Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides

With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 4; no. 12; pp. 1700231 - n/a
Main Authors Gong, Chuanhui, Zhang, Yuxi, Chen, Wei, Chu, Junwei, Lei, Tianyu, Pu, Junru, Dai, Liping, Wu, Chunyang, Cheng, Yuhua, Zhai, Tianyou, Li, Liang, Xiong, Jie
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. The recent research progresses of low‐symmetry MTe2 (M = Mo, W) and ReX2 (X = S, Se) are presented with an emphasis on the crystalline structure, preparation methods, and novel electronic and optoelectronic applications.
AbstractList With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe and ReX (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.
With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.
With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe 2 and ReX 2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.
With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed. The recent research progresses of low‐symmetry MTe2 (M = Mo, W) and ReX2 (X = S, Se) are presented with an emphasis on the crystalline structure, preparation methods, and novel electronic and optoelectronic applications.
Author Chen, Wei
Cheng, Yuhua
Chu, Junwei
Dai, Liping
Xiong, Jie
Gong, Chuanhui
Lei, Tianyu
Li, Liang
Wu, Chunyang
Zhang, Yuxi
Zhai, Tianyou
Pu, Junru
AuthorAffiliation 1 State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China
3 State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
2 School of Automation Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China
4 College of Physics, Optoelectronics and Energy Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
AuthorAffiliation_xml – name: 2 School of Automation Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– name: 1 State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China
– name: 3 State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
– name: 4 College of Physics, Optoelectronics and Energy Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
Author_xml – sequence: 1
  givenname: Chuanhui
  surname: Gong
  fullname: Gong, Chuanhui
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Yuxi
  surname: Zhang
  fullname: Zhang, Yuxi
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Junwei
  surname: Chu
  fullname: Chu, Junwei
  email: junweichu@163.com
  organization: University of Electronic Science and Technology of China
– sequence: 5
  givenname: Tianyu
  surname: Lei
  fullname: Lei, Tianyu
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Junru
  surname: Pu
  fullname: Pu, Junru
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Liping
  surname: Dai
  fullname: Dai, Liping
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Chunyang
  surname: Wu
  fullname: Wu, Chunyang
  organization: University of Electronic Science and Technology of China
– sequence: 9
  givenname: Yuhua
  surname: Cheng
  fullname: Cheng, Yuhua
  email: yhcheng@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 10
  givenname: Tianyou
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 11
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: Soochow University
– sequence: 12
  givenname: Jie
  orcidid: 0000-0003-3881-6948
  surname: Xiong
  fullname: Xiong, Jie
  email: jiexiong@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29270337$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEUha2Kqjy3XVZesknq14w9m0qBAK2UwgLo1jL2HTBy7Ol4kop_X4dASpEQK7--c458zy7aiikCQp8pGVNC2FfjlnnMCJXlwOkHtMNoo0ZcCbH1Yr-NDnK-J4TQiktB1Se0zRomCedyB_mTAHboU_QWm-jwRTck-Hc16brgrRl8ihkfmQwOp4jZFJ-nJQQ8iT6ngnYFvepNzH5F4p8wmICn3t6ZYNMtRO8g76OPrQkZDp7WPXR9enJ1_H00uzj7cTyZjWxFiBwxy0AwBbxWjhHRKqKIdMArcyOkLF9oJRdC8Zo0pqZWUSWsk6pxwrbS1RXfQ9_Wvt3iZg7OQhx6E3TX-7npH3QyXv__Ev2dvk1LXUkuqaDF4PDJoE-_F5AHPffZQggmQlpkTRvZNHUllCjol5dZm5Dn-RZArAHbp5x7aLX1w-M4S7QPmhK9alKvmtSbJots_Er27PymgK8Ff3yAh3doPZn-uhRE8r-6QbCm
CitedBy_id crossref_primary_10_1039_D0CC04476H
crossref_primary_10_1002_qute_202400081
crossref_primary_10_1002_adfm_202206094
crossref_primary_10_3390_ma14205979
crossref_primary_10_1016_j_jcrysgro_2018_11_016
crossref_primary_10_1002_advs_201800816
crossref_primary_10_1021_jacs_1c06246
crossref_primary_10_1364_OE_490067
crossref_primary_10_1039_C9DT01581G
crossref_primary_10_1103_PhysRevB_101_165122
crossref_primary_10_1039_D4NH00102H
crossref_primary_10_1103_PhysRevLett_127_136803
crossref_primary_10_1016_j_jallcom_2024_174658
crossref_primary_10_1021_acs_chemmater_8b01091
crossref_primary_10_3390_pr13030791
crossref_primary_10_1002_adfm_202407749
crossref_primary_10_1007_s12274_023_5966_6
crossref_primary_10_1038_s41566_024_01461_8
crossref_primary_10_1109_JFLEX_2023_3316638
crossref_primary_10_34133_2021_9863038
crossref_primary_10_1016_j_chemosphere_2021_130874
crossref_primary_10_1021_acsnano_0c03346
crossref_primary_10_1002_adfm_202300141
crossref_primary_10_1088_1361_6463_abe2c5
crossref_primary_10_1021_acs_jpclett_0c02318
crossref_primary_10_1002_adom_202101762
crossref_primary_10_1016_j_mtener_2025_101810
crossref_primary_10_1039_D4SE00795F
crossref_primary_10_35848_1347_4065_abe201
crossref_primary_10_1016_j_sna_2024_115324
crossref_primary_10_1039_C9NR01700C
crossref_primary_10_1038_s41699_021_00220_5
crossref_primary_10_1364_OME_483284
crossref_primary_10_1021_acsami_9b03435
crossref_primary_10_1016_j_optmat_2022_113034
crossref_primary_10_1088_1361_6463_ab87bb
crossref_primary_10_1002_adfm_201803305
crossref_primary_10_1007_s10854_020_03969_5
crossref_primary_10_1007_s12274_017_1942_3
crossref_primary_10_1016_j_scib_2020_07_037
crossref_primary_10_1063_5_0104664
crossref_primary_10_1103_PhysRevB_107_195442
crossref_primary_10_1039_C8NR10350J
crossref_primary_10_1016_j_jallcom_2023_173263
crossref_primary_10_1021_acsphotonics_0c01200
crossref_primary_10_1021_acs_jpcc_2c00049
crossref_primary_10_1002_smll_202311045
crossref_primary_10_1021_acs_nanolett_4c04960
crossref_primary_10_1002_smtd_202300246
crossref_primary_10_1039_D0RA02033H
crossref_primary_10_1016_j_pmatsci_2024_101390
crossref_primary_10_1103_PhysRevB_105_075431
crossref_primary_10_3390_ma13143067
crossref_primary_10_1002_adom_201701243
crossref_primary_10_1007_s10854_019_02723_w
crossref_primary_10_1021_acs_nanolett_3c00826
crossref_primary_10_1088_2040_8986_ab5203
crossref_primary_10_1186_s11671_018_2758_0
crossref_primary_10_1002_inf2_12005
crossref_primary_10_1002_smm2_1142
crossref_primary_10_1002_apxr_202200102
crossref_primary_10_1016_j_ccr_2021_213822
crossref_primary_10_1002_adfm_202205567
crossref_primary_10_1016_j_vibspec_2022_103454
crossref_primary_10_1103_PhysRevB_109_125108
crossref_primary_10_1002_admi_202102091
crossref_primary_10_1002_aelm_202300610
crossref_primary_10_1016_j_matlet_2020_127826
crossref_primary_10_1016_j_electacta_2024_144891
crossref_primary_10_1021_acs_jpcc_2c03800
crossref_primary_10_1088_1361_648X_abd5f5
crossref_primary_10_1039_D3NR01416A
crossref_primary_10_1016_j_ijhydene_2023_09_095
crossref_primary_10_1021_acs_jpcc_3c03458
crossref_primary_10_1016_j_cej_2023_143727
crossref_primary_10_1088_1361_6463_ad7ff8
crossref_primary_10_1021_acs_jpcc_0c08079
crossref_primary_10_1021_acs_jpcc_3c01954
crossref_primary_10_1021_acs_jpclett_1c00317
crossref_primary_10_1016_j_flatc_2022_100455
crossref_primary_10_1002_inf2_12018
crossref_primary_10_1021_acsnano_3c05056
crossref_primary_10_1016_j_flatc_2022_100452
crossref_primary_10_1039_D1CP05199G
crossref_primary_10_1002_adom_202400481
crossref_primary_10_1002_inf2_12014
crossref_primary_10_1021_acs_nanolett_3c03666
crossref_primary_10_1016_j_apsusc_2023_157958
crossref_primary_10_1002_ppsc_202200031
crossref_primary_10_1063_5_0223518
crossref_primary_10_1016_j_carbon_2024_118920
crossref_primary_10_1002_adma_202005303
crossref_primary_10_1002_adom_201801274
crossref_primary_10_1002_er_7827
crossref_primary_10_1002_admi_202100328
crossref_primary_10_1016_j_mtphys_2022_100631
crossref_primary_10_1039_C8TC04612C
crossref_primary_10_1063_5_0001572
crossref_primary_10_1002_smll_202408545
crossref_primary_10_1016_j_vacuum_2023_112489
crossref_primary_10_1021_acs_jpclett_3c02082
crossref_primary_10_34133_2020_5464258
crossref_primary_10_1021_acsaelm_5c00012
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118795
crossref_primary_10_1016_j_sna_2019_04_049
crossref_primary_10_1021_acsabm_1c00625
crossref_primary_10_1080_10601325_2024_2394812
crossref_primary_10_1021_acsaem_8b01540
crossref_primary_10_1002_smll_201804346
crossref_primary_10_1364_OL_505797
crossref_primary_10_1021_acsnano_8b08079
crossref_primary_10_1021_acsami_4c06540
crossref_primary_10_1088_1674_1056_ad08a5
crossref_primary_10_1016_j_apsusc_2020_147026
crossref_primary_10_1021_acs_jpclett_1c00455
crossref_primary_10_1002_adma_202305353
crossref_primary_10_1021_acs_inorgchem_8b02213
crossref_primary_10_1063_5_0035764
crossref_primary_10_1039_D0TA03727C
crossref_primary_10_1039_C9NR02464F
crossref_primary_10_4028_p_775o97
crossref_primary_10_1016_j_tsf_2021_139024
crossref_primary_10_1016_j_jtice_2024_105749
crossref_primary_10_1038_s41699_024_00464_x
crossref_primary_10_1088_2053_1583_ac3f45
crossref_primary_10_1016_j_apsusc_2021_150282
crossref_primary_10_1109_TED_2023_3281292
crossref_primary_10_1039_C8PY00636A
crossref_primary_10_1016_j_cap_2024_06_009
crossref_primary_10_1007_s40042_023_00825_7
crossref_primary_10_3390_ma14216275
crossref_primary_10_3390_electronics11040619
crossref_primary_10_1016_j_rinp_2024_107558
crossref_primary_10_1063_5_0223287
crossref_primary_10_3390_ma15051794
crossref_primary_10_1016_j_jelechem_2020_114672
crossref_primary_10_1002_adma_201903580
crossref_primary_10_1103_PhysRevB_110_085424
crossref_primary_10_1088_1674_4926_41_8_080401
crossref_primary_10_1002_adfm_202102049
crossref_primary_10_1021_acsnano_2c10596
crossref_primary_10_1021_acs_jpcc_3c06772
crossref_primary_10_1002_adma_202202371
crossref_primary_10_1002_adfm_202111673
crossref_primary_10_1016_j_apsusc_2020_147841
crossref_primary_10_1063_5_0222745
crossref_primary_10_1002_smll_201804133
crossref_primary_10_1007_s42452_020_3029_0
crossref_primary_10_1103_PhysRevApplied_20_014052
crossref_primary_10_7567_1347_4065_ab4c53
crossref_primary_10_1007_s40843_020_1356_3
crossref_primary_10_35848_1882_0786_acbf9f
crossref_primary_10_1002_adma_201803285
crossref_primary_10_7498_aps_72_20222303
crossref_primary_10_1016_j_jallcom_2024_173830
crossref_primary_10_1016_j_mssp_2024_109095
crossref_primary_10_1016_j_mssp_2025_109471
crossref_primary_10_1002_inf2_12067
crossref_primary_10_1016_j_synthmet_2020_116441
crossref_primary_10_1016_j_cej_2024_157922
crossref_primary_10_1021_acs_jpcc_3c02166
crossref_primary_10_1039_D4TA03644A
crossref_primary_10_1002_admi_202400371
crossref_primary_10_1080_25740881_2025_2458111
crossref_primary_10_1002_sstr_202000136
crossref_primary_10_1007_s40843_023_2817_x
crossref_primary_10_1063_5_0073631
crossref_primary_10_1002_adfm_201900040
crossref_primary_10_1088_1555_6611_ab3bcc
crossref_primary_10_1016_j_chemphys_2024_112364
crossref_primary_10_1016_j_surfrep_2022_100567
crossref_primary_10_1007_s40843_020_1321_4
crossref_primary_10_1039_D1TC00949D
crossref_primary_10_1002_advs_202410549
crossref_primary_10_1021_acs_chemmater_2c00567
crossref_primary_10_1002_apxr_202300146
crossref_primary_10_1007_s12598_021_01781_6
crossref_primary_10_1039_D1QI00390A
crossref_primary_10_1021_acs_inorgchem_9b01015
crossref_primary_10_1039_D1TC01973B
crossref_primary_10_1021_acs_jpcc_1c01667
crossref_primary_10_1063_5_0039766
crossref_primary_10_1088_0256_307X_41_11_117101
crossref_primary_10_1007_s10854_020_03811_y
crossref_primary_10_1039_D3YA00316G
crossref_primary_10_1088_1361_6528_ac26fe
crossref_primary_10_1016_j_jssc_2021_122018
crossref_primary_10_1016_j_nanoen_2019_103951
crossref_primary_10_1021_acsaelm_9b00694
crossref_primary_10_1021_acsanm_1c00890
crossref_primary_10_1021_acs_nanolett_4c06512
crossref_primary_10_1039_C9TC04613E
crossref_primary_10_1088_1361_6528_ace97c
crossref_primary_10_1088_2053_1591_ab5c9c
crossref_primary_10_1038_s41563_018_0248_5
crossref_primary_10_1021_acs_jpcc_3c00349
crossref_primary_10_1039_D1CS00706H
crossref_primary_10_1021_acs_chemmater_1c01652
crossref_primary_10_1515_nanoph_2018_0041
crossref_primary_10_1039_D0TA08514F
crossref_primary_10_1039_D1CC07160B
crossref_primary_10_1016_j_jallcom_2021_159850
crossref_primary_10_1002_smll_201801460
crossref_primary_10_1016_j_tsf_2024_140535
crossref_primary_10_3390_molecules28114288
crossref_primary_10_1016_j_ssc_2023_115423
crossref_primary_10_1002_adom_201701302
crossref_primary_10_1007_s12274_018_2194_6
crossref_primary_10_1039_D3CP00421J
crossref_primary_10_1007_s42864_020_00056_4
crossref_primary_10_1016_j_xcrp_2024_102124
crossref_primary_10_1088_1361_648X_ac0c3d
crossref_primary_10_1016_j_jcis_2025_01_117
crossref_primary_10_2174_2666145416666230512115255
crossref_primary_10_1002_advs_201800478
crossref_primary_10_1002_smll_202304735
crossref_primary_10_1088_1742_6596_2353_1_012005
crossref_primary_10_1016_j_apmt_2020_100555
crossref_primary_10_1002_adfm_202201020
crossref_primary_10_1002_admi_202300319
crossref_primary_10_1002_adfm_201706559
crossref_primary_10_1088_2053_1591_ab2cea
crossref_primary_10_1021_acsami_1c09698
crossref_primary_10_1039_D2NH00031H
crossref_primary_10_1021_acs_nanolett_4c02173
crossref_primary_10_1088_1402_4896_ad624c
crossref_primary_10_1016_j_infrared_2023_105055
crossref_primary_10_1016_j_mssp_2019_104910
crossref_primary_10_1016_j_apmt_2019_04_007
crossref_primary_10_1021_acs_nanolett_4c01764
crossref_primary_10_1021_acsnano_2c07281
crossref_primary_10_1557_jmr_2020_27
crossref_primary_10_1002_adfm_202004480
crossref_primary_10_3390_bios13050495
crossref_primary_10_3390_nano12234133
crossref_primary_10_1021_acsami_1c10318
crossref_primary_10_1021_acsnano_3c04581
crossref_primary_10_1103_PhysRevB_104_235305
crossref_primary_10_1103_PhysRevMaterials_4_085202
crossref_primary_10_1016_j_apsusc_2021_150304
crossref_primary_10_1016_j_apsusc_2018_06_299
crossref_primary_10_1016_j_physe_2019_113823
crossref_primary_10_1007_s11664_021_08826_7
crossref_primary_10_1016_j_surfin_2024_104966
crossref_primary_10_1002_adfm_202212167
crossref_primary_10_7498_aps_68_20191002
crossref_primary_10_1007_s12598_024_03012_0
crossref_primary_10_1016_j_mtadv_2024_100476
crossref_primary_10_1002_adom_201900410
crossref_primary_10_1002_adfm_202006788
crossref_primary_10_1063_5_0233269
crossref_primary_10_1021_acsanm_0c02006
crossref_primary_10_1021_acs_jpcc_0c05608
crossref_primary_10_1103_PhysRevMaterials_7_044001
Cites_doi 10.1002/adom.201600323
10.1038/srep10699
10.1038/ncomms10671
10.1038/nature04235
10.1021/acs.chemmater.6b00364
10.1038/nnano.2014.150
10.1021/acsnano.5b04359
10.1021/jacs.5b07452
10.1103/PhysRevB.59.1661
10.1088/2053-1583/aa6422
10.1002/adom.201600290
10.1063/1.4967188
10.1063/1.354268
10.1002/adma.201602687
10.1021/nn203879f
10.1038/nnano.2014.309
10.1103/PhysRevB.92.054110
10.1038/ncomms4252
10.1088/2053-1583/aa6533
10.1038/srep13783
10.1103/PhysRevB.60.15766
10.1007/s12274-014-0532-x
10.1002/adfm.201601349
10.1038/35098012
10.1038/ncomms5458
10.1088/2053-1583/3/4/045010
10.1016/0038-1098(87)90162-1
10.1021/nl1023707
10.1007/s12274-015-0865-0
10.1063/1.4959026
10.1002/adma.201503873
10.1021/nn503093k
10.1021/nl502557g
10.1016/j.physb.2011.03.044
10.1103/PhysRevB.66.245207
10.1021/nn204198g
10.1103/PhysRevB.92.115438
10.1021/nn303352k
10.1002/adma.201504090
10.1038/nnano.2010.279
10.1126/science.1072886
10.1039/C4RA17320A
10.1126/science.1157996
10.1038/nature04233
10.1002/adfm.201504546
10.1039/C6RA23687A
10.1038/ncomms9573
10.1038/ncomms7991
10.1021/nn501175k
10.1021/acsnano.5b00985
10.1002/adfm.201504408
10.1021/nl500935z
10.1038/nnano.2014.215
10.1002/adfm.201606129
10.1038/nphoton.2014.271
10.1016/S0022-3697(99)00201-2
10.1063/1.4941996
10.1002/adma.201601248
10.1002/adma.201603471
10.1002/adma.201502375
10.1038/nmat3687
10.1038/nphys3492
10.1088/2053-1583/2/4/044010
10.1039/C5CP06706E
10.1063/1.365357
10.1063/1.122594
10.1038/nphoton.2015.282
10.1021/acs.chemmater.6b00379
10.1021/ar5002846
10.1126/science.aab3175
10.1088/0953-8984/11/27/312
10.1002/adma.201601002
10.1088/2053-1583/3/4/045016
10.1109/55.863106
10.1002/adfm.201603884
10.1038/nnano.2012.193
10.1088/2053-1583/3/3/031010
10.1103/PhysRevB.8.3719
10.1021/ar500291j
10.1021/acs.nanolett.5b00910
10.1021/nl5045007
10.1002/andp.19925040403
10.1103/PhysRevB.92.075439
10.1039/C5CP07585H
10.1021/acs.nanolett.6b00748
10.1021/acs.nanolett.6b02766
10.1038/nphys3314
10.1063/1.4942162
10.1126/science.1065824
10.1088/0957-4484/27/44/445201
10.1038/nnano.2014.14
10.1038/nnano.2015.70
10.1002/adma.201600722
10.1038/ncomms9572
10.1021/acsphotonics.5b00486
10.1021/acs.nanolett.5b04925
10.1016/j.spmi.2012.03.030
10.1002/adma.201305845
10.1007/s12274-015-0932-6
10.1038/nnano.2013.219
10.1126/science.1100731
10.1038/nnano.2012.224
10.1038/nnano.2012.256
10.1002/adma.201503340
10.1038/nature12385
10.1021/nn500064s
10.1149/1.2108579
10.1002/adfm.201603998
10.1038/nmat4091
10.1021/nn505354a
10.1039/C5CP01649E
10.1039/C4CS00287C
10.1021/acs.jpcc.6b01044
10.1103/PhysRevB.62.10812
10.1038/ncomms4631
10.1002/aenm.201601843
10.1038/nmat4477
10.1021/nn501013c
10.1038/nmat814
10.1016/S0026-2692(99)00061-0
10.1063/1.4901527
10.1038/srep10013
10.1002/adfm.201670048
10.1038/nature13792
10.1002/adfm.201601019
10.1021/acsnano.6b04165
10.1063/1.1723695
10.1063/1.4941001
10.1080/00018736900101307
10.1002/adfm.201500969
10.1016/S0038-1098(99)00240-9
10.1038/nature06458
10.1002/advs.201600177
10.1109/50.4133
10.1039/C4NR03740E
10.1038/nchem.1589
10.1038/nnano.2015.10
10.1016/j.jallcom.2004.04.011
10.1088/0953-8984/28/35/353002
10.1038/ncomms5475
10.1039/C6RA18238K
10.1002/smll.201501488
10.1038/nature10676
10.1088/2053-1583/1/2/021002
10.1038/nmat1849
10.1038/nnano.2013.100
10.1021/acs.jpcc.6b08748
10.1021/acsnano.5b02511
10.1039/c3tc00710c
10.1002/adma.201502585
10.1021/nl301702r
10.1103/PhysRevB.89.155433
10.1021/nl060867g
10.1021/nn305275h
10.1038/nnano.2014.25
10.1039/c1cp21159e
10.1109/TDMR.2004.824359
10.1038/ncomms5214
10.1021/acsnano.5b04851
10.1103/PhysRevB.55.15608
10.1039/C6NR07233J
10.1103/PhysRevB.64.235305
10.1126/science.1062340
10.1021/j100393a010
10.1038/nnano.2015.112
10.1038/srep05442
10.1038/nnano.2013.277
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.58.16130
10.1038/srep19624
10.1002/smll.201502392
10.1038/nphoton.2008.30
10.1039/c4nr01741b
10.1038/srep29254
10.1038/nmat3673
10.1021/nn405719x
10.1126/science.1102896
10.1016/j.nantod.2016.10.003
10.1002/smll.200801442
10.1002/adom.201600221
10.1038/ncomms8805
10.1002/adma.201601977
10.1103/PhysRevB.93.115409
10.1038/nmat4218
10.1016/S0925-8388(00)01332-3
10.1016/0022-4596(84)90330-X
10.1038/nnano.2009.292
10.1038/ncomms9569
10.1039/C6NR01569G
10.1002/adma.201104798
10.1002/anie.201510029
10.1021/acsnano.6b00980
10.1016/j.matchemphys.2007.02.090
10.1021/nn405685j
10.1021/nn5053926
10.1002/adma.201501795
10.1038/nmat4064
10.1021/jz3012436
10.1021/acs.nanolett.6b03999
10.1038/nnano.2014.26
10.1126/science.aab4097
ContentType Journal Article
Copyright 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/advs.201700231
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID PMC5737141
29270337
10_1002_advs_201700231
ADVS407
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key Basic Research Program of China
  funderid: 2014CB931702
– fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders
  funderid: 2014JQ0011
– fundername: National Natural Science Foundation of China
  funderid: 91421110
– fundername: National Key Basic Research Program of China
  grantid: 2014CB931702
– fundername: Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders
  grantid: 2014JQ0011
– fundername: National Natural Science Foundation of China
  grantid: 91421110
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c5007-2c2e428e368d204f80807de35ab477153f734483609a61c8184cd789d4cf7d653
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Thu Aug 21 13:58:48 EDT 2025
Fri Jul 11 14:00:37 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Tue Jul 01 04:05:04 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Aug 20 07:24:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 2D
electronics
transition metal dichalcogenides
optoelectronics
anisotropy
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5007-2c2e428e368d204f80807de35ab477153f734483609a61c8184cd789d4cf7d653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3881-6948
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700231
PMID 29270337
PQID 1979965484
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5737141
proquest_miscellaneous_1979965484
pubmed_primary_29270337
crossref_citationtrail_10_1002_advs_201700231
crossref_primary_10_1002_advs_201700231
wiley_primary_10_1002_advs_201700231_ADVS407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2017
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2011; 479
2007; 104
2010; 10
2013; 1
2010; 105
2004; 4
2014; 26
2013; 7
2013; 8
2013; 5
2012; 12
1984; 51
2011; 406
1997; 55
2015; 137
1999; 59
2007; 6
2014; 14
2014; 13
2012; 24
2001; 413
2004; 383
2016; 10
2014; 48
2016; 93
1969; 18
2016; 18
2004; 306
2011; 6
2016; 16
2016; 15
2011; 5
2016; 12
2016; 11
2016; 4
2016; 6
2016; 7
2016; 3
1987; 61
2002; 66
1999; 30
1999; 111
2001; 317
2016; 28
1998; 73
2016; 27
1973; 8
2016; 26
2016; 8
2016; 9
2017; 7
2017; 4
1997; 81
2016; 109
2016; 108
1986; 133
2011; 13
2015; 349
2008; 2
2012; 51
2014; 1
2014; 5
2001; 294
2014; 4
2001; 293
2016; 119
2013; 12
2015; 44
1993; 74
2003; 2
2000; 62
1999; 11
2014; 9
2014; 8
2014; 7
2014; 6
1998; 58
2015; 2
2014; 514
2015; 15
2015; 14
2015; 6
2015; 17
2004; 84
2015; 5
2015; 3
2015; 92
2002; 297
2017; 27
2000; 21
2015; 11
2015; 10
2005; 438
1992; 504
2006; 6
2017; 29
1999; 60
2008; 321
2015; 9
2015; 8
2016; 120
2014; 89
2001; 64
2016; 55
2015; 26
2014; 105
2015; 25
2015; 27
2012; 3
1988; 6
1982; 86
2013; 499
2017
2009; 5
2009; 4
2012; 6
2012; 7
2008; 451
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
Hafeez M. (e_1_2_8_43_1) 2017
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 74
  start-page: 5266
  year: 1993
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 5125
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 075008
  year: 2016
  publication-title: AIP Adv.
– volume: 28
  start-page: 959
  year: 2016
  publication-title: Adv. Mater.
– volume: 294
  start-page: 1317
  year: 2001
  publication-title: Science
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 6991
  year: 2015
  publication-title: Nat. Commun.
– volume: 111
  start-page: 635
  year: 1999
  publication-title: Solid State Commun.
– volume: 9
  start-page: 268
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 1096
  year: 2014
  publication-title: Nat. Mater.
– volume: 15
  start-page: 43
  year: 2016
  publication-title: Nat. Mater.
– volume: 120
  start-page: 8364
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 10013
  year: 2015
  publication-title: Sci. Rep.
– volume: 12
  start-page: 438
  year: 2016
  publication-title: Small
– volume: 11
  start-page: 763
  year: 2016
  publication-title: Nano Today
– volume: 73
  start-page: 2799
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 257
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 1661
  year: 1999
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 29254
  year: 2016
  publication-title: Sci. Rep.
– volume: 137
  start-page: 11892
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1135
  year: 2014
  publication-title: Nat. Mater.
– volume: 44
  start-page: 2664
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 1063
  year: 2015
  publication-title: Nat. Phys.
– volume: 7
  start-page: 1601843
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1600177
  year: 2016
  publication-title: Adv. Sci.
– volume: 8
  start-page: 3651
  year: 2015
  publication-title: Nano Res.
– volume: 9
  start-page: 5326
  year: 2015
  publication-title: ACS Nano
– volume: 438
  start-page: 201
  year: 2005
  publication-title: Nature
– volume: 92
  start-page: 054110
  year: 2015
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 87416
  year: 2016
  publication-title: RSC Adv.
– volume: 9
  start-page: 262
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 58
  start-page: 16130
  year: 1998
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 4134
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 19624
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1292
  year: 1988
  publication-title: J. Lightwave Technol.
– volume: 5
  start-page: 4458
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 17572
  year: 2015
  publication-title: RSC Adv.
– volume: 16
  start-page: 3624
  year: 2016
  publication-title: Nano Lett.
– volume: 7
  start-page: 1731
  year: 2014
  publication-title: Nano Res.
– year: 2017
  publication-title: Mater. Chem. Front.
– volume: 8
  start-page: 899
  year: 2014
  publication-title: Nat. Photonics
– volume: 66
  start-page: 245207
  year: 2002
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 363
  year: 2014
  publication-title: ACS Nano
– volume: 92
  start-page: 115438
  year: 2015
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 1429
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 120
  start-page: 21866
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 4
  start-page: 1573
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 044010
  year: 2015
  publication-title: 2D Mater.
– volume: 9
  start-page: 507
  year: 2016
  publication-title: Nano Res.
– volume: 62
  start-page: 10812
  year: 2000
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 202
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 8572
  year: 2015
  publication-title: Nat. Commun.
– volume: 438
  start-page: 197
  year: 2005
  publication-title: Nature
– volume: 12
  start-page: 754
  year: 2013
  publication-title: Nat. Mater.
– volume: 133
  start-page: 358
  year: 1986
  publication-title: J. Electrochem. Soc.
– volume: 108
  start-page: 063506
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 297
  start-page: 2229
  year: 2002
  publication-title: Science
– volume: 15
  start-page: 5667
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 6548
  year: 2015
  publication-title: ACS Nano
– volume: 514
  start-page: 470
  year: 2014
  publication-title: Nature
– volume: 3
  start-page: 045010
  year: 2016
  publication-title: 2D Mater.
– volume: 349
  start-page: 524
  year: 2015
  publication-title: Science
– volume: 51
  start-page: 765
  year: 2012
  publication-title: Superlattices Microstruct.
– volume: 5
  start-page: 3631
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 534
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 9526
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 676
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 499
  start-page: 419
  year: 2013
  publication-title: Nature
– volume: 28
  start-page: 3216
  year: 2016
  publication-title: Adv. Mater.
– volume: 48
  start-page: 56
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 8067
  year: 2016
  publication-title: ACS Nano
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 8
  start-page: 6655
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 7798
  year: 2016
  publication-title: Nano Lett.
– volume: 86
  start-page: 463
  year: 1982
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 1750
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 55
  start-page: 15608
  year: 1997
  publication-title: Phys. Rev. B
– volume: 27
  start-page: 8035
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 107
  year: 2003
  publication-title: Nat. Mater.
– volume: 3
  start-page: 96
  year: 2015
  publication-title: ACS Photonics
– volume: 8
  start-page: 100
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 353002
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  start-page: 99
  year: 2004
  publication-title: IEEE Trans. Device Mater. Reliab.
– volume: 4
  start-page: 025057
  year: 2017
  publication-title: 2D Mater.
– volume: 13
  start-page: 15546
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 13783
  year: 2015
  publication-title: Sci. Rep.
– volume: 4
  start-page: 5442
  year: 2014
  publication-title: Sci. Rep.
– volume: 16
  start-page: 5888
  year: 2016
  publication-title: Nano Lett.
– volume: 21
  start-page: 445
  year: 2000
  publication-title: IEEE Electron Device Lett.
– volume: 48
  start-page: 31
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 4086
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 109
  start-page: 193502
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 2830
  year: 2016
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 306
  start-page: 2057
  year: 2004
  publication-title: Science
– volume: 14
  start-page: 6231
  year: 2014
  publication-title: Nano Lett.
– volume: 26
  start-page: 5499
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 021002
  year: 2014
  publication-title: 2D Mater.
– volume: 105
  start-page: 192101
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 531
  year: 1987
  publication-title: Solid State Commun.
– volume: 28
  start-page: 2308
  year: 2016
  publication-title: Chem. Mater.
– volume: 17
  start-page: 14866
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 6575
  year: 2015
  publication-title: Adv. Mater.
– volume: 383
  start-page: 74
  year: 2004
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 9110
  year: 2012
  publication-title: ACS Nano
– volume: 84
  start-page: 3301
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 504
  start-page: 248
  year: 1992
  publication-title: Ann. Phys.
– volume: 10
  start-page: 707
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 4640
  year: 2015
  publication-title: Adv. Mater.
– volume: 18
  start-page: 7381
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 1603884
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 92
  start-page: 075439
  year: 2015
  publication-title: Phys. Rev. B
– volume: 451
  start-page: 168
  year: 2008
  publication-title: Nature
– volume: 12
  start-page: 815
  year: 2013
  publication-title: Nat. Mater.
– volume: 8
  start-page: 952
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 11154
  year: 2014
  publication-title: ACS Nano
– volume: 93
  start-page: 115409
  year: 2016
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 289
  year: 2015
  publication-title: ACS Nano
– volume: 11
  start-page: 482
  year: 2015
  publication-title: Nat. Phys.
– volume: 26
  start-page: 1938
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 4076
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 104
  start-page: 105
  year: 2007
  publication-title: Mater. Chem. Phys.
– volume: 10
  start-page: 3852
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 3788
  year: 2012
  publication-title: Nano Lett.
– volume: 89
  start-page: 155433
  year: 2014
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 923
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 8324
  year: 2016
  publication-title: Nanoscale
– volume: 119
  start-page: 074307
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 413
  start-page: 597
  year: 2001
  publication-title: Nature
– volume: 27
  start-page: 1606129
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 045016
  year: 2016
  publication-title: 2D Mater.
– volume: 5
  start-page: 3252
  year: 2014
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1404
  year: 2016
  publication-title: Nano Lett.
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4551
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4475
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5367
  year: 1999
  publication-title: J. Phys.: Condens. Matter
– volume: 27
  start-page: 6431
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6985
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 2952
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 11249
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 1887
  year: 2006
  publication-title: Nano Lett.
– volume: 27
  start-page: 445201
  year: 2016
  publication-title: Nanotechnology
– volume: 6
  start-page: 8573
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 6711
  year: 2016
  publication-title: Adv. Mater.
– volume: 81
  start-page: 6380
  year: 1997
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 8296
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1169
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 10671
  year: 2016
  publication-title: Nat. Commun.
– volume: 51
  start-page: 170
  year: 1984
  publication-title: J. Solid State Chem.
– volume: 5
  start-page: 9703
  year: 2011
  publication-title: ACS Nano
– volume: 8
  start-page: 8273
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 4214
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1102
  year: 2014
  publication-title: ACS Nano
– volume: 9
  start-page: 780
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 293
  start-page: 1455
  year: 2001
  publication-title: Science
– volume: 26
  start-page: 1146
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 3263
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 216
  year: 2016
  publication-title: Nat. Photonics
– volume: 60
  start-page: 15766
  year: 1999
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 2884
  year: 2014
  publication-title: Nano Lett.
– volume: 6
  start-page: 8569
  year: 2015
  publication-title: Nat. Commun.
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 6
  start-page: 1387
  year: 2012
  publication-title: ACS Nano
– volume: 29
  start-page: 1603471
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 264
  year: 2015
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1043
  year: 1999
  publication-title: Microelectron. J.
– volume: 3
  start-page: 2871
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 18
  start-page: 193
  year: 1969
  publication-title: Adv. Phys.
– volume: 105
  start-page: 136805
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 60
  start-page: 1797
  year: 1999
  publication-title: J. Solid State Chem.
– volume: 2
  start-page: 226
  year: 2008
  publication-title: Nat. Photonics
– volume: 108
  start-page: 043503
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 1603998
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7226
  year: 2014
  publication-title: Nanoscale
– volume: 5
  start-page: 924
  year: 2009
  publication-title: Small
– volume: 6
  start-page: 7805
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 5
  start-page: 10699
  year: 2015
– volume: 3
  start-page: 031010
  year: 2016
  publication-title: 2D Mater.
– volume: 11
  start-page: 5423
  year: 2015
  publication-title: Small
– volume: 28
  start-page: 3352
  year: 2016
  publication-title: Chem. Mater.
– volume: 4
  start-page: 025048
  year: 2017
  publication-title: 2D Mater.
– volume: 6
  start-page: 12458
  year: 2014
  publication-title: Nanoscale
– volume: 8
  start-page: 119
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 2336
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 111
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 791
  year: 2013
  publication-title: ACS Nano
– volume: 8
  start-page: 18956
  year: 2016
  publication-title: Nanoscale
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 406
  start-page: 2254
  year: 2011
  publication-title: Phys. B: Condens. Matter
– volume: 6
  start-page: 103830
  year: 2016
  publication-title: RSC Adv.
– volume: 8
  start-page: 5911
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 5019
  year: 2016
  publication-title: Adv. Mater.
– volume: 349
  start-page: 625
  year: 2015
  publication-title: Science
– volume: 64
  start-page: 235305
  year: 2001
  publication-title: Phys. Rev. B
– volume: 479
  start-page: 310
  year: 2011
  publication-title: Nature
– volume: 317
  start-page: 222
  year: 2001
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 3719
  year: 1973
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 151
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 839
  year: 2009
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_8_20_1
  doi: 10.1002/adom.201600323
– ident: e_1_2_8_79_1
  doi: 10.1038/srep10699
– ident: e_1_2_8_56_1
  doi: 10.1038/ncomms10671
– ident: e_1_2_8_114_1
  doi: 10.1038/nature04235
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.chemmater.6b00364
– ident: e_1_2_8_19_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.5b04359
– ident: e_1_2_8_142_1
  doi: 10.1021/jacs.5b07452
– ident: e_1_2_8_102_1
  doi: 10.1103/PhysRevB.59.1661
– ident: e_1_2_8_172_1
  doi: 10.1088/2053-1583/aa6422
– ident: e_1_2_8_22_1
  doi: 10.1002/adom.201600290
– ident: e_1_2_8_78_1
  doi: 10.1063/1.4967188
– ident: e_1_2_8_32_1
  doi: 10.1063/1.354268
– ident: e_1_2_8_145_1
  doi: 10.1002/adma.201602687
– ident: e_1_2_8_194_1
  doi: 10.1021/nn203879f
– ident: e_1_2_8_189_1
  doi: 10.1038/nnano.2014.309
– ident: e_1_2_8_66_1
  doi: 10.1103/PhysRevB.92.054110
– ident: e_1_2_8_40_1
  doi: 10.1038/ncomms4252
– ident: e_1_2_8_86_1
  doi: 10.1088/2053-1583/aa6533
– ident: e_1_2_8_38_1
  doi: 10.1038/srep13783
– ident: e_1_2_8_94_1
  doi: 10.1103/PhysRevB.60.15766
– ident: e_1_2_8_8_1
  doi: 10.1007/s12274-014-0532-x
– ident: e_1_2_8_182_1
  doi: 10.1002/adfm.201601349
– ident: e_1_2_8_198_1
  doi: 10.1038/35098012
– ident: e_1_2_8_27_1
  doi: 10.1038/ncomms5458
– year: 2017
  ident: e_1_2_8_43_1
  publication-title: Mater. Chem. Front.
– ident: e_1_2_8_200_1
  doi: 10.1088/2053-1583/3/4/045010
– ident: e_1_2_8_149_1
  doi: 10.1016/0038-1098(87)90162-1
– ident: e_1_2_8_130_1
  doi: 10.1021/nl1023707
– ident: e_1_2_8_58_1
  doi: 10.1007/s12274-015-0865-0
– ident: e_1_2_8_64_1
  doi: 10.1063/1.4959026
– ident: e_1_2_8_111_1
  doi: 10.1002/adma.201503873
– ident: e_1_2_8_131_1
  doi: 10.1021/nn503093k
– ident: e_1_2_8_34_1
  doi: 10.1021/nl502557g
– ident: e_1_2_8_68_1
  doi: 10.1016/j.physb.2011.03.044
– ident: e_1_2_8_151_1
  doi: 10.1103/PhysRevB.66.245207
– ident: e_1_2_8_191_1
  doi: 10.1021/nn204198g
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevB.92.115438
– ident: e_1_2_8_129_1
  doi: 10.1021/nn303352k
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201504090
– ident: e_1_2_8_2_1
  doi: 10.1038/nnano.2010.279
– ident: e_1_2_8_197_1
  doi: 10.1126/science.1072886
– ident: e_1_2_8_51_1
  doi: 10.1039/C4RA17320A
– ident: e_1_2_8_193_1
  doi: 10.1126/science.1157996
– ident: e_1_2_8_113_1
  doi: 10.1038/nature04233
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201504546
– ident: e_1_2_8_104_1
  doi: 10.1039/C6RA23687A
– ident: e_1_2_8_202_1
  doi: 10.1038/ncomms9573
– ident: e_1_2_8_67_1
  doi: 10.1038/ncomms7991
– ident: e_1_2_8_73_1
  doi: 10.1021/nn501175k
– ident: e_1_2_8_141_1
  doi: 10.1021/acsnano.5b00985
– ident: e_1_2_8_83_1
  doi: 10.1002/adfm.201504408
– ident: e_1_2_8_42_1
  doi: 10.1021/nl500935z
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2014.215
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201606129
– ident: e_1_2_8_11_1
  doi: 10.1038/nphoton.2014.271
– ident: e_1_2_8_95_1
  doi: 10.1016/S0022-3697(99)00201-2
– ident: e_1_2_8_178_1
  doi: 10.1063/1.4941996
– ident: e_1_2_8_188_1
  doi: 10.1002/adma.201601248
– ident: e_1_2_8_146_1
  doi: 10.1002/adma.201603471
– ident: e_1_2_8_140_1
  doi: 10.1002/adma.201502375
– ident: e_1_2_8_71_1
  doi: 10.1038/nmat3687
– ident: e_1_2_8_199_1
  doi: 10.1038/nphys3492
– ident: e_1_2_8_160_1
  doi: 10.1088/2053-1583/2/4/044010
– ident: e_1_2_8_195_1
  doi: 10.1039/C5CP06706E
– ident: e_1_2_8_92_1
  doi: 10.1063/1.365357
– ident: e_1_2_8_186_1
  doi: 10.1063/1.122594
– ident: e_1_2_8_12_1
  doi: 10.1038/nphoton.2015.282
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.chemmater.6b00379
– ident: e_1_2_8_45_1
  doi: 10.1021/ar5002846
– ident: e_1_2_8_105_1
  doi: 10.1126/science.aab3175
– ident: e_1_2_8_150_1
  doi: 10.1088/0953-8984/11/27/312
– ident: e_1_2_8_177_1
  doi: 10.1002/adma.201601002
– ident: e_1_2_8_39_1
  doi: 10.1088/2053-1583/3/4/045016
– ident: e_1_2_8_163_1
  doi: 10.1109/55.863106
– ident: e_1_2_8_139_1
  doi: 10.1002/adfm.201603884
– ident: e_1_2_8_15_1
  doi: 10.1038/nnano.2012.193
– ident: e_1_2_8_98_1
  doi: 10.1088/2053-1583/3/3/031010
– ident: e_1_2_8_18_1
  doi: 10.1103/PhysRevB.8.3719
– ident: e_1_2_8_122_1
  doi: 10.1021/ar500291j
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.nanolett.5b00910
– ident: e_1_2_8_35_1
  doi: 10.1021/nl5045007
– ident: e_1_2_8_119_1
  doi: 10.1002/andp.19925040403
– ident: e_1_2_8_181_1
  doi: 10.1103/PhysRevB.92.075439
– ident: e_1_2_8_183_1
  doi: 10.1039/C5CP07585H
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.nanolett.6b00748
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.nanolett.6b02766
– ident: e_1_2_8_103_1
  doi: 10.1038/nphys3314
– ident: e_1_2_8_61_1
  doi: 10.1063/1.4942162
– ident: e_1_2_8_161_1
  doi: 10.1126/science.1065824
– ident: e_1_2_8_176_1
  doi: 10.1088/0957-4484/27/44/445201
– ident: e_1_2_8_26_1
  doi: 10.1038/nnano.2014.14
– ident: e_1_2_8_72_1
  doi: 10.1038/nnano.2015.70
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201600722
– ident: e_1_2_8_201_1
  doi: 10.1038/ncomms9572
– ident: e_1_2_8_31_1
  doi: 10.1021/acsphotonics.5b00486
– ident: e_1_2_8_108_1
  doi: 10.1021/acs.nanolett.5b04925
– ident: e_1_2_8_173_1
  doi: 10.1016/j.spmi.2012.03.030
– ident: e_1_2_8_168_1
  doi: 10.1002/adma.201305845
– ident: e_1_2_8_87_1
  doi: 10.1007/s12274-015-0932-6
– ident: e_1_2_8_174_1
  doi: 10.1038/nnano.2013.219
– ident: e_1_2_8_165_1
  doi: 10.1126/science.1100731
– ident: e_1_2_8_77_1
  doi: 10.1038/nnano.2012.224
– ident: e_1_2_8_137_1
  doi: 10.1038/nnano.2012.256
– ident: e_1_2_8_171_1
  doi: 10.1002/adma.201503340
– ident: e_1_2_8_5_1
  doi: 10.1038/nature12385
– ident: e_1_2_8_10_1
  doi: 10.1021/nn500064s
– ident: e_1_2_8_148_1
  doi: 10.1149/1.2108579
– ident: e_1_2_8_133_1
  doi: 10.1002/adfm.201603998
– ident: e_1_2_8_136_1
  doi: 10.1038/nmat4091
– ident: e_1_2_8_157_1
  doi: 10.1021/nn505354a
– ident: e_1_2_8_143_1
  doi: 10.1039/C5CP01649E
– ident: e_1_2_8_14_1
  doi: 10.1039/C4CS00287C
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.jpcc.6b01044
– ident: e_1_2_8_82_1
  doi: 10.1103/PhysRevB.62.10812
– ident: e_1_2_8_121_1
  doi: 10.1038/ncomms4631
– ident: e_1_2_8_156_1
  doi: 10.1002/aenm.201601843
– ident: e_1_2_8_110_1
  doi: 10.1038/nmat4477
– ident: e_1_2_8_167_1
  doi: 10.1021/nn501013c
– ident: e_1_2_8_123_1
  doi: 10.1038/nmat814
– ident: e_1_2_8_187_1
  doi: 10.1016/S0026-2692(99)00061-0
– ident: e_1_2_8_100_1
  doi: 10.1063/1.4901527
– ident: e_1_2_8_54_1
  doi: 10.1038/srep10013
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201670048
– ident: e_1_2_8_190_1
  doi: 10.1038/nature13792
– ident: e_1_2_8_84_1
  doi: 10.1002/adfm.201601019
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.6b04165
– ident: e_1_2_8_9_1
  doi: 10.1063/1.1723695
– ident: e_1_2_8_76_1
  doi: 10.1063/1.4941001
– ident: e_1_2_8_89_1
  doi: 10.1080/00018736900101307
– ident: e_1_2_8_115_1
  doi: 10.1002/adfm.201500969
– ident: e_1_2_8_152_1
  doi: 10.1016/S0038-1098(99)00240-9
– ident: e_1_2_8_196_1
  doi: 10.1038/nature06458
– ident: e_1_2_8_109_1
  doi: 10.1002/advs.201600177
– ident: e_1_2_8_185_1
  doi: 10.1109/50.4133
– ident: e_1_2_8_158_1
  doi: 10.1039/C4NR03740E
– ident: e_1_2_8_17_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_8_52_1
  doi: 10.1038/nnano.2015.10
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jallcom.2004.04.011
– ident: e_1_2_8_106_1
  doi: 10.1088/0953-8984/28/35/353002
– ident: e_1_2_8_41_1
  doi: 10.1038/ncomms5475
– ident: e_1_2_8_75_1
  doi: 10.1039/C6RA18238K
– ident: e_1_2_8_155_1
  doi: 10.1002/smll.201501488
– ident: e_1_2_8_162_1
  doi: 10.1038/nature10676
– ident: e_1_2_8_36_1
  doi: 10.1088/2053-1583/1/2/021002
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_23_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.jpcc.6b08748
– ident: e_1_2_8_63_1
  doi: 10.1021/acsnano.5b02511
– ident: e_1_2_8_125_1
  doi: 10.1039/c3tc00710c
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201502585
– ident: e_1_2_8_81_1
  doi: 10.1021/nl301702r
– ident: e_1_2_8_116_1
  doi: 10.1103/PhysRevB.89.155433
– ident: e_1_2_8_179_1
  doi: 10.1021/nl060867g
– ident: e_1_2_8_80_1
  doi: 10.1021/nn305275h
– ident: e_1_2_8_24_1
  doi: 10.1038/nnano.2014.25
– ident: e_1_2_8_101_1
  doi: 10.1039/c1cp21159e
– ident: e_1_2_8_164_1
  doi: 10.1109/TDMR.2004.824359
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms5214
– ident: e_1_2_8_118_1
  doi: 10.1021/acsnano.5b04851
– ident: e_1_2_8_91_1
  doi: 10.1103/PhysRevB.55.15608
– ident: e_1_2_8_85_1
  doi: 10.1039/C6NR07233J
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevB.64.235305
– ident: e_1_2_8_180_1
  doi: 10.1126/science.1062340
– ident: e_1_2_8_69_1
  doi: 10.1021/j100393a010
– ident: e_1_2_8_175_1
  doi: 10.1038/nnano.2015.112
– ident: e_1_2_8_120_1
  doi: 10.1038/srep05442
– ident: e_1_2_8_74_1
  doi: 10.1038/nnano.2013.277
– ident: e_1_2_8_70_1
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_2_8_93_1
  doi: 10.1103/PhysRevB.58.16130
– ident: e_1_2_8_55_1
  doi: 10.1038/srep19624
– ident: e_1_2_8_134_1
  doi: 10.1002/smll.201502392
– ident: e_1_2_8_170_1
  doi: 10.1038/nphoton.2008.30
– ident: e_1_2_8_88_1
  doi: 10.1039/c4nr01741b
– ident: e_1_2_8_99_1
  doi: 10.1038/srep29254
– ident: e_1_2_8_127_1
  doi: 10.1038/nmat3673
– ident: e_1_2_8_128_1
  doi: 10.1021/nn405719x
– ident: e_1_2_8_112_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nantod.2016.10.003
– ident: e_1_2_8_124_1
  doi: 10.1002/smll.200801442
– ident: e_1_2_8_21_1
  doi: 10.1002/adom.201600221
– ident: e_1_2_8_144_1
  doi: 10.1038/ncomms8805
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201601977
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevB.93.115409
– ident: e_1_2_8_184_1
  doi: 10.1038/nmat4218
– ident: e_1_2_8_153_1
  doi: 10.1016/S0925-8388(00)01332-3
– ident: e_1_2_8_90_1
  doi: 10.1016/0022-4596(84)90330-X
– ident: e_1_2_8_169_1
  doi: 10.1038/nnano.2009.292
– ident: e_1_2_8_126_1
  doi: 10.1038/ncomms9569
– ident: e_1_2_8_96_1
  doi: 10.1039/C6NR01569G
– ident: e_1_2_8_132_1
  doi: 10.1002/adma.201104798
– ident: e_1_2_8_159_1
  doi: 10.1002/anie.201510029
– ident: e_1_2_8_166_1
  doi: 10.1021/acsnano.6b00980
– ident: e_1_2_8_147_1
  doi: 10.1016/j.matchemphys.2007.02.090
– ident: e_1_2_8_6_1
  doi: 10.1021/nn405685j
– ident: e_1_2_8_97_1
  doi: 10.1021/nn5053926
– ident: e_1_2_8_154_1
  doi: 10.1002/adma.201501795
– ident: e_1_2_8_135_1
  doi: 10.1038/nmat4064
– ident: e_1_2_8_192_1
  doi: 10.1021/jz3012436
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.nanolett.6b03999
– ident: e_1_2_8_25_1
  doi: 10.1038/nnano.2014.26
– ident: e_1_2_8_138_1
  doi: 10.1126/science.aab4097
SSID ssj0001537418
Score 2.5327017
SecondaryResourceType review_article
Snippet With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and...
With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1700231
SubjectTerms anisotropy
electronics
optoelectronics
Review
Reviews
transition metal dichalcogenides
Title Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201700231
https://www.ncbi.nlm.nih.gov/pubmed/29270337
https://www.proquest.com/docview/1979965484
https://pubmed.ncbi.nlm.nih.gov/PMC5737141
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEF9EX3w5Tj3v6kdZ4eA8uGC6H9nksdpKkWsteoW-hc3uBgslKab69zuTpGmLHOJTIBl2w87OzsfO_IaQn2HiEmGF8sD0d55I0tTTETeeDX2tQycSxbE4eTgKBhNxN5XTjSr-Ch-iCbihZJTnNQq4ToqrNWiotq8It434cgwLqfewvhbR85kYr6MskiM8C3aYA-_a46EQK-RGn11tD7Gtmd6Zm--zJjet2VId3X4lX2o7knYrxh-QHZcdkoNaUgt6WcNJ_z4is37T6YbqzNL7xTJfN7-h3Y0bbHoNOs3SPKOsR0f5q4MJslmRA-kCSEu9VqZ40aEDo532MOd-bnLYhDPrim9kctv_dzPw6gYLnpEYomSGOXA_HA9Cy3yRIsakso5LnQilYO1SxYGHPPAjHXQM6HZhrAojK0yqbCD5MdnN8sz9INQ3QQj6VkdpIoVjBgw72bFGRdoqzWXYIt5qcWNTo49jE4x5XOEmsxiZETfMaJFfDf2iwt34L-XFilcxiAbed-jM5S9F3MErywBcMtEi3yveNWOxiMFZx1WLqC2uNgQIu739JZs9lfDbUiHKIcz7p-T_B78Xg3nxCF7zyefIT8k-vqsSZ87I7vL5xZ2D-bNM2uUOb5O9bm_49xGe1_3R-KFdBhPeAJdwA4s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-iH_SLOJ_zGUFQwWKXR9N-9Ml8bAoq-K2kSYoDaYeb-_u9a7vOISJ-ztGUXC73u8vld4QchIlLhBXKA-jvPJGkqacjbjwb-lqHTiSK4-PkTjdov4jbVzmuJsS3MCU_RJ1wQ8sozms0cExIn05YQ7UdId82EswxfEk9JwKm0DaZeJykWSRHfhZsMQfhtcdDIcbUjT47nf7EtGv6gTd_lk1-h7OFP7peIosVkKRnpeYbZMZly6RRmeqAHlV80scrpHdVt7qhOrP0oT_MJ91v6Nm3K2x6Dk7N0jyj7JJ285GDCbLeIAfRPogWjq2o8aIdB6idXmLR_bvJYRf2rBuskpfrq-eLtld1WPCMxBwlM8xB_OF4EFrmixRJJpV1XOpEKAVrlyoOSuSBH-mgZcC5C2NVGFlhUmUDydfIbJZnboNQ3wQhOFwdpYkUjhlAdrJljYq0VZrLsEm88eLGpqIfxy4Y73FJnMxiVEZcK6NJDmv5fkm88avk_lhXMdgGXnjozOWfg7iFd5YBxGSiSdZL3dXfYhGDw46rJlFTWq0FkHd7eiTrvRX821IhzSHMe1Lo_4_fiwFfPEHYvPk_8T0y337u3Mf3N927LbKA42UVzTaZHX58uh3AQsNkt9jtX0EEAtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBajhbGXsnSXZutaDQZbYSaJLpb9mDUJ2SXZYE0JfTGyJNNAsM2S9Pf3HNtxYsIYe9bBMvp0dD5JR98h5EMQu1hYoTyg_s4TcZJ4OuTGs0FX68CJWHF8nDyZ-uOZ-DaX871X_KU-RH3ghp5RrNfo4LlNOjvRUG0fUG4b9eUYPqQ-Rqk8mNfH_dvZ3Wx3ziI5CrRgjTnYX3s8EGKr3dhlneZHmrHpgHAe5k3u89kiII2ek5OKSdJ-CX2LPHHpKWlVvrqinypB6asXZDGsa91QnVr6M19nu_I3tL93h02_QFSzNEspG9Bp9uCgg3SxysA0B9MishVJXnTigLbTAWbdL00G03Bh3eolmY2GN9djryqx4BmJh5TMMAcbEMf9wLKuSFBlUlnHpY6FUjB2ieKAIoeR1X7PQHQXxqogtMIkyvqSvyJHaZa6M0K7xg8g4uowiaVwzAC1kz1rVKit0lwGbeJtBzcylf44lsFYRqVyMosQjKgGo00-1vZ5qbzxV8v3W6wicA688dCpyzarqIeXlj5sykSbvC6xq7_FQgarHVdtohqo1gYovN1sSRf3hQC3VKhzCP1-LvD_x-9FQDB-w775zf-ZX5Knvwaj6MfX6fe35Bk2l1k05-Ro_Wfj3gEXWscX1XR_BJlSA8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+Optoelectronic+Applications+Based+on+2D+Novel+Anisotropic+Transition+Metal+Dichalcogenides&rft.jtitle=Advanced+science&rft.au=Gong%2C+Chuanhui&rft.au=Zhang%2C+Yuxi&rft.au=Chen%2C+Wei&rft.au=Chu%2C+Junwei&rft.date=2017-12-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1002%2Fadvs.201700231&rft_id=info%3Apmid%2F29270337&rft.externalDocID=PMC5737141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon