Identifying adaptive genetic divergence among populations from genome scans
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involveme...
Saved in:
Published in | Molecular ecology Vol. 13; no. 4; pp. 969 - 980 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.04.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X |
DOI | 10.1111/j.1365-294X.2004.02125.x |
Cover
Loading…
Abstract | The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate. |
---|---|
AbstractList | The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of
F
ST
. Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of
F
ST
estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of
F
ST
. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate. The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate. The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F sub(ST). Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F sub(ST) estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F sub(ST). We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate. The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate. |
Author | Balding, David J. Beaumont, Mark A. |
Author_xml | – sequence: 1 givenname: Mark A. surname: Beaumont fullname: Beaumont, Mark A. email: m.a.beaumont@reading.ac.uk organization: School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK – sequence: 2 givenname: David J. surname: Balding fullname: Balding, David J. organization: Department of Epidemiology and Public Health, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15012769$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS3Uik5bXgFlxS7Bv3G8AAlGpa1oQUKtQGwsx7muPCRxamdg5u1JOu0s2BRv7Ct_51zpnGN00IceEMoILsh03q4KwkqRU8V_FBRjXmBKqCg2L9Bi_3GAFliVNCe4YkfoOKUVxoRRIV6iIyIwobJUC_T5soF-9G7r-7vMNGYY_W_I7qCH0dusmYY4DRYy04WJGMKwbs3oQ58yF0M3k6GDLFnTp1N06Eyb4NXjfYJuP53dLC_yq6_nl8sPV7kVGIu8Ms40TIChtQIpCRjgoLippcKVs6psam6lq7HgdWOsY4pYyR00lipDmGEn6M3Od4jhfg1p1J1PFtrW9BDWSUsiqSSKPgsSqQTjFZ_A14_guu6g0UP0nYlb_ZTTBLzfATaGlCI4bf34kMMYjW81wXouRq_0nL-e89dzMfqhGL2ZDKp_DPY7npe-20n_-Ba2_63T12fL-TXp853epxE2e72Jv3QpmRT6-5dzfV3efBM_L4j-yP4CQEC2Jw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0007888 crossref_primary_10_1371_journal_pone_0121557 crossref_primary_10_1111_jfb_13145 crossref_primary_10_1111_mec_13734 crossref_primary_10_1002_ece3_1007 crossref_primary_10_1371_journal_pone_0041310 crossref_primary_10_1534_genetics_115_177030 crossref_primary_10_1146_annurev_ecolsys_110411_160248 crossref_primary_10_1002_ece3_86 crossref_primary_10_1038_nrg1318 crossref_primary_10_1038_sj_hdy_6801057 crossref_primary_10_1146_annurev_genet_39_073003_112420 crossref_primary_10_1111_j_1365_294X_2009_04142_x crossref_primary_10_1038_hdy_2015_93 crossref_primary_10_1111_j_1365_294X_2004_02396_x crossref_primary_10_7868_S0016675817110121 crossref_primary_10_1111_j_1755_0998_2010_02927_x crossref_primary_10_1111_eva_12174 crossref_primary_10_3732_ajb_1200653 crossref_primary_10_1002_ece3_4767 crossref_primary_10_1038_nrg2632 crossref_primary_10_1111_mec_14807 crossref_primary_10_1016_j_foreco_2017_09_045 crossref_primary_10_1029_2007JG000438 crossref_primary_10_1002_jgrg_20033 crossref_primary_10_1007_s10592_013_0532_5 crossref_primary_10_1002_ajpa_21439 crossref_primary_10_1093_genetics_iyab189 crossref_primary_10_1111_j_1744_7429_2005_00077_x crossref_primary_10_1080_00207543_2017_1378956 crossref_primary_10_1371_journal_pgen_0020064 crossref_primary_10_1038_s41437_019_0249_4 crossref_primary_10_1111_mec_12628 crossref_primary_10_1007_s11295_016_1073_0 crossref_primary_10_1016_j_cub_2004_08_041 crossref_primary_10_1016_j_margen_2017_01_004 crossref_primary_10_1016_j_ympev_2018_04_015 crossref_primary_10_1002_ece3_2358 crossref_primary_10_1007_s12038_019_9917_z crossref_primary_10_1086_682949 crossref_primary_10_1554_05_273_1 crossref_primary_10_1111_j_1365_294X_2009_04120_x crossref_primary_10_1086_670988 crossref_primary_10_1038_nrg2611 crossref_primary_10_1186_s12864_018_5044_8 crossref_primary_10_1093_jhered_est029 crossref_primary_10_1155_2012_698421 crossref_primary_10_1111_j_1365_294X_2010_04820_x crossref_primary_10_1111_j_1365_294X_2006_02829_x crossref_primary_10_1007_s11295_013_0605_0 crossref_primary_10_1111_j_1365_294X_2010_04615_x crossref_primary_10_1002_ece3_4793 crossref_primary_10_1007_s10709_014_9780_7 crossref_primary_10_1016_j_livsci_2017_09_007 crossref_primary_10_1111_j_1529_8817_2003_00772_x crossref_primary_10_1038_nrg2844 crossref_primary_10_1111_j_1558_5646_2008_00352_x crossref_primary_10_4236_ojapps_2021_116057 crossref_primary_10_1111_j_1365_2486_2007_01344_x crossref_primary_10_3389_fgene_2014_00458 crossref_primary_10_1146_annurev_ecolsys_110512_135833 crossref_primary_10_3389_fpls_2016_00698 crossref_primary_10_1016_j_flora_2014_10_002 crossref_primary_10_1111_mec_12835 crossref_primary_10_1007_s11295_015_0862_1 crossref_primary_10_1111_j_1365_294X_2012_05738_x crossref_primary_10_1016_j_tree_2010_06_011 crossref_primary_10_1093_icesjms_fsab098 crossref_primary_10_1096_fj_15_271056 crossref_primary_10_1111_j_1558_5646_2010_01050_x crossref_primary_10_1111_j_1365_294X_2008_03774_x crossref_primary_10_1038_srep12834 crossref_primary_10_1111_j_1365_294X_2011_05080_x crossref_primary_10_1111_j_1570_7458_2012_01321_x crossref_primary_10_1029_2005GB002514 crossref_primary_10_1186_1471_2156_14_9 crossref_primary_10_1371_journal_pone_0130497 crossref_primary_10_1534_genetics_109_109991 crossref_primary_10_1016_j_atg_2013_10_002 crossref_primary_10_1007_s10750_019_03993_5 crossref_primary_10_1111_j_1365_294X_2007_03437_x crossref_primary_10_1186_s12864_017_3944_7 crossref_primary_10_1111_mec_13907 crossref_primary_10_3390_genes13020194 crossref_primary_10_1029_2001JD000360 crossref_primary_10_1111_j_1365_294X_2010_04528_x crossref_primary_10_1111_j_1420_9101_2012_02514_x crossref_primary_10_1186_1755_8794_2_45 crossref_primary_10_1111_j_1365_294X_2008_03885_x crossref_primary_10_1002_ece3_52 crossref_primary_10_1029_2000JD900041 crossref_primary_10_1038_nrg1968 crossref_primary_10_1111_j_1439_0418_2007_01190_x crossref_primary_10_1007_s11295_013_0669_x crossref_primary_10_1111_mec_12241 crossref_primary_10_1371_journal_pgen_1000243 crossref_primary_10_3390_plants9121686 crossref_primary_10_3389_fpls_2017_00481 crossref_primary_10_1186_1756_0500_7_953 crossref_primary_10_1016_j_biocon_2013_05_014 crossref_primary_10_1038_hdy_2013_83 crossref_primary_10_1111_j_1365_2486_2005_00920_x crossref_primary_10_1111_mec_13323 crossref_primary_10_1111_mec_13322 crossref_primary_10_1111_bij_12109 crossref_primary_10_1093_molbev_msq248 crossref_primary_10_1111_j_1558_5646_2007_00299_x crossref_primary_10_1139_gen_2014_0003 crossref_primary_10_1111_jeb_13033 crossref_primary_10_1186_s12864_015_1602_5 crossref_primary_10_1111_j_1365_294X_2008_03863_x crossref_primary_10_1111_j_1365_294X_2012_05509_x crossref_primary_10_1007_s11434_007_0400_0 crossref_primary_10_1051_alr_2017009 crossref_primary_10_1007_s10592_012_0411_5 crossref_primary_10_1017_S147926210899417X crossref_primary_10_7717_peerj_16391 crossref_primary_10_1002_ldr_583 crossref_primary_10_1111_j_1420_9101_2011_02314_x crossref_primary_10_1111_j_1365_294X_2012_05586_x crossref_primary_10_1111_mec_12463 crossref_primary_10_1111_mec_14406 crossref_primary_10_3354_meps13859 crossref_primary_10_1002_ece3_2990 crossref_primary_10_1111_j_1365_294X_2008_03852_x crossref_primary_10_1111_jeb_12152 crossref_primary_10_1111_mec_13557 crossref_primary_10_1111_j_1365_294X_2012_05540_x crossref_primary_10_1111_j_1469_8137_2006_01686_x crossref_primary_10_1093_molbev_msz029 crossref_primary_10_3354_meps11672 crossref_primary_10_1002_ldr_2222 crossref_primary_10_1038_hdy_2013_68 crossref_primary_10_1111_j_1365_294X_2010_04737_x crossref_primary_10_1093_molbev_msq211 crossref_primary_10_1002_ajpa_70010 crossref_primary_10_3390_ani13050818 crossref_primary_10_1111_gcb_13173 crossref_primary_10_1007_s10681_016_1672_8 crossref_primary_10_1111_j_1600_048X_2013_00233_x crossref_primary_10_1016_j_pbi_2008_01_005 crossref_primary_10_1038_ejhg_2013_48 crossref_primary_10_1371_journal_pone_0137077 crossref_primary_10_1002_ece3_1671 crossref_primary_10_1111_j_1526_100X_2010_00715_x crossref_primary_10_1111_mec_12215 crossref_primary_10_1111_mec_13545 crossref_primary_10_1111_j_1365_294X_2012_05499_x crossref_primary_10_1111_jeb_12168 crossref_primary_10_1038_s41438_020_00373_2 crossref_primary_10_1111_j_1095_8649_2012_03421_x crossref_primary_10_1038_sj_hdy_6801005 crossref_primary_10_1111_mec_12201 crossref_primary_10_1186_s12864_020_07084_x crossref_primary_10_1111_ele_12107 crossref_primary_10_1534_genetics_113_153783 crossref_primary_10_1111_mec_12447 crossref_primary_10_7717_peerj_4077 crossref_primary_10_1111_nph_12896 crossref_primary_10_1038_s41598_021_98662_w crossref_primary_10_1007_s10592_009_0044_5 crossref_primary_10_1534_genetics_110_123059 crossref_primary_10_1111_mec_12430 crossref_primary_10_1086_666666 crossref_primary_10_1073_pnas_1000939107 crossref_primary_10_1111_j_1529_8817_2003_00765_x crossref_primary_10_1371_journal_pone_0213992 crossref_primary_10_1111_jeb_13071 crossref_primary_10_3390_genes9090452 crossref_primary_10_1111_j_1471_8286_2007_01758_x crossref_primary_10_3389_fgene_2015_00052 crossref_primary_10_1111_j_0014_3820_2005_tb00941_x crossref_primary_10_1038_hdy_2013_31 crossref_primary_10_1002_ldr_1100 crossref_primary_10_1038_hdy_2011_93 crossref_primary_10_1186_1471_2156_10_7 crossref_primary_10_1016_j_tpb_2013_03_001 crossref_primary_10_1371_journal_pone_0115499 crossref_primary_10_1098_rsos_170925 crossref_primary_10_1002_ece3_2550 crossref_primary_10_1111_j_1365_294X_2008_03854_x crossref_primary_10_1111_mec_13513 crossref_primary_10_1111_mec_12423 crossref_primary_10_1080_00028487_2011_588094 crossref_primary_10_1038_hdy_2011_85 crossref_primary_10_1080_00028487_2011_588092 crossref_primary_10_1038_hdy_2011_81 crossref_primary_10_1534_genetics_107_073759 crossref_primary_10_1038_srep13758 crossref_primary_10_1111_gcb_13134 crossref_primary_10_1371_journal_pone_0091672 crossref_primary_10_1111_mec_12415 crossref_primary_10_1111_mec_13988 crossref_primary_10_3389_fpls_2018_00386 crossref_primary_10_1111_j_1365_294X_2010_04792_x crossref_primary_10_3724_SP_J_1005_2012_01304 crossref_primary_10_1007_s10592_014_0590_3 crossref_primary_10_1007_s11295_008_0188_3 crossref_primary_10_4081_ijas_2011_e54 crossref_primary_10_1139_cjfas_2013_0090 crossref_primary_10_3732_ajb_1000378 crossref_primary_10_1098_rstb_2009_0219 crossref_primary_10_1534_g3_115_024349 crossref_primary_10_1111_j_1755_0998_2010_02873_x crossref_primary_10_1016_j_tplants_2010_09_002 crossref_primary_10_1007_s10709_008_9240_3 crossref_primary_10_1186_1471_2148_13_169 crossref_primary_10_1139_f07_177 crossref_primary_10_1007_s00439_009_0668_z crossref_primary_10_1111_mec_14147 crossref_primary_10_1111_gcb_12903 crossref_primary_10_1038_hdy_2017_6 crossref_primary_10_1093_jeb_voae048 crossref_primary_10_1111_mec_14141 crossref_primary_10_1111_mec_13292 crossref_primary_10_1111_mec_13291 crossref_primary_10_1007_s00335_023_10021_4 crossref_primary_10_1111_mec_13046 crossref_primary_10_1111_mec_13288 crossref_primary_10_1111_j_1365_294X_2010_04839_x crossref_primary_10_1111_1755_0998_13893 crossref_primary_10_3390_d3030405 crossref_primary_10_1111_1755_0998_13415 crossref_primary_10_1111_j_1365_294X_2011_05319_x crossref_primary_10_3389_fcosc_2021_702128 crossref_primary_10_1093_gbe_evt109 crossref_primary_10_1080_00207543_2016_1252864 crossref_primary_10_7717_peerj_8745 crossref_primary_10_1111_j_1365_294X_2008_03856_x crossref_primary_10_3390_ijms12063966 crossref_primary_10_1007_s10682_012_9597_8 crossref_primary_10_1111_mec_13276 crossref_primary_10_1111_mec_12184 crossref_primary_10_1016_j_meegid_2016_12_007 crossref_primary_10_1002_ece3_6398 crossref_primary_10_1111_j_1529_8817_2003_00779_x crossref_primary_10_1111_j_1365_294X_2007_03454_x crossref_primary_10_1111_j_1365_2311_2009_01140_x crossref_primary_10_1111_j_1439_0388_2010_00868_x crossref_primary_10_7717_peerj_5462 crossref_primary_10_1111_mec_14361 crossref_primary_10_1186_1471_2148_11_100 crossref_primary_10_1098_rspb_2017_2806 crossref_primary_10_1111_mec_12182 crossref_primary_10_1007_s10592_011_0195_z crossref_primary_10_1111_j_1365_294X_2011_05067_x crossref_primary_10_1007_s10841_017_0039_3 crossref_primary_10_1134_S1022795413090111 crossref_primary_10_1111_j_0018_0661_2008_02054_x crossref_primary_10_1111_j_1365_294X_2010_04794_x crossref_primary_10_1002_ece3_5070 crossref_primary_10_1111_j_1469_1809_2007_00390_x crossref_primary_10_1371_journal_pone_0020394 crossref_primary_10_1534_genetics_110_117366 crossref_primary_10_1038_jhg_2010_7 crossref_primary_10_1111_j_1365_294X_2008_03712_x crossref_primary_10_1111_j_1365_294X_2010_04650_x crossref_primary_10_1111_mec_14344 crossref_primary_10_1134_S1022795411110159 crossref_primary_10_1038_hdy_2010_167 crossref_primary_10_1111_j_1755_0998_2010_02888_x crossref_primary_10_1038_nrg3015 crossref_primary_10_1111_mec_12161 crossref_primary_10_1186_s12862_015_0477_z crossref_primary_10_1038_ng_3464 crossref_primary_10_1111_mec_12158 crossref_primary_10_1111_mec_13489 crossref_primary_10_1038_ejhg_2008_137 crossref_primary_10_1111_mec_13245 crossref_primary_10_1111_mec_12154 crossref_primary_10_1007_s00227_009_1297_8 crossref_primary_10_1007_s11295_017_1127_y crossref_primary_10_1038_hdy_2014_113 crossref_primary_10_1371_journal_pone_0062964 crossref_primary_10_1038_hdy_2010_177 crossref_primary_10_1111_j_1558_5646_2008_00447_x crossref_primary_10_1111_j_1365_294X_2005_02690_x crossref_primary_10_1139_cjfas_2014_0004 crossref_primary_10_1186_1471_2148_13_108 crossref_primary_10_1016_j_envpol_2011_02_049 crossref_primary_10_1111_j_1365_294X_2008_03921_x crossref_primary_10_3390_ijms21134792 crossref_primary_10_1534_g3_119_400401 crossref_primary_10_1111_j_1469_8137_2011_03648_x crossref_primary_10_1098_rspb_2015_2563 crossref_primary_10_1007_s10980_005_7756_9 crossref_primary_10_1371_journal_pone_0083891 crossref_primary_10_1111_j_1365_294X_2005_02737_x crossref_primary_10_1186_s12870_014_0251_1 crossref_primary_10_1111_j_1365_294X_2011_05272_x crossref_primary_10_1007_s11295_010_0287_9 crossref_primary_10_1093_molbev_msi093 crossref_primary_10_1007_s10709_012_9672_7 crossref_primary_10_1111_mec_13466 crossref_primary_10_1111_mec_15648 crossref_primary_10_3732_ajb_1500313 crossref_primary_10_1038_srep34941 crossref_primary_10_1007_s00439_006_0256_4 crossref_primary_10_1111_mec_14796 crossref_primary_10_1111_mec_13226 crossref_primary_10_1111_mec_13468 crossref_primary_10_1111_j_1365_294X_2008_03714_x crossref_primary_10_1093_molbev_msu182 crossref_primary_10_1007_s10592_012_0339_9 crossref_primary_10_1038_hdy_2010_128 crossref_primary_10_1371_journal_pone_0070162 crossref_primary_10_1038_sj_hdy_6800806 crossref_primary_10_1098_rstb_2008_0078 crossref_primary_10_1038_srep44080 crossref_primary_10_1111_j_1757_1707_2010_01044_x crossref_primary_10_1111_j_1365_294X_2012_05501_x crossref_primary_10_1139_gen_2013_0071 crossref_primary_10_1007_s10750_008_9350_z crossref_primary_10_1016_j_rmb_2016_07_004 crossref_primary_10_1093_molbev_mst063 crossref_primary_10_1146_annurev_anthro_37_081407_085141 crossref_primary_10_1016_j_gene_2014_03_029 crossref_primary_10_1134_S1022795417110114 crossref_primary_10_1007_s10530_017_1621_z crossref_primary_10_1029_2001GL013454 crossref_primary_10_1186_s12862_018_1311_1 crossref_primary_10_1007_s10592_013_0464_0 crossref_primary_10_1111_j_1755_0998_2011_02987_x crossref_primary_10_1890_07_1162_1 crossref_primary_10_1371_journal_pone_0158216 crossref_primary_10_1534_g3_116_028753 crossref_primary_10_1111_jse_12109 crossref_primary_10_1111_eva_12450 crossref_primary_10_1371_journal_pone_0158691 crossref_primary_10_1371_journal_pone_0197378 crossref_primary_10_1371_journal_pone_0121394 crossref_primary_10_1111_j_1365_294X_2010_04678_x crossref_primary_10_1016_j_flora_2020_151726 crossref_primary_10_1111_j_1365_2486_2009_02064_x crossref_primary_10_1186_s13059_015_0627_z crossref_primary_10_1016_j_tree_2005_05_017 crossref_primary_10_1093_sysbio_syq022 crossref_primary_10_1007_s12237_017_0234_1 crossref_primary_10_1111_j_1365_294X_2011_05025_x crossref_primary_10_1111_j_1365_294X_2007_03303_x crossref_primary_10_1111_j_1365_294X_2012_05634_x crossref_primary_10_1038_hdy_2013_122 crossref_primary_10_1073_pnas_0901397106 crossref_primary_10_1111_eva_12432 crossref_primary_10_1007_s10722_012_9939_y crossref_primary_10_1007_s11692_015_9307_x crossref_primary_10_1111_eva_12672 crossref_primary_10_1111_eva_12436 crossref_primary_10_1186_gb_2010_11_4_r44 crossref_primary_10_3390_w8050188 crossref_primary_10_1038_hdy_2008_26 crossref_primary_10_1146_annurev_nutr_080508_141048 crossref_primary_10_5808_GI_2012_10_2_81 crossref_primary_10_1007_s00606_016_1354_y crossref_primary_10_1534_g3_116_027235 crossref_primary_10_1111_j_1365_294X_2010_04996_x crossref_primary_10_1111_j_1365_294X_2007_03478_x crossref_primary_10_1111_j_1365_294X_2011_05463_x crossref_primary_10_1111_j_1365_2486_2006_01228_x crossref_primary_10_1007_s10592_018_1096_1 crossref_primary_10_1111_mec_15032 crossref_primary_10_1007_s00497_023_00478_3 crossref_primary_10_1111_j_1365_294X_2011_05045_x crossref_primary_10_1093_molbev_mss176 crossref_primary_10_1111_j_1365_294X_2007_03323_x crossref_primary_10_1111_eva_12892 crossref_primary_10_1111_eva_12891 crossref_primary_10_1046_j_1466_822X_2001_00251_x crossref_primary_10_1111_1755_0998_12764 crossref_primary_10_1111_gcb_12937 crossref_primary_10_1186_1471_2148_8_164 crossref_primary_10_1007_s11295_015_0964_9 crossref_primary_10_1038_hdy_2011_120 crossref_primary_10_1534_genetics_112_140749 crossref_primary_10_1038_nrg1904 crossref_primary_10_3732_ajb_1600232 crossref_primary_10_1093_jhered_esx048 crossref_primary_10_1111_j_1365_2486_2007_01521_x crossref_primary_10_1080_19425120_2015_1037473 crossref_primary_10_1111_j_1365_2486_2004_00751_x crossref_primary_10_1371_journal_pone_0028008 crossref_primary_10_3389_fgene_2019_00901 crossref_primary_10_1002_ece3_7447 crossref_primary_10_1111_j_1365_294X_2008_04076_x crossref_primary_10_1098_rstb_2011_0260 crossref_primary_10_1371_journal_pone_0203242 crossref_primary_10_1111_j_1365_294X_2010_04667_x crossref_primary_10_1111_brv_13118 crossref_primary_10_1016_j_smallrumres_2011_08_006 crossref_primary_10_1371_journal_pone_0093055 crossref_primary_10_1371_journal_pone_0121381 crossref_primary_10_1111_jbi_12392 crossref_primary_10_1111_age_12724 crossref_primary_10_1186_1479_7364_2_2_113 crossref_primary_10_1016_j_biocon_2008_01_015 crossref_primary_10_1111_j_1365_294X_2009_04229_x crossref_primary_10_1007_s10646_013_1092_7 crossref_primary_10_1111_mec_13066 crossref_primary_10_1007_s00170_018_1903_3 crossref_primary_10_1534_genetics_116_198424 crossref_primary_10_1002_hyp_10458 crossref_primary_10_1111_evo_13261 crossref_primary_10_1111_j_1365_294X_2006_02934_x crossref_primary_10_1186_1479_7364_2_3_155 crossref_primary_10_1080_01584197_2022_2063746 crossref_primary_10_1093_molbev_msab294 crossref_primary_10_1007_s11104_020_04780_1 crossref_primary_10_3390_genes13010050 crossref_primary_10_1111_mec_14701 crossref_primary_10_1111_j_1365_2486_2007_01323_x crossref_primary_10_1371_journal_pone_0030544 crossref_primary_10_1111_mec_13859 crossref_primary_10_1046_j_1365_2486_2002_00536_x crossref_primary_10_1093_molbev_msi235 crossref_primary_10_1016_j_bse_2006_04_001 crossref_primary_10_1111_j_1365_294X_2010_04952_x crossref_primary_10_1111_j_1365_294X_2005_02655_x crossref_primary_10_1371_journal_pone_0101821 crossref_primary_10_1086_656306 crossref_primary_10_1139_cjfas_2015_0430 crossref_primary_10_1111_j_1365_2664_2007_01347_x crossref_primary_10_1007_s10682_010_9377_2 crossref_primary_10_1029_2005GB002641 crossref_primary_10_1111_eva_12055 crossref_primary_10_3389_fpls_2016_00777 crossref_primary_10_1111_j_1365_294X_2005_02437_x crossref_primary_10_1111_mec_13605 crossref_primary_10_1111_mec_13847 crossref_primary_10_1073_pnas_1616755114 crossref_primary_10_1111_j_1365_294X_2006_03025_x crossref_primary_10_1016_j_fishres_2020_105718 crossref_primary_10_1016_j_dsr_2019_103188 crossref_primary_10_1007_s11284_009_0609_2 crossref_primary_10_1111_j_1755_0998_2008_02162_x crossref_primary_10_7717_peerj_9033 crossref_primary_10_1098_rspb_2011_1823 crossref_primary_10_1111_j_1365_2052_2012_02326_x crossref_primary_10_1007_s11284_014_1217_3 crossref_primary_10_1111_pbi_13206 crossref_primary_10_1371_journal_pone_0077857 crossref_primary_10_1002_hyp_6217 crossref_primary_10_1371_journal_pone_0153013 crossref_primary_10_1111_j_1365_294X_2008_03709_x crossref_primary_10_1111_j_1439_0388_2010_00883_x crossref_primary_10_1002_ece3_3323 crossref_primary_10_1111_j_1365_294X_2011_05311_x crossref_primary_10_1002_ece3_4411 crossref_primary_10_1029_2001GB001855 crossref_primary_10_1186_s12864_016_2583_8 crossref_primary_10_1111_j_1558_5646_2010_01082_x crossref_primary_10_1038_nrg2506 crossref_primary_10_1111_j_1365_294X_2006_03112_x crossref_primary_10_1007_s10529_013_1377_1 crossref_primary_10_1105_tpc_108_059808 crossref_primary_10_1534_genetics_110_124693 crossref_primary_10_1111_eva_12270 crossref_primary_10_1534_genetics_113_154740 crossref_primary_10_1111_j_1365_294X_2010_04941_x crossref_primary_10_1093_molbev_msq181 crossref_primary_10_1016_j_tig_2010_01_001 crossref_primary_10_1111_j_1365_294X_2009_04272_x crossref_primary_10_1534_genetics_115_181453 crossref_primary_10_1111_mec_13818 crossref_primary_10_1590_S1415_47572014000300004 crossref_primary_10_1093_molbev_mss121 crossref_primary_10_1111_eva_12266 crossref_primary_10_1111_eva_12264 crossref_primary_10_1093_icb_icn082 crossref_primary_10_1002_ece3_595 crossref_primary_10_1111_mec_13816 crossref_primary_10_1111_mec_12725 crossref_primary_10_1111_jbi_13415 crossref_primary_10_1111_mec_13811 crossref_primary_10_1093_bioinformatics_btv493 crossref_primary_10_1371_journal_pone_0180605 crossref_primary_10_1111_j_1420_9101_2011_02259_x crossref_primary_10_1038_hdy_2014_80 crossref_primary_10_1080_00028487_2011_588129 crossref_primary_10_1111_eva_12257 crossref_primary_10_1016_j_fishres_2016_02_013 crossref_primary_10_1111_j_1752_4571_2010_00157_x crossref_primary_10_1111_mec_12957 crossref_primary_10_1111_j_1755_0998_2010_02948_x crossref_primary_10_1111_j_1365_294X_2006_03027_x crossref_primary_10_1111_j_1365_294X_2008_04059_x crossref_primary_10_1093_molbev_msq167 crossref_primary_10_1111_j_1365_2052_2006_01479_x crossref_primary_10_1186_s13059_016_1027_8 crossref_primary_10_1111_j_1365_294X_2010_04691_x crossref_primary_10_1111_j_1365_294X_2010_04821_x crossref_primary_10_1534_genetics_106_062851 crossref_primary_10_1111_j_1420_9101_2012_02526_x crossref_primary_10_1371_journal_pone_0033636 crossref_primary_10_1016_j_tig_2014_09_010 crossref_primary_10_1371_journal_pone_0005767 crossref_primary_10_1111_mec_12705 crossref_primary_10_1534_genetics_113_152991 crossref_primary_10_1111_j_1365_294X_2007_03414_x crossref_primary_10_1371_journal_pone_0157809 crossref_primary_10_1016_j_margen_2015_12_009 crossref_primary_10_1093_molbev_msp043 crossref_primary_10_1017_S0016672313000062 crossref_primary_10_1111_gcb_12798 crossref_primary_10_1139_B07_102 crossref_primary_10_1093_jhered_esu033 crossref_primary_10_1111_j_1365_294X_2008_03907_x crossref_primary_10_1038_hdy_2014_68 crossref_primary_10_1111_j_1365_294X_2011_05015_x crossref_primary_10_1111_1755_0998_12009_x crossref_primary_10_1111_j_1365_294X_2008_03960_x crossref_primary_10_1371_journal_pgen_1006517 crossref_primary_10_1111_j_1469_8137_2010_03401_x crossref_primary_10_1111_j_1752_4571_2011_00206_x crossref_primary_10_1111_j_1365_294X_2010_04595_x crossref_primary_10_1111_j_1365_294X_2008_03851_x crossref_primary_10_1111_mec_14543 crossref_primary_10_1111_j_0022_1112_2005_00785_x crossref_primary_10_1111_j_1744_7429_2006_00229_x crossref_primary_10_1002_ece3_3705 crossref_primary_10_1186_s12711_016_0258_1 crossref_primary_10_1534_genetics_107_082560 crossref_primary_10_1111_j_1558_5646_2009_00779_x crossref_primary_10_1111_mec_12354 crossref_primary_10_1111_mec_12352 crossref_primary_10_1534_genetics_114_161380 crossref_primary_10_1094_PHYTO_98_4_0413 crossref_primary_10_1111_j_1365_294X_2008_03840_x crossref_primary_10_1016_j_flora_2019_151497 crossref_primary_10_1111_mec_12358 crossref_primary_10_1641_B580306 crossref_primary_10_1111_jeb_12069 crossref_primary_10_1266_ggs_84_307 crossref_primary_10_3354_meps09246 crossref_primary_10_1007_s10682_009_9350_0 crossref_primary_10_1038_hdy_2009_134 crossref_primary_10_1007_s10682_017_9890_7 crossref_primary_10_1371_journal_pone_0001367 crossref_primary_10_1111_1755_0998_13221 crossref_primary_10_1371_journal_pone_0015529 crossref_primary_10_1111_1755_0998_13225 crossref_primary_10_1002_ece3_1300 crossref_primary_10_1029_2001GB001466 crossref_primary_10_1002_ece3_1546 crossref_primary_10_1186_s12862_015_0280_x crossref_primary_10_1093_cz_zow088 crossref_primary_10_1111_j_1365_294X_2004_02318_x crossref_primary_10_1534_g3_116_026914 crossref_primary_10_1007_s11295_013_0624_x crossref_primary_10_1371_journal_pone_0002209 crossref_primary_10_1111_mec_12330 crossref_primary_10_1534_genetics_109_112391 crossref_primary_10_1111_j_1365_294X_2011_05119_x crossref_primary_10_1890_03_5225 crossref_primary_10_1111_mec_12337 crossref_primary_10_1007_s11295_011_0368_4 crossref_primary_10_1111_2041_210X_12418 crossref_primary_10_1111_jeb_12046 crossref_primary_10_1214_19_AOAS1301 crossref_primary_10_1534_genetics_120_303780 crossref_primary_10_1111_evo_12410 crossref_primary_10_3390_f6051439 crossref_primary_10_1016_j_ajhg_2014_09_002 crossref_primary_10_1017_S0016672310000121 crossref_primary_10_1016_j_livsci_2011_10_009 crossref_primary_10_1111_mec_12562 crossref_primary_10_1007_s10709_008_9321_3 crossref_primary_10_1111_mec_12561 crossref_primary_10_1016_j_plantsci_2010_09_009 crossref_primary_10_1534_genetics_110_115543 crossref_primary_10_1534_g3_115_016865 crossref_primary_10_1534_genetics_110_118828 crossref_primary_10_4238_2012_September_12_5 crossref_primary_10_1534_genetics_107_084541 crossref_primary_10_1029_2003GB002142 crossref_primary_10_1007_s11295_014_0823_0 crossref_primary_10_1534_genetics_107_081281 crossref_primary_10_1093_jhered_esq094 crossref_primary_10_1038_s42003_022_03159_5 crossref_primary_10_1111_mec_12319 crossref_primary_10_1002_aqc_3373 crossref_primary_10_1111_mec_13647 crossref_primary_10_1080_02755947_2012_676383 crossref_primary_10_1093_nar_gkae1027 crossref_primary_10_1093_molbev_msx193 crossref_primary_10_1198_jasa_2009_0010 crossref_primary_10_1111_j_1365_294X_2008_03755_x crossref_primary_10_1093_bfgp_elw008 crossref_primary_10_1111_mec_12784 crossref_primary_10_1111_mec_14966 crossref_primary_10_1111_j_1744_7429_2009_00517_x crossref_primary_10_1111_j_1755_0998_2009_02786_x crossref_primary_10_1371_journal_pone_0002411 crossref_primary_10_1007_s00227_017_3210_1 crossref_primary_10_1111_j_1365_294X_2008_04004_x crossref_primary_10_1111_j_1095_8649_2010_02563_x crossref_primary_10_1111_jeb_12071 crossref_primary_10_1111_j_1365_294X_2010_04573_x crossref_primary_10_1098_rstb_2010_0178 crossref_primary_10_1007_s11295_016_1010_2 crossref_primary_10_1016_j_marenvres_2013_05_006 crossref_primary_10_1534_genetics_108_092221 crossref_primary_10_1111_wre_12260 crossref_primary_10_1111_j_1365_294X_2010_04716_x crossref_primary_10_1038_hdy_2012_51 crossref_primary_10_1038_hdy_2012_50 crossref_primary_10_1093_biolinnean_bly063 crossref_primary_10_1111_j_1558_5646_2011_01440_x crossref_primary_10_1111_j_1420_9101_2005_00982_x crossref_primary_10_1080_17415977_2019_1683173 crossref_primary_10_1111_j_1365_2486_2004_00736_x crossref_primary_10_1007_s11295_024_01662_w crossref_primary_10_1111_j_1600_048X_2012_05826_x crossref_primary_10_1371_journal_pone_0034339 crossref_primary_10_1002_ece3_722 crossref_primary_10_1007_s10530_024_03267_9 crossref_primary_10_1111_mec_12537 crossref_primary_10_1111_mec_13867 crossref_primary_10_1029_2008GL035746 crossref_primary_10_1186_s12864_024_10141_4 crossref_primary_10_1007_s00300_013_1370_0 crossref_primary_10_1111_j_1529_8817_2003_00766_x crossref_primary_10_1111_j_1365_2052_2011_02309_x crossref_primary_10_1890_100063 crossref_primary_10_1111_j_1365_294X_2010_04936_x crossref_primary_10_1098_rspb_2011_1805 crossref_primary_10_1111_mec_13619 crossref_primary_10_1016_j_margen_2009_07_001 crossref_primary_10_1146_annurev_ecolsys_38_091206_095702 crossref_primary_10_1002_ecy_2382 crossref_primary_10_1534_genetics_106_067728 crossref_primary_10_1111_plb_12381 crossref_primary_10_1111_wre_12122 crossref_primary_10_1186_1471_2164_14_330 crossref_primary_10_1186_1756_3305_7_188 crossref_primary_10_7717_peerj_7780 crossref_primary_10_1086_605870 crossref_primary_10_1093_molbev_msw050 crossref_primary_10_1186_s12864_017_4170_z crossref_primary_10_1007_s00606_015_1261_7 crossref_primary_10_1534_genetics_111_130732 crossref_primary_10_1111_j_1469_1809_2009_00549_x crossref_primary_10_1111_j_1365_294X_2007_03442_x crossref_primary_10_1111_j_1523_1739_2006_00530_x crossref_primary_10_1002_ece3_70355 crossref_primary_10_1111_j_1365_294X_2008_04064_x crossref_primary_10_1038_hdy_2009_99 crossref_primary_10_1111_j_1365_294X_2012_05479_x crossref_primary_10_1007_s00122_024_04610_3 crossref_primary_10_1029_2000JD000255 crossref_primary_10_1016_j_ympev_2012_03_009 crossref_primary_10_1371_journal_pgen_1000862 crossref_primary_10_1029_2000JD000250 crossref_primary_10_1534_g3_114_013896 crossref_primary_10_1111_j_1365_294X_2010_04893_x crossref_primary_10_1111_j_1365_294X_2010_04771_x crossref_primary_10_1111_mec_12057 crossref_primary_10_1534_genetics_107_083246 crossref_primary_10_1111_j_1558_5646_2012_01587_x crossref_primary_10_1111_1744_7917_12906 crossref_primary_10_1534_genetics_112_147231 crossref_primary_10_1038_hdy_2009_74 crossref_primary_10_1111_mec_14475 crossref_primary_10_1093_bioinformatics_bty299 crossref_primary_10_1111_j_1755_0998_2010_02943_x crossref_primary_10_1111_j_1365_294X_2009_04477_x crossref_primary_10_1111_j_1365_2486_2008_01652_x crossref_primary_10_1007_s11295_014_0731_3 crossref_primary_10_3390_ani12111462 crossref_primary_10_1111_ahg_12081 crossref_primary_10_1111_mec_12048 crossref_primary_10_1093_icb_ics099 crossref_primary_10_1111_mec_13377 crossref_primary_10_1111_eva_12942 crossref_primary_10_1111_mec_12284 crossref_primary_10_1016_j_tree_2014_10_009 crossref_primary_10_1642_AUK_16_49_1 crossref_primary_10_3354_meps12109 crossref_primary_10_1111_j_1365_294X_2010_04762_x crossref_primary_10_1016_j_scitotenv_2023_162258 crossref_primary_10_1016_j_foreco_2022_120748 crossref_primary_10_1038_hdy_2010_55 crossref_primary_10_1002_ece3_2935 crossref_primary_10_1007_s10592_012_0401_7 crossref_primary_10_1111_mec_12282 crossref_primary_10_1534_genetics_106_065102 crossref_primary_10_1007_s10592_011_0213_1 crossref_primary_10_1111_eva_12932 crossref_primary_10_1673_031_014_109 crossref_primary_10_1186_1297_9686_42_32 crossref_primary_10_1093_jhered_esab049 crossref_primary_10_1029_01EO00107 crossref_primary_10_1038_sj_hdy_6800735 crossref_primary_10_1534_genetics_108_086835 crossref_primary_10_1111_mec_12038 crossref_primary_10_1098_rstb_2009_0278 crossref_primary_10_1098_rstb_2009_0274 crossref_primary_10_1111_mec_13360 crossref_primary_10_1016_j_pt_2010_04_002 crossref_primary_10_1111_j_1365_294X_2007_03584_x crossref_primary_10_1534_genetics_110_120873 crossref_primary_10_1111_j_1365_294X_2006_02931_x crossref_primary_10_1111_j_1755_0998_2010_02952_x crossref_primary_10_1002_eap_1522 crossref_primary_10_1371_journal_pgen_1009241 crossref_primary_10_1111_mec_14203 crossref_primary_10_1111_j_1526_100X_2008_00399_x crossref_primary_10_1111_mec_12260 crossref_primary_10_1111_rec_12692 crossref_primary_10_1111_mec_14438 crossref_primary_10_1111_mec_17706 crossref_primary_10_1111_mec_13100 crossref_primary_10_1111_j_1420_9101_2008_01623_x crossref_primary_10_1111_mec_13581 crossref_primary_10_1016_j_livsci_2008_07_003 crossref_primary_10_1186_1471_2148_12_94 crossref_primary_10_1007_s10126_009_9234_x crossref_primary_10_1111_j_1523_1739_2006_00510_x crossref_primary_10_1111_eva_12907 crossref_primary_10_1111_gcb_13087 crossref_primary_10_1186_1471_2148_12_210 crossref_primary_10_1038_hdy_2009_170 crossref_primary_10_1534_genetics_110_114819 crossref_primary_10_1038_sj_ejhg_5201793 crossref_primary_10_1093_bioinformatics_btr253 crossref_primary_10_1016_j_ajhg_2015_12_022 crossref_primary_10_1111_j_1365_294X_2012_05524_x crossref_primary_10_1111_nph_12055 crossref_primary_10_1111_mec_12920 crossref_primary_10_1111_j_1365_294X_2012_05731_x crossref_primary_10_1111_j_1365_294X_2010_04666_x crossref_primary_10_1016_j_tree_2012_05_012 crossref_primary_10_1111_j_1365_294X_2004_02378_x crossref_primary_10_1371_journal_pone_0112332 crossref_primary_10_1038_sj_hdy_6800937 crossref_primary_10_1038_s41598_024_68923_5 crossref_primary_10_1016_j_bse_2016_04_012 crossref_primary_10_1139_f2011_075 crossref_primary_10_1111_j_1420_9101_2008_01549_x crossref_primary_10_1111_j_1365_294X_2011_05035_x crossref_primary_10_1111_j_1365_294X_2008_03946_x crossref_primary_10_1111_rec_12280 crossref_primary_10_1111_j_1558_5646_2011_01404_x crossref_primary_10_1016_j_margen_2015_04_011 crossref_primary_10_1093_g3journal_jkab316 crossref_primary_10_1111_j_1365_294X_2007_03292_x crossref_primary_10_1186_1755_8794_1_22 crossref_primary_10_1186_s12864_018_4806_7 crossref_primary_10_1111_j_1365_294X_2009_04098_x crossref_primary_10_1111_j_1365_294X_2010_04786_x crossref_primary_10_1007_s00251_013_0718_5 crossref_primary_10_1111_j_1365_294X_2007_03435_x crossref_primary_10_1111_mec_14082 crossref_primary_10_1101_gr_086652_108 crossref_primary_10_1111_j_1744_7429_2007_00382_x crossref_primary_10_1093_molbev_mst168 crossref_primary_10_1186_s40665_014_0009_x crossref_primary_10_1098_rspb_2011_1552 crossref_primary_10_1086_679280 crossref_primary_10_1111_j_1365_294X_2011_05388_x crossref_primary_10_1016_S2095_3119_15_61048_6 crossref_primary_10_1038_s41598_018_32331_3 crossref_primary_10_1046_j_1365_2486_2003_00607_x crossref_primary_10_1111_j_1365_2486_2009_01921_x crossref_primary_10_1002_ece3_484 crossref_primary_10_1002_ece3_488 crossref_primary_10_1007_s13595_015_0488_3 crossref_primary_10_1016_j_pbi_2017_02_003 crossref_primary_10_4238_2012_November_12_4 crossref_primary_10_1007_s10709_013_9741_6 crossref_primary_10_1007_s11295_009_0216_y crossref_primary_10_1073_pnas_0800107105 crossref_primary_10_1029_2002GB001963 crossref_primary_10_1111_j_1752_4571_2007_00008_x crossref_primary_10_1111_j_1365_294X_2010_04631_x crossref_primary_10_1007_s10592_021_01425_3 crossref_primary_10_1093_molbev_msu264 crossref_primary_10_1534_genetics_118_301684 crossref_primary_10_1111_j_1365_294X_2006_03060_x crossref_primary_10_1371_journal_pone_0086668 crossref_primary_10_1007_s10841_015_9778_1 crossref_primary_10_1534_genetics_107_078782 crossref_primary_10_1002_evan_20174 crossref_primary_10_1002_ghg_1848 crossref_primary_10_1093_ve_vez011 crossref_primary_10_1111_j_1755_0998_2010_02869_x crossref_primary_10_1111_evo_12265 crossref_primary_10_1111_jeb_12776 crossref_primary_10_1371_journal_pone_0147875 crossref_primary_10_1007_s11295_016_1007_x crossref_primary_10_1146_annurev_genet_111212_133526 crossref_primary_10_1111_jse_12028 crossref_primary_10_1111_j_1365_294X_2009_04513_x crossref_primary_10_1111_j_1365_2052_2009_01849_x crossref_primary_10_1371_journal_pgen_1010871 crossref_primary_10_1007_s10530_013_0472_5 crossref_primary_10_1007_s11295_013_0650_8 crossref_primary_10_1111_j_1558_5646_2012_01663_x crossref_primary_10_1111_j_1526_100X_2011_00861_x crossref_primary_10_1371_journal_pone_0166146 crossref_primary_10_1186_1471_2156_15_34 crossref_primary_10_1016_j_csbj_2020_02_009 crossref_primary_10_1534_genetics_110_117275 crossref_primary_10_1007_s10592_015_0741_1 crossref_primary_10_1098_rspb_2010_0985 crossref_primary_10_1371_journal_pgen_1004185 crossref_primary_10_1111_j_1365_294X_2008_04053_x crossref_primary_10_1111_j_1365_294X_2012_05746_x crossref_primary_10_1111_j_1365_294X_2011_05046_x crossref_primary_10_1111_mec_15131 crossref_primary_10_1016_j_livsci_2014_05_003 crossref_primary_10_1016_j_livsci_2019_05_002 crossref_primary_10_1134_S1022795413010110 crossref_primary_10_1038_srep25031 crossref_primary_10_7717_peerj_1106 crossref_primary_10_1007_s10709_010_9486_4 crossref_primary_10_1111_j_1365_294X_2007_03577_x crossref_primary_10_1111_j_1365_294X_2009_04437_x crossref_primary_10_1017_S1751731109004297 crossref_primary_10_1007_s10841_012_9499_7 crossref_primary_10_1002_ece3_6002 crossref_primary_10_1016_j_gene_2023_147719 crossref_primary_10_1111_j_1420_9101_2010_02093_x crossref_primary_10_1371_journal_pone_0011913 crossref_primary_10_3390_ani10101895 crossref_primary_10_1111_1755_0998_12629 crossref_primary_10_1111_mec_16693 crossref_primary_10_1093_molbev_mst136 crossref_primary_10_1111_j_1365_294X_2010_04633_x crossref_primary_10_1111_j_1365_294X_2007_03566_x |
Cites_doi | 10.1111/j.0014-3820.2005.tb00977.x 10.1093/genetics/153.4.1863 10.1111/j.1365-294X.2006.03099.x 10.1046/j.1420-9101.2001.00304.x 10.1046/j.1365-294X.2003.01783.x 10.1017/S0016672300033607 10.1073/pnas.88.3.839 10.1111/j.1365-294X.2006.03195.x 10.1007/BF01441146 10.1007/b98952 10.1111/j.0014-3820.2003.tb01505.x 10.1111/j.0014-3820.2002.tb00857.x 10.1093/genetics/117.2.255 10.1098/rspb.1996.0237 10.1111/j.1558-5646.1984.tb05657.x 10.1016/S0040-5809(03)00007-8 10.1006/tpbi.1995.1025 10.1093/genetics/160.2.753 10.1046/j.1420-9101.2001.00335.x 10.1093/molbev/msg092 10.1007/978-1-4899-4485-6 10.1146/annurev.ge.29.120195.002153 10.1111/j.1461-0248.2007.01028.x 10.1093/genetics/159.2.893 10.1101/gr.631202 10.1007/BF02432124 10.1146/annurev.ento.46.1.441 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1111/j.1365-294X.2004.02125.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 980 |
ExternalDocumentID | 15012769 10_1111_j_1365_294X_2004_02125_x MEC2125 ark_67375_WNG_M6TR5ZH1_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AETEA AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5005-8afad35ea2b9e771eae4e94ab7908fc96db4c7fb054bdacf391c74fedc29a13a3 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 |
IngestDate | Fri Jul 11 01:10:50 EDT 2025 Fri Jul 11 08:36:40 EDT 2025 Wed Feb 19 01:35:44 EST 2025 Tue Jul 01 01:21:31 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Wed Aug 20 07:24:51 EDT 2025 Wed Oct 30 09:55:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5005-8afad35ea2b9e771eae4e94ab7908fc96db4c7fb054bdacf391c74fedc29a13a3 |
Notes | istex:9A85F07A6FD943FAE3124BAAFBFAF4481ACDCF35 ArticleID:MEC2125 ark:/67375/WNG-M6TR5ZH1-B ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 15012769 |
PQID | 17953484 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_71727192 proquest_miscellaneous_17953484 pubmed_primary_15012769 crossref_citationtrail_10_1111_j_1365_294X_2004_02125_x crossref_primary_10_1111_j_1365_294X_2004_02125_x wiley_primary_10_1111_j_1365_294X_2004_02125_x_MEC2125 istex_primary_ark_67375_WNG_M6TR5ZH1_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2004 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Kayser M, Brauer S, Stoneking M (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Molecular Biology and Evolution, 20, 893-900. Balding DJ, Greenhalgh M, Nichols RA (1996) Population genetics of STR loci in Caucasians, Intl. J. Leg. Med., 108, 300-305. Schlotterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753-763. Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annual Review of Entomology 46, 441-469. Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity, Genetica, 96, 3-12. Wakeley J, Aliacar N (2001) Gene genealogies in a metapopulation. Genetics, 159, 893-905. Rannala B, Hartigan JA (1996) Estimating gene flow in island populations. Genetical Research Cambridge, 67, 147-158. Porter AH (2003) A test for deviation from island-model population structure. Molecular Ecology 12, 903-915. Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure, Proceedings of the Royal Society of London, Series B, 263, 1619-1626. Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proceedings of the National Academy of Sciences USA, 88, 839-843. Wakeley J (1999) Nonequilibrium migration in human history. Genetics, 153, 1863-1871. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74, 175-195. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall, London. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology, 14, 611-619. Wright S (1943) Isolation by distance. Genetics, 28, 114-138. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York. Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients, Theoretical Population Biology, 63, 221-230. Singh RS, Rhomberg LR (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation. Genetics, 117, 255-271. Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics, 158, 1811-1823. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12, 1805-1814. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics, 4, 981-994. Donnelly P, Tavaré S (1995) Coalescents and genealogical structure under neutrality. Annual Review of Genetics, 29, 401-421. Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154-166. Wright S (1969) Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies. University of Chicago Press, Chicago. 1995; 96 1973; 74 2002; 12 2002; 56 2003; 57 1996 1996; 263 1970 2002 2001; 46 1996; 108 2003; 12 2002; 160 1987; 117 1984; 38 1991; 88 1999; 153 1943; 28 2003; 4 1995; 29 2003; 63 2001; 14 2003; 20 2001; 159 1969 2001; 158 1996; 67 e_1_2_6_10_1 Schlotterer C (e_1_2_6_18_1) 2002; 160 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 Kayser M (e_1_2_6_12_1) 2003; 20 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Singh RS (e_1_2_6_17_1) 1987; 117 Wright S (e_1_2_6_28_1) 1969 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annual Review of Entomology 46, 441-469. – reference: Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proceedings of the National Academy of Sciences USA, 88, 839-843. – reference: Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall, London. – reference: Wakeley J, Aliacar N (2001) Gene genealogies in a metapopulation. Genetics, 159, 893-905. – reference: Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients, Theoretical Population Biology, 63, 221-230. – reference: Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity, Genetica, 96, 3-12. – reference: Rannala B, Hartigan JA (1996) Estimating gene flow in island populations. Genetical Research Cambridge, 67, 147-158. – reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. – reference: Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure, Proceedings of the Royal Society of London, Series B, 263, 1619-1626. – reference: Schlotterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753-763. – reference: Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74, 175-195. – reference: Wright S (1969) Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies. University of Chicago Press, Chicago. – reference: Donnelly P, Tavaré S (1995) Coalescents and genealogical structure under neutrality. Annual Review of Genetics, 29, 401-421. – reference: Wright S (1943) Isolation by distance. Genetics, 28, 114-138. – reference: Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York. – reference: Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics, 158, 1811-1823. – reference: Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology, 14, 611-619. – reference: Wakeley J (1999) Nonequilibrium migration in human history. Genetics, 153, 1863-1871. – reference: Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865. – reference: Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics, 4, 981-994. – reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154-166. – reference: Kayser M, Brauer S, Stoneking M (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Molecular Biology and Evolution, 20, 893-900. – reference: Balding DJ, Greenhalgh M, Nichols RA (1996) Population genetics of STR loci in Caucasians, Intl. J. Leg. Med., 108, 300-305. – reference: Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12, 1805-1814. – reference: Porter AH (2003) A test for deviation from island-model population structure. Molecular Ecology 12, 903-915. – reference: Singh RS, Rhomberg LR (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation. Genetics, 117, 255-271. – volume: 153 start-page: 1863 year: 1999 end-page: 1871 article-title: Nonequilibrium migration in human history publication-title: Genetics – volume: 4 start-page: 981 year: 2003 end-page: 994 article-title: The power and promise of population genomics: from genotyping to genome typing publication-title: Nature Reviews Genetics – volume: 263 start-page: 1619 year: 1996 end-page: 1626 article-title: Evaluating loci for use in the genetic analysis of population structure publication-title: Proceedings of the Royal Society of London, Series B – volume: 46 start-page: 441 year: 2001 end-page: 469 article-title: Population genomics: genome‐wide sampling of insect populations publication-title: Annual Review of Entomology – volume: 160 start-page: 753 year: 2002 end-page: 763 article-title: A microsatellite‐based multilocus screen for the identification of local selective sweeps publication-title: Genetics – volume: 12 start-page: 1805 year: 2002 end-page: 1814 article-title: Interrogating a high‐density SNP map for signatures of natural selection publication-title: Genome Research – volume: 20 start-page: 893 year: 2003 end-page: 900 article-title: A genome scan to detect candidate regions influenced by local natural selection in human populations publication-title: Molecular Biology and Evolution – year: 1996 – volume: 96 start-page: 3 year: 1995 end-page: 12 article-title: A method for quantifying differentiation between populations at multi‐allelic loci and its implications for investigating identity and paternity publication-title: Genetica – volume: 57 start-page: 2628 year: 2003 end-page: 2635 – volume: 14 start-page: 611 year: 2001 end-page: 619 article-title: Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers publication-title: Journal of Evolutionary Biology – volume: 74 start-page: 175 year: 1973 end-page: 195 article-title: Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms publication-title: Genetics – volume: 158 start-page: 1811 year: 2001 end-page: 1823 article-title: Interpretation of variation across marker loci as evidence of selection publication-title: Genetics – volume: 56 start-page: 154 year: 2002 end-page: 166 article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model publication-title: Evolution – volume: 108 start-page: 300 year: 1996 end-page: 305 article-title: Population genetics of STR loci in Caucasians publication-title: Intl. J. Leg. Med. – volume: 28 start-page: 114 year: 1943 end-page: 138 article-title: Isolation by distance publication-title: Genetics – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution – year: 2002 – year: 1969 – volume: 12 start-page: 903 year: 2003 end-page: 915 article-title: A test for deviation from island‐model population structure publication-title: Molecular Ecology – volume: 88 start-page: 839 year: 1991 end-page: 843 article-title: Drift, admixture, and selection in human evolution: A study with DNA polymorphisms publication-title: Proceedings of the National Academy of Sciences USA – volume: 63 start-page: 221 year: 2003 end-page: 230 article-title: Likelihood‐based inference for genetic correlation coefficients publication-title: Theoretical Population Biology – year: 1970 – volume: 117 start-page: 255 year: 1987 end-page: 271 article-title: A comprehensive study of genic variation in natural populations of . II. Estimates of heterozygosity and patterns of geographic variation publication-title: Genetics – volume: 67 start-page: 147 year: 1996 end-page: 158 article-title: Estimating gene flow in island populations publication-title: Genetical Research Cambridge – volume: 29 start-page: 401 year: 1995 end-page: 421 article-title: Coalescents and genealogical structure under neutrality publication-title: Annual Review of Genetics – volume: 159 start-page: 893 year: 2001 end-page: 905 article-title: Gene genealogies in a metapopulation publication-title: Genetics – volume: 14 start-page: 851 year: 2001 end-page: 865 article-title: The genic view of the process of speciation publication-title: Journal of Evolutionary Biology – ident: e_1_2_6_27_1 doi: 10.1111/j.0014-3820.2005.tb00977.x – ident: e_1_2_6_25_1 doi: 10.1093/genetics/153.4.1863 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-294X.2006.03099.x – ident: e_1_2_6_24_1 doi: 10.1046/j.1420-9101.2001.00304.x – ident: e_1_2_6_15_1 doi: 10.1046/j.1365-294X.2003.01783.x – ident: e_1_2_6_16_1 doi: 10.1017/S0016672300033607 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.88.3.839 – ident: e_1_2_6_13_1 doi: 10.1111/j.1365-294X.2006.03195.x – ident: e_1_2_6_4_1 doi: 10.1007/BF01441146 – ident: e_1_2_6_19_1 doi: 10.1007/b98952 – ident: e_1_2_6_20_1 doi: 10.1111/j.0014-3820.2003.tb01505.x – ident: e_1_2_6_21_1 doi: 10.1111/j.0014-3820.2002.tb00857.x – volume: 117 start-page: 255 year: 1987 ident: e_1_2_6_17_1 article-title: A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation publication-title: Genetics doi: 10.1093/genetics/117.2.255 – ident: e_1_2_6_6_1 doi: 10.1098/rspb.1996.0237 – ident: e_1_2_6_23_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_6_3_1 doi: 10.1016/S0040-5809(03)00007-8 – ident: e_1_2_6_9_1 doi: 10.1006/tpbi.1995.1025 – volume: 160 start-page: 753 year: 2002 ident: e_1_2_6_18_1 article-title: A microsatellite‐based multilocus screen for the identification of local selective sweeps publication-title: Genetics doi: 10.1093/genetics/160.2.753 – ident: e_1_2_6_29_1 doi: 10.1046/j.1420-9101.2001.00335.x – volume: 20 start-page: 893 year: 2003 ident: e_1_2_6_12_1 article-title: A genome scan to detect candidate regions influenced by local natural selection in human populations publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msg092 – ident: e_1_2_6_11_1 doi: 10.1007/978-1-4899-4485-6 – ident: e_1_2_6_10_1 doi: 10.1146/annurev.ge.29.120195.002153 – volume-title: Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies year: 1969 ident: e_1_2_6_28_1 – ident: e_1_2_6_14_1 doi: 10.1111/j.1461-0248.2007.01028.x – ident: e_1_2_6_26_1 doi: 10.1093/genetics/159.2.893 – ident: e_1_2_6_2_1 doi: 10.1101/gr.631202 – ident: e_1_2_6_5_1 doi: 10.1007/BF02432124 – ident: e_1_2_6_7_1 doi: 10.1146/annurev.ento.46.1.441 |
SSID | ssj0013255 |
Score | 2.3838232 |
Snippet | The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 969 |
SubjectTerms | adaptation Adaptation, Biological - genetics Bayes Theorem beta-binonical Computer Simulation gene flow Gene Frequency Genetic Markers - genetics Genetic Variation Genetics, Population Genome Lewontin-Krakauer test Likelihood Functions Markov Chains Models, Genetic Monte Carlo Method Population Dynamics population structure selection Selection, Genetic |
Title | Identifying adaptive genetic divergence among populations from genome scans |
URI | https://api.istex.fr/ark:/67375/WNG-M6TR5ZH1-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2004.02125.x https://www.ncbi.nlm.nih.gov/pubmed/15012769 https://www.proquest.com/docview/17953484 https://www.proquest.com/docview/71727192 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5KSqGXPtLXtk2jQ-ltjXdXWq2ObXBqEpJDSKjJRYxeF6e2ydqQ9NdXo7WdOCQQSm-C3Vmk0Yz0afXNDMDXypdGqjrOAEeZ8yBM3tQm5KofnMG4BRYdQfa4Hp7xg5EYLflPFAvT5YdY_3Ajz0jrNTk4mnbTyRNDS_FROub1KFm56BGepAeEj07KWxcKqQBqBOxlXHmaapPUc--HNnaqp6T0q_tg6CaqTdvS_ksYrwbUsVHGvcXc9OyfO7ke_8-IX8GLJXpl3ztzew1P_GQbnnX1LK9ja5ByYF-_gcMuADgFUTF0OKNVlUVjpZhJ5ogMkrKAslTsiM3WZcRaRgEv9Ob0t2dtnPj2LZztD073hvmybkNuBSU2bTCgq4TH0igvZeHRc684RqPoN8Gq2hluZTARLRqHNlSqsJIH72ypsKiwegdbk-nEfwBWRjTHnSlL7FfcKINNI4K1LnAvVNPHDORqjrRdJjWn2hoX-tbhJipNk9Ko5CbXSWn6KoNiLTnrEns8QuZbMoO1AF6OiRgnhf51_FMf1acn4nxY6B8Z7K7sREd3pTsYnPjpotVx_RMVb_jDb0iClBF3Z_C-M7Cb7gniCdQqgzqZyaP7rY8Ge9T6-K-Cn-D5DWPpM2zNLxd-J4KxufmS3OwvMxMlAQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hVgguvCnLqz4gbhtld-31-ghVSqBNDlUqIi7W-HVpSaImkVp-PR5vkjaoSBXi5oNn5cfM-PN6Zj6AD5UvjVR13AGOMudBmLypTchVNziD8Qgs2gDZYd0_5d_GYryiA6JcmLY-xOaHG1lG8tdk4PRDetvKU4iW4uN0z-tQtXLRiYBylwi-0_3qpLzxpJAoUCNkL6PvaartsJ5bv7R1Vu3Ssl_eBkS3cW06mA4fw_l6Sm08yllnuTAd--uPao__ac5P4NEKwLJPrcY9hXt-8gzut5SWV7HVS2Wwr57DUZsDnPKoGDqckWNlUV8pbZI5igdJhUBZ4jtisw2T2JxRzgv1nP70bB73fv4CTg97o4N-vqJuyK2g2qYNBnSV8Fga5aUsPHruFceoF90mWFU7w60MJgJG49CGShVW8uCdLRUWFVYvYWcynfhXwMoI6LgzZYndihtlsGlEsNYF7oVqupiBXG-Stqu65kSvca5v3G_iomlaNGLd5Dotmr7MoNhIztraHneQ-Zj0YCOAF2cUGyeF_j78ogf16ET86Bf6cwb7a0XR0WLpGQYnfrqc6-gCRcUb_vceklBlhN4Z7LUadj08QaECtcqgTnpy53HrQe-AWq__VXAfHvRHg2N9_HV49AYeXgcwvYWdxcXSv4vYbGHeJ5v7DYP8KRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hViAuUN5LC_UBcdtoH_baPtI2IVAaoaoVERfLz0sgiZpEavn1eLxJ2qAiVYibD56VHzPjz-tvZgDe1b4yXDZxB6jmOQ3M5KIxIZdFcEbHI7BsCbKDpn9OPw_ZcMl_wliYNj_E-ocbWkby12jgUxc2jTwxtCQdpmteB5OVs07Ek9u0KQRq-NFpdeNFIVVAjYi9iq5H1Jusnlu_tHFUbeOqX96GQzdhbTqXeo9htJpRS0cZdRZz07G__kj2-H-mvAOPlvCVfGj17Qnc8-OncL8taHkVW92UBPvqGRy3EcApiopop6foVknUVgyaJA7ZICkNKEnVjsh0XUdsRjDiBXtOfnoyizs_ew7nve7ZYT9fFm7ILcPMpkIH7WrmdWWk57z02lMvqY5aUYhgZeMMtTyYCBeN0zbUsrScBu9sJXVZ6_oFbI0nY_8KSBXhHHWmqnRRUyONFoIFa12gnklR6Az4ao-UXWY1x-IaP9SN201cNIWLhjU3qUqLpi4zKNeS0zazxx1k3ic1WAvoixEy4zhT3wYf1Ulzdsq-90t1kMH-Sk9UtFd8hNFjP1nMVHSArKaC_r0HR0wZgXcGL1sFux4eQ6JAIzNokprcedzqpHuIrdf_KrgPD74e9dSXT4PjXXh4zV7ag635xcK_icBsbt4mi_sN9Pcn1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+adaptive+genetic+divergence+among+populations+from+genome+scans&rft.jtitle=Molecular+ecology&rft.au=Beaumont%2C+Mark+A&rft.au=Balding%2C+David+J&rft.date=2004-04-01&rft.issn=0962-1083&rft.volume=13&rft.issue=4&rft.spage=969&rft_id=info:doi/10.1111%2Fj.1365-294x.2004.02125.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |