Semiparametric transformation models for multivariate panel count data with dependent observation process

This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recu...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of statistics Vol. 39; no. 3; pp. 458 - 474
Main Authors Li, Ni, Park, Do-Hwan, Sun, Jianguo, Kim, KyungMann
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2011
Statistical Society of Canada
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0319-5724
1708-945X
1708-945X
DOI10.1002/cjs.10118

Cover

Abstract This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. Cet article discute de l'analyse de régression pour les données panels multidimensionnelles de dénombrement pour lesquelles le processus observationnel peut contenir de l'information sur le processus des événements récurrents sous-jacents. De telles données se produisent lorsque l'étude des événements récurrents implique plusieurs types d'événements et que le processus ou schéma observationnel peut dépendre des sujets. Pour ce problème, une classe de modèles semi-paramétriques de transformation est présentée ce qui permet une grande flexibilité pour modéliser l'effet des covariables sur le processus des événements récurrents. Pour l'estimation des paramètres de régression, nous développons une procédure d'inférence basée sur des équations d'estimation et nous obtenons aussi les propriétés asymptotiques des estimateurs résultants. Finalement, l'approche proposée est évaluée à l'aide d'études de simulation et nous l'appliquons à des données provenant d'un essai sur la chimioprévention du cancer de la peau.
AbstractList This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial.
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject‐specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation‐based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. The Canadian Journal of Statistics 39: 458–474; 2011 © 2011 Statistical Society of Canada Cet article discute de l'analyse de régression pour les données panels multidimensionnelles de dénombrement pour lesquelles le processus observationnel peut contenir de l'information sur le processus des événements récurrents sous‐jacents. De telles données se produisent lorsque l'étude des événements récurrents implique plusieurs types d'événements et que le processus ou schéma observationnel peut dépendre des sujets. Pour ce problème, une classe de modèles semi‐paramétriques de transformation est présentée ce qui permet une grande flexibilité pour modéliser l'effet des covariables sur le processus des événements récurrents. Pour l'estimation des paramètres de régression, nous développons une procédure d'inférence basée sur des équations d'estimation et nous obtenons aussi les propriétés asymptotiques des estimateurs résultants. Finalement, l'approche proposée est évaluée à l'aide d'études de simulation et nous l'appliquons à des données provenant d'un essai sur la chimioprévention du cancer de la peau. La revue canadienne de statistique 39:458–474;2011 © 2011 Société statistique du Canada
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. Cet article discute de l'analyse de régression pour les données panels multidimensionnelles de dénombrement pour lesquelles le processus observationnel peut contenir de l'information sur le processus des événements récurrents sous-jacents. De telles données se produisent lorsque l'étude des événements récurrents implique plusieurs types d'événements et que le processus ou schéma observationnel peut dépendre des sujets. Pour ce problème, une classe de modèles semi-paramétriques de transformation est présentée ce qui permet une grande flexibilité pour modéliser l'effet des covariables sur le processus des événements récurrents. Pour l'estimation des paramètres de régression, nous développons une procédure d'inférence basée sur des équations d'estimation et nous obtenons aussi les propriétés asymptotiques des estimateurs résultants. Finalement, l'approche proposée est évaluée à l'aide d'études de simulation et nous l'appliquons à des données provenant d'un essai sur la chimioprévention du cancer de la peau.
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial.This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial.
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. [PUBLICATION ABSTRACT]
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. The Canadian Journal of Statistics 39: 458-474; 2011 ? 2011 Statistical Society of Canada Cet article discute de l'analyse de regression pour les donnees panels multidimensionnelles de denombrement pour lesquelles le processus observationnel peut contenir de l'information sur le processus des evenements recurrents sous-jacents. De telles donnees se produisent lorsque l'etude des evenements recurrents implique plusieurs types d'evenements et que le processus ou schema observationnel peut dependre des sujets. Pour ce probleme, une classe de modeles semi-parametriques de transformation est presentee ce qui permet une grande flexibilite pour modeliser l'effet des covariables sur le processus des evenements recurrents. Pour l'estimation des parametres de regression, nous developpons une procedure d'inference basee sur des equations d'estimation et nous obtenons aussi les proprietes asymptotiques des estimateurs resultants. Finalement, l'approche proposee est evaluee a l'aide d'etudes de simulation et nous l'appliquons a des donnees provenant d'un essai sur la chimioprevention du cancer de la peau. La revue canadienne de statistique 39:458-474; 2011 ? 2011 Societe statistique du Canada
Author Li, Ni
Kim, KyungMann
Park, Do-Hwan
Sun, Jianguo
Author_xml – sequence: 1
  givenname: Ni
  surname: Li
  fullname: Li, Ni
  organization: Department of Statistics, University of Missouri, Columbia, MO 65211, USA
– sequence: 2
  givenname: Do-Hwan
  surname: Park
  fullname: Park, Do-Hwan
  organization: Department of Statistics, University of Missouri, Columbia, MO 65211, USA
– sequence: 3
  givenname: Jianguo
  surname: Sun
  fullname: Sun, Jianguo
  email: sunj@missouri.edu
  organization: Department of Statistics, University of Missouri, Columbia, MO 65211, USA
– sequence: 4
  givenname: KyungMann
  surname: Kim
  fullname: Kim, KyungMann
  organization: Department of Statistics, University of Missouri, Columbia, MO 65211, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22685368$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFBT8AFLGCRaifsb1BggEKpQKh8hIby5PcoR6SONjOlP57PE07gkogVrZ8v3t0rs_dQzu97wGhuwQ_JhjTg3oV84UQdQPNiMSq1Fx82UEzzIguhaR8F-3FuMKYCULoLbRLaaUEq9QMuRPo3GCD7SAFVxcp2D4ufehscr4vOt9AG4v8UHRjm9zaBmcTFIPtoS1qP_apaGyyxZlLp0UDA_QN5De_iBDWk8YQfA0x3kY3l7aNcOfy3EcfX774MH9VHr87fD1_elzWAmfrDeUVt5RzJTVXtBKgOVUMGgVSCW0rqvGi0oxWVU00b7gCvKCNlFWzWGoh2T56MukO46KDps52gm3NEFxnw7nx1pk_K707Nd_82rD8IZTjLPDwUiD4HyPEZDoXa2jbPLMfoyEbV0Iq-R9oToAqLRjL6INr6MqPoc8_YZRmOTuOdYbu_-59a_oqrww8moA6-BgDLLcIwWazCybvgrnYhcweXGNrly4iyWO79l8dZ66F879Lm_nRyVXHvaljFZMP2w5OGOZcbsIop7qLCX5u6zZ8N5VkUpjPbw-NfvaVH7359N48Z78AMqLesA
CitedBy_id crossref_primary_10_1016_j_jmva_2013_04_012
crossref_primary_10_1093_aje_kwy292
crossref_primary_10_1080_10485252_2012_758724
crossref_primary_10_1007_s10985_021_09537_1
crossref_primary_10_1016_j_jmva_2022_105047
crossref_primary_10_1016_j_csda_2013_11_014
crossref_primary_10_1111_sjos_12133
crossref_primary_10_1002_bimj_201700176
crossref_primary_10_1111_biom_12840
crossref_primary_10_1002_cjs_11172
crossref_primary_10_3390_stats5020028
crossref_primary_10_1111_insr_12271
crossref_primary_10_1016_j_jmva_2015_05_014
crossref_primary_10_1016_j_csda_2016_10_006
crossref_primary_10_1214_24_EJS2239
crossref_primary_10_1177_09622802231224632
crossref_primary_10_1093_biomtc_ujae020
Cites_doi 10.1007/s10985-008-9105-1
10.1111/1467-9868.00259
10.1093/biomet/89.1.39
10.1080/01621459.1988.10478603
10.1198/016214505000000060
10.1080/01621459.1993.10476432
10.1093/biomet/93.4.763
10.1007/978-1-4612-4348-9
10.1093/biostatistics/kxm025
10.1214/cbms/1462061091
10.1198/016214501753168299
10.1002/sim.1936
10.1111/1467-9868.00232
10.1111/j.1541-0420.2007.00808.x
ContentType Journal Article
Copyright 2011 Statistical Society of Canada/Société statistique du Canada
Copyright © 2011 Statistical Society of Canada
Copyright Statistical Society of Canada Sep 2011
2011 Statistical Society of Canada 2011
Copyright_xml – notice: 2011 Statistical Society of Canada/Société statistique du Canada
– notice: Copyright © 2011 Statistical Society of Canada
– notice: Copyright Statistical Society of Canada Sep 2011
– notice: 2011 Statistical Society of Canada 2011
DBID BSCLL
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/cjs.10118
DatabaseName Istex
CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
Aerospace Database
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef



MEDLINE - Academic
Aerospace Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1708-945X
EndPage 474
ExternalDocumentID PMC3368240
2463714761
22685368
10_1002_cjs_10118
CJS10118
41304477
ark_67375_WNG_9BZ4JKVQ_D
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA152035
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
3-9
31~
33P
3SF
3WU
4.4
44B
50Y
50Z
52M
52O
52T
52U
52W
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAKYL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCUV
ABDBF
ABFAN
ABJNI
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACPOU
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADULT
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVYC
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DRFUL
DRSTM
DSRWC
EBS
ECEWR
EJD
ESX
F00
F01
F04
F21
F5P
FEDTE
FSPIC
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
PZZ
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SA0
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
~IA
~WT
AAHQN
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ACHJO
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGLNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIHAF
ALRMG
AMVHM
AAMNL
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c5008-d2464a24487948265e94283ed8e7859a6290b693266c194d48e0b2d776dbf9573
ISSN 0319-5724
1708-945X
IngestDate Thu Aug 21 18:43:14 EDT 2025
Fri Jul 11 14:49:30 EDT 2025
Fri Jul 11 11:33:07 EDT 2025
Sat Sep 06 22:30:48 EDT 2025
Mon Jul 21 06:06:47 EDT 2025
Tue Jul 01 00:41:22 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Wed Jan 22 16:39:19 EST 2025
Thu Jul 03 21:12:59 EDT 2025
Wed Oct 30 09:53:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5008-d2464a24487948265e94283ed8e7859a6290b693266c194d48e0b2d776dbf9573
Notes ark:/67375/WNG-9BZ4JKVQ-D
istex:4DD112FA48584C135BA28162F570617F6ADD07E9
ArticleID:CJS10118
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 22685368
PQID 893118409
PQPubID 46823
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368240
proquest_miscellaneous_1826557870
proquest_miscellaneous_1031289533
proquest_journals_893118409
pubmed_primary_22685368
crossref_primary_10_1002_cjs_10118
crossref_citationtrail_10_1002_cjs_10118
wiley_primary_10_1002_cjs_10118_CJS10118
jstor_primary_41304477
istex_primary_ark_67375_WNG_9BZ4JKVQ_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Canada
– name: Ottawa
PublicationTitle Canadian journal of statistics
PublicationTitleAlternate Can J Statistics
PublicationYear 2011
Publisher John Wiley & Sons, Inc
Statistical Society of Canada
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Statistical Society of Canada
– name: Wiley Subscription Services, Inc
References Thall, P. F. & Lachin, J. M. (1988). Analysis of recurrent events: Nonparametric methods for random-interval count data. Journal of the American Statistical Association, 83, 339-347.
Chen, B. E., Cook, R. J., Lawless, J. F., & Zhan, M. (2005). Statistical methods for multivariate interval-censored recurrent events. Statistics in Medicine, 24, 671C691.
Sun, J. & Kalbfleisch, J. D. (1993). The analysis of current status data on point processes. Journal of the American Statistical Association, 88, 1449-1454.
He, X., Tong, X., & Sun, J. (2009). Semiparametric analysis of panel count data with correlated observation and follow-up times. Lifetime Data Analysis, 15, 177-196.
Lin, D. Y., Wei, L. J., Yang, I., & Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, Series B, 62, 711-730.
Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika, 89, 39-48.
Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York.
He, X., Tong, X., Sun, J., & Cook, R. J. (2008). Regression analysis of multivariate panel count data. Biostatistics, 9, 234-248.
Sun, J., Park, D., Sun, L. & Zhao, X. (2005). Semiparametric regression analysis of longitudinal data with informative observation times. Journal of the American Statistical Association, 100, 882-889.
Lin, D. Y., Wei, L. J., & Ying, Z. (2001). Semiparametric transformation models for point processes. Journal of the American Statistical Association, 96, 620-628.
Sun, J. & Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based on panel count data. Statistica Sinica, 5, 279-290.
Cook, R. J. & Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events, Springer-Verlag: New York.
Huang, C.Y., Wang, M.C., & Zhang, Y. (2006). Analysing panel count data with informative observation times. Biometrika, 93, 763-775.
Sun, J. & Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. Journal of the Royal Statistical Society, Series B, 62, 293-302.
Sun, J., Tong, X., & He, X. (2007). Regression analysis of panel count data with dependent observation times. Biometrics, 63, 1053-1059.
2006; 93
1990
2005; 100
1993; 88
2002; 89
2008; 9
2000; 62
2007
1988; 83
1993
2007; 63
2009; 15
2001; 96
1995; 5
2005; 24
Sun J. (e_1_2_9_12_1) 1995; 5
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_8_1
e_1_2_9_7_1
Sun J. (e_1_2_9_11_1) 1993; 88
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
Thall P. F. (e_1_2_9_16_1) 1988; 83
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Cook R. J. (e_1_2_9_4_1) 2007
References_xml – reference: He, X., Tong, X., Sun, J., & Cook, R. J. (2008). Regression analysis of multivariate panel count data. Biostatistics, 9, 234-248.
– reference: Sun, J. & Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based on panel count data. Statistica Sinica, 5, 279-290.
– reference: Sun, J., Tong, X., & He, X. (2007). Regression analysis of panel count data with dependent observation times. Biometrics, 63, 1053-1059.
– reference: Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical Models Based on Counting Processes, Springer-Verlag, New York.
– reference: Lin, D. Y., Wei, L. J., & Ying, Z. (2001). Semiparametric transformation models for point processes. Journal of the American Statistical Association, 96, 620-628.
– reference: Thall, P. F. & Lachin, J. M. (1988). Analysis of recurrent events: Nonparametric methods for random-interval count data. Journal of the American Statistical Association, 83, 339-347.
– reference: He, X., Tong, X., & Sun, J. (2009). Semiparametric analysis of panel count data with correlated observation and follow-up times. Lifetime Data Analysis, 15, 177-196.
– reference: Chen, B. E., Cook, R. J., Lawless, J. F., & Zhan, M. (2005). Statistical methods for multivariate interval-censored recurrent events. Statistics in Medicine, 24, 671C691.
– reference: Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika, 89, 39-48.
– reference: Lin, D. Y., Wei, L. J., Yang, I., & Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, Series B, 62, 711-730.
– reference: Sun, J. & Kalbfleisch, J. D. (1993). The analysis of current status data on point processes. Journal of the American Statistical Association, 88, 1449-1454.
– reference: Cook, R. J. & Lawless, J. F. (2007). The Statistical Analysis of Recurrent Events, Springer-Verlag: New York.
– reference: Sun, J., Park, D., Sun, L. & Zhao, X. (2005). Semiparametric regression analysis of longitudinal data with informative observation times. Journal of the American Statistical Association, 100, 882-889.
– reference: Sun, J. & Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. Journal of the Royal Statistical Society, Series B, 62, 293-302.
– reference: Huang, C.Y., Wang, M.C., & Zhang, Y. (2006). Analysing panel count data with informative observation times. Biometrika, 93, 763-775.
– volume: 15
  start-page: 177
  year: 2009
  end-page: 196
  article-title: Semiparametric analysis of panel count data with correlated observation and follow‐up times
  publication-title: Lifetime Data Analysis
– volume: 100
  start-page: 882
  year: 2005
  end-page: 889
  article-title: Semiparametric regression analysis of longitudinal data with informative observation times
  publication-title: Journal of the American Statistical Association
– volume: 93
  start-page: 763
  year: 2006
  end-page: 775
  article-title: Analysing panel count data with informative observation times
  publication-title: Biometrika
– volume: 96
  start-page: 620
  year: 2001
  end-page: 628
  article-title: Semiparametric transformation models for point processes
  publication-title: Journal of the American Statistical Association
– volume: 89
  start-page: 39
  year: 2002
  end-page: 48
  article-title: A semiparametric pseudolikelihood estimation method for panel count data
  publication-title: Biometrika
– volume: 9
  start-page: 234
  year: 2008
  end-page: 248
  article-title: Regression analysis of multivariate panel count data
  publication-title: Biostatistics
– volume: 88
  start-page: 1449
  year: 1993
  end-page: 1454
  article-title: The analysis of current status data on point processes
  publication-title: Journal of the American Statistical Association
– volume: 24
  start-page: 671C691
  year: 2005
  article-title: Statistical methods for multivariate interval‐censored recurrent events
  publication-title: Statistics in Medicine
– volume: 62
  start-page: 293
  year: 2000
  end-page: 302
  article-title: Regression analysis of panel count data with covariate‐dependent observation and censoring times
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 2007
– volume: 83
  start-page: 339
  year: 1988
  end-page: 347
  article-title: Analysis of recurrent events: Nonparametric methods for random‐interval count data
  publication-title: Journal of the American Statistical Association
– volume: 63
  start-page: 1053
  year: 2007
  end-page: 1059
  article-title: Regression analysis of panel count data with dependent observation times
  publication-title: Biometrics
– year: 1990
– year: 1993
– volume: 5
  start-page: 279
  year: 1995
  end-page: 290
  article-title: Estimation of the mean function of point processes based on panel count data
  publication-title: Statistica Sinica
– volume: 62
  start-page: 711
  year: 2000
  end-page: 730
  article-title: Semiparametric regression for the mean and rate functions of recurrent events
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_2_9_6_1
  doi: 10.1007/s10985-008-9105-1
– ident: e_1_2_9_8_1
  doi: 10.1111/1467-9868.00259
– ident: e_1_2_9_17_1
  doi: 10.1093/biomet/89.1.39
– volume: 83
  start-page: 339
  year: 1988
  ident: e_1_2_9_16_1
  article-title: Analysis of recurrent events: Nonparametric methods for random‐interval count data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1988.10478603
– ident: e_1_2_9_13_1
  doi: 10.1198/016214505000000060
– volume: 88
  start-page: 1449
  year: 1993
  ident: e_1_2_9_11_1
  article-title: The analysis of current status data on point processes
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1993.10476432
– volume: 5
  start-page: 279
  year: 1995
  ident: e_1_2_9_12_1
  article-title: Estimation of the mean function of point processes based on panel count data
  publication-title: Statistica Sinica
– ident: e_1_2_9_7_1
  doi: 10.1093/biomet/93.4.763
– ident: e_1_2_9_2_1
  doi: 10.1007/978-1-4612-4348-9
– ident: e_1_2_9_5_1
  doi: 10.1093/biostatistics/kxm025
– ident: e_1_2_9_10_1
  doi: 10.1214/cbms/1462061091
– ident: e_1_2_9_9_1
  doi: 10.1198/016214501753168299
– ident: e_1_2_9_3_1
  doi: 10.1002/sim.1936
– volume-title: The Statistical Analysis of Recurrent Events
  year: 2007
  ident: e_1_2_9_4_1
– ident: e_1_2_9_15_1
  doi: 10.1111/1467-9868.00232
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1541-0420.2007.00808.x
SSID ssj0035112
Score 2.0038102
Snippet This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 458
SubjectTerms Cancer
Chemoprevention
Computer simulation
Consistent estimators
Counting
Counting processes
Estimation bias
Inference
Information relevance
Mathematical models
MSC 2010: Primary 62N02
multivariate data analysis
panel count data
Panels
Parameter estimation
Point estimators
Preventive medicine
Recurrent
Recurrent events
Regression
Regression analysis
secondary 62G05
Simulation
Skin cancer
Skin cancers
Squamous cell carcinoma
Statistical bias
Statistics
Studies
Transformation
transformation models
Transformations
Title Semiparametric transformation models for multivariate panel count data with dependent observation process
URI https://api.istex.fr/ark:/67375/WNG-9BZ4JKVQ-D/fulltext.pdf
https://www.jstor.org/stable/41304477
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjs.10118
https://www.ncbi.nlm.nih.gov/pubmed/22685368
https://www.proquest.com/docview/893118409
https://www.proquest.com/docview/1031289533
https://www.proquest.com/docview/1826557870
https://pubmed.ncbi.nlm.nih.gov/PMC3368240
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgfRkPCAaDMEAGIYRUBdLEievHdV2p9lGE2kK1FytOUlFE04m2fP313NmJm2gFDV6iKHGTxvfz-e589zMhL2KmAuXFUzcK09RlWdp2lc-nbhBgVafPMyGwdvh8EPXH7GQSTioV11hdslKvk19b60r-R6pwDeSKVbL_IFn7ULgA5yBfOIKE4XgtGQ-z-Qy5u-e4LVaC2z1YIxSEqje50XQLJm3wG7jFYFk2YfxnSAqyzldNTBA1sdhyN9xVc6FspLZ5aeoIqias5TOokE5gWZJhfLYJPjODs80SlcnJ7i7c_vcNIodrUxsyw7DpYpMQoFF6-hM00TzO82poAmOtogxNGG3KPdCmLJxU1a3hLipgFVR0JzMc7sU0zMzmPVc0vGGMTT4vMe5QqO4ai_bgneyNz87k6HgyukkaPue4fN847HQ7vXKOxtVTvQ5e_sGSc8rz39hH1yyVBg66H2XS6jZ35GpWbdXb0ebK6A65XfgZ9NCA5i65keV75Na5Jeld7pHdoZXaPTKrY4nWsUQNlihcoFUsUY0lqrFEEUsUsUQtlmgFS7TA0n0y7h2PjvpusQ2Hm4SYHJP6LGIxmIFt0N3gjYaZQJY-GNYZb4cijnzhqQj9gChpCZayduYpP-U8StVUhDzYJzv5Is8eEhpy30sVQAVzl2PPF4q1sIS3rUKhpt7UIa_KLpdJwVGPW6V8kYZd25cgHaml45DntumlIWbZ1uillpttAVjHTEYeyo-Dt1J0LtjJ6Yf3suuQfS1Y2xBtO8Y4d8hBKWlZDKulBBu_pSMjDnlm74JaxrU26PbFGl8fwJdh7vZf2mBn6hnTIQ8Mduz7wSsCQzqCL-A1VNkGSAtfv5PPPml6-AB-BnY69KXG3597Rx6dDPXJo2t8xgHZ3Qzxx2Rn9XWdPQF7fKWeFoPrN7Ro5fI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+transformation+models+for+multivariate+panel+count+data+with+dependent+observation+process&rft.jtitle=Canadian+journal+of+statistics&rft.au=Li%2C+Ni&rft.au=Park%2C+Do-Hwan&rft.au=Sun%2C+Jianguo&rft.au=Kim%2C+Kyungmann&rft.date=2011-09-01&rft.issn=1708-945X&rft.volume=39&rft.issue=3&rft.spage=458&rft.epage=474&rft_id=info:doi/10.1002%2Fcjs.10118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0319-5724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0319-5724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0319-5724&client=summon