphad.2013.11.004
10.1016/j.calphad.2008.11.001
10.1016/j.tca.2007.07.007
10.1007/s10853-005-1927-6
10.2320/matertrans.45.2864
10.1088/0508-3443/18/12/308
10.1039/C5NR00462D
10.1103/PhysRevLett.85.1250
10.1007/s100510070243
10.1016/j.jallcom.2009.05.042
10.1016/j.calphad.2006.10.001
10.1016/j.calphad.2004.06.002
10.2298/JMMB120121032S
10.1016/j.matchar.2010.02.004
10.1007/s11664-011-1765-z
ContentType Journal Article
Copyright 2015 The Authors
2015 The Authors 2015
Copyright_xml – notice: 2015 The Authors
– notice: 2015 The Authors 2015
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7SC
8BQ
8FD
H8G
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.calphad.2015.04.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
Computer and Information Systems Abstracts
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Copper Technical Reference Library
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-2984
EndPage 109
ExternalDocumentID PMC4456117
26082567
10_1016_j_calphad_2015_04_003
S0364591615001479
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
UHS
VH1
WUQ
XPP
~G-
AAYXX
AGRNS
BNPGV
CITATION
RIG
SSH
AFXIZ
NPM
7SC
8BQ
8FD
H8G
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c500t-1f47df36bba8d30e1abf5197d5c4bf29401738bc10d1afcb5d989724e46f0fe53
IEDL.DBID .~1
ISSN 0364-5916
IngestDate Thu Aug 21 18:17:12 EDT 2025
Thu Jul 10 18:27:16 EDT 2025
Mon Jul 21 09:33:26 EDT 2025
Mon Jul 21 05:49:42 EDT 2025
Tue Jul 01 03:00:16 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Tue Aug 26 06:13:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
CALPHAD
Lead free solders
Size effect
Melting point depression
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c500t-1f47df36bba8d30e1abf5197d5c4bf29401738bc10d1afcb5d989724e46f0fe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0364591615001479
PMID 26082567
PQID 1718968077
PQPubID 23500
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4456117
proquest_miscellaneous_1826617624
proquest_miscellaneous_1718968077
pubmed_primary_26082567
crossref_citationtrail_10_1016_j_calphad_2015_04_003
crossref_primary_10_1016_j_calphad_2015_04_003
elsevier_sciencedirect_doi_10_1016_j_calphad_2015_04_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
2015-06-00
2015-Jun
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Calphad
PublicationTitleAlternate CALPHAD
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier B.V
Publisher_xml – name: Elsevier Ltd
– name: Elsevier B.V
References Frongia, Pilloni, Scano (bib2) 2015; 623
Chen, Zhang, Peng, Zhang (bib21) 2015; 48
Park, Lee (bib17) 2008; 32
Sopousek, Vrestal, Zemanova, Bursik (bib5) 2012; 48
Lee, Park, Tanaka (bib38) 2009; 33
Lucic, Lavcevic (bib3) 2003; 57
Pang, Yung (bib8) 2012; 53
Sim, Lee (bib15) 2014; 590
Wronski (bib13) 1967; 18
Sopousek, Vrestal, Pinkas, Broz, Bursik, Styskalik, Skoda, Zobac, Lee (bib18) 2014; 45
Lee, Tanaka, Lee, Mori (bib16) 2007; 31
Moon, Boettinger, Kattner, Biancaniello, Handwerker (bib23) 2000; 29
Carotenuto, Pepe, Nicolais (bib35) 2000; 16
Lee, Shimoda, Tanaka (bib26) 2004; 45
Bachels, Güntherodt (bib1) 2000; 85
Hsiao, Duh (bib7) 2005; 152
Yen, Chen (bib22) 2004; 19
Roshanghias, Yakymovych, Ipser (bib20) 2015; 7
Loomans, Fine (bib19) 2000; 31
Tanaka, Hara (bib25) 2001; 92
Yung, Law, Lee, Cheung, Yue (bib9) 2012; 41
Gao, Zou, Yang, Zhai, Liu, Zhuravlev, Schick (bib11) 2009; 484
Dinsdale, Watson, Kroupa, Vrestal, Zemanova, Vizdal (bib24) 2008; 531
Boettinger, Johnson, Bendersky, Moon, Williams, Stafford (bib33) 2005; 53
Picha, Vrestal, Kroupa (bib31) 2004; 28
Zou, Gao, Yang, Zhai (bib6) 2010; 61
Zou, Gao, Yang, Zhai (bib10) 2012; 23
Ricci, Giuranno, Grosso, Lanata, Amore, Novakovic, Arato (bib32) 2009; 54
Sun, Simon (bib12) 2007; 463
Lohöfer, Brillo, Egry (bib29) 2004; 25
Lee, Nakamoto, Tanaka (bib27) 2005; 40
West (bib28) 1972; 52
Iida, Guthrie (bib30) 1993
Sivakumar, Kanagesan, Umapathy, Suresh Babu, Nithiyanantham (bib37) 2013; 26
Jiang, Moon, Wong (bib4) 2013; 53
Zeng, McDonald, Gu, Suenaga, Zhang, Chen, Nogita (bib34) 2013; 43
Dung Dang, Tuyet Le, Fribourg-Blanc, Chien Dang (bib36) 2011; 2
Abtew, Selvaduray (bib14) 2000; 27
Wronski (10.1016/j.calphad.2015.04.003_bib13) 1967; 18
Park (10.1016/j.calphad.2015.04.003_bib17) 2008; 32
Abtew (10.1016/j.calphad.2015.04.003_bib14) 2000; 27
Carotenuto (10.1016/j.calphad.2015.04.003_bib35) 2000; 16
Lucic (10.1016/j.calphad.2015.04.003_bib3) 2003; 57
Loomans (10.1016/j.calphad.2015.04.003_bib19) 2000; 31
Bachels (10.1016/j.calphad.2015.04.003_bib1) 2000; 85
Sun (10.1016/j.calphad.2015.04.003_bib12) 2007; 463
Moon (10.1016/j.calphad.2015.04.003_bib23) 2000; 29
Zeng (10.1016/j.calphad.2015.04.003_bib34) 2013; 43
Pang (10.1016/j.calphad.2015.04.003_bib8) 2012; 53
Lee (10.1016/j.calphad.2015.04.003_bib38) 2009; 33
Frongia (10.1016/j.calphad.2015.04.003_bib2) 2015; 623
Sim (10.1016/j.calphad.2015.04.003_bib15) 2014; 590
Sivakumar (10.1016/j.calphad.2015.04.003_bib37) 2013; 26
Hsiao (10.1016/j.calphad.2015.04.003_bib7) 2005; 152
Dung Dang (10.1016/j.calphad.2015.04.003_bib36) 2011; 2
Jiang (10.1016/j.calphad.2015.04.003_bib4) 2013; 53
Chen (10.1016/j.calphad.2015.04.003_bib21) 2015; 48
Sopousek (10.1016/j.calphad.2015.04.003_bib18) 2014; 45
Roshanghias (10.1016/j.calphad.2015.04.003_bib20) 2015; 7
Zou (10.1016/j.calphad.2015.04.003_bib6) 2010; 61
Ricci (10.1016/j.calphad.2015.04.003_bib32) 2009; 54
Sopousek (10.1016/j.calphad.2015.04.003_bib5) 2012; 48
Iida (10.1016/j.calphad.2015.04.003_bib30) 1993
Zou (10.1016/j.calphad.2015.04.003_bib10) 2012; 23
Lee (10.1016/j.calphad.2015.04.003_bib26) 2004; 45
Lee (10.1016/j.calphad.2015.04.003_bib16) 2007; 31
Boettinger (10.1016/j.calphad.2015.04.003_bib33) 2005; 53
Dinsdale (10.1016/j.calphad.2015.04.003_bib24) 2008; 531
Yen (10.1016/j.calphad.2015.04.003_bib22) 2004; 19
Lohöfer (10.1016/j.calphad.2015.04.003_bib29) 2004; 25
Yung (10.1016/j.calphad.2015.04.003_bib9) 2012; 41
Gao (10.1016/j.calphad.2015.04.003_bib11) 2009; 484
Lee (10.1016/j.calphad.2015.04.003_bib27) 2005; 40
Picha (10.1016/j.calphad.2015.04.003_bib31) 2004; 28
Tanaka (10.1016/j.calphad.2015.04.003_bib25) 2001; 92
West (10.1016/j.calphad.2015.04.003_bib28) 1972; 52
25757694 - Nanoscale. 2015 Mar 19;7(13):5843-51
10991524 - Phys Rev Lett. 2000 Aug 7;85(6):1250-3
References_xml – volume: 531
  start-page: 175
  year: 2008
  end-page: 181
  ident: bib24
  article-title: Lead-free solders: atlas of phase diagrams for lead-free soldering
  publication-title: COST Action
– volume: 57
  start-page: 1885
  year: 2003
  end-page: 1887
  ident: bib3
  article-title: Ogorelec, aggregates of Sn-clusters: partial coalescence during the initial heating
  publication-title: Mater. Lett.
– volume: 53
  start-page: 5033
  year: 2005
  end-page: 5050
  ident: bib33
  article-title: Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits
  publication-title: Acta Mater.
– volume: 31
  start-page: 105
  year: 2007
  end-page: 111
  ident: bib16
  article-title: Effect of substrates on the melting temperature of gold nanoparticles
  publication-title: Calphad
– volume: 26
  start-page: 725
  year: 2013
  end-page: 731
  ident: bib37
  article-title: Study of CoFe
  publication-title: J. Supercond. Nov. Magn.
– volume: 45
  start-page: 33
  year: 2014
  end-page: 39
  ident: bib18
  article-title: Cu–Ni nanoalloy phase diagram – prediction and experiment
  publication-title: Calphad
– volume: 29
  start-page: 1122
  year: 2000
  end-page: 1136
  ident: bib23
  article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys
  publication-title: J. Electron. Mater.
– volume: 85
  start-page: 1250
  year: 2000
  end-page: 1253
  ident: bib1
  article-title: Melting of isolated tin nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 623
  start-page: 7
  year: 2015
  end-page: 14
  ident: bib2
  article-title: Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy
  publication-title: J. Alloy. Compd.
– volume: 40
  start-page: 2167
  year: 2005
  end-page: 2171
  ident: bib27
  article-title: Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate
  publication-title: J. Mater. Sci.
– volume: 45
  start-page: 2864
  year: 2004
  end-page: 2870
  ident: bib26
  article-title: Surface tension and its temperature coefficient of liquid Sn-
  publication-title: Mater. Trans.
– volume: 33
  start-page: 377
  year: 2009
  end-page: 381
  ident: bib38
  article-title: Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model
  publication-title: Calphad
– volume: 54
  start-page: 1660
  year: 2009
  end-page: 1665
  ident: bib32
  article-title: Surface tension of molten cu-sn alloys under different oxygen containing atmospheres
  publication-title: J. Chem. Eng. Data
– volume: 28
  start-page: 141
  year: 2004
  end-page: 146
  ident: bib31
  article-title: Prediction of alloy surface tension using a thermodynamic database
  publication-title: Calphad
– volume: 32
  start-page: 135
  year: 2008
  end-page: 141
  ident: bib17
  article-title: Phase diagram reassessment of Ag–Au system including size effect
  publication-title: Calphad
– volume: 31
  start-page: 1155
  year: 2000
  end-page: 1162
  ident: bib19
  article-title: Tin–silver–copper eutectic temperature and composition
  publication-title: Metall. Mater. Trans. A
– volume: 48
  start-page: 43
  year: 2015
  end-page: 54
  ident: bib21
  article-title: Experimental investigation and thermodynamic assessment of the Mg–Gd–Ag system focused on Mg-rich region
  publication-title: Calphad
– volume: 52
  year: 1972
  ident: bib28
  article-title: Handbook of Chemistry and Physics
– volume: 61
  start-page: 474
  year: 2010
  end-page: 480
  ident: bib6
  article-title: Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy
  publication-title: Mater. Charact.
– volume: 41
  start-page: 313
  year: 2012
  end-page: 321
  ident: bib9
  article-title: Size control and characterization of Sn–Ag–Cu lead-free nanosolders by a chemical reduction proces
  publication-title: J. Electron. Mater.
– volume: 18
  start-page: 1731
  year: 1967
  end-page: 1737
  ident: bib13
  article-title: The size dependence of the melting point of small particles of tin
  publication-title: Br. J. Appl. Phys.
– volume: 92
  start-page: 467
  year: 2001
  end-page: 472
  ident: bib25
  article-title: Thermodynamic evaluation of binary phase diagrams of small particle systems
  publication-title: Z. Metallkunde
– year: 1993
  ident: bib30
  article-title: The Physical Properties of Liquid Metals
– volume: 484
  start-page: 777
  year: 2009
  end-page: 781
  ident: bib11
  article-title: Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy
  publication-title: J. Alloy. Compd.
– volume: 27
  start-page: 95
  year: 2000
  end-page: 141
  ident: bib14
  article-title: Lead-free solders in microelectronics
  publication-title: Mater. Sci. Eng. R: Rep.
– volume: 16
  start-page: 11
  year: 2000
  end-page: 17
  ident: bib35
  article-title: Preparation and characterization of nano-sized Ag/PVP composites for optical applications
  publication-title: Eur. Phys. J. B
– volume: 152
  start-page: J105
  year: 2005
  end-page: J109
  ident: bib7
  article-title: Synthesis and characterization of lead-free solders with Sn-3.5Ag
  publication-title: J. Electrochem. Soc.
– volume: 463
  start-page: 32
  year: 2007
  end-page: 40
  ident: bib12
  article-title: The melting behavior of aluminum nanoparticles
  publication-title: Thermochim. Acta
– volume: 19
  start-page: 2298
  year: 2004
  end-page: 2305
  ident: bib22
  article-title: Phase equilibria of the Ag–Sn–Cu ternary system
  publication-title: J. Mater. Res.
– volume: 7
  start-page: 5843
  year: 2015
  end-page: 5851
  ident: bib20
  article-title: On the synthesis and thermal behavior of Tin-based alloy (Sn–Ag–Cu) nanoparticles
  publication-title: Nanoscale
– volume: 25
  start-page: 1535
  year: 2004
  end-page: 1550
  ident: bib29
  article-title: Thermophysical properties of undercooled liquid Cu–Ni alloys
  publication-title: Int. J. Thermophys.
– volume: 48
  start-page: 419
  year: 2012
  end-page: 425
  ident: bib5
  article-title: Phase diagram prediction and particle characterisation of Sn–Ag nano alloy for low melting point lead-free solders
  publication-title: J. Min. Metall. Sect. B: Metall.
– volume: 43
  start-page: 85
  year: 2013
  end-page: 98
  ident: bib34
  article-title: Phase stability and thermal expansion behavior of Cu6Sn 5 intermetallics doped with Zn, Au and In
  publication-title: Intermetallics
– volume: 23
  start-page: 2
  year: 2012
  end-page: 7
  ident: bib10
  article-title: Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 590
  start-page: 140
  year: 2014
  end-page: 146
  ident: bib15
  article-title: Phase stability of Ag–Sn alloy nanoparticles
  publication-title: J. Alloy. Compd.
– volume: 53
  start-page: 1968
  year: 2013
  end-page: 1978
  ident: bib4
  article-title: Recent advances of nanolead-free solder material for low processing temperature interconnect applications
  publication-title: Microelectron. Reliab.
– volume: 53
  start-page: 1770
  year: 2012
  end-page: 1774
  ident: bib8
  article-title: Green approach to synthesis of Nanoparticles of Sn­3.0Ag­0.5Cu lead-free solder alloy
  publication-title: Mater. Trans.
– volume: 2
  start-page: 025004
  year: 2011
  ident: bib36
  article-title: The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 53
  start-page: 1770
  year: 2012
  ident: 10.1016/j.calphad.2015.04.003_bib8
  article-title: Green approach to synthesis of Nanoparticles of Sn­3.0Ag­0.5Cu lead-free solder alloy
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2012112
– volume: 31
  start-page: 1155
  year: 2000
  ident: 10.1016/j.calphad.2015.04.003_bib19
  article-title: Tin–silver–copper eutectic temperature and composition
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-000-0111-5
– volume: 29
  start-page: 1122
  year: 2000
  ident: 10.1016/j.calphad.2015.04.003_bib23
  article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-000-0003-x
– volume: 57
  start-page: 1885
  year: 2003
  ident: 10.1016/j.calphad.2015.04.003_bib3
  article-title: Ogorelec, aggregates of Sn-clusters: partial coalescence during the initial heating
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(02)01094-7
– volume: 48
  start-page: 43
  year: 2015
  ident: 10.1016/j.calphad.2015.04.003_bib21
  article-title: Experimental investigation and thermodynamic assessment of the Mg–Gd–Ag system focused on Mg-rich region
  publication-title: Calphad
  doi: 10.1016/j.calphad.2014.10.002
– volume: 53
  start-page: 5033
  year: 2005
  ident: 10.1016/j.calphad.2015.04.003_bib33
  article-title: Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.07.016
– volume: 32
  start-page: 135
  year: 2008
  ident: 10.1016/j.calphad.2015.04.003_bib17
  article-title: Phase diagram reassessment of Ag–Au system including size effect
  publication-title: Calphad
  doi: 10.1016/j.calphad.2007.07.004
– volume: 590
  start-page: 140
  year: 2014
  ident: 10.1016/j.calphad.2015.04.003_bib15
  article-title: Phase stability of Ag–Sn alloy nanoparticles
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.12.101
– volume: 19
  start-page: 2298
  year: 2004
  ident: 10.1016/j.calphad.2015.04.003_bib22
  article-title: Phase equilibria of the Ag–Sn–Cu ternary system
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0296
– volume: 25
  start-page: 1535
  year: 2004
  ident: 10.1016/j.calphad.2015.04.003_bib29
  article-title: Thermophysical properties of undercooled liquid Cu–Ni alloys
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-004-5757-6
– volume: 52
  year: 1972
  ident: 10.1016/j.calphad.2015.04.003_bib28
– volume: 27
  start-page: 95
  year: 2000
  ident: 10.1016/j.calphad.2015.04.003_bib14
  article-title: Lead-free solders in microelectronics
  publication-title: Mater. Sci. Eng. R: Rep.
  doi: 10.1016/S0927-796X(00)00010-3
– volume: 152
  start-page: J105
  year: 2005
  ident: 10.1016/j.calphad.2015.04.003_bib7
  article-title: Synthesis and characterization of lead-free solders with Sn-3.5Ag−xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1954928
– volume: 43
  start-page: 85
  year: 2013
  ident: 10.1016/j.calphad.2015.04.003_bib34
  article-title: Phase stability and thermal expansion behavior of Cu6Sn 5 intermetallics doped with Zn, Au and In
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.07.012
– volume: 26
  start-page: 725
  year: 2013
  ident: 10.1016/j.calphad.2015.04.003_bib37
  article-title: Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-012-1805-9
– volume: 53
  start-page: 1968
  year: 2013
  ident: 10.1016/j.calphad.2015.04.003_bib4
  article-title: Recent advances of nanolead-free solder material for low processing temperature interconnect applications
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2013.04.005
– volume: 23
  start-page: 2
  year: 2012
  ident: 10.1016/j.calphad.2015.04.003_bib10
  article-title: Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 623
  start-page: 7
  year: 2015
  ident: 10.1016/j.calphad.2015.04.003_bib2
  article-title: Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.08.122
– volume: 531
  start-page: 175
  year: 2008
  ident: 10.1016/j.calphad.2015.04.003_bib24
  article-title: Lead-free solders: atlas of phase diagrams for lead-free soldering
  publication-title: COST Action
– volume: 92
  start-page: 467
  year: 2001
  ident: 10.1016/j.calphad.2015.04.003_bib25
  article-title: Thermodynamic evaluation of binary phase diagrams of small particle systems
  publication-title: Z. Metallkunde
– volume: 54
  start-page: 1660
  year: 2009
  ident: 10.1016/j.calphad.2015.04.003_bib32
  article-title: Surface tension of molten cu-sn alloys under different oxygen containing atmospheres
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je800717a
– volume: 45
  start-page: 33
  year: 2014
  ident: 10.1016/j.calphad.2015.04.003_bib18
  article-title: Cu–Ni nanoalloy phase diagram – prediction and experiment
  publication-title: Calphad
  doi: 10.1016/j.calphad.2013.11.004
– volume: 33
  start-page: 377
  year: 2009
  ident: 10.1016/j.calphad.2015.04.003_bib38
  article-title: Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model
  publication-title: Calphad
  doi: 10.1016/j.calphad.2008.11.001
– volume: 463
  start-page: 32
  year: 2007
  ident: 10.1016/j.calphad.2015.04.003_bib12
  article-title: The melting behavior of aluminum nanoparticles
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.07.007
– volume: 40
  start-page: 2167
  issue: 9–10
  year: 2005
  ident: 10.1016/j.calphad.2015.04.003_bib27
  article-title: Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-1927-6
– year: 1993
  ident: 10.1016/j.calphad.2015.04.003_bib30
– volume: 45
  start-page: 2864
  year: 2004
  ident: 10.1016/j.calphad.2015.04.003_bib26
  article-title: Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.45.2864
– volume: 18
  start-page: 1731
  year: 1967
  ident: 10.1016/j.calphad.2015.04.003_bib13
  article-title: The size dependence of the melting point of small particles of tin
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/12/308
– volume: 2
  start-page: 025004
  year: 2011
  ident: 10.1016/j.calphad.2015.04.003_bib36
  article-title: The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 7
  start-page: 5843
  year: 2015
  ident: 10.1016/j.calphad.2015.04.003_bib20
  article-title: On the synthesis and thermal behavior of Tin-based alloy (Sn–Ag–Cu) nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C5NR00462D
– volume: 85
  start-page: 1250
  year: 2000
  ident: 10.1016/j.calphad.2015.04.003_bib1
  article-title: Melting of isolated tin nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1250
– volume: 16
  start-page: 11
  year: 2000
  ident: 10.1016/j.calphad.2015.04.003_bib35
  article-title: Preparation and characterization of nano-sized Ag/PVP composites for optical applications
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510070243
– volume: 484
  start-page: 777
  year: 2009
  ident: 10.1016/j.calphad.2015.04.003_bib11
  article-title: Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2009.05.042
– volume: 31
  start-page: 105
  year: 2007
  ident: 10.1016/j.calphad.2015.04.003_bib16
  article-title: Effect of substrates on the melting temperature of gold nanoparticles
  publication-title: Calphad
  doi: 10.1016/j.calphad.2006.10.001
– volume: 28
  start-page: 141
  year: 2004
  ident: 10.1016/j.calphad.2015.04.003_bib31
  article-title: Prediction of alloy surface tension using a thermodynamic database
  publication-title: Calphad
  doi: 10.1016/j.calphad.2004.06.002
– volume: 48
  start-page: 419
  issue: 3
  year: 2012
  ident: 10.1016/j.calphad.2015.04.003_bib5
  article-title: Phase diagram prediction and particle characterisation of Sn–Ag nano alloy for low melting point lead-free solders
  publication-title: J. Min. Metall. Sect. B: Metall.
  doi: 10.2298/JMMB120121032S
– volume: 61
  start-page: 474
  year: 2010
  ident: 10.1016/j.calphad.2015.04.003_bib6
  article-title: Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2010.02.004
– volume: 41
  start-page: 313
  year: 2012
  ident: 10.1016/j.calphad.2015.04.003_bib9
  article-title: Size control and characterization of Sn–Ag–Cu lead-free nanosolders by a chemical reduction proces
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-011-1765-z
– reference: 10991524 - Phys Rev Lett. 2000 Aug 7;85(6):1250-3
– reference: 25757694 - Nanoscale. 2015 Mar 19;7(13):5843-51
SSID ssj0007334
Score 2.213149
Snippet Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with...
Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101
SubjectTerms CALPHAD
COMPUTER SIMULATION
Corners
Lead free solders
MATHEMATICAL ANALYSIS
Mathematical models
Melting
Melting point depression
MICROSTRUCTURES
Nanoparticles
Nanostructure
Phase diagrams
Phase transformations
Size effect
Tin
TIN ALLOYS (50 TO 99 SN)
Tin base alloys
Title Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system
URI https://dx.doi.org/10.1016/j.calphad.2015.04.003
https://www.ncbi.nlm.nih.gov/pubmed/26082567
https://www.proquest.com/docview/1718968077
https://www.proquest.com/docview/1826617624
https://pubmed.ncbi.nlm.nih.gov/PMC4456117
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3yqIzENd147dgOt1VEtTxaIZZKvVl2bNOtKu9qHwcuiP_AP-SXMJPHlqUSlbgkSjKWHM9kHvHMN4S8ZjGPIyVD5iV3mbAxgB7kMcuLCALm61EZsN75-EROTsX7s-Jsj1R9LQymVXa6v9Xpjbbu7gy71RwuZrPhtNlBK9FjQT9fYRGfEAql_PD7VZqH4ryDkBIZUl9V8QwvIATEglYEDGVFg3ja9866bp-u-59_p1H-YZeO7pG7nUNJx-2c75O9kB6Q21Xfx-0hWU3Trx8_x1_hUG1osmkO4obpy2_ocbjErGfa1-pTmzyFqa4CBbHBvC26WOJODnKPzhIFb5FOUwa685xC2JrCks5jc7f5r7j8Rltk6Efk9Ojtl2qSda0WshpWb52xKJSPXDpnted5YNZFLGn1RS1cHJUQhSmuXc1yz2ysXeFLXaqRCEICs0PBH5P9NE_hKaGOywhBKRB4LYLVVmgfYs1LFoNXXg6I6BfY1B0OObbDuDR9wtmF6fhikC8mFwhgOiCH22GLFojjpgG6557ZkSgDxuKmoa96bhtgFm6h2BTmm5VhYMpLqXOl_kGj0ekBIyMG5EkrIdsZQ_QIIbmE0WpHdrYEiPa9-yTNzhvUb4GuLlPP_v-1npM7eNUmur0g--vlJrwEl2rtDppv5oDcGlefP37C87sPk5Pffa8n-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kzpAuRdKnmz5YoKtqyaREqpthNHCa2IsTIBshimTjIKANP4Zu_Q_9h_0lvdPDjRugAbpoIHkAxTvdQ7z7DuBj4mPfl5mLbMZNJArvUA9yH8WpRwGzZT93VO88nmSjS_H1Kr3ag2FbC0NplY3ur3V6pa2bkV5zmr3FbNabVjdoOXks5OfL_BHsEzpV2oH9wenZaLJVyJLzBkVKRETwp5Cnd4NRINW0EmZoklagp237rPsm6r4L-ncm5R3TdHIITxqfkg3qbR_BngtP4WDYtnJ7Bqtp-PXj5-AbPoYbFoowR4mjDObPbOxuKfGZteX6rAiW4VZXjqHkUOoWWyzpMocYyGaBocPIpiFC9XnNMHINbsnmvhqtfi0uv7MaHPo5XJ58uRiOoqbbQlTiAa6jxAtpPc-MKZTlsUsK46mq1aalML6fYyAmuTJlEtuk8KVJba5y2RdOZMhvl_IX0Anz4F4BMzzzGJfiAquEK1QhlHW-5HninZU264JoD1iXDRQ5dcS41W3O2Y1u-KKJLzoWhGHahU9bskWNxfEQgWq5p3eESqO9eIj0Q8ttjcyiW5QiuPlmpRO05nmmYin_sUaR34N2RnThZS0h2x1jAIlReYbUckd2tgsI8Ht3JsyuK-BvQd5uIl___2u9h4PRxfhcn59Ozo7hMc3UeW9voLNebtxb9LDW5l3zBf0GN9MpFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sn-Ag-Cu+nanosolders%3A+Melting+behavior+and+phase+diagram+prediction+in+the+Sn-rich+corner+of+the+ternary+system&rft.jtitle=Calphad&rft.au=Roshanghias%2C+Ali&rft.au=Vrestal%2C+Jan&rft.au=Yakymovych%2C+Andriy&rft.au=Richter%2C+Klaus+W&rft.date=2015-06-01&rft.issn=0364-5916&rft.volume=49&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1016%2Fj.calphad.2015.04.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5916&client=summon