Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system
Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanopar...
Saved in:
Published in | Calphad Vol. 49; pp. 101 - 109 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.06.2015
Elsevier B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0364-5916 1873-2984 |
DOI | 10.1016/j.calphad.2015.04.003 |
Cover
Loading…
Abstract | Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.
•The first CALPHAD-type modeling of a ternary system that includes the size effect.•Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction.•The liquidus projection in the Sn-rich corner was calculated as a function of particle size.•The size dependent melting depression behavior of nanoparticles was verified.•The eutectic composition changed towards the Sn-rich corner with decreasing particle size. |
---|---|
AbstractList | Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.
•The first CALPHAD-type modeling of a ternary system that includes the size effect.•Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction.•The liquidus projection in the Sn-rich corner was calculated as a function of particle size.•The size dependent melting depression behavior of nanoparticles was verified.•The eutectic composition changed towards the Sn-rich corner with decreasing particle size. Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. • The first CALPHAD-type modeling of a ternary system that includes the size effect. • Sn–3.8Ag–0.7Cu nanoparticles of different size were synthesized via chemical reduction. • The liquidus projection in the Sn-rich corner was calculated as a function of particle size. • The size dependent melting depression behavior of nanoparticles was verified. • The eutectic composition changed towards the Sn-rich corner with decreasing particle size. Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner.Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. |
Author | Roshanghias, Ali Ipser, Herbert Yakymovych, Andriy Richter, Klaus W. Vrestal, Jan |
AuthorAffiliation | b Masaryk University, CEITEC MU, Brno, Czech Republic a Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria |
AuthorAffiliation_xml | – name: a Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria – name: b Masaryk University, CEITEC MU, Brno, Czech Republic |
Author_xml | – sequence: 1 givenname: Ali surname: Roshanghias fullname: Roshanghias, Ali email: Ali.roshanghias@univie.ac.at organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria – sequence: 2 givenname: Jan surname: Vrestal fullname: Vrestal, Jan organization: Masaryk University, CEITEC MU, Brno, Czech Republic – sequence: 3 givenname: Andriy surname: Yakymovych fullname: Yakymovych, Andriy organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria – sequence: 4 givenname: Klaus W. surname: Richter fullname: Richter, Klaus W. organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria – sequence: 5 givenname: Herbert surname: Ipser fullname: Ipser, Herbert organization: Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, A-1090 Vienna, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26082567$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUs2O0zAYtNAitlt4BJCPXBLsxD8JSKBVxZ-0iMPC2XLsz42rxC52WmlvvANvyJOQ0i4CLr3Ykr-Z-UaeuUIXIQZA6CklJSVUvNiURg_bXtuyIpSXhJWE1A_QgjayLqq2YRdoQWrBCt5ScYmuct4QQmRds0foshKkqbiQC5Rvw8_vP67X87Ha4aBDzHGwkPJL_AmGyYc17qDXex8T1sHieWMGbL1eJz3ibQLrzeRjwD7gqQd8G4rkTY9NTAESju736wQp6HSH812eYHyMHjo9ZHhyupfo67u3X1YfipvP7z-urm8KwwmZCuqYtK4WXacbWxOgunOcttJywzpXtYxQWTedocRS7UzHbdu0smLAhCMOeL1Er4-62103gjUQpqQHtU1-nM2oqL36dxJ8r9Zxrxjjgs7iS_T8JJDitx3kSY0-GxgGHSDusqJNJQSVomLnoZI2rWiIPKg--9vWHz_3ocyAV0eASTHnBE4ZP-nDL88u_aAoUYcKqI06VUAdKqAIU3MFZjb_j32_4BzvzZEHcyR7D0ll4yGYOeEEZlI2-jMKvwDVlNHX |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2023_127399 crossref_primary_10_1142_S1793292018500819 crossref_primary_10_1016_j_jallcom_2018_03_020 crossref_primary_10_1007_s11664_016_4584_4 crossref_primary_10_1021_acs_jpcc_6b12995 crossref_primary_10_1134_S1063783417070253 crossref_primary_10_1039_C7NR01402C crossref_primary_10_1007_s12598_019_01248_9 crossref_primary_10_3390_ma14112929 crossref_primary_10_1016_j_calphad_2020_101741 crossref_primary_10_1103_PhysRevMaterials_7_043601 crossref_primary_10_1016_j_mtcomm_2024_109002 crossref_primary_10_1016_j_msea_2017_07_024 crossref_primary_10_3390_mi9120644 crossref_primary_10_1134_S1063783418070120 crossref_primary_10_1016_j_jallcom_2020_155160 crossref_primary_10_1007_s10854_017_6518_1 crossref_primary_10_1016_j_vacuum_2018_07_052 crossref_primary_10_1039_C5NR04014K crossref_primary_10_1557_s43578_021_00395_z crossref_primary_10_1007_s10854_016_5250_6 crossref_primary_10_1016_j_rinma_2024_100553 crossref_primary_10_1016_j_microrel_2017_07_069 crossref_primary_10_1557_s43578_022_00777_x crossref_primary_10_7121_msi_eureka_10_16022_3_9 crossref_primary_10_1016_j_calphad_2017_04_003 crossref_primary_10_3390_met8110900 crossref_primary_10_1007_s12520_018_0761_0 crossref_primary_10_1108_SSMT_07_2022_0046 crossref_primary_10_1007_s10854_018_8727_7 |
Cites_doi | 10.2320/matertrans.M2012112 10.1007/s11661-000-0111-5 10.1007/s11664-000-0003-x 10.1016/S0167-577X(02)01094-7 10.1016/j.calphad.2014.10.002 10.1016/j.actamat.2005.07.016 10.1016/j.calphad.2007.07.004 10.1016/j.jallcom.2013.12.101 10.1557/JMR.2004.0296 10.1007/s10765-004-5757-6 10.1016/S0927-796X(00)00010-3 10.1149/1.1954928 10.1016/j.intermet.2013.07.012 10.1007/s10948-012-1805-9 10.1016/j.microrel.2013.04.005 10.1016/j.jallcom.2014.08.122 10.1021/je800717a 10.1016/j.calphad.2013.11.004 10.1016/j.calphad.2008.11.001 10.1016/j.tca.2007.07.007 10.1007/s10853-005-1927-6 10.2320/matertrans.45.2864 10.1088/0508-3443/18/12/308 10.1039/C5NR00462D 10.1103/PhysRevLett.85.1250 10.1007/s100510070243 10.1016/j.jallcom.2009.05.042 10.1016/j.calphad.2006.10.001 10.1016/j.calphad.2004.06.002 10.2298/JMMB120121032S 10.1016/j.matchar.2010.02.004 10.1007/s11664-011-1765-z |
ContentType | Journal Article |
Copyright | 2015 The Authors 2015 The Authors 2015 |
Copyright_xml | – notice: 2015 The Authors – notice: 2015 The Authors 2015 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7SC 8BQ 8FD H8G JG9 JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1016/j.calphad.2015.04.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed Computer and Information Systems Abstracts METADEX Technology Research Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Copper Technical Reference Library Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-2984 |
EndPage | 109 |
ExternalDocumentID | PMC4456117 26082567 10_1016_j_calphad_2015_04_003 S0364591615001479 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K UHS VH1 WUQ XPP ~G- AAYXX AGRNS BNPGV CITATION RIG SSH AFXIZ NPM 7SC 8BQ 8FD H8G JG9 JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c500t-1f47df36bba8d30e1abf5197d5c4bf29401738bc10d1afcb5d989724e46f0fe53 |
IEDL.DBID | .~1 |
ISSN | 0364-5916 |
IngestDate | Thu Aug 21 18:17:12 EDT 2025 Thu Jul 10 18:27:16 EDT 2025 Mon Jul 21 09:33:26 EDT 2025 Mon Jul 21 05:49:42 EDT 2025 Tue Jul 01 03:00:16 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Tue Aug 26 06:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles CALPHAD Lead free solders Size effect Melting point depression |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-1f47df36bba8d30e1abf5197d5c4bf29401738bc10d1afcb5d989724e46f0fe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0364591615001479 |
PMID | 26082567 |
PQID | 1718968077 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4456117 proquest_miscellaneous_1826617624 proquest_miscellaneous_1718968077 pubmed_primary_26082567 crossref_citationtrail_10_1016_j_calphad_2015_04_003 crossref_primary_10_1016_j_calphad_2015_04_003 elsevier_sciencedirect_doi_10_1016_j_calphad_2015_04_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2015 2015-06-00 2015-Jun 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Calphad |
PublicationTitleAlternate | CALPHAD |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier B.V |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier B.V |
References | Frongia, Pilloni, Scano (bib2) 2015; 623 Chen, Zhang, Peng, Zhang (bib21) 2015; 48 Park, Lee (bib17) 2008; 32 Sopousek, Vrestal, Zemanova, Bursik (bib5) 2012; 48 Lee, Park, Tanaka (bib38) 2009; 33 Lucic, Lavcevic (bib3) 2003; 57 Pang, Yung (bib8) 2012; 53 Sim, Lee (bib15) 2014; 590 Wronski (bib13) 1967; 18 Sopousek, Vrestal, Pinkas, Broz, Bursik, Styskalik, Skoda, Zobac, Lee (bib18) 2014; 45 Lee, Tanaka, Lee, Mori (bib16) 2007; 31 Moon, Boettinger, Kattner, Biancaniello, Handwerker (bib23) 2000; 29 Carotenuto, Pepe, Nicolais (bib35) 2000; 16 Lee, Shimoda, Tanaka (bib26) 2004; 45 Bachels, Güntherodt (bib1) 2000; 85 Hsiao, Duh (bib7) 2005; 152 Yen, Chen (bib22) 2004; 19 Roshanghias, Yakymovych, Ipser (bib20) 2015; 7 Loomans, Fine (bib19) 2000; 31 Tanaka, Hara (bib25) 2001; 92 Yung, Law, Lee, Cheung, Yue (bib9) 2012; 41 Gao, Zou, Yang, Zhai, Liu, Zhuravlev, Schick (bib11) 2009; 484 Dinsdale, Watson, Kroupa, Vrestal, Zemanova, Vizdal (bib24) 2008; 531 Boettinger, Johnson, Bendersky, Moon, Williams, Stafford (bib33) 2005; 53 Picha, Vrestal, Kroupa (bib31) 2004; 28 Zou, Gao, Yang, Zhai (bib6) 2010; 61 Zou, Gao, Yang, Zhai (bib10) 2012; 23 Ricci, Giuranno, Grosso, Lanata, Amore, Novakovic, Arato (bib32) 2009; 54 Sun, Simon (bib12) 2007; 463 Lohöfer, Brillo, Egry (bib29) 2004; 25 Lee, Nakamoto, Tanaka (bib27) 2005; 40 West (bib28) 1972; 52 Iida, Guthrie (bib30) 1993 Sivakumar, Kanagesan, Umapathy, Suresh Babu, Nithiyanantham (bib37) 2013; 26 Jiang, Moon, Wong (bib4) 2013; 53 Zeng, McDonald, Gu, Suenaga, Zhang, Chen, Nogita (bib34) 2013; 43 Dung Dang, Tuyet Le, Fribourg-Blanc, Chien Dang (bib36) 2011; 2 Abtew, Selvaduray (bib14) 2000; 27 Wronski (10.1016/j.calphad.2015.04.003_bib13) 1967; 18 Park (10.1016/j.calphad.2015.04.003_bib17) 2008; 32 Abtew (10.1016/j.calphad.2015.04.003_bib14) 2000; 27 Carotenuto (10.1016/j.calphad.2015.04.003_bib35) 2000; 16 Lucic (10.1016/j.calphad.2015.04.003_bib3) 2003; 57 Loomans (10.1016/j.calphad.2015.04.003_bib19) 2000; 31 Bachels (10.1016/j.calphad.2015.04.003_bib1) 2000; 85 Sun (10.1016/j.calphad.2015.04.003_bib12) 2007; 463 Moon (10.1016/j.calphad.2015.04.003_bib23) 2000; 29 Zeng (10.1016/j.calphad.2015.04.003_bib34) 2013; 43 Pang (10.1016/j.calphad.2015.04.003_bib8) 2012; 53 Lee (10.1016/j.calphad.2015.04.003_bib38) 2009; 33 Frongia (10.1016/j.calphad.2015.04.003_bib2) 2015; 623 Sim (10.1016/j.calphad.2015.04.003_bib15) 2014; 590 Sivakumar (10.1016/j.calphad.2015.04.003_bib37) 2013; 26 Hsiao (10.1016/j.calphad.2015.04.003_bib7) 2005; 152 Dung Dang (10.1016/j.calphad.2015.04.003_bib36) 2011; 2 Jiang (10.1016/j.calphad.2015.04.003_bib4) 2013; 53 Chen (10.1016/j.calphad.2015.04.003_bib21) 2015; 48 Sopousek (10.1016/j.calphad.2015.04.003_bib18) 2014; 45 Roshanghias (10.1016/j.calphad.2015.04.003_bib20) 2015; 7 Zou (10.1016/j.calphad.2015.04.003_bib6) 2010; 61 Ricci (10.1016/j.calphad.2015.04.003_bib32) 2009; 54 Sopousek (10.1016/j.calphad.2015.04.003_bib5) 2012; 48 Iida (10.1016/j.calphad.2015.04.003_bib30) 1993 Zou (10.1016/j.calphad.2015.04.003_bib10) 2012; 23 Lee (10.1016/j.calphad.2015.04.003_bib26) 2004; 45 Lee (10.1016/j.calphad.2015.04.003_bib16) 2007; 31 Boettinger (10.1016/j.calphad.2015.04.003_bib33) 2005; 53 Dinsdale (10.1016/j.calphad.2015.04.003_bib24) 2008; 531 Yen (10.1016/j.calphad.2015.04.003_bib22) 2004; 19 Lohöfer (10.1016/j.calphad.2015.04.003_bib29) 2004; 25 Yung (10.1016/j.calphad.2015.04.003_bib9) 2012; 41 Gao (10.1016/j.calphad.2015.04.003_bib11) 2009; 484 Lee (10.1016/j.calphad.2015.04.003_bib27) 2005; 40 Picha (10.1016/j.calphad.2015.04.003_bib31) 2004; 28 Tanaka (10.1016/j.calphad.2015.04.003_bib25) 2001; 92 West (10.1016/j.calphad.2015.04.003_bib28) 1972; 52 25757694 - Nanoscale. 2015 Mar 19;7(13):5843-51 10991524 - Phys Rev Lett. 2000 Aug 7;85(6):1250-3 |
References_xml | – volume: 531 start-page: 175 year: 2008 end-page: 181 ident: bib24 article-title: Lead-free solders: atlas of phase diagrams for lead-free soldering publication-title: COST Action – volume: 57 start-page: 1885 year: 2003 end-page: 1887 ident: bib3 article-title: Ogorelec, aggregates of Sn-clusters: partial coalescence during the initial heating publication-title: Mater. Lett. – volume: 53 start-page: 5033 year: 2005 end-page: 5050 ident: bib33 article-title: Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits publication-title: Acta Mater. – volume: 31 start-page: 105 year: 2007 end-page: 111 ident: bib16 article-title: Effect of substrates on the melting temperature of gold nanoparticles publication-title: Calphad – volume: 26 start-page: 725 year: 2013 end-page: 731 ident: bib37 article-title: Study of CoFe publication-title: J. Supercond. Nov. Magn. – volume: 45 start-page: 33 year: 2014 end-page: 39 ident: bib18 article-title: Cu–Ni nanoalloy phase diagram – prediction and experiment publication-title: Calphad – volume: 29 start-page: 1122 year: 2000 end-page: 1136 ident: bib23 article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys publication-title: J. Electron. Mater. – volume: 85 start-page: 1250 year: 2000 end-page: 1253 ident: bib1 article-title: Melting of isolated tin nanoparticles publication-title: Phys. Rev. Lett. – volume: 623 start-page: 7 year: 2015 end-page: 14 ident: bib2 article-title: Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy publication-title: J. Alloy. Compd. – volume: 40 start-page: 2167 year: 2005 end-page: 2171 ident: bib27 article-title: Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate publication-title: J. Mater. Sci. – volume: 45 start-page: 2864 year: 2004 end-page: 2870 ident: bib26 article-title: Surface tension and its temperature coefficient of liquid Sn- publication-title: Mater. Trans. – volume: 33 start-page: 377 year: 2009 end-page: 381 ident: bib38 article-title: Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model publication-title: Calphad – volume: 54 start-page: 1660 year: 2009 end-page: 1665 ident: bib32 article-title: Surface tension of molten cu-sn alloys under different oxygen containing atmospheres publication-title: J. Chem. Eng. Data – volume: 28 start-page: 141 year: 2004 end-page: 146 ident: bib31 article-title: Prediction of alloy surface tension using a thermodynamic database publication-title: Calphad – volume: 32 start-page: 135 year: 2008 end-page: 141 ident: bib17 article-title: Phase diagram reassessment of Ag–Au system including size effect publication-title: Calphad – volume: 31 start-page: 1155 year: 2000 end-page: 1162 ident: bib19 article-title: Tin–silver–copper eutectic temperature and composition publication-title: Metall. Mater. Trans. A – volume: 48 start-page: 43 year: 2015 end-page: 54 ident: bib21 article-title: Experimental investigation and thermodynamic assessment of the Mg–Gd–Ag system focused on Mg-rich region publication-title: Calphad – volume: 52 year: 1972 ident: bib28 article-title: Handbook of Chemistry and Physics – volume: 61 start-page: 474 year: 2010 end-page: 480 ident: bib6 article-title: Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy publication-title: Mater. Charact. – volume: 41 start-page: 313 year: 2012 end-page: 321 ident: bib9 article-title: Size control and characterization of Sn–Ag–Cu lead-free nanosolders by a chemical reduction proces publication-title: J. Electron. Mater. – volume: 18 start-page: 1731 year: 1967 end-page: 1737 ident: bib13 article-title: The size dependence of the melting point of small particles of tin publication-title: Br. J. Appl. Phys. – volume: 92 start-page: 467 year: 2001 end-page: 472 ident: bib25 article-title: Thermodynamic evaluation of binary phase diagrams of small particle systems publication-title: Z. Metallkunde – year: 1993 ident: bib30 article-title: The Physical Properties of Liquid Metals – volume: 484 start-page: 777 year: 2009 end-page: 781 ident: bib11 article-title: Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy publication-title: J. Alloy. Compd. – volume: 27 start-page: 95 year: 2000 end-page: 141 ident: bib14 article-title: Lead-free solders in microelectronics publication-title: Mater. Sci. Eng. R: Rep. – volume: 16 start-page: 11 year: 2000 end-page: 17 ident: bib35 article-title: Preparation and characterization of nano-sized Ag/PVP composites for optical applications publication-title: Eur. Phys. J. B – volume: 152 start-page: J105 year: 2005 end-page: J109 ident: bib7 article-title: Synthesis and characterization of lead-free solders with Sn-3.5Ag publication-title: J. Electrochem. Soc. – volume: 463 start-page: 32 year: 2007 end-page: 40 ident: bib12 article-title: The melting behavior of aluminum nanoparticles publication-title: Thermochim. Acta – volume: 19 start-page: 2298 year: 2004 end-page: 2305 ident: bib22 article-title: Phase equilibria of the Ag–Sn–Cu ternary system publication-title: J. Mater. Res. – volume: 7 start-page: 5843 year: 2015 end-page: 5851 ident: bib20 article-title: On the synthesis and thermal behavior of Tin-based alloy (Sn–Ag–Cu) nanoparticles publication-title: Nanoscale – volume: 25 start-page: 1535 year: 2004 end-page: 1550 ident: bib29 article-title: Thermophysical properties of undercooled liquid Cu–Ni alloys publication-title: Int. J. Thermophys. – volume: 48 start-page: 419 year: 2012 end-page: 425 ident: bib5 article-title: Phase diagram prediction and particle characterisation of Sn–Ag nano alloy for low melting point lead-free solders publication-title: J. Min. Metall. Sect. B: Metall. – volume: 43 start-page: 85 year: 2013 end-page: 98 ident: bib34 article-title: Phase stability and thermal expansion behavior of Cu6Sn 5 intermetallics doped with Zn, Au and In publication-title: Intermetallics – volume: 23 start-page: 2 year: 2012 end-page: 7 ident: bib10 article-title: Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression publication-title: J. Mater. Sci.: Mater. Electron. – volume: 590 start-page: 140 year: 2014 end-page: 146 ident: bib15 article-title: Phase stability of Ag–Sn alloy nanoparticles publication-title: J. Alloy. Compd. – volume: 53 start-page: 1968 year: 2013 end-page: 1978 ident: bib4 article-title: Recent advances of nanolead-free solder material for low processing temperature interconnect applications publication-title: Microelectron. Reliab. – volume: 53 start-page: 1770 year: 2012 end-page: 1774 ident: bib8 article-title: Green approach to synthesis of Nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy publication-title: Mater. Trans. – volume: 2 start-page: 025004 year: 2011 ident: bib36 article-title: The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol. – volume: 53 start-page: 1770 year: 2012 ident: 10.1016/j.calphad.2015.04.003_bib8 article-title: Green approach to synthesis of Nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy publication-title: Mater. Trans. doi: 10.2320/matertrans.M2012112 – volume: 31 start-page: 1155 year: 2000 ident: 10.1016/j.calphad.2015.04.003_bib19 article-title: Tin–silver–copper eutectic temperature and composition publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-000-0111-5 – volume: 29 start-page: 1122 year: 2000 ident: 10.1016/j.calphad.2015.04.003_bib23 article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys publication-title: J. Electron. Mater. doi: 10.1007/s11664-000-0003-x – volume: 57 start-page: 1885 year: 2003 ident: 10.1016/j.calphad.2015.04.003_bib3 article-title: Ogorelec, aggregates of Sn-clusters: partial coalescence during the initial heating publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)01094-7 – volume: 48 start-page: 43 year: 2015 ident: 10.1016/j.calphad.2015.04.003_bib21 article-title: Experimental investigation and thermodynamic assessment of the Mg–Gd–Ag system focused on Mg-rich region publication-title: Calphad doi: 10.1016/j.calphad.2014.10.002 – volume: 53 start-page: 5033 year: 2005 ident: 10.1016/j.calphad.2015.04.003_bib33 article-title: Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.07.016 – volume: 32 start-page: 135 year: 2008 ident: 10.1016/j.calphad.2015.04.003_bib17 article-title: Phase diagram reassessment of Ag–Au system including size effect publication-title: Calphad doi: 10.1016/j.calphad.2007.07.004 – volume: 590 start-page: 140 year: 2014 ident: 10.1016/j.calphad.2015.04.003_bib15 article-title: Phase stability of Ag–Sn alloy nanoparticles publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2013.12.101 – volume: 19 start-page: 2298 year: 2004 ident: 10.1016/j.calphad.2015.04.003_bib22 article-title: Phase equilibria of the Ag–Sn–Cu ternary system publication-title: J. Mater. Res. doi: 10.1557/JMR.2004.0296 – volume: 25 start-page: 1535 year: 2004 ident: 10.1016/j.calphad.2015.04.003_bib29 article-title: Thermophysical properties of undercooled liquid Cu–Ni alloys publication-title: Int. J. Thermophys. doi: 10.1007/s10765-004-5757-6 – volume: 52 year: 1972 ident: 10.1016/j.calphad.2015.04.003_bib28 – volume: 27 start-page: 95 year: 2000 ident: 10.1016/j.calphad.2015.04.003_bib14 article-title: Lead-free solders in microelectronics publication-title: Mater. Sci. Eng. R: Rep. doi: 10.1016/S0927-796X(00)00010-3 – volume: 152 start-page: J105 year: 2005 ident: 10.1016/j.calphad.2015.04.003_bib7 article-title: Synthesis and characterization of lead-free solders with Sn-3.5Ag−xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method publication-title: J. Electrochem. Soc. doi: 10.1149/1.1954928 – volume: 43 start-page: 85 year: 2013 ident: 10.1016/j.calphad.2015.04.003_bib34 article-title: Phase stability and thermal expansion behavior of Cu6Sn 5 intermetallics doped with Zn, Au and In publication-title: Intermetallics doi: 10.1016/j.intermet.2013.07.012 – volume: 26 start-page: 725 year: 2013 ident: 10.1016/j.calphad.2015.04.003_bib37 article-title: Study of CoFe2O4 particles synthesized with various concentrations of PVP polymer publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-012-1805-9 – volume: 53 start-page: 1968 year: 2013 ident: 10.1016/j.calphad.2015.04.003_bib4 article-title: Recent advances of nanolead-free solder material for low processing temperature interconnect applications publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2013.04.005 – volume: 23 start-page: 2 year: 2012 ident: 10.1016/j.calphad.2015.04.003_bib10 article-title: Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression publication-title: J. Mater. Sci.: Mater. Electron. – volume: 623 start-page: 7 year: 2015 ident: 10.1016/j.calphad.2015.04.003_bib2 article-title: Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.08.122 – volume: 531 start-page: 175 year: 2008 ident: 10.1016/j.calphad.2015.04.003_bib24 article-title: Lead-free solders: atlas of phase diagrams for lead-free soldering publication-title: COST Action – volume: 92 start-page: 467 year: 2001 ident: 10.1016/j.calphad.2015.04.003_bib25 article-title: Thermodynamic evaluation of binary phase diagrams of small particle systems publication-title: Z. Metallkunde – volume: 54 start-page: 1660 year: 2009 ident: 10.1016/j.calphad.2015.04.003_bib32 article-title: Surface tension of molten cu-sn alloys under different oxygen containing atmospheres publication-title: J. Chem. Eng. Data doi: 10.1021/je800717a – volume: 45 start-page: 33 year: 2014 ident: 10.1016/j.calphad.2015.04.003_bib18 article-title: Cu–Ni nanoalloy phase diagram – prediction and experiment publication-title: Calphad doi: 10.1016/j.calphad.2013.11.004 – volume: 33 start-page: 377 year: 2009 ident: 10.1016/j.calphad.2015.04.003_bib38 article-title: Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model publication-title: Calphad doi: 10.1016/j.calphad.2008.11.001 – volume: 463 start-page: 32 year: 2007 ident: 10.1016/j.calphad.2015.04.003_bib12 article-title: The melting behavior of aluminum nanoparticles publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.07.007 – volume: 40 start-page: 2167 issue: 9–10 year: 2005 ident: 10.1016/j.calphad.2015.04.003_bib27 article-title: Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-1927-6 – year: 1993 ident: 10.1016/j.calphad.2015.04.003_bib30 – volume: 45 start-page: 2864 year: 2004 ident: 10.1016/j.calphad.2015.04.003_bib26 article-title: Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys publication-title: Mater. Trans. doi: 10.2320/matertrans.45.2864 – volume: 18 start-page: 1731 year: 1967 ident: 10.1016/j.calphad.2015.04.003_bib13 article-title: The size dependence of the melting point of small particles of tin publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/18/12/308 – volume: 2 start-page: 025004 year: 2011 ident: 10.1016/j.calphad.2015.04.003_bib36 article-title: The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol. – volume: 7 start-page: 5843 year: 2015 ident: 10.1016/j.calphad.2015.04.003_bib20 article-title: On the synthesis and thermal behavior of Tin-based alloy (Sn–Ag–Cu) nanoparticles publication-title: Nanoscale doi: 10.1039/C5NR00462D – volume: 85 start-page: 1250 year: 2000 ident: 10.1016/j.calphad.2015.04.003_bib1 article-title: Melting of isolated tin nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1250 – volume: 16 start-page: 11 year: 2000 ident: 10.1016/j.calphad.2015.04.003_bib35 article-title: Preparation and characterization of nano-sized Ag/PVP composites for optical applications publication-title: Eur. Phys. J. B doi: 10.1007/s100510070243 – volume: 484 start-page: 777 year: 2009 ident: 10.1016/j.calphad.2015.04.003_bib11 article-title: Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2009.05.042 – volume: 31 start-page: 105 year: 2007 ident: 10.1016/j.calphad.2015.04.003_bib16 article-title: Effect of substrates on the melting temperature of gold nanoparticles publication-title: Calphad doi: 10.1016/j.calphad.2006.10.001 – volume: 28 start-page: 141 year: 2004 ident: 10.1016/j.calphad.2015.04.003_bib31 article-title: Prediction of alloy surface tension using a thermodynamic database publication-title: Calphad doi: 10.1016/j.calphad.2004.06.002 – volume: 48 start-page: 419 issue: 3 year: 2012 ident: 10.1016/j.calphad.2015.04.003_bib5 article-title: Phase diagram prediction and particle characterisation of Sn–Ag nano alloy for low melting point lead-free solders publication-title: J. Min. Metall. Sect. B: Metall. doi: 10.2298/JMMB120121032S – volume: 61 start-page: 474 year: 2010 ident: 10.1016/j.calphad.2015.04.003_bib6 article-title: Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2010.02.004 – volume: 41 start-page: 313 year: 2012 ident: 10.1016/j.calphad.2015.04.003_bib9 article-title: Size control and characterization of Sn–Ag–Cu lead-free nanosolders by a chemical reduction proces publication-title: J. Electron. Mater. doi: 10.1007/s11664-011-1765-z – reference: 10991524 - Phys Rev Lett. 2000 Aug 7;85(6):1250-3 – reference: 25757694 - Nanoscale. 2015 Mar 19;7(13):5843-51 |
SSID | ssj0007334 |
Score | 2.213149 |
Snippet | Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with... Melting temperatures of Sn-Ag-Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101 |
SubjectTerms | CALPHAD COMPUTER SIMULATION Corners Lead free solders MATHEMATICAL ANALYSIS Mathematical models Melting Melting point depression MICROSTRUCTURES Nanoparticles Nanostructure Phase diagrams Phase transformations Size effect Tin TIN ALLOYS (50 TO 99 SN) Tin base alloys |
Title | Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system |
URI | https://dx.doi.org/10.1016/j.calphad.2015.04.003 https://www.ncbi.nlm.nih.gov/pubmed/26082567 https://www.proquest.com/docview/1718968077 https://www.proquest.com/docview/1826617624 https://pubmed.ncbi.nlm.nih.gov/PMC4456117 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3yqIzENd147dgOt1VEtTxaIZZKvVl2bNOtKu9qHwcuiP_AP-SXMJPHlqUSlbgkSjKWHM9kHvHMN4S8ZjGPIyVD5iV3mbAxgB7kMcuLCALm61EZsN75-EROTsX7s-Jsj1R9LQymVXa6v9Xpjbbu7gy71RwuZrPhtNlBK9FjQT9fYRGfEAql_PD7VZqH4ryDkBIZUl9V8QwvIATEglYEDGVFg3ja9866bp-u-59_p1H-YZeO7pG7nUNJx-2c75O9kB6Q21Xfx-0hWU3Trx8_x1_hUG1osmkO4obpy2_ocbjErGfa1-pTmzyFqa4CBbHBvC26WOJODnKPzhIFb5FOUwa685xC2JrCks5jc7f5r7j8Rltk6Efk9Ojtl2qSda0WshpWb52xKJSPXDpnted5YNZFLGn1RS1cHJUQhSmuXc1yz2ysXeFLXaqRCEICs0PBH5P9NE_hKaGOywhBKRB4LYLVVmgfYs1LFoNXXg6I6BfY1B0OObbDuDR9wtmF6fhikC8mFwhgOiCH22GLFojjpgG6557ZkSgDxuKmoa96bhtgFm6h2BTmm5VhYMpLqXOl_kGj0ekBIyMG5EkrIdsZQ_QIIbmE0WpHdrYEiPa9-yTNzhvUb4GuLlPP_v-1npM7eNUmur0g--vlJrwEl2rtDppv5oDcGlefP37C87sPk5Pffa8n-Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kzpAuRdKnmz5YoKtqyaREqpthNHCa2IsTIBshimTjIKANP4Zu_Q_9h_0lvdPDjRugAbpoIHkAxTvdQ7z7DuBj4mPfl5mLbMZNJArvUA9yH8WpRwGzZT93VO88nmSjS_H1Kr3ag2FbC0NplY3ur3V6pa2bkV5zmr3FbNabVjdoOXks5OfL_BHsEzpV2oH9wenZaLJVyJLzBkVKRETwp5Cnd4NRINW0EmZoklagp237rPsm6r4L-ncm5R3TdHIITxqfkg3qbR_BngtP4WDYtnJ7Bqtp-PXj5-AbPoYbFoowR4mjDObPbOxuKfGZteX6rAiW4VZXjqHkUOoWWyzpMocYyGaBocPIpiFC9XnNMHINbsnmvhqtfi0uv7MaHPo5XJ58uRiOoqbbQlTiAa6jxAtpPc-MKZTlsUsK46mq1aalML6fYyAmuTJlEtuk8KVJba5y2RdOZMhvl_IX0Anz4F4BMzzzGJfiAquEK1QhlHW-5HninZU264JoD1iXDRQ5dcS41W3O2Y1u-KKJLzoWhGHahU9bskWNxfEQgWq5p3eESqO9eIj0Q8ttjcyiW5QiuPlmpRO05nmmYin_sUaR34N2RnThZS0h2x1jAIlReYbUckd2tgsI8Ht3JsyuK-BvQd5uIl___2u9h4PRxfhcn59Ozo7hMc3UeW9voLNebtxb9LDW5l3zBf0GN9MpFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sn-Ag-Cu+nanosolders%3A+Melting+behavior+and+phase+diagram+prediction+in+the+Sn-rich+corner+of+the+ternary+system&rft.jtitle=Calphad&rft.au=Roshanghias%2C+Ali&rft.au=Vrestal%2C+Jan&rft.au=Yakymovych%2C+Andriy&rft.au=Richter%2C+Klaus+W&rft.date=2015-06-01&rft.issn=0364-5916&rft.volume=49&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1016%2Fj.calphad.2015.04.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5916&client=summon |