DirectMX - One-Step Reconstitution of Membrane Proteins From Crude Cell Membranes Into Salipro Nanoparticles
Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid molecules in the cell membrane is known to influence the stability, structure and function of IMPs. Detergents are commonly used to solubili...
Saved in:
Published in | Frontiers in bioengineering and biotechnology Vol. 8; p. 215 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid molecules in the cell membrane is known to influence the stability, structure and function of IMPs. Detergents are commonly used to solubilize and extract IMPs from cell membranes. However, due to the loss of the lipid environment, IMPs usually tend to be unstable and lose function in the continuous presence of detergent. To overcome this problem, various technologies have been developed, including protein engineering by mutagenesis to improve IMP stability, as well as methods to reconstitute IMPs into detergent-free entities, such as nanodiscs based on apolipoprotein A or its membrane scaffold protein (MSP) derivatives, amphipols, and styrene-maleic acid copolymer-lipid particles (SMALPs). Although significant progress has been made in this field, working with inherently unstable human IMP targets (e.g., GPCRs, ion channels and transporters) remains a challenging task. Here, we present a novel methodology, termed DirectMX (for direct membrane extraction), taking advantage of the saposin-lipoprotein (Salipro) nanoparticle technology to reconstitute fragile IMPs directly from human crude cell membranes. We demonstrate the applicability of the DirectMX methodology by the reconstitution of a human solute carrier transporter and a wild-type GPCR belonging to the human chemokine receptor (CKR) family. We envision that DirectMX bears the potential to enable studies of IMPs that so far remained inaccessible to other solubilization, stabilization or reconstitution methods. |
---|---|
AbstractList | Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid molecules in the cell membrane is known to influence the stability, structure and function of IMPs. Detergents are commonly used to solubilize and extract IMPs from cell membranes. However, due to the loss of the lipid environment, IMPs usually tend to be unstable and lose function in the continuous presence of detergent. To overcome this problem, various technologies have been developed, including protein engineering by mutagenesis to improve IMP stability, as well as methods to reconstitute IMPs into detergent-free entities, such as nanodiscs based on apolipoprotein A or its membrane scaffold protein (MSP) derivatives, amphipols, and styrene-maleic acid copolymer-lipid particles (SMALPs). Although significant progress has been made in this field, working with inherently unstable human IMP targets (e.g., GPCRs, ion channels and transporters) remains a challenging task. Here, we present a novel methodology, termed DirectMX (for direct membrane extraction), taking advantage of the saposin-lipoprotein (Salipro) nanoparticle technology to reconstitute fragile IMPs directly from human crude cell membranes. We demonstrate the applicability of the DirectMX methodology by the reconstitution of a human solute carrier transporter and a wild-type GPCR belonging to the human chemokine receptor (CKR) family. We envision that DirectMX bears the potential to enable studies of IMPs that so far remained inaccessible to other solubilization, stabilization or reconstitution methods. |
Author | Klinter, Stefan Chen, Liuhong Löving, Robin Skynner, Michael J Lloris-Garcerá, Pilar Frauenfeld, Jens |
AuthorAffiliation | 2 Bicycle Therapeutics , Cambridge , United Kingdom 1 Salipro Biotech AB , Stockholm , Sweden |
AuthorAffiliation_xml | – name: 2 Bicycle Therapeutics , Cambridge , United Kingdom – name: 1 Salipro Biotech AB , Stockholm , Sweden |
Author_xml | – sequence: 1 givenname: Pilar surname: Lloris-Garcerá fullname: Lloris-Garcerá, Pilar organization: Salipro Biotech AB, Stockholm, Sweden – sequence: 2 givenname: Stefan surname: Klinter fullname: Klinter, Stefan organization: Salipro Biotech AB, Stockholm, Sweden – sequence: 3 givenname: Liuhong surname: Chen fullname: Chen, Liuhong organization: Bicycle Therapeutics, Cambridge, United Kingdom – sequence: 4 givenname: Michael J surname: Skynner fullname: Skynner, Michael J organization: Bicycle Therapeutics, Cambridge, United Kingdom – sequence: 5 givenname: Robin surname: Löving fullname: Löving, Robin organization: Salipro Biotech AB, Stockholm, Sweden – sequence: 6 givenname: Jens surname: Frauenfeld fullname: Frauenfeld, Jens organization: Salipro Biotech AB, Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32266242$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302980$$DView record from Swedish Publication Index |
BookMark | eNpVks1v1DAQxSNUREvpnRPykUsWe-w4yQWp2lJYqaWIAuJmOc6kdUns1HZA_PdkP1h1Lx7L897Po9F7mR057zDLXjO64Lyq33WN9bgACnRBKbDiWXYCUMtcsKo4enI_zs5ifKCUMijKooIX2TEHkBIEnGT9hQ1o0vVPkpMbh_ltwpF8ReNdTDZNyXpHfEeucWiCdki-BJ_Qukgugx_IMkwtkiX2_V4RycolT251b8fgyWft_KhDsqbH-Cp73uk-4tmunmbfLz98W37Kr24-rpbnV7kpKE05o00jtWwEyKI1BtsGObIaqoZDVwpsQVTYVWUNTQcMdcE60Wkj6rLgs0Pw02y15bZeP6gx2EGHv8prqzYPPtyp3UjKYAVtZzgTXAtoxHxwgVhI1sq2NHRm5VtW_IPj1BzQLuyP8w3tV7pXnEJdrfXvt_pZPGBr0KWg-wPbYcfZe3Xnf6uS1pIXbAa83QGCf5wwJjXYaOYVz8v1U1TAq1LWTDA5S-lWaoKPMWC3_4ZRtc6I2mRErTOiNhmZLW-ejrc3_E8E_wdfF7vX |
CitedBy_id | crossref_primary_10_1042_BST20230164 crossref_primary_10_3390_molecules25204729 crossref_primary_10_1016_j_jsb_2023_107959 crossref_primary_10_3390_biom12081076 crossref_primary_10_1016_j_ymeth_2020_05_006 crossref_primary_10_3390_biology12010082 crossref_primary_10_1016_j_tibtech_2023_02_006 crossref_primary_10_1042_EBC20220173 crossref_primary_10_30629_0023_2149_2023_101_9_10_454_466 crossref_primary_10_1038_s41598_023_28455_w crossref_primary_10_3390_biology9110401 |
Cites_doi | 10.1038/nrd.2017.91 10.1021/acs.chemrev.6b00690 10.1021/bi800540b 10.1073/pnas.93.26.15047 10.1111/mmi.13165 10.1038/nprot.2016.070 10.1016/j.tibs.2012.06.003 10.1073/pnas.1805651115 10.1038/nature22064 10.1038/s41594-017-0011-7 10.1038/nsmb.3262 10.1038/s41467-018-06702-3 10.1016/bs.mie.2017.06.035 10.1038/nrd2199 10.1038/nature10742 10.1002/anie.201610778 10.1038/nature13419 10.1038/s41598-019-44812-0 10.3390/app9061230 10.1038/nprot.2016.088 10.1038/s41586-018-0333-6 10.1016/0005-2728(95)00091-V 10.1021/ja810046q 10.1038/nmeth.3801 10.1016/j.str.2018.01.007 10.1016/j.bcp.2012.08.008 10.1016/j.chembiol.2018.03.011 10.1021/jacs.7b06730 10.1146/annurev-biochem-013118-111508 10.1515/hsz-2019-0171 10.1021/ja407424v 10.1016/j.bbamem.2016.02.037 10.1110/ps.03267503 10.1039/c8nr01322e 10.1107/S2053230X19003546 10.1038/nrd3478 10.1126/science.1260419 10.1016/j.cell.2011.07.046 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld. Copyright © 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld. 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld |
Copyright_xml | – notice: Copyright © 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld. – notice: Copyright © 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld. 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld |
DBID | NPM AAYXX CITATION 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC DOA |
DOI | 10.3389/fbioe.2020.00215 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-4185 |
EndPage | 215 |
ExternalDocumentID | oai_doaj_org_article_ce82dfc3143a42b4a4234ee561d6d7c0 oai_DiVA_org_kth_302980 10_3389_fbioe_2020_00215 32266242 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ ACGFS ACXDI ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK GROUPED_DOAJ GX1 HYE IAO IEA IHR IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RPM AAYXX AFPKN CITATION 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c500t-10bb6a6b4265dccedbe3e1928b32f74ed248ef8792bf21ea51f4fac4975365d43 |
IEDL.DBID | RPM |
ISSN | 2296-4185 |
IngestDate | Tue Oct 22 15:15:01 EDT 2024 Tue Oct 01 22:22:30 EDT 2024 Tue Sep 17 21:22:30 EDT 2024 Fri Oct 25 01:02:21 EDT 2024 Thu Sep 26 16:04:29 EDT 2024 Wed Oct 16 00:45:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DirectMX drug discovery Salipro nanoparticles GPCR membrane protein saposin SLC transporter direct membrane extraction |
Language | English |
License | Copyright © 2020 Lloris-Garcerá, Klinter, Chen, Skynner, Löving and Frauenfeld. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c500t-10bb6a6b4265dccedbe3e1928b32f74ed248ef8792bf21ea51f4fac4975365d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally to this work This article was submitted to Synthetic Biology, a section of the journal Frontiers in Bioengineering and Biotechnology Reviewed by: Albert Guskov, University of Groningen, Netherlands; Cédric Orelle, UMR5086 Microbiologie Moléculaire et Biochimie Structurale (MMSB), France Edited by: Alexej Kedrov, Heinrich Heine University Düsseldorf, Germany |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096351/ |
PMID | 32266242 |
PQID | 2387691416 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce82dfc3143a42b4a4234ee561d6d7c0 swepub_primary_oai_DiVA_org_kth_302980 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096351 proquest_miscellaneous_2387691416 crossref_primary_10_3389_fbioe_2020_00215 pubmed_primary_32266242 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-19 |
PublicationDateYYYYMMDD | 2020-03-19 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in bioengineering and biotechnology |
PublicationTitleAlternate | Front Bioeng Biotechnol |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Magnani (B21) 2016; 11 Laganowsky (B18) 2014; 510 Lyons (B20) 2017; 594 Lee (B19) 2016; 11 Nji (B25) 2018; 9 Pyle (B29) 2018; 25 Hilger (B12) 2018; 25 Overington (B28) 2006; 5 Willis (B37) 2008; 47 Alvarez (B1) 2015; 98 Flayhan (B8) 2018; 26 Rigaud (B31) 1995; 1231 Tate (B33) 2012; 37 Whorton (B36) 2011; 147 Kehlenbeck (B15) 2019; 400 Kanonenberg (B14) 2019; 9 Rask-Andersen (B30) 2011; 10 Bayburt (B2) 2003; 12 Denisov (B7) 2017; 117 Tribet (B34) 1996; 93 Nguyen (B24) 2018; 559 Knowles (B17) 2009; 131 Oluwole (B26) 2017; 56 Canul-Tec (B4) 2017; 544 Hall (B10) 2018; 10 Bolla (B3) 2019; 88 Hutchings (B13) 2017; 16 Uhlén (B35) 2015; 347 Martens (B22) 2016; 23 Nagamura (B23) 2019; 75 Kintzer (B16) 2018; 115 Overduin (B27) 2019; 9 Chien (B5) 2017; 139 Contreras (B6) 2012; 481 Hedger (B11) 2016; 1858 Frauenfeld (B9) 2016; 13 Zoonens (B38) 2013; 135 Szpakowska (B32) 2012; 84 |
References_xml | – volume: 16 start-page: 787 year: 2017 ident: B13 article-title: Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.91 contributor: fullname: Hutchings – volume: 117 start-page: 4669 year: 2017 ident: B7 article-title: Nanodiscs in membrane biochemistry and biophysics. publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00690 contributor: fullname: Denisov – volume: 47 start-page: 6988 year: 2008 ident: B37 article-title: Virus-like particles as quantitative probes of membrane protein interactions. publication-title: Biochemistry doi: 10.1021/bi800540b contributor: fullname: Willis – volume: 93 start-page: 15047 year: 1996 ident: B34 article-title: Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.26.15047 contributor: fullname: Tribet – volume: 98 start-page: 878 year: 2015 ident: B1 article-title: Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13165 contributor: fullname: Alvarez – volume: 11 start-page: 1149 year: 2016 ident: B19 article-title: A method for detergent-free isolation of membrane proteins in their local lipid environment. publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.070 contributor: fullname: Lee – volume: 37 start-page: 343 year: 2012 ident: B33 article-title: A crystal clear solution for determining G-protein-coupled receptor structures. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.06.003 contributor: fullname: Tate – volume: 115 start-page: E9095 year: 2018 ident: B16 article-title: Structural basis for activation of voltage sensor domains in an ion channel TPC1. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1805651115 contributor: fullname: Kintzer – volume: 544 start-page: 446 year: 2017 ident: B4 article-title: Structure and allosteric inhibition of excitatory amino acid transporter 1. publication-title: Nature doi: 10.1038/nature22064 contributor: fullname: Canul-Tec – volume: 25 start-page: 4 year: 2018 ident: B12 article-title: Structure and dynamics of GPCR signaling complexes. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0011-7 contributor: fullname: Hilger – volume: 23 start-page: 744 year: 2016 ident: B22 article-title: Lipids modulate the conformational dynamics of a secondary multidrug transporter. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3262 contributor: fullname: Martens – volume: 9 year: 2018 ident: B25 article-title: An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins. publication-title: Nat. Commun. doi: 10.1038/s41467-018-06702-3 contributor: fullname: Nji – volume: 594 start-page: 85 year: 2017 ident: B20 article-title: Saposin-lipoprotein scaffolds for structure determination of membrane transporters. publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2017.06.035 contributor: fullname: Lyons – volume: 5 start-page: 993 year: 2006 ident: B28 article-title: How many drug targets are there? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2199 contributor: fullname: Overington – volume: 481 start-page: 525 year: 2012 ident: B6 article-title: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. publication-title: Nature doi: 10.1038/nature10742 contributor: fullname: Contreras – volume: 56 start-page: 1919 year: 2017 ident: B26 article-title: Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201610778 contributor: fullname: Oluwole – volume: 510 start-page: 172 year: 2014 ident: B18 article-title: Membrane proteins bind lipids selectively to modulate their structure and function. publication-title: Nature doi: 10.1038/nature13419 contributor: fullname: Laganowsky – volume: 9 year: 2019 ident: B14 article-title: Functional reconstitution of HlyB, a type I secretion ABC transporter, in saposin-A nanoparticles. publication-title: Sci. Rep. doi: 10.1038/s41598-019-44812-0 contributor: fullname: Kanonenberg – volume: 9 year: 2019 ident: B27 article-title: Native nanodiscs and the convergence of lipidomics, metabolomics, interactomics and proteomics. publication-title: Appl. Sci. doi: 10.3390/app9061230 contributor: fullname: Overduin – volume: 11 start-page: 1554 year: 2016 ident: B21 article-title: A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.088 contributor: fullname: Magnani – volume: 559 start-page: 570 year: 2018 ident: B24 article-title: Cryo-EM structure of a fungal mitochondrial calcium uniporter. publication-title: Nature doi: 10.1038/s41586-018-0333-6 contributor: fullname: Nguyen – volume: 1231 start-page: 223 year: 1995 ident: B31 article-title: Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(95)00091-V contributor: fullname: Rigaud – volume: 131 start-page: 7484 year: 2009 ident: B17 article-title: Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja810046q contributor: fullname: Knowles – volume: 13 start-page: 345 year: 2016 ident: B9 article-title: A saposin-lipoprotein nanoparticle system for membrane proteins. publication-title: Nat. Methods doi: 10.1038/nmeth.3801 contributor: fullname: Frauenfeld – volume: 26 start-page: 345.e5 year: 2018 ident: B8 article-title: Saposin lipid nanoparticles: a highly versatile and modular tool for membrane protein research. publication-title: Structure doi: 10.1016/j.str.2018.01.007 contributor: fullname: Flayhan – volume: 84 start-page: 1366 year: 2012 ident: B32 article-title: Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2012.08.008 contributor: fullname: Szpakowska – volume: 25 start-page: 840.e4 year: 2018 ident: B29 article-title: Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.03.011 contributor: fullname: Pyle – volume: 139 start-page: 14829 year: 2017 ident: B5 article-title: An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06730 contributor: fullname: Chien – volume: 88 start-page: 85 year: 2019 ident: B3 article-title: Membrane protein-lipid interactions probed using mass spectrometry. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111508 contributor: fullname: Bolla – volume: 400 start-page: 1509 year: 2019 ident: B15 article-title: Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study. publication-title: Biol. Chem. doi: 10.1515/hsz-2019-0171 contributor: fullname: Kehlenbeck – volume: 135 start-page: 15174 year: 2013 ident: B38 article-title: Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407424v contributor: fullname: Zoonens – volume: 1858 start-page: 2390 year: 2016 ident: B11 article-title: Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2016.02.037 contributor: fullname: Hedger – volume: 12 start-page: 2476 year: 2003 ident: B2 article-title: Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. publication-title: Protein Sci. doi: 10.1110/ps.03267503 contributor: fullname: Bayburt – volume: 10 start-page: 10609 year: 2018 ident: B10 article-title: An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. publication-title: Nanoscale doi: 10.1039/c8nr01322e contributor: fullname: Hall – volume: 75 start-page: 348 year: 2019 ident: B23 article-title: Structural basis for oligomerization of the prokaryotic peptide transporter PepTSo2. publication-title: Acta Cryst. F doi: 10.1107/S2053230X19003546 contributor: fullname: Nagamura – volume: 10 start-page: 579 year: 2011 ident: B30 article-title: Trends in the exploitation of novel drug targets. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3478 contributor: fullname: Rask-Andersen – volume: 347 year: 2015 ident: B35 article-title: Proteomics. Tissue-based map of the human proteome. publication-title: Science doi: 10.1126/science.1260419 contributor: fullname: Uhlén – volume: 147 start-page: 199 year: 2011 ident: B36 article-title: Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. publication-title: Cell doi: 10.1016/j.cell.2011.07.046 contributor: fullname: Whorton |
SSID | ssj0001257582 |
Score | 2.2471955 |
Snippet | Integral membrane proteins (IMPs) are central to many physiological processes and represent ∼60% of current drug targets. An intricate interplay with the lipid... |
SourceID | doaj swepub pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 215 |
SubjectTerms | Bioengineering and Biotechnology direct membrane extraction DirectMX drug discovery GPCR membrane protein Salipro nanoparticles saposin SLC transporter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQrGCBeBNeMhJCYhFNYzuv5VCoBqQCEgzqzorta03FjIPadM8_8Id8CffamaoRSGzYZJGH4vjY956T3Bwz9sJikpNUVmFaK3NViiY3pUThal1Vdapsu-izvfxQnZ6p96tydbDUF9WEJXvg1HHHFhrhvJWY1zsljMKNVACY9l3lapvUenEoptLbFaQhjUjfJVGFtcferHuyxRRUyiVoFdyDPBTt-v_GMf8slZwYisYktLjFbo7skZ-kVt9m1yDcYTcOPAXvspCC2HLFf_34yT8GyKmQi5PMHOsCEAnee76ES1TKAfgnsmpYhy1fbPpLPt_sHPA5XFzsz9jyd2Ho-Wek7Nh0jgEZlfZYUHePnS3efpmf5uOiCrktZ7MBw64xVVcZzMylsxacAQlI8xojha8VOKEa8E3dCuNFAV1ZeOU7q-gHXLxCyfvsKPQBHjJuhbLOmRkywEI5CR1Gh7ruavAgBDifsVdXXay_J-8MjZqD4NARDk1w6AhHxl4TBvvzyPU67sCxoMdH0v8aCxl7foWgxllCnz6wk_rdViMxqau2QPaZsQcJ0f2tMKRV9JdMxuoJ1pO2TI-E9Xl04q5RAMqyyNjLNComl7xZfz2Jzf82nGuaD83s0f94ysfsOvUbFcIV7RN2NGx28BSZ0WCexUnwG-37D8c priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQcoED4k14yUgIiUOgsZ3XAaGlUC1IBSQo6s2K7fFuRTeBNJXgxn_gH_JLmHGyhYheuETK2_Fnz3wTjz8z9tCik5OUVmFKK2OViiI2qcTA1bosq1RaVkFne_42O1qoN8t0-Wd69FCBm72hHa0ntWjXT759_f4cO_wzijjR3z71ZtWQ4qWgLC1BM87PCyUltfH5QPb7Py5ITcLqUUKUWUyqLf245d6HjPxUkPPfx0H_TaUcCY4GJzW7zC4N7JIf9s3hCjsH9VV28S_NwWus7o3cfMl__fjJ39UQU6IXpzB0yBtApHjj-RxOMZKugb8nKYdVveGztjnl03brgE9hvd5dseGv667hH5DSY9E5GmyMxIeEu-tsMXv1cXoUD4suxDadTDo0y8ZkVWbQc6fOWnAGJCANLIwUPlfghCrAF3kpjBcJVGnila-sogm6eIeSN9hB3dRwi3ErlHXOTJAhJspJqNB65HmVgwchwPmIPT6rYv2l19bQGJMQHDrAoQkOHeCI2AvCYHcdqWKHA017rIdP0hYK4byVyAErJYzCjVQASBFd5nI7idiDMwQ19iIaGsFKarYbjcQlz8oE2WnEbvaI7l6FJi-jWTQRy0dYj8oyPlOvToJSd44BokyTiD3qW8XolperT4eh-J-7E039pZjc_o8aucMu0A7lwyXlXXbQtVu4hwSpM_dDu_8NX7UQUA priority: 102 providerName: Scholars Portal |
Title | DirectMX - One-Step Reconstitution of Membrane Proteins From Crude Cell Membranes Into Salipro Nanoparticles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32266242 https://search.proquest.com/docview/2387691416 https://pubmed.ncbi.nlm.nih.gov/PMC7096351 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302980 https://doaj.org/article/ce82dfc3143a42b4a4234ee561d6d7c0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLXaLlBZIN6ER2UkhMQincR2XssyMCpIgUpQNLsotq9pxIxTzWT2_AN_yJdw7SSjRrBik0UeiuNz7XtucnxCyCuFSY47WYUsFA9FwvJQJhwLV6XTtBZJUXuf7fJTen4pPi6T5QFJxrUwXrSvZHNqV-tT21x5beX1Ws1GndjsopxnyLt5Es8OyWHG-Y0SvX-xggwkZ_0nSSzAipmRTescMZlTcWGKOya3MIxTtzJiko28af-_mObfgsmJrahPRYu75M7AIelZ39Z75ADsfXL7hrPgA2L7qaxc0t8_f9HPFkIn56Ku2BzUAYgHbQ0tYY31sgV64QwbGruli027pvPNTgOdw2q1P2NLP9iupV-QuGPTKU7LWG8P3fWQXC7ef52fh8OvFUKVRFGHk6-UaZ1KzM-JVgq0BA5I9nLJmckEaCZyMHlWMGlYDHUSG2FqJdwyXLxC8EfkyLYWnhCqmFBaywh5YCw0hxrniCyrMzDAGGgTkDdjF1fXvYNGhZWHQ6byyFQOmcojE5C3DoP9ec772u9oN9-r4ZEqBTnTRnFkerVgUuCGCwAkgjrVmYoC8nJEsMKx4j6AYCe1u22F9CRLixg5aEAe94jubzVGRECyCdaTtkyPYHh6P-4hHAPyuo-KySXvmm9nvvk_uqvKjYo8evrft3hGjl1nOQ1cXDwnR91mBy-QFHXyxL9MwG0p8hM_IP4A52QRrg |
link.rule.ids | 230,315,733,786,790,870,891,2113,24339,27946,27947,53816,53818 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkE58CwQnkZCSBz2Ecd5HcvCqoVuqURb7c2K7QlddTepdrMXTvwH_iG_hLGTrBrgApccEluxPWPPN_HnLwCvNQW5wNIqVKqDngh50lNhQImrNlGUiTDNnM725CjaPxUfp-F0C8L2LIwj7Ws16xfzRb-YnTtu5eVCD1qe2OB4MooJdwehP7gG10O78XUlSa8_rRAGSXi9KUkpWDrI1ay0mpjc8rgoyO3ADXLkyJ6N6MQjJ9v_N6z5J2WyIyzqgtH4Dpy13ag5KBf9daX6-ttvCo__3M-7cLuBp2yvfnwPtrC4D7euiBY-gKJeJSdT9vP7D_a5wJ5lijGbxzbEAzI1K3M2wQWl4gWyY6sFMStWbLwsF2y0XBtkI5zPNyVW7KCoSvaFcgLqEqMVn1L5poW7cDr-cDLa7zV_bejpcDisaF1XKsoiRaE_NFqjURgg4chEBTyPBRouEsyTOOUq5z5moZ-LPNPCnvClGiJ4CNtFWeBjYJoLbYwaEsT0hQkwo-UnjrMYc-QcTe7B29Z28rIW55CU1FiTS2dyaU0unck9eGeNuylnZbXdjXL5VTZdkhoTbnIdEIjMBFeCLoFAJIxpIhProQevWteQNA3t3goNUrleSUI-cZT6BG89eFS7yuZVrat5EHecqNOW7hPyCCf13XiAB29qd-tUeT8723PNv6jOpZ1wyfDJf7_iJdzcP5kcysODo09PYccOnKXa-ekz2K6Wa3xO2KtSL9xM-wV5ODHU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIq2WA-9HeBoJIXFokzjO67h0qXaBLpVgUbUXK36x1bZJ1aYXTvwH_iG_hLGTVg1w2ksOiaN4PGPPN_GXLwCvJSa5yNIqRC6jHotp1hNxhIWrVElSsDgvnM726DQ5PmMfJvFk51dfjrQvxbRfzub9cnrhuJWLufQ3PDF_PBqkiLujOPQXyvjX4UZss85Ood68XkEcktFmYxLLsNw3YlpZXUxquVyY6A5gH4M5sd9HdHKSk-7_H978lzbZERd1CWl4G843pjQ8lMv-uhZ9-eMvlccr2XoHbrUwlRw2Te7CNV3eg5s74oX3oWxWy9GE_P75i3wudc8yxoitZ1sCArqcVIaM9BxL8lKTsdWEmJYrMlxWczJYrpUmAz2bbVusyElZV-QL1gZoFsGVH0v6tpcP4Gz4_uvguNf-vaEn4yCocX0XIikSgRAgVlJqJXSkEU9mIqImZVpRlmmTpTkVhoa6iEPDTCGZ_dIX72DRQ9grq1I_BiIpk0qJAKFmyFSkC1yG0rRItdGUamU8eLvxH180Ih0cixvrdu7czq3buXO7B--sg7ftrLy2O1Etv_PWJC51RpWREYLJglHB8BAxrRFrqkSlMvDg1SY8OE5Hu8eCg1StVxwRUJrkIcJcDx414bJ91CbcPEg7gdTpS_cKRoWT_G6jwIM3Tch1bjmafjt03b-sL7ideFnw5MqPeAn746Mh_3Ry-vEpHNhxs4y7MH8Ge_VyrZ8jBKvFCzfZ_gDePzRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DirectMX+%E2%80%93+One-Step+Reconstitution+of+Membrane+Proteins+From+Crude+Cell+Membranes+Into+Salipro+Nanoparticles&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Lloris-Garcer%C3%A1%2C+Pilar&rft.au=Klinter%2C+Stefan&rft.au=Chen%2C+Liuhong&rft.au=Skynner%2C+Michael+J.&rft.date=2020-03-19&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=8&rft_id=info:doi/10.3389%2Ffbioe.2020.00215&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fbioe_2020_00215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |