Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides
With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have...
Saved in:
Published in | Advanced science Vol. 4; no. 12; pp. 1700231 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley and Sons Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.
The recent research progresses of low‐symmetry MTe2 (M = Mo, W) and ReX2 (X = S, Se) are presented with an emphasis on the crystalline structure, preparation methods, and novel electronic and optoelectronic applications. |
---|---|
AbstractList | With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe
and ReX
(M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe 2 and ReX 2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. The recent research progresses of low‐symmetry MTe2 (M = Mo, W) and ReX2 (X = S, Se) are presented with an emphasis on the crystalline structure, preparation methods, and novel electronic and optoelectronic applications. |
Author | Chen, Wei Cheng, Yuhua Chu, Junwei Dai, Liping Xiong, Jie Gong, Chuanhui Lei, Tianyu Li, Liang Wu, Chunyang Zhang, Yuxi Zhai, Tianyou Pu, Junru |
AuthorAffiliation | 1 State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China 3 State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China 2 School of Automation Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China 4 College of Physics, Optoelectronics and Energy Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China |
AuthorAffiliation_xml | – name: 2 School of Automation Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China – name: 1 State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China – name: 3 State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China – name: 4 College of Physics, Optoelectronics and Energy Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China |
Author_xml | – sequence: 1 givenname: Chuanhui surname: Gong fullname: Gong, Chuanhui organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Yuxi surname: Zhang fullname: Zhang, Yuxi organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Junwei surname: Chu fullname: Chu, Junwei email: junweichu@163.com organization: University of Electronic Science and Technology of China – sequence: 5 givenname: Tianyu surname: Lei fullname: Lei, Tianyu organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Junru surname: Pu fullname: Pu, Junru organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Liping surname: Dai fullname: Dai, Liping organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Chunyang surname: Wu fullname: Wu, Chunyang organization: University of Electronic Science and Technology of China – sequence: 9 givenname: Yuhua surname: Cheng fullname: Cheng, Yuhua email: yhcheng@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 10 givenname: Tianyou surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 11 givenname: Liang surname: Li fullname: Li, Liang organization: Soochow University – sequence: 12 givenname: Jie orcidid: 0000-0003-3881-6948 surname: Xiong fullname: Xiong, Jie email: jiexiong@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29270337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEUha2Kqjy3XVZesknq14w9m0qBAK2UwgLo1jL2HTBy7Ol4kop_X4dASpEQK7--c458zy7aiikCQp8pGVNC2FfjlnnMCJXlwOkHtMNoo0ZcCbH1Yr-NDnK-J4TQiktB1Se0zRomCedyB_mTAHboU_QWm-jwRTck-Hc16brgrRl8ihkfmQwOp4jZFJ-nJQQ8iT6ngnYFvepNzH5F4p8wmICn3t6ZYNMtRO8g76OPrQkZDp7WPXR9enJ1_H00uzj7cTyZjWxFiBwxy0AwBbxWjhHRKqKIdMArcyOkLF9oJRdC8Zo0pqZWUSWsk6pxwrbS1RXfQ9_Wvt3iZg7OQhx6E3TX-7npH3QyXv__Ev2dvk1LXUkuqaDF4PDJoE-_F5AHPffZQggmQlpkTRvZNHUllCjol5dZm5Dn-RZArAHbp5x7aLX1w-M4S7QPmhK9alKvmtSbJots_Er27PymgK8Ff3yAh3doPZn-uhRE8r-6QbCm |
CitedBy_id | crossref_primary_10_1039_D0CC04476H crossref_primary_10_1002_qute_202400081 crossref_primary_10_1002_adfm_202206094 crossref_primary_10_3390_ma14205979 crossref_primary_10_1016_j_jcrysgro_2018_11_016 crossref_primary_10_1002_advs_201800816 crossref_primary_10_1021_jacs_1c06246 crossref_primary_10_1364_OE_490067 crossref_primary_10_1039_C9DT01581G crossref_primary_10_1103_PhysRevB_101_165122 crossref_primary_10_1039_D4NH00102H crossref_primary_10_1103_PhysRevLett_127_136803 crossref_primary_10_1016_j_jallcom_2024_174658 crossref_primary_10_1021_acs_chemmater_8b01091 crossref_primary_10_3390_pr13030791 crossref_primary_10_1002_adfm_202407749 crossref_primary_10_1007_s12274_023_5966_6 crossref_primary_10_1038_s41566_024_01461_8 crossref_primary_10_1109_JFLEX_2023_3316638 crossref_primary_10_34133_2021_9863038 crossref_primary_10_1016_j_chemosphere_2021_130874 crossref_primary_10_1021_acsnano_0c03346 crossref_primary_10_1002_adfm_202300141 crossref_primary_10_1088_1361_6463_abe2c5 crossref_primary_10_1021_acs_jpclett_0c02318 crossref_primary_10_1002_adom_202101762 crossref_primary_10_1016_j_mtener_2025_101810 crossref_primary_10_1039_D4SE00795F crossref_primary_10_35848_1347_4065_abe201 crossref_primary_10_1016_j_sna_2024_115324 crossref_primary_10_1039_C9NR01700C crossref_primary_10_1038_s41699_021_00220_5 crossref_primary_10_1364_OME_483284 crossref_primary_10_1021_acsami_9b03435 crossref_primary_10_1016_j_optmat_2022_113034 crossref_primary_10_1088_1361_6463_ab87bb crossref_primary_10_1002_adfm_201803305 crossref_primary_10_1007_s10854_020_03969_5 crossref_primary_10_1007_s12274_017_1942_3 crossref_primary_10_1016_j_scib_2020_07_037 crossref_primary_10_1063_5_0104664 crossref_primary_10_1103_PhysRevB_107_195442 crossref_primary_10_1039_C8NR10350J crossref_primary_10_1016_j_jallcom_2023_173263 crossref_primary_10_1021_acsphotonics_0c01200 crossref_primary_10_1021_acs_jpcc_2c00049 crossref_primary_10_1002_smll_202311045 crossref_primary_10_1021_acs_nanolett_4c04960 crossref_primary_10_1002_smtd_202300246 crossref_primary_10_1039_D0RA02033H crossref_primary_10_1016_j_pmatsci_2024_101390 crossref_primary_10_1103_PhysRevB_105_075431 crossref_primary_10_3390_ma13143067 crossref_primary_10_1002_adom_201701243 crossref_primary_10_1007_s10854_019_02723_w crossref_primary_10_1021_acs_nanolett_3c00826 crossref_primary_10_1088_2040_8986_ab5203 crossref_primary_10_1186_s11671_018_2758_0 crossref_primary_10_1002_inf2_12005 crossref_primary_10_1002_smm2_1142 crossref_primary_10_1002_apxr_202200102 crossref_primary_10_1016_j_ccr_2021_213822 crossref_primary_10_1002_adfm_202205567 crossref_primary_10_1016_j_vibspec_2022_103454 crossref_primary_10_1103_PhysRevB_109_125108 crossref_primary_10_1002_admi_202102091 crossref_primary_10_1002_aelm_202300610 crossref_primary_10_1016_j_matlet_2020_127826 crossref_primary_10_1016_j_electacta_2024_144891 crossref_primary_10_1021_acs_jpcc_2c03800 crossref_primary_10_1088_1361_648X_abd5f5 crossref_primary_10_1039_D3NR01416A crossref_primary_10_1016_j_ijhydene_2023_09_095 crossref_primary_10_1021_acs_jpcc_3c03458 crossref_primary_10_1016_j_cej_2023_143727 crossref_primary_10_1088_1361_6463_ad7ff8 crossref_primary_10_1021_acs_jpcc_0c08079 crossref_primary_10_1021_acs_jpcc_3c01954 crossref_primary_10_1021_acs_jpclett_1c00317 crossref_primary_10_1016_j_flatc_2022_100455 crossref_primary_10_1002_inf2_12018 crossref_primary_10_1021_acsnano_3c05056 crossref_primary_10_1016_j_flatc_2022_100452 crossref_primary_10_1039_D1CP05199G crossref_primary_10_1002_adom_202400481 crossref_primary_10_1002_inf2_12014 crossref_primary_10_1021_acs_nanolett_3c03666 crossref_primary_10_1016_j_apsusc_2023_157958 crossref_primary_10_1002_ppsc_202200031 crossref_primary_10_1063_5_0223518 crossref_primary_10_1016_j_carbon_2024_118920 crossref_primary_10_1002_adma_202005303 crossref_primary_10_1002_adom_201801274 crossref_primary_10_1002_er_7827 crossref_primary_10_1002_admi_202100328 crossref_primary_10_1016_j_mtphys_2022_100631 crossref_primary_10_1039_C8TC04612C crossref_primary_10_1063_5_0001572 crossref_primary_10_1002_smll_202408545 crossref_primary_10_1016_j_vacuum_2023_112489 crossref_primary_10_1021_acs_jpclett_3c02082 crossref_primary_10_34133_2020_5464258 crossref_primary_10_1021_acsaelm_5c00012 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118795 crossref_primary_10_1016_j_sna_2019_04_049 crossref_primary_10_1021_acsabm_1c00625 crossref_primary_10_1080_10601325_2024_2394812 crossref_primary_10_1021_acsaem_8b01540 crossref_primary_10_1002_smll_201804346 crossref_primary_10_1364_OL_505797 crossref_primary_10_1021_acsnano_8b08079 crossref_primary_10_1021_acsami_4c06540 crossref_primary_10_1088_1674_1056_ad08a5 crossref_primary_10_1016_j_apsusc_2020_147026 crossref_primary_10_1021_acs_jpclett_1c00455 crossref_primary_10_1002_adma_202305353 crossref_primary_10_1021_acs_inorgchem_8b02213 crossref_primary_10_1063_5_0035764 crossref_primary_10_1039_D0TA03727C crossref_primary_10_1039_C9NR02464F crossref_primary_10_4028_p_775o97 crossref_primary_10_1016_j_tsf_2021_139024 crossref_primary_10_1016_j_jtice_2024_105749 crossref_primary_10_1038_s41699_024_00464_x crossref_primary_10_1088_2053_1583_ac3f45 crossref_primary_10_1016_j_apsusc_2021_150282 crossref_primary_10_1109_TED_2023_3281292 crossref_primary_10_1039_C8PY00636A crossref_primary_10_1016_j_cap_2024_06_009 crossref_primary_10_1007_s40042_023_00825_7 crossref_primary_10_3390_ma14216275 crossref_primary_10_3390_electronics11040619 crossref_primary_10_1016_j_rinp_2024_107558 crossref_primary_10_1063_5_0223287 crossref_primary_10_3390_ma15051794 crossref_primary_10_1016_j_jelechem_2020_114672 crossref_primary_10_1002_adma_201903580 crossref_primary_10_1103_PhysRevB_110_085424 crossref_primary_10_1088_1674_4926_41_8_080401 crossref_primary_10_1002_adfm_202102049 crossref_primary_10_1021_acsnano_2c10596 crossref_primary_10_1021_acs_jpcc_3c06772 crossref_primary_10_1002_adma_202202371 crossref_primary_10_1002_adfm_202111673 crossref_primary_10_1016_j_apsusc_2020_147841 crossref_primary_10_1063_5_0222745 crossref_primary_10_1002_smll_201804133 crossref_primary_10_1007_s42452_020_3029_0 crossref_primary_10_1103_PhysRevApplied_20_014052 crossref_primary_10_7567_1347_4065_ab4c53 crossref_primary_10_1007_s40843_020_1356_3 crossref_primary_10_35848_1882_0786_acbf9f crossref_primary_10_1002_adma_201803285 crossref_primary_10_7498_aps_72_20222303 crossref_primary_10_1016_j_jallcom_2024_173830 crossref_primary_10_1016_j_mssp_2024_109095 crossref_primary_10_1016_j_mssp_2025_109471 crossref_primary_10_1002_inf2_12067 crossref_primary_10_1016_j_synthmet_2020_116441 crossref_primary_10_1016_j_cej_2024_157922 crossref_primary_10_1021_acs_jpcc_3c02166 crossref_primary_10_1039_D4TA03644A crossref_primary_10_1002_admi_202400371 crossref_primary_10_1080_25740881_2025_2458111 crossref_primary_10_1002_sstr_202000136 crossref_primary_10_1007_s40843_023_2817_x crossref_primary_10_1063_5_0073631 crossref_primary_10_1002_adfm_201900040 crossref_primary_10_1088_1555_6611_ab3bcc crossref_primary_10_1016_j_chemphys_2024_112364 crossref_primary_10_1016_j_surfrep_2022_100567 crossref_primary_10_1007_s40843_020_1321_4 crossref_primary_10_1039_D1TC00949D crossref_primary_10_1002_advs_202410549 crossref_primary_10_1021_acs_chemmater_2c00567 crossref_primary_10_1002_apxr_202300146 crossref_primary_10_1007_s12598_021_01781_6 crossref_primary_10_1039_D1QI00390A crossref_primary_10_1021_acs_inorgchem_9b01015 crossref_primary_10_1039_D1TC01973B crossref_primary_10_1021_acs_jpcc_1c01667 crossref_primary_10_1063_5_0039766 crossref_primary_10_1088_0256_307X_41_11_117101 crossref_primary_10_1007_s10854_020_03811_y crossref_primary_10_1039_D3YA00316G crossref_primary_10_1088_1361_6528_ac26fe crossref_primary_10_1016_j_jssc_2021_122018 crossref_primary_10_1016_j_nanoen_2019_103951 crossref_primary_10_1021_acsaelm_9b00694 crossref_primary_10_1021_acsanm_1c00890 crossref_primary_10_1021_acs_nanolett_4c06512 crossref_primary_10_1039_C9TC04613E crossref_primary_10_1088_1361_6528_ace97c crossref_primary_10_1088_2053_1591_ab5c9c crossref_primary_10_1038_s41563_018_0248_5 crossref_primary_10_1021_acs_jpcc_3c00349 crossref_primary_10_1039_D1CS00706H crossref_primary_10_1021_acs_chemmater_1c01652 crossref_primary_10_1515_nanoph_2018_0041 crossref_primary_10_1039_D0TA08514F crossref_primary_10_1039_D1CC07160B crossref_primary_10_1016_j_jallcom_2021_159850 crossref_primary_10_1002_smll_201801460 crossref_primary_10_1016_j_tsf_2024_140535 crossref_primary_10_3390_molecules28114288 crossref_primary_10_1016_j_ssc_2023_115423 crossref_primary_10_1002_adom_201701302 crossref_primary_10_1007_s12274_018_2194_6 crossref_primary_10_1039_D3CP00421J crossref_primary_10_1007_s42864_020_00056_4 crossref_primary_10_1016_j_xcrp_2024_102124 crossref_primary_10_1088_1361_648X_ac0c3d crossref_primary_10_1016_j_jcis_2025_01_117 crossref_primary_10_2174_2666145416666230512115255 crossref_primary_10_1002_advs_201800478 crossref_primary_10_1002_smll_202304735 crossref_primary_10_1088_1742_6596_2353_1_012005 crossref_primary_10_1016_j_apmt_2020_100555 crossref_primary_10_1002_adfm_202201020 crossref_primary_10_1002_admi_202300319 crossref_primary_10_1002_adfm_201706559 crossref_primary_10_1088_2053_1591_ab2cea crossref_primary_10_1021_acsami_1c09698 crossref_primary_10_1039_D2NH00031H crossref_primary_10_1021_acs_nanolett_4c02173 crossref_primary_10_1088_1402_4896_ad624c crossref_primary_10_1016_j_infrared_2023_105055 crossref_primary_10_1016_j_mssp_2019_104910 crossref_primary_10_1016_j_apmt_2019_04_007 crossref_primary_10_1021_acs_nanolett_4c01764 crossref_primary_10_1021_acsnano_2c07281 crossref_primary_10_1557_jmr_2020_27 crossref_primary_10_1002_adfm_202004480 crossref_primary_10_3390_bios13050495 crossref_primary_10_3390_nano12234133 crossref_primary_10_1021_acsami_1c10318 crossref_primary_10_1021_acsnano_3c04581 crossref_primary_10_1103_PhysRevB_104_235305 crossref_primary_10_1103_PhysRevMaterials_4_085202 crossref_primary_10_1016_j_apsusc_2021_150304 crossref_primary_10_1016_j_apsusc_2018_06_299 crossref_primary_10_1016_j_physe_2019_113823 crossref_primary_10_1007_s11664_021_08826_7 crossref_primary_10_1016_j_surfin_2024_104966 crossref_primary_10_1002_adfm_202212167 crossref_primary_10_7498_aps_68_20191002 crossref_primary_10_1007_s12598_024_03012_0 crossref_primary_10_1016_j_mtadv_2024_100476 crossref_primary_10_1002_adom_201900410 crossref_primary_10_1002_adfm_202006788 crossref_primary_10_1063_5_0233269 crossref_primary_10_1021_acsanm_0c02006 crossref_primary_10_1021_acs_jpcc_0c05608 crossref_primary_10_1103_PhysRevMaterials_7_044001 |
Cites_doi | 10.1002/adom.201600323 10.1038/srep10699 10.1038/ncomms10671 10.1038/nature04235 10.1021/acs.chemmater.6b00364 10.1038/nnano.2014.150 10.1021/acsnano.5b04359 10.1021/jacs.5b07452 10.1103/PhysRevB.59.1661 10.1088/2053-1583/aa6422 10.1002/adom.201600290 10.1063/1.4967188 10.1063/1.354268 10.1002/adma.201602687 10.1021/nn203879f 10.1038/nnano.2014.309 10.1103/PhysRevB.92.054110 10.1038/ncomms4252 10.1088/2053-1583/aa6533 10.1038/srep13783 10.1103/PhysRevB.60.15766 10.1007/s12274-014-0532-x 10.1002/adfm.201601349 10.1038/35098012 10.1038/ncomms5458 10.1088/2053-1583/3/4/045010 10.1016/0038-1098(87)90162-1 10.1021/nl1023707 10.1007/s12274-015-0865-0 10.1063/1.4959026 10.1002/adma.201503873 10.1021/nn503093k 10.1021/nl502557g 10.1016/j.physb.2011.03.044 10.1103/PhysRevB.66.245207 10.1021/nn204198g 10.1103/PhysRevB.92.115438 10.1021/nn303352k 10.1002/adma.201504090 10.1038/nnano.2010.279 10.1126/science.1072886 10.1039/C4RA17320A 10.1126/science.1157996 10.1038/nature04233 10.1002/adfm.201504546 10.1039/C6RA23687A 10.1038/ncomms9573 10.1038/ncomms7991 10.1021/nn501175k 10.1021/acsnano.5b00985 10.1002/adfm.201504408 10.1021/nl500935z 10.1038/nnano.2014.215 10.1002/adfm.201606129 10.1038/nphoton.2014.271 10.1016/S0022-3697(99)00201-2 10.1063/1.4941996 10.1002/adma.201601248 10.1002/adma.201603471 10.1002/adma.201502375 10.1038/nmat3687 10.1038/nphys3492 10.1088/2053-1583/2/4/044010 10.1039/C5CP06706E 10.1063/1.365357 10.1063/1.122594 10.1038/nphoton.2015.282 10.1021/acs.chemmater.6b00379 10.1021/ar5002846 10.1126/science.aab3175 10.1088/0953-8984/11/27/312 10.1002/adma.201601002 10.1088/2053-1583/3/4/045016 10.1109/55.863106 10.1002/adfm.201603884 10.1038/nnano.2012.193 10.1088/2053-1583/3/3/031010 10.1103/PhysRevB.8.3719 10.1021/ar500291j 10.1021/acs.nanolett.5b00910 10.1021/nl5045007 10.1002/andp.19925040403 10.1103/PhysRevB.92.075439 10.1039/C5CP07585H 10.1021/acs.nanolett.6b00748 10.1021/acs.nanolett.6b02766 10.1038/nphys3314 10.1063/1.4942162 10.1126/science.1065824 10.1088/0957-4484/27/44/445201 10.1038/nnano.2014.14 10.1038/nnano.2015.70 10.1002/adma.201600722 10.1038/ncomms9572 10.1021/acsphotonics.5b00486 10.1021/acs.nanolett.5b04925 10.1016/j.spmi.2012.03.030 10.1002/adma.201305845 10.1007/s12274-015-0932-6 10.1038/nnano.2013.219 10.1126/science.1100731 10.1038/nnano.2012.224 10.1038/nnano.2012.256 10.1002/adma.201503340 10.1038/nature12385 10.1021/nn500064s 10.1149/1.2108579 10.1002/adfm.201603998 10.1038/nmat4091 10.1021/nn505354a 10.1039/C5CP01649E 10.1039/C4CS00287C 10.1021/acs.jpcc.6b01044 10.1103/PhysRevB.62.10812 10.1038/ncomms4631 10.1002/aenm.201601843 10.1038/nmat4477 10.1021/nn501013c 10.1038/nmat814 10.1016/S0026-2692(99)00061-0 10.1063/1.4901527 10.1038/srep10013 10.1002/adfm.201670048 10.1038/nature13792 10.1002/adfm.201601019 10.1021/acsnano.6b04165 10.1063/1.1723695 10.1063/1.4941001 10.1080/00018736900101307 10.1002/adfm.201500969 10.1016/S0038-1098(99)00240-9 10.1038/nature06458 10.1002/advs.201600177 10.1109/50.4133 10.1039/C4NR03740E 10.1038/nchem.1589 10.1038/nnano.2015.10 10.1016/j.jallcom.2004.04.011 10.1088/0953-8984/28/35/353002 10.1038/ncomms5475 10.1039/C6RA18238K 10.1002/smll.201501488 10.1038/nature10676 10.1088/2053-1583/1/2/021002 10.1038/nmat1849 10.1038/nnano.2013.100 10.1021/acs.jpcc.6b08748 10.1021/acsnano.5b02511 10.1039/c3tc00710c 10.1002/adma.201502585 10.1021/nl301702r 10.1103/PhysRevB.89.155433 10.1021/nl060867g 10.1021/nn305275h 10.1038/nnano.2014.25 10.1039/c1cp21159e 10.1109/TDMR.2004.824359 10.1038/ncomms5214 10.1021/acsnano.5b04851 10.1103/PhysRevB.55.15608 10.1039/C6NR07233J 10.1103/PhysRevB.64.235305 10.1126/science.1062340 10.1021/j100393a010 10.1038/nnano.2015.112 10.1038/srep05442 10.1038/nnano.2013.277 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.58.16130 10.1038/srep19624 10.1002/smll.201502392 10.1038/nphoton.2008.30 10.1039/c4nr01741b 10.1038/srep29254 10.1038/nmat3673 10.1021/nn405719x 10.1126/science.1102896 10.1016/j.nantod.2016.10.003 10.1002/smll.200801442 10.1002/adom.201600221 10.1038/ncomms8805 10.1002/adma.201601977 10.1103/PhysRevB.93.115409 10.1038/nmat4218 10.1016/S0925-8388(00)01332-3 10.1016/0022-4596(84)90330-X 10.1038/nnano.2009.292 10.1038/ncomms9569 10.1039/C6NR01569G 10.1002/adma.201104798 10.1002/anie.201510029 10.1021/acsnano.6b00980 10.1016/j.matchemphys.2007.02.090 10.1021/nn405685j 10.1021/nn5053926 10.1002/adma.201501795 10.1038/nmat4064 10.1021/jz3012436 10.1021/acs.nanolett.6b03999 10.1038/nnano.2014.26 10.1126/science.aab4097 |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1002/advs.201700231 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | PMC5737141 29270337 10_1002_advs_201700231 ADVS407 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key Basic Research Program of China funderid: 2014CB931702 – fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders funderid: 2014JQ0011 – fundername: National Natural Science Foundation of China funderid: 91421110 – fundername: National Key Basic Research Program of China grantid: 2014CB931702 – fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders grantid: 2014JQ0011 – fundername: National Natural Science Foundation of China grantid: 91421110 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5007-2c2e428e368d204f80807de35ab477153f734483609a61c8184cd789d4cf7d653 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Thu Aug 21 13:58:48 EDT 2025 Fri Jul 11 14:00:37 EDT 2025 Thu Apr 03 07:01:44 EDT 2025 Tue Jul 01 04:05:04 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Aug 20 07:24:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 2D electronics transition metal dichalcogenides optoelectronics anisotropy |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5007-2c2e428e368d204f80807de35ab477153f734483609a61c8184cd789d4cf7d653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3881-6948 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700231 |
PMID | 29270337 |
PQID | 1979965484 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737141 proquest_miscellaneous_1979965484 pubmed_primary_29270337 crossref_citationtrail_10_1002_advs_201700231 crossref_primary_10_1002_advs_201700231 wiley_primary_10_1002_advs_201700231_ADVS407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2017 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2011; 479 2007; 104 2010; 10 2013; 1 2010; 105 2004; 4 2014; 26 2013; 7 2013; 8 2013; 5 2012; 12 1984; 51 2011; 406 1997; 55 2015; 137 1999; 59 2007; 6 2014; 14 2014; 13 2012; 24 2001; 413 2004; 383 2016; 10 2014; 48 2016; 93 1969; 18 2016; 18 2004; 306 2011; 6 2016; 16 2016; 15 2011; 5 2016; 12 2016; 11 2016; 4 2016; 6 2016; 7 2016; 3 1987; 61 2002; 66 1999; 30 1999; 111 2001; 317 2016; 28 1998; 73 2016; 27 1973; 8 2016; 26 2016; 8 2016; 9 2017; 7 2017; 4 1997; 81 2016; 109 2016; 108 1986; 133 2011; 13 2015; 349 2008; 2 2012; 51 2014; 1 2014; 5 2001; 294 2014; 4 2001; 293 2016; 119 2013; 12 2015; 44 1993; 74 2003; 2 2000; 62 1999; 11 2014; 9 2014; 8 2014; 7 2014; 6 1998; 58 2015; 2 2014; 514 2015; 15 2015; 14 2015; 6 2015; 17 2004; 84 2015; 5 2015; 3 2015; 92 2002; 297 2017; 27 2000; 21 2015; 11 2015; 10 2005; 438 1992; 504 2006; 6 2017; 29 1999; 60 2008; 321 2015; 9 2015; 8 2016; 120 2014; 89 2001; 64 2016; 55 2015; 26 2014; 105 2015; 25 2015; 27 2012; 3 1988; 6 1982; 86 2013; 499 2017 2009; 5 2009; 4 2012; 6 2012; 7 2008; 451 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 Hafeez M. (e_1_2_8_43_1) 2017 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 74 start-page: 5266 year: 1993 publication-title: J. Appl. Phys. – volume: 8 start-page: 5125 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 075008 year: 2016 publication-title: AIP Adv. – volume: 28 start-page: 959 year: 2016 publication-title: Adv. Mater. – volume: 294 start-page: 1317 year: 2001 publication-title: Science – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 6991 year: 2015 publication-title: Nat. Commun. – volume: 111 start-page: 635 year: 1999 publication-title: Solid State Commun. – volume: 9 start-page: 268 year: 2014 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 1096 year: 2014 publication-title: Nat. Mater. – volume: 15 start-page: 43 year: 2016 publication-title: Nat. Mater. – volume: 120 start-page: 8364 year: 2016 publication-title: J. Phys. Chem. C – volume: 5 start-page: 10013 year: 2015 publication-title: Sci. Rep. – volume: 12 start-page: 438 year: 2016 publication-title: Small – volume: 11 start-page: 763 year: 2016 publication-title: Nano Today – volume: 73 start-page: 2799 year: 1998 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 257 year: 2014 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 1661 year: 1999 publication-title: Phys. Rev. B – volume: 6 start-page: 29254 year: 2016 publication-title: Sci. Rep. – volume: 137 start-page: 11892 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1135 year: 2014 publication-title: Nat. Mater. – volume: 44 start-page: 2664 year: 2015 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 1063 year: 2015 publication-title: Nat. Phys. – volume: 7 start-page: 1601843 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1600177 year: 2016 publication-title: Adv. Sci. – volume: 8 start-page: 3651 year: 2015 publication-title: Nano Res. – volume: 9 start-page: 5326 year: 2015 publication-title: ACS Nano – volume: 438 start-page: 201 year: 2005 publication-title: Nature – volume: 92 start-page: 054110 year: 2015 publication-title: Phys. Rev. B – volume: 6 start-page: 87416 year: 2016 publication-title: RSC Adv. – volume: 9 start-page: 262 year: 2014 publication-title: Nat. Nanotechnol. – volume: 58 start-page: 16130 year: 1998 publication-title: Phys. Rev. B – volume: 10 start-page: 4134 year: 2010 publication-title: Nano Lett. – volume: 6 start-page: 19624 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 1292 year: 1988 publication-title: J. Lightwave Technol. – volume: 5 start-page: 4458 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 17572 year: 2015 publication-title: RSC Adv. – volume: 16 start-page: 3624 year: 2016 publication-title: Nano Lett. – volume: 7 start-page: 1731 year: 2014 publication-title: Nano Res. – year: 2017 publication-title: Mater. Chem. Front. – volume: 8 start-page: 899 year: 2014 publication-title: Nat. Photonics – volume: 66 start-page: 245207 year: 2002 publication-title: Phys. Rev. B – volume: 9 start-page: 363 year: 2014 publication-title: ACS Nano – volume: 92 start-page: 115438 year: 2015 publication-title: Phys. Rev. B – volume: 4 start-page: 1429 year: 2016 publication-title: Adv. Opt. Mater. – volume: 120 start-page: 21866 year: 2016 publication-title: J. Phys. Chem. C – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 4 start-page: 1573 year: 2016 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 044010 year: 2015 publication-title: 2D Mater. – volume: 9 start-page: 507 year: 2016 publication-title: Nano Res. – volume: 62 start-page: 10812 year: 2000 publication-title: Phys. Rev. B – volume: 10 start-page: 202 year: 2015 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 8572 year: 2015 publication-title: Nat. Commun. – volume: 438 start-page: 197 year: 2005 publication-title: Nature – volume: 12 start-page: 754 year: 2013 publication-title: Nat. Mater. – volume: 133 start-page: 358 year: 1986 publication-title: J. Electrochem. Soc. – volume: 108 start-page: 063506 year: 2016 publication-title: Appl. Phys. Lett. – volume: 297 start-page: 2229 year: 2002 publication-title: Science – volume: 15 start-page: 5667 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 6548 year: 2015 publication-title: ACS Nano – volume: 514 start-page: 470 year: 2014 publication-title: Nature – volume: 3 start-page: 045010 year: 2016 publication-title: 2D Mater. – volume: 349 start-page: 524 year: 2015 publication-title: Science – volume: 51 start-page: 765 year: 2012 publication-title: Superlattices Microstruct. – volume: 5 start-page: 3631 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 534 year: 2015 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 9526 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 676 year: 2014 publication-title: Nat. Nanotechnol. – volume: 499 start-page: 419 year: 2013 publication-title: Nature – volume: 28 start-page: 3216 year: 2016 publication-title: Adv. Mater. – volume: 48 start-page: 56 year: 2014 publication-title: Acc. Chem. Res. – volume: 10 start-page: 8067 year: 2016 publication-title: ACS Nano – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 8 start-page: 6655 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 7798 year: 2016 publication-title: Nano Lett. – volume: 86 start-page: 463 year: 1982 publication-title: J. Phys. Chem. – volume: 4 start-page: 1750 year: 2016 publication-title: Adv. Opt. Mater. – volume: 55 start-page: 15608 year: 1997 publication-title: Phys. Rev. B – volume: 27 start-page: 8035 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 107 year: 2003 publication-title: Nat. Mater. – volume: 3 start-page: 96 year: 2015 publication-title: ACS Photonics – volume: 8 start-page: 100 year: 2013 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 353002 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 4 start-page: 99 year: 2004 publication-title: IEEE Trans. Device Mater. Reliab. – volume: 4 start-page: 025057 year: 2017 publication-title: 2D Mater. – volume: 13 start-page: 15546 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 13783 year: 2015 publication-title: Sci. Rep. – volume: 4 start-page: 5442 year: 2014 publication-title: Sci. Rep. – volume: 16 start-page: 5888 year: 2016 publication-title: Nano Lett. – volume: 21 start-page: 445 year: 2000 publication-title: IEEE Electron Device Lett. – volume: 48 start-page: 31 year: 2014 publication-title: Acc. Chem. Res. – volume: 18 start-page: 4086 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 109 start-page: 193502 year: 2016 publication-title: Appl. Phys. Lett. – volume: 55 start-page: 2830 year: 2016 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 306 start-page: 2057 year: 2004 publication-title: Science – volume: 14 start-page: 6231 year: 2014 publication-title: Nano Lett. – volume: 26 start-page: 5499 year: 2016 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 021002 year: 2014 publication-title: 2D Mater. – volume: 105 start-page: 192101 year: 2014 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 531 year: 1987 publication-title: Solid State Commun. – volume: 28 start-page: 2308 year: 2016 publication-title: Chem. Mater. – volume: 17 start-page: 14866 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 27 start-page: 6575 year: 2015 publication-title: Adv. Mater. – volume: 383 start-page: 74 year: 2004 publication-title: J. Alloys Compd. – volume: 6 start-page: 9110 year: 2012 publication-title: ACS Nano – volume: 84 start-page: 3301 year: 2004 publication-title: Appl. Phys. Lett. – volume: 504 start-page: 248 year: 1992 publication-title: Ann. Phys. – volume: 10 start-page: 707 year: 2015 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 4640 year: 2015 publication-title: Adv. Mater. – volume: 18 start-page: 7381 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 27 start-page: 1603884 year: 2017 publication-title: Adv. Funct. Mater. – volume: 92 start-page: 075439 year: 2015 publication-title: Phys. Rev. B – volume: 451 start-page: 168 year: 2008 publication-title: Nature – volume: 12 start-page: 815 year: 2013 publication-title: Nat. Mater. – volume: 8 start-page: 952 year: 2013 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 11154 year: 2014 publication-title: ACS Nano – volume: 93 start-page: 115409 year: 2016 publication-title: Phys. Rev. B – volume: 10 start-page: 289 year: 2015 publication-title: ACS Nano – volume: 11 start-page: 482 year: 2015 publication-title: Nat. Phys. – volume: 26 start-page: 1938 year: 2016 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 4076 year: 2015 publication-title: Adv. Funct. Mater. – volume: 104 start-page: 105 year: 2007 publication-title: Mater. Chem. Phys. – volume: 10 start-page: 3852 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 3788 year: 2012 publication-title: Nano Lett. – volume: 89 start-page: 155433 year: 2014 publication-title: Phys. Rev. B – volume: 8 start-page: 923 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 8324 year: 2016 publication-title: Nanoscale – volume: 119 start-page: 074307 year: 2016 publication-title: J. Appl. Phys. – volume: 413 start-page: 597 year: 2001 publication-title: Nature – volume: 27 start-page: 1606129 year: 2017 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 045016 year: 2016 publication-title: 2D Mater. – volume: 5 start-page: 3252 year: 2014 publication-title: Nat. Commun. – volume: 16 start-page: 1404 year: 2016 publication-title: Nano Lett. – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – volume: 26 start-page: 4551 year: 2016 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4475 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 5367 year: 1999 publication-title: J. Phys.: Condens. Matter – volume: 27 start-page: 6431 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 6985 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 2952 year: 2013 publication-title: J. Mater. Chem. C – volume: 9 start-page: 11249 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 1887 year: 2006 publication-title: Nano Lett. – volume: 27 start-page: 445201 year: 2016 publication-title: Nanotechnology – volume: 6 start-page: 8573 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 6711 year: 2016 publication-title: Adv. Mater. – volume: 81 start-page: 6380 year: 1997 publication-title: J. Appl. Phys. – volume: 28 start-page: 8296 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 1169 year: 2015 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 10671 year: 2016 publication-title: Nat. Commun. – volume: 51 start-page: 170 year: 1984 publication-title: J. Solid State Chem. – volume: 5 start-page: 9703 year: 2011 publication-title: ACS Nano – volume: 8 start-page: 8273 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 4214 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 1102 year: 2014 publication-title: ACS Nano – volume: 9 start-page: 780 year: 2014 publication-title: Nat. Nanotechnol. – volume: 293 start-page: 1455 year: 2001 publication-title: Science – volume: 26 start-page: 1146 year: 2016 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 3263 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 216 year: 2016 publication-title: Nat. Photonics – volume: 60 start-page: 15766 year: 1999 publication-title: Phys. Rev. B – volume: 14 start-page: 2884 year: 2014 publication-title: Nano Lett. – volume: 6 start-page: 8569 year: 2015 publication-title: Nat. Commun. – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 6 start-page: 1387 year: 2012 publication-title: ACS Nano – volume: 29 start-page: 1603471 year: 2017 publication-title: Adv. Mater. – volume: 14 start-page: 264 year: 2015 publication-title: Nat. Mater. – volume: 30 start-page: 1043 year: 1999 publication-title: Microelectron. J. – volume: 3 start-page: 2871 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 18 start-page: 193 year: 1969 publication-title: Adv. Phys. – volume: 105 start-page: 136805 year: 2010 publication-title: Phys. Rev. Lett. – volume: 60 start-page: 1797 year: 1999 publication-title: J. Solid State Chem. – volume: 2 start-page: 226 year: 2008 publication-title: Nat. Photonics – volume: 108 start-page: 043503 year: 2016 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 1603998 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 7226 year: 2014 publication-title: Nanoscale – volume: 5 start-page: 924 year: 2009 publication-title: Small – volume: 6 start-page: 7805 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 5 start-page: 10699 year: 2015 – volume: 3 start-page: 031010 year: 2016 publication-title: 2D Mater. – volume: 11 start-page: 5423 year: 2015 publication-title: Small – volume: 28 start-page: 3352 year: 2016 publication-title: Chem. Mater. – volume: 4 start-page: 025048 year: 2017 publication-title: 2D Mater. – volume: 6 start-page: 12458 year: 2014 publication-title: Nanoscale – volume: 8 start-page: 119 year: 2013 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 2336 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 111 year: 2014 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 791 year: 2013 publication-title: ACS Nano – volume: 8 start-page: 18956 year: 2016 publication-title: Nanoscale – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 406 start-page: 2254 year: 2011 publication-title: Phys. B: Condens. Matter – volume: 6 start-page: 103830 year: 2016 publication-title: RSC Adv. – volume: 8 start-page: 5911 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 5019 year: 2016 publication-title: Adv. Mater. – volume: 349 start-page: 625 year: 2015 publication-title: Science – volume: 64 start-page: 235305 year: 2001 publication-title: Phys. Rev. B – volume: 479 start-page: 310 year: 2011 publication-title: Nature – volume: 317 start-page: 222 year: 2001 publication-title: J. Alloys Compd. – volume: 8 start-page: 3719 year: 1973 publication-title: Phys. Rev. B – volume: 10 start-page: 151 year: 2015 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 839 year: 2009 publication-title: Nat. Nanotechnol. – ident: e_1_2_8_20_1 doi: 10.1002/adom.201600323 – ident: e_1_2_8_79_1 doi: 10.1038/srep10699 – ident: e_1_2_8_56_1 doi: 10.1038/ncomms10671 – ident: e_1_2_8_114_1 doi: 10.1038/nature04235 – ident: e_1_2_8_59_1 doi: 10.1021/acs.chemmater.6b00364 – ident: e_1_2_8_19_1 doi: 10.1038/nnano.2014.150 – ident: e_1_2_8_50_1 doi: 10.1021/acsnano.5b04359 – ident: e_1_2_8_142_1 doi: 10.1021/jacs.5b07452 – ident: e_1_2_8_102_1 doi: 10.1103/PhysRevB.59.1661 – ident: e_1_2_8_172_1 doi: 10.1088/2053-1583/aa6422 – ident: e_1_2_8_22_1 doi: 10.1002/adom.201600290 – ident: e_1_2_8_78_1 doi: 10.1063/1.4967188 – ident: e_1_2_8_32_1 doi: 10.1063/1.354268 – ident: e_1_2_8_145_1 doi: 10.1002/adma.201602687 – ident: e_1_2_8_194_1 doi: 10.1021/nn203879f – ident: e_1_2_8_189_1 doi: 10.1038/nnano.2014.309 – ident: e_1_2_8_66_1 doi: 10.1103/PhysRevB.92.054110 – ident: e_1_2_8_40_1 doi: 10.1038/ncomms4252 – ident: e_1_2_8_86_1 doi: 10.1088/2053-1583/aa6533 – ident: e_1_2_8_38_1 doi: 10.1038/srep13783 – ident: e_1_2_8_94_1 doi: 10.1103/PhysRevB.60.15766 – ident: e_1_2_8_8_1 doi: 10.1007/s12274-014-0532-x – ident: e_1_2_8_182_1 doi: 10.1002/adfm.201601349 – ident: e_1_2_8_198_1 doi: 10.1038/35098012 – ident: e_1_2_8_27_1 doi: 10.1038/ncomms5458 – year: 2017 ident: e_1_2_8_43_1 publication-title: Mater. Chem. Front. – ident: e_1_2_8_200_1 doi: 10.1088/2053-1583/3/4/045010 – ident: e_1_2_8_149_1 doi: 10.1016/0038-1098(87)90162-1 – ident: e_1_2_8_130_1 doi: 10.1021/nl1023707 – ident: e_1_2_8_58_1 doi: 10.1007/s12274-015-0865-0 – ident: e_1_2_8_64_1 doi: 10.1063/1.4959026 – ident: e_1_2_8_111_1 doi: 10.1002/adma.201503873 – ident: e_1_2_8_131_1 doi: 10.1021/nn503093k – ident: e_1_2_8_34_1 doi: 10.1021/nl502557g – ident: e_1_2_8_68_1 doi: 10.1016/j.physb.2011.03.044 – ident: e_1_2_8_151_1 doi: 10.1103/PhysRevB.66.245207 – ident: e_1_2_8_191_1 doi: 10.1021/nn204198g – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevB.92.115438 – ident: e_1_2_8_129_1 doi: 10.1021/nn303352k – ident: e_1_2_8_16_1 doi: 10.1002/adma.201504090 – ident: e_1_2_8_2_1 doi: 10.1038/nnano.2010.279 – ident: e_1_2_8_197_1 doi: 10.1126/science.1072886 – ident: e_1_2_8_51_1 doi: 10.1039/C4RA17320A – ident: e_1_2_8_193_1 doi: 10.1126/science.1157996 – ident: e_1_2_8_113_1 doi: 10.1038/nature04233 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201504546 – ident: e_1_2_8_104_1 doi: 10.1039/C6RA23687A – ident: e_1_2_8_202_1 doi: 10.1038/ncomms9573 – ident: e_1_2_8_67_1 doi: 10.1038/ncomms7991 – ident: e_1_2_8_73_1 doi: 10.1021/nn501175k – ident: e_1_2_8_141_1 doi: 10.1021/acsnano.5b00985 – ident: e_1_2_8_83_1 doi: 10.1002/adfm.201504408 – ident: e_1_2_8_42_1 doi: 10.1021/nl500935z – ident: e_1_2_8_4_1 doi: 10.1038/nnano.2014.215 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201606129 – ident: e_1_2_8_11_1 doi: 10.1038/nphoton.2014.271 – ident: e_1_2_8_95_1 doi: 10.1016/S0022-3697(99)00201-2 – ident: e_1_2_8_178_1 doi: 10.1063/1.4941996 – ident: e_1_2_8_188_1 doi: 10.1002/adma.201601248 – ident: e_1_2_8_146_1 doi: 10.1002/adma.201603471 – ident: e_1_2_8_140_1 doi: 10.1002/adma.201502375 – ident: e_1_2_8_71_1 doi: 10.1038/nmat3687 – ident: e_1_2_8_199_1 doi: 10.1038/nphys3492 – ident: e_1_2_8_160_1 doi: 10.1088/2053-1583/2/4/044010 – ident: e_1_2_8_195_1 doi: 10.1039/C5CP06706E – ident: e_1_2_8_92_1 doi: 10.1063/1.365357 – ident: e_1_2_8_186_1 doi: 10.1063/1.122594 – ident: e_1_2_8_12_1 doi: 10.1038/nphoton.2015.282 – ident: e_1_2_8_60_1 doi: 10.1021/acs.chemmater.6b00379 – ident: e_1_2_8_45_1 doi: 10.1021/ar5002846 – ident: e_1_2_8_105_1 doi: 10.1126/science.aab3175 – ident: e_1_2_8_150_1 doi: 10.1088/0953-8984/11/27/312 – ident: e_1_2_8_177_1 doi: 10.1002/adma.201601002 – ident: e_1_2_8_39_1 doi: 10.1088/2053-1583/3/4/045016 – ident: e_1_2_8_163_1 doi: 10.1109/55.863106 – ident: e_1_2_8_139_1 doi: 10.1002/adfm.201603884 – ident: e_1_2_8_15_1 doi: 10.1038/nnano.2012.193 – ident: e_1_2_8_98_1 doi: 10.1088/2053-1583/3/3/031010 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevB.8.3719 – ident: e_1_2_8_122_1 doi: 10.1021/ar500291j – ident: e_1_2_8_57_1 doi: 10.1021/acs.nanolett.5b00910 – ident: e_1_2_8_35_1 doi: 10.1021/nl5045007 – ident: e_1_2_8_119_1 doi: 10.1002/andp.19925040403 – ident: e_1_2_8_181_1 doi: 10.1103/PhysRevB.92.075439 – ident: e_1_2_8_183_1 doi: 10.1039/C5CP07585H – ident: e_1_2_8_30_1 doi: 10.1021/acs.nanolett.6b00748 – ident: e_1_2_8_117_1 doi: 10.1021/acs.nanolett.6b02766 – ident: e_1_2_8_103_1 doi: 10.1038/nphys3314 – ident: e_1_2_8_61_1 doi: 10.1063/1.4942162 – ident: e_1_2_8_161_1 doi: 10.1126/science.1065824 – ident: e_1_2_8_176_1 doi: 10.1088/0957-4484/27/44/445201 – ident: e_1_2_8_26_1 doi: 10.1038/nnano.2014.14 – ident: e_1_2_8_72_1 doi: 10.1038/nnano.2015.70 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201600722 – ident: e_1_2_8_201_1 doi: 10.1038/ncomms9572 – ident: e_1_2_8_31_1 doi: 10.1021/acsphotonics.5b00486 – ident: e_1_2_8_108_1 doi: 10.1021/acs.nanolett.5b04925 – ident: e_1_2_8_173_1 doi: 10.1016/j.spmi.2012.03.030 – ident: e_1_2_8_168_1 doi: 10.1002/adma.201305845 – ident: e_1_2_8_87_1 doi: 10.1007/s12274-015-0932-6 – ident: e_1_2_8_174_1 doi: 10.1038/nnano.2013.219 – ident: e_1_2_8_165_1 doi: 10.1126/science.1100731 – ident: e_1_2_8_77_1 doi: 10.1038/nnano.2012.224 – ident: e_1_2_8_137_1 doi: 10.1038/nnano.2012.256 – ident: e_1_2_8_171_1 doi: 10.1002/adma.201503340 – ident: e_1_2_8_5_1 doi: 10.1038/nature12385 – ident: e_1_2_8_10_1 doi: 10.1021/nn500064s – ident: e_1_2_8_148_1 doi: 10.1149/1.2108579 – ident: e_1_2_8_133_1 doi: 10.1002/adfm.201603998 – ident: e_1_2_8_136_1 doi: 10.1038/nmat4091 – ident: e_1_2_8_157_1 doi: 10.1021/nn505354a – ident: e_1_2_8_143_1 doi: 10.1039/C5CP01649E – ident: e_1_2_8_14_1 doi: 10.1039/C4CS00287C – ident: e_1_2_8_49_1 doi: 10.1021/acs.jpcc.6b01044 – ident: e_1_2_8_82_1 doi: 10.1103/PhysRevB.62.10812 – ident: e_1_2_8_121_1 doi: 10.1038/ncomms4631 – ident: e_1_2_8_156_1 doi: 10.1002/aenm.201601843 – ident: e_1_2_8_110_1 doi: 10.1038/nmat4477 – ident: e_1_2_8_167_1 doi: 10.1021/nn501013c – ident: e_1_2_8_123_1 doi: 10.1038/nmat814 – ident: e_1_2_8_187_1 doi: 10.1016/S0026-2692(99)00061-0 – ident: e_1_2_8_100_1 doi: 10.1063/1.4901527 – ident: e_1_2_8_54_1 doi: 10.1038/srep10013 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201670048 – ident: e_1_2_8_190_1 doi: 10.1038/nature13792 – ident: e_1_2_8_84_1 doi: 10.1002/adfm.201601019 – ident: e_1_2_8_53_1 doi: 10.1021/acsnano.6b04165 – ident: e_1_2_8_9_1 doi: 10.1063/1.1723695 – ident: e_1_2_8_76_1 doi: 10.1063/1.4941001 – ident: e_1_2_8_89_1 doi: 10.1080/00018736900101307 – ident: e_1_2_8_115_1 doi: 10.1002/adfm.201500969 – ident: e_1_2_8_152_1 doi: 10.1016/S0038-1098(99)00240-9 – ident: e_1_2_8_196_1 doi: 10.1038/nature06458 – ident: e_1_2_8_109_1 doi: 10.1002/advs.201600177 – ident: e_1_2_8_185_1 doi: 10.1109/50.4133 – ident: e_1_2_8_158_1 doi: 10.1039/C4NR03740E – ident: e_1_2_8_17_1 doi: 10.1038/nchem.1589 – ident: e_1_2_8_52_1 doi: 10.1038/nnano.2015.10 – ident: e_1_2_8_107_1 doi: 10.1016/j.jallcom.2004.04.011 – ident: e_1_2_8_106_1 doi: 10.1088/0953-8984/28/35/353002 – ident: e_1_2_8_41_1 doi: 10.1038/ncomms5475 – ident: e_1_2_8_75_1 doi: 10.1039/C6RA18238K – ident: e_1_2_8_155_1 doi: 10.1002/smll.201501488 – ident: e_1_2_8_162_1 doi: 10.1038/nature10676 – ident: e_1_2_8_36_1 doi: 10.1088/2053-1583/1/2/021002 – ident: e_1_2_8_3_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_23_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_8_37_1 doi: 10.1021/acs.jpcc.6b08748 – ident: e_1_2_8_63_1 doi: 10.1021/acsnano.5b02511 – ident: e_1_2_8_125_1 doi: 10.1039/c3tc00710c – ident: e_1_2_8_29_1 doi: 10.1002/adma.201502585 – ident: e_1_2_8_81_1 doi: 10.1021/nl301702r – ident: e_1_2_8_116_1 doi: 10.1103/PhysRevB.89.155433 – ident: e_1_2_8_179_1 doi: 10.1021/nl060867g – ident: e_1_2_8_80_1 doi: 10.1021/nn305275h – ident: e_1_2_8_24_1 doi: 10.1038/nnano.2014.25 – ident: e_1_2_8_101_1 doi: 10.1039/c1cp21159e – ident: e_1_2_8_164_1 doi: 10.1109/TDMR.2004.824359 – ident: e_1_2_8_33_1 doi: 10.1038/ncomms5214 – ident: e_1_2_8_118_1 doi: 10.1021/acsnano.5b04851 – ident: e_1_2_8_91_1 doi: 10.1103/PhysRevB.55.15608 – ident: e_1_2_8_85_1 doi: 10.1039/C6NR07233J – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevB.64.235305 – ident: e_1_2_8_180_1 doi: 10.1126/science.1062340 – ident: e_1_2_8_69_1 doi: 10.1021/j100393a010 – ident: e_1_2_8_175_1 doi: 10.1038/nnano.2015.112 – ident: e_1_2_8_120_1 doi: 10.1038/srep05442 – ident: e_1_2_8_74_1 doi: 10.1038/nnano.2013.277 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_2_8_93_1 doi: 10.1103/PhysRevB.58.16130 – ident: e_1_2_8_55_1 doi: 10.1038/srep19624 – ident: e_1_2_8_134_1 doi: 10.1002/smll.201502392 – ident: e_1_2_8_170_1 doi: 10.1038/nphoton.2008.30 – ident: e_1_2_8_88_1 doi: 10.1039/c4nr01741b – ident: e_1_2_8_99_1 doi: 10.1038/srep29254 – ident: e_1_2_8_127_1 doi: 10.1038/nmat3673 – ident: e_1_2_8_128_1 doi: 10.1021/nn405719x – ident: e_1_2_8_112_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_1_1 doi: 10.1016/j.nantod.2016.10.003 – ident: e_1_2_8_124_1 doi: 10.1002/smll.200801442 – ident: e_1_2_8_21_1 doi: 10.1002/adom.201600221 – ident: e_1_2_8_144_1 doi: 10.1038/ncomms8805 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201601977 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.93.115409 – ident: e_1_2_8_184_1 doi: 10.1038/nmat4218 – ident: e_1_2_8_153_1 doi: 10.1016/S0925-8388(00)01332-3 – ident: e_1_2_8_90_1 doi: 10.1016/0022-4596(84)90330-X – ident: e_1_2_8_169_1 doi: 10.1038/nnano.2009.292 – ident: e_1_2_8_126_1 doi: 10.1038/ncomms9569 – ident: e_1_2_8_96_1 doi: 10.1039/C6NR01569G – ident: e_1_2_8_132_1 doi: 10.1002/adma.201104798 – ident: e_1_2_8_159_1 doi: 10.1002/anie.201510029 – ident: e_1_2_8_166_1 doi: 10.1021/acsnano.6b00980 – ident: e_1_2_8_147_1 doi: 10.1016/j.matchemphys.2007.02.090 – ident: e_1_2_8_6_1 doi: 10.1021/nn405685j – ident: e_1_2_8_97_1 doi: 10.1021/nn5053926 – ident: e_1_2_8_154_1 doi: 10.1002/adma.201501795 – ident: e_1_2_8_135_1 doi: 10.1038/nmat4064 – ident: e_1_2_8_192_1 doi: 10.1021/jz3012436 – ident: e_1_2_8_7_1 doi: 10.1021/acs.nanolett.6b03999 – ident: e_1_2_8_25_1 doi: 10.1038/nnano.2014.26 – ident: e_1_2_8_138_1 doi: 10.1126/science.aab4097 |
SSID | ssj0001537418 |
Score | 2.5327017 |
SecondaryResourceType | review_article |
Snippet | With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and... With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1700231 |
SubjectTerms | anisotropy electronics optoelectronics Review Reviews transition metal dichalcogenides |
Title | Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700231 https://www.ncbi.nlm.nih.gov/pubmed/29270337 https://www.proquest.com/docview/1979965484 https://pubmed.ncbi.nlm.nih.gov/PMC5737141 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEF9EX3w5Tj3v6kdZ4eA8uGC6H9nksdpKkWsteoW-hc3uBgslKab69zuTpGmLHOJTIBl2w87OzsfO_IaQn2HiEmGF8sD0d55I0tTTETeeDX2tQycSxbE4eTgKBhNxN5XTjSr-Ch-iCbihZJTnNQq4ToqrNWiotq8It434cgwLqfewvhbR85kYr6MskiM8C3aYA-_a46EQK-RGn11tD7Gtmd6Zm--zJjet2VId3X4lX2o7knYrxh-QHZcdkoNaUgt6WcNJ_z4is37T6YbqzNL7xTJfN7-h3Y0bbHoNOs3SPKOsR0f5q4MJslmRA-kCSEu9VqZ40aEDo532MOd-bnLYhDPrim9kctv_dzPw6gYLnpEYomSGOXA_HA9Cy3yRIsakso5LnQilYO1SxYGHPPAjHXQM6HZhrAojK0yqbCD5MdnN8sz9INQ3QQj6VkdpIoVjBgw72bFGRdoqzWXYIt5qcWNTo49jE4x5XOEmsxiZETfMaJFfDf2iwt34L-XFilcxiAbed-jM5S9F3MErywBcMtEi3yveNWOxiMFZx1WLqC2uNgQIu739JZs9lfDbUiHKIcz7p-T_B78Xg3nxCF7zyefIT8k-vqsSZ87I7vL5xZ2D-bNM2uUOb5O9bm_49xGe1_3R-KFdBhPeAJdwA4s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-iH_SLOJ_zGUFQwWKXR9N-9Ml8bAoq-K2kSYoDaYeb-_u9a7vOISJ-ztGUXC73u8vld4QchIlLhBXKA-jvPJGkqacjbjwb-lqHTiSK4-PkTjdov4jbVzmuJsS3MCU_RJ1wQ8sozms0cExIn05YQ7UdId82EswxfEk9JwKm0DaZeJykWSRHfhZsMQfhtcdDIcbUjT47nf7EtGv6gTd_lk1-h7OFP7peIosVkKRnpeYbZMZly6RRmeqAHlV80scrpHdVt7qhOrP0oT_MJ91v6Nm3K2x6Dk7N0jyj7JJ285GDCbLeIAfRPogWjq2o8aIdB6idXmLR_bvJYRf2rBuskpfrq-eLtld1WPCMxBwlM8xB_OF4EFrmixRJJpV1XOpEKAVrlyoOSuSBH-mgZcC5C2NVGFlhUmUDydfIbJZnboNQ3wQhOFwdpYkUjhlAdrJljYq0VZrLsEm88eLGpqIfxy4Y73FJnMxiVEZcK6NJDmv5fkm88avk_lhXMdgGXnjozOWfg7iFd5YBxGSiSdZL3dXfYhGDw46rJlFTWq0FkHd7eiTrvRX821IhzSHMe1Lo_4_fiwFfPEHYvPk_8T0y337u3Mf3N927LbKA42UVzTaZHX58uh3AQsNkt9jtX0EEAtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBajhbGXsnSXZutaDQZbYSaJLpb9mDUJ2SXZYE0JfTGyJNNAsM2S9Pf3HNtxYsIYe9bBMvp0dD5JR98h5EMQu1hYoTyg_s4TcZJ4OuTGs0FX68CJWHF8nDyZ-uOZ-DaX871X_KU-RH3ghp5RrNfo4LlNOjvRUG0fUG4b9eUYPqQ-Rqk8mNfH_dvZ3Wx3ziI5CrRgjTnYX3s8EGKr3dhlneZHmrHpgHAe5k3u89kiII2ek5OKSdJ-CX2LPHHpKWlVvrqinypB6asXZDGsa91QnVr6M19nu_I3tL93h02_QFSzNEspG9Bp9uCgg3SxysA0B9MishVJXnTigLbTAWbdL00G03Bh3eolmY2GN9djryqx4BmJh5TMMAcbEMf9wLKuSFBlUlnHpY6FUjB2ieKAIoeR1X7PQHQXxqogtMIkyvqSvyJHaZa6M0K7xg8g4uowiaVwzAC1kz1rVKit0lwGbeJtBzcylf44lsFYRqVyMosQjKgGo00-1vZ5qbzxV8v3W6wicA688dCpyzarqIeXlj5sykSbvC6xq7_FQgarHVdtohqo1gYovN1sSRf3hQC3VKhzCP1-LvD_x-9FQDB-w775zf-ZX5Knvwaj6MfX6fe35Bk2l1k05-Ro_Wfj3gEXWscX1XR_BJlSA8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+Optoelectronic+Applications+Based+on+2D+Novel+Anisotropic+Transition+Metal+Dichalcogenides&rft.jtitle=Advanced+science&rft.au=Gong%2C+Chuanhui&rft.au=Zhang%2C+Yuxi&rft.au=Chen%2C+Wei&rft.au=Chu%2C+Junwei&rft.date=2017-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1002%2Fadvs.201700231&rft_id=info%3Apmid%2F29270337&rft.externalDocID=PMC5737141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |