Identifying adaptive genetic divergence among populations from genome scans

The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involveme...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 13; no. 4; pp. 969 - 980
Main Authors Beaumont, Mark A., Balding, David J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.04.2004
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
DOI10.1111/j.1365-294X.2004.02125.x

Cover

Loading…
Abstract The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
AbstractList The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F ST . Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F ST estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of F ST . We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F sub(ST). Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F sub(ST) estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F sub(ST). We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population‐genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large‐scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical‐Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment‐based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
Author Balding, David J.
Beaumont, Mark A.
Author_xml – sequence: 1
  givenname: Mark A.
  surname: Beaumont
  fullname: Beaumont, Mark A.
  email: m.a.beaumont@reading.ac.uk
  organization: School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
– sequence: 2
  givenname: David J.
  surname: Balding
  fullname: Balding, David J.
  organization: Department of Epidemiology and Public Health, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15012769$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS3Uik5bXgFlxS7Bv3G8AAlGpa1oQUKtQGwsx7muPCRxamdg5u1JOu0s2BRv7Ct_51zpnGN00IceEMoILsh03q4KwkqRU8V_FBRjXmBKqCg2L9Bi_3GAFliVNCe4YkfoOKUVxoRRIV6iIyIwobJUC_T5soF-9G7r-7vMNGYY_W_I7qCH0dusmYY4DRYy04WJGMKwbs3oQ58yF0M3k6GDLFnTp1N06Eyb4NXjfYJuP53dLC_yq6_nl8sPV7kVGIu8Ms40TIChtQIpCRjgoLippcKVs6psam6lq7HgdWOsY4pYyR00lipDmGEn6M3Od4jhfg1p1J1PFtrW9BDWSUsiqSSKPgsSqQTjFZ_A14_guu6g0UP0nYlb_ZTTBLzfATaGlCI4bf34kMMYjW81wXouRq_0nL-e89dzMfqhGL2ZDKp_DPY7npe-20n_-Ba2_63T12fL-TXp853epxE2e72Jv3QpmRT6-5dzfV3efBM_L4j-yP4CQEC2Jw
CitedBy_id crossref_primary_10_1371_journal_pone_0007888
crossref_primary_10_1371_journal_pone_0121557
crossref_primary_10_1111_jfb_13145
crossref_primary_10_1111_mec_13734
crossref_primary_10_1002_ece3_1007
crossref_primary_10_1371_journal_pone_0041310
crossref_primary_10_1534_genetics_115_177030
crossref_primary_10_1146_annurev_ecolsys_110411_160248
crossref_primary_10_1002_ece3_86
crossref_primary_10_1038_nrg1318
crossref_primary_10_1038_sj_hdy_6801057
crossref_primary_10_1146_annurev_genet_39_073003_112420
crossref_primary_10_1111_j_1365_294X_2009_04142_x
crossref_primary_10_1038_hdy_2015_93
crossref_primary_10_1111_j_1365_294X_2004_02396_x
crossref_primary_10_7868_S0016675817110121
crossref_primary_10_1111_j_1755_0998_2010_02927_x
crossref_primary_10_1111_eva_12174
crossref_primary_10_3732_ajb_1200653
crossref_primary_10_1002_ece3_4767
crossref_primary_10_1038_nrg2632
crossref_primary_10_1111_mec_14807
crossref_primary_10_1016_j_foreco_2017_09_045
crossref_primary_10_1029_2007JG000438
crossref_primary_10_1002_jgrg_20033
crossref_primary_10_1007_s10592_013_0532_5
crossref_primary_10_1002_ajpa_21439
crossref_primary_10_1093_genetics_iyab189
crossref_primary_10_1111_j_1744_7429_2005_00077_x
crossref_primary_10_1080_00207543_2017_1378956
crossref_primary_10_1371_journal_pgen_0020064
crossref_primary_10_1038_s41437_019_0249_4
crossref_primary_10_1111_mec_12628
crossref_primary_10_1007_s11295_016_1073_0
crossref_primary_10_1016_j_cub_2004_08_041
crossref_primary_10_1016_j_margen_2017_01_004
crossref_primary_10_1016_j_ympev_2018_04_015
crossref_primary_10_1002_ece3_2358
crossref_primary_10_1007_s12038_019_9917_z
crossref_primary_10_1086_682949
crossref_primary_10_1554_05_273_1
crossref_primary_10_1111_j_1365_294X_2009_04120_x
crossref_primary_10_1086_670988
crossref_primary_10_1038_nrg2611
crossref_primary_10_1186_s12864_018_5044_8
crossref_primary_10_1093_jhered_est029
crossref_primary_10_1155_2012_698421
crossref_primary_10_1111_j_1365_294X_2010_04820_x
crossref_primary_10_1111_j_1365_294X_2006_02829_x
crossref_primary_10_1007_s11295_013_0605_0
crossref_primary_10_1111_j_1365_294X_2010_04615_x
crossref_primary_10_1002_ece3_4793
crossref_primary_10_1007_s10709_014_9780_7
crossref_primary_10_1016_j_livsci_2017_09_007
crossref_primary_10_1111_j_1529_8817_2003_00772_x
crossref_primary_10_1038_nrg2844
crossref_primary_10_1111_j_1558_5646_2008_00352_x
crossref_primary_10_4236_ojapps_2021_116057
crossref_primary_10_1111_j_1365_2486_2007_01344_x
crossref_primary_10_3389_fgene_2014_00458
crossref_primary_10_1146_annurev_ecolsys_110512_135833
crossref_primary_10_3389_fpls_2016_00698
crossref_primary_10_1016_j_flora_2014_10_002
crossref_primary_10_1111_mec_12835
crossref_primary_10_1007_s11295_015_0862_1
crossref_primary_10_1111_j_1365_294X_2012_05738_x
crossref_primary_10_1016_j_tree_2010_06_011
crossref_primary_10_1093_icesjms_fsab098
crossref_primary_10_1096_fj_15_271056
crossref_primary_10_1111_j_1558_5646_2010_01050_x
crossref_primary_10_1111_j_1365_294X_2008_03774_x
crossref_primary_10_1038_srep12834
crossref_primary_10_1111_j_1365_294X_2011_05080_x
crossref_primary_10_1111_j_1570_7458_2012_01321_x
crossref_primary_10_1029_2005GB002514
crossref_primary_10_1186_1471_2156_14_9
crossref_primary_10_1371_journal_pone_0130497
crossref_primary_10_1534_genetics_109_109991
crossref_primary_10_1016_j_atg_2013_10_002
crossref_primary_10_1007_s10750_019_03993_5
crossref_primary_10_1111_j_1365_294X_2007_03437_x
crossref_primary_10_1186_s12864_017_3944_7
crossref_primary_10_1111_mec_13907
crossref_primary_10_3390_genes13020194
crossref_primary_10_1029_2001JD000360
crossref_primary_10_1111_j_1365_294X_2010_04528_x
crossref_primary_10_1111_j_1420_9101_2012_02514_x
crossref_primary_10_1186_1755_8794_2_45
crossref_primary_10_1111_j_1365_294X_2008_03885_x
crossref_primary_10_1002_ece3_52
crossref_primary_10_1029_2000JD900041
crossref_primary_10_1038_nrg1968
crossref_primary_10_1111_j_1439_0418_2007_01190_x
crossref_primary_10_1007_s11295_013_0669_x
crossref_primary_10_1111_mec_12241
crossref_primary_10_1371_journal_pgen_1000243
crossref_primary_10_3390_plants9121686
crossref_primary_10_3389_fpls_2017_00481
crossref_primary_10_1186_1756_0500_7_953
crossref_primary_10_1016_j_biocon_2013_05_014
crossref_primary_10_1038_hdy_2013_83
crossref_primary_10_1111_j_1365_2486_2005_00920_x
crossref_primary_10_1111_mec_13323
crossref_primary_10_1111_mec_13322
crossref_primary_10_1111_bij_12109
crossref_primary_10_1093_molbev_msq248
crossref_primary_10_1111_j_1558_5646_2007_00299_x
crossref_primary_10_1139_gen_2014_0003
crossref_primary_10_1111_jeb_13033
crossref_primary_10_1186_s12864_015_1602_5
crossref_primary_10_1111_j_1365_294X_2008_03863_x
crossref_primary_10_1111_j_1365_294X_2012_05509_x
crossref_primary_10_1007_s11434_007_0400_0
crossref_primary_10_1051_alr_2017009
crossref_primary_10_1007_s10592_012_0411_5
crossref_primary_10_1017_S147926210899417X
crossref_primary_10_7717_peerj_16391
crossref_primary_10_1002_ldr_583
crossref_primary_10_1111_j_1420_9101_2011_02314_x
crossref_primary_10_1111_j_1365_294X_2012_05586_x
crossref_primary_10_1111_mec_12463
crossref_primary_10_1111_mec_14406
crossref_primary_10_3354_meps13859
crossref_primary_10_1002_ece3_2990
crossref_primary_10_1111_j_1365_294X_2008_03852_x
crossref_primary_10_1111_jeb_12152
crossref_primary_10_1111_mec_13557
crossref_primary_10_1111_j_1365_294X_2012_05540_x
crossref_primary_10_1111_j_1469_8137_2006_01686_x
crossref_primary_10_1093_molbev_msz029
crossref_primary_10_3354_meps11672
crossref_primary_10_1002_ldr_2222
crossref_primary_10_1038_hdy_2013_68
crossref_primary_10_1111_j_1365_294X_2010_04737_x
crossref_primary_10_1093_molbev_msq211
crossref_primary_10_1002_ajpa_70010
crossref_primary_10_3390_ani13050818
crossref_primary_10_1111_gcb_13173
crossref_primary_10_1007_s10681_016_1672_8
crossref_primary_10_1111_j_1600_048X_2013_00233_x
crossref_primary_10_1016_j_pbi_2008_01_005
crossref_primary_10_1038_ejhg_2013_48
crossref_primary_10_1371_journal_pone_0137077
crossref_primary_10_1002_ece3_1671
crossref_primary_10_1111_j_1526_100X_2010_00715_x
crossref_primary_10_1111_mec_12215
crossref_primary_10_1111_mec_13545
crossref_primary_10_1111_j_1365_294X_2012_05499_x
crossref_primary_10_1111_jeb_12168
crossref_primary_10_1038_s41438_020_00373_2
crossref_primary_10_1111_j_1095_8649_2012_03421_x
crossref_primary_10_1038_sj_hdy_6801005
crossref_primary_10_1111_mec_12201
crossref_primary_10_1186_s12864_020_07084_x
crossref_primary_10_1111_ele_12107
crossref_primary_10_1534_genetics_113_153783
crossref_primary_10_1111_mec_12447
crossref_primary_10_7717_peerj_4077
crossref_primary_10_1111_nph_12896
crossref_primary_10_1038_s41598_021_98662_w
crossref_primary_10_1007_s10592_009_0044_5
crossref_primary_10_1534_genetics_110_123059
crossref_primary_10_1111_mec_12430
crossref_primary_10_1086_666666
crossref_primary_10_1073_pnas_1000939107
crossref_primary_10_1111_j_1529_8817_2003_00765_x
crossref_primary_10_1371_journal_pone_0213992
crossref_primary_10_1111_jeb_13071
crossref_primary_10_3390_genes9090452
crossref_primary_10_1111_j_1471_8286_2007_01758_x
crossref_primary_10_3389_fgene_2015_00052
crossref_primary_10_1111_j_0014_3820_2005_tb00941_x
crossref_primary_10_1038_hdy_2013_31
crossref_primary_10_1002_ldr_1100
crossref_primary_10_1038_hdy_2011_93
crossref_primary_10_1186_1471_2156_10_7
crossref_primary_10_1016_j_tpb_2013_03_001
crossref_primary_10_1371_journal_pone_0115499
crossref_primary_10_1098_rsos_170925
crossref_primary_10_1002_ece3_2550
crossref_primary_10_1111_j_1365_294X_2008_03854_x
crossref_primary_10_1111_mec_13513
crossref_primary_10_1111_mec_12423
crossref_primary_10_1080_00028487_2011_588094
crossref_primary_10_1038_hdy_2011_85
crossref_primary_10_1080_00028487_2011_588092
crossref_primary_10_1038_hdy_2011_81
crossref_primary_10_1534_genetics_107_073759
crossref_primary_10_1038_srep13758
crossref_primary_10_1111_gcb_13134
crossref_primary_10_1371_journal_pone_0091672
crossref_primary_10_1111_mec_12415
crossref_primary_10_1111_mec_13988
crossref_primary_10_3389_fpls_2018_00386
crossref_primary_10_1111_j_1365_294X_2010_04792_x
crossref_primary_10_3724_SP_J_1005_2012_01304
crossref_primary_10_1007_s10592_014_0590_3
crossref_primary_10_1007_s11295_008_0188_3
crossref_primary_10_4081_ijas_2011_e54
crossref_primary_10_1139_cjfas_2013_0090
crossref_primary_10_3732_ajb_1000378
crossref_primary_10_1098_rstb_2009_0219
crossref_primary_10_1534_g3_115_024349
crossref_primary_10_1111_j_1755_0998_2010_02873_x
crossref_primary_10_1016_j_tplants_2010_09_002
crossref_primary_10_1007_s10709_008_9240_3
crossref_primary_10_1186_1471_2148_13_169
crossref_primary_10_1139_f07_177
crossref_primary_10_1007_s00439_009_0668_z
crossref_primary_10_1111_mec_14147
crossref_primary_10_1111_gcb_12903
crossref_primary_10_1038_hdy_2017_6
crossref_primary_10_1093_jeb_voae048
crossref_primary_10_1111_mec_14141
crossref_primary_10_1111_mec_13292
crossref_primary_10_1111_mec_13291
crossref_primary_10_1007_s00335_023_10021_4
crossref_primary_10_1111_mec_13046
crossref_primary_10_1111_mec_13288
crossref_primary_10_1111_j_1365_294X_2010_04839_x
crossref_primary_10_1111_1755_0998_13893
crossref_primary_10_3390_d3030405
crossref_primary_10_1111_1755_0998_13415
crossref_primary_10_1111_j_1365_294X_2011_05319_x
crossref_primary_10_3389_fcosc_2021_702128
crossref_primary_10_1093_gbe_evt109
crossref_primary_10_1080_00207543_2016_1252864
crossref_primary_10_7717_peerj_8745
crossref_primary_10_1111_j_1365_294X_2008_03856_x
crossref_primary_10_3390_ijms12063966
crossref_primary_10_1007_s10682_012_9597_8
crossref_primary_10_1111_mec_13276
crossref_primary_10_1111_mec_12184
crossref_primary_10_1016_j_meegid_2016_12_007
crossref_primary_10_1002_ece3_6398
crossref_primary_10_1111_j_1529_8817_2003_00779_x
crossref_primary_10_1111_j_1365_294X_2007_03454_x
crossref_primary_10_1111_j_1365_2311_2009_01140_x
crossref_primary_10_1111_j_1439_0388_2010_00868_x
crossref_primary_10_7717_peerj_5462
crossref_primary_10_1111_mec_14361
crossref_primary_10_1186_1471_2148_11_100
crossref_primary_10_1098_rspb_2017_2806
crossref_primary_10_1111_mec_12182
crossref_primary_10_1007_s10592_011_0195_z
crossref_primary_10_1111_j_1365_294X_2011_05067_x
crossref_primary_10_1007_s10841_017_0039_3
crossref_primary_10_1134_S1022795413090111
crossref_primary_10_1111_j_0018_0661_2008_02054_x
crossref_primary_10_1111_j_1365_294X_2010_04794_x
crossref_primary_10_1002_ece3_5070
crossref_primary_10_1111_j_1469_1809_2007_00390_x
crossref_primary_10_1371_journal_pone_0020394
crossref_primary_10_1534_genetics_110_117366
crossref_primary_10_1038_jhg_2010_7
crossref_primary_10_1111_j_1365_294X_2008_03712_x
crossref_primary_10_1111_j_1365_294X_2010_04650_x
crossref_primary_10_1111_mec_14344
crossref_primary_10_1134_S1022795411110159
crossref_primary_10_1038_hdy_2010_167
crossref_primary_10_1111_j_1755_0998_2010_02888_x
crossref_primary_10_1038_nrg3015
crossref_primary_10_1111_mec_12161
crossref_primary_10_1186_s12862_015_0477_z
crossref_primary_10_1038_ng_3464
crossref_primary_10_1111_mec_12158
crossref_primary_10_1111_mec_13489
crossref_primary_10_1038_ejhg_2008_137
crossref_primary_10_1111_mec_13245
crossref_primary_10_1111_mec_12154
crossref_primary_10_1007_s00227_009_1297_8
crossref_primary_10_1007_s11295_017_1127_y
crossref_primary_10_1038_hdy_2014_113
crossref_primary_10_1371_journal_pone_0062964
crossref_primary_10_1038_hdy_2010_177
crossref_primary_10_1111_j_1558_5646_2008_00447_x
crossref_primary_10_1111_j_1365_294X_2005_02690_x
crossref_primary_10_1139_cjfas_2014_0004
crossref_primary_10_1186_1471_2148_13_108
crossref_primary_10_1016_j_envpol_2011_02_049
crossref_primary_10_1111_j_1365_294X_2008_03921_x
crossref_primary_10_3390_ijms21134792
crossref_primary_10_1534_g3_119_400401
crossref_primary_10_1111_j_1469_8137_2011_03648_x
crossref_primary_10_1098_rspb_2015_2563
crossref_primary_10_1007_s10980_005_7756_9
crossref_primary_10_1371_journal_pone_0083891
crossref_primary_10_1111_j_1365_294X_2005_02737_x
crossref_primary_10_1186_s12870_014_0251_1
crossref_primary_10_1111_j_1365_294X_2011_05272_x
crossref_primary_10_1007_s11295_010_0287_9
crossref_primary_10_1093_molbev_msi093
crossref_primary_10_1007_s10709_012_9672_7
crossref_primary_10_1111_mec_13466
crossref_primary_10_1111_mec_15648
crossref_primary_10_3732_ajb_1500313
crossref_primary_10_1038_srep34941
crossref_primary_10_1007_s00439_006_0256_4
crossref_primary_10_1111_mec_14796
crossref_primary_10_1111_mec_13226
crossref_primary_10_1111_mec_13468
crossref_primary_10_1111_j_1365_294X_2008_03714_x
crossref_primary_10_1093_molbev_msu182
crossref_primary_10_1007_s10592_012_0339_9
crossref_primary_10_1038_hdy_2010_128
crossref_primary_10_1371_journal_pone_0070162
crossref_primary_10_1038_sj_hdy_6800806
crossref_primary_10_1098_rstb_2008_0078
crossref_primary_10_1038_srep44080
crossref_primary_10_1111_j_1757_1707_2010_01044_x
crossref_primary_10_1111_j_1365_294X_2012_05501_x
crossref_primary_10_1139_gen_2013_0071
crossref_primary_10_1007_s10750_008_9350_z
crossref_primary_10_1016_j_rmb_2016_07_004
crossref_primary_10_1093_molbev_mst063
crossref_primary_10_1146_annurev_anthro_37_081407_085141
crossref_primary_10_1016_j_gene_2014_03_029
crossref_primary_10_1134_S1022795417110114
crossref_primary_10_1007_s10530_017_1621_z
crossref_primary_10_1029_2001GL013454
crossref_primary_10_1186_s12862_018_1311_1
crossref_primary_10_1007_s10592_013_0464_0
crossref_primary_10_1111_j_1755_0998_2011_02987_x
crossref_primary_10_1890_07_1162_1
crossref_primary_10_1371_journal_pone_0158216
crossref_primary_10_1534_g3_116_028753
crossref_primary_10_1111_jse_12109
crossref_primary_10_1111_eva_12450
crossref_primary_10_1371_journal_pone_0158691
crossref_primary_10_1371_journal_pone_0197378
crossref_primary_10_1371_journal_pone_0121394
crossref_primary_10_1111_j_1365_294X_2010_04678_x
crossref_primary_10_1016_j_flora_2020_151726
crossref_primary_10_1111_j_1365_2486_2009_02064_x
crossref_primary_10_1186_s13059_015_0627_z
crossref_primary_10_1016_j_tree_2005_05_017
crossref_primary_10_1093_sysbio_syq022
crossref_primary_10_1007_s12237_017_0234_1
crossref_primary_10_1111_j_1365_294X_2011_05025_x
crossref_primary_10_1111_j_1365_294X_2007_03303_x
crossref_primary_10_1111_j_1365_294X_2012_05634_x
crossref_primary_10_1038_hdy_2013_122
crossref_primary_10_1073_pnas_0901397106
crossref_primary_10_1111_eva_12432
crossref_primary_10_1007_s10722_012_9939_y
crossref_primary_10_1007_s11692_015_9307_x
crossref_primary_10_1111_eva_12672
crossref_primary_10_1111_eva_12436
crossref_primary_10_1186_gb_2010_11_4_r44
crossref_primary_10_3390_w8050188
crossref_primary_10_1038_hdy_2008_26
crossref_primary_10_1146_annurev_nutr_080508_141048
crossref_primary_10_5808_GI_2012_10_2_81
crossref_primary_10_1007_s00606_016_1354_y
crossref_primary_10_1534_g3_116_027235
crossref_primary_10_1111_j_1365_294X_2010_04996_x
crossref_primary_10_1111_j_1365_294X_2007_03478_x
crossref_primary_10_1111_j_1365_294X_2011_05463_x
crossref_primary_10_1111_j_1365_2486_2006_01228_x
crossref_primary_10_1007_s10592_018_1096_1
crossref_primary_10_1111_mec_15032
crossref_primary_10_1007_s00497_023_00478_3
crossref_primary_10_1111_j_1365_294X_2011_05045_x
crossref_primary_10_1093_molbev_mss176
crossref_primary_10_1111_j_1365_294X_2007_03323_x
crossref_primary_10_1111_eva_12892
crossref_primary_10_1111_eva_12891
crossref_primary_10_1046_j_1466_822X_2001_00251_x
crossref_primary_10_1111_1755_0998_12764
crossref_primary_10_1111_gcb_12937
crossref_primary_10_1186_1471_2148_8_164
crossref_primary_10_1007_s11295_015_0964_9
crossref_primary_10_1038_hdy_2011_120
crossref_primary_10_1534_genetics_112_140749
crossref_primary_10_1038_nrg1904
crossref_primary_10_3732_ajb_1600232
crossref_primary_10_1093_jhered_esx048
crossref_primary_10_1111_j_1365_2486_2007_01521_x
crossref_primary_10_1080_19425120_2015_1037473
crossref_primary_10_1111_j_1365_2486_2004_00751_x
crossref_primary_10_1371_journal_pone_0028008
crossref_primary_10_3389_fgene_2019_00901
crossref_primary_10_1002_ece3_7447
crossref_primary_10_1111_j_1365_294X_2008_04076_x
crossref_primary_10_1098_rstb_2011_0260
crossref_primary_10_1371_journal_pone_0203242
crossref_primary_10_1111_j_1365_294X_2010_04667_x
crossref_primary_10_1111_brv_13118
crossref_primary_10_1016_j_smallrumres_2011_08_006
crossref_primary_10_1371_journal_pone_0093055
crossref_primary_10_1371_journal_pone_0121381
crossref_primary_10_1111_jbi_12392
crossref_primary_10_1111_age_12724
crossref_primary_10_1186_1479_7364_2_2_113
crossref_primary_10_1016_j_biocon_2008_01_015
crossref_primary_10_1111_j_1365_294X_2009_04229_x
crossref_primary_10_1007_s10646_013_1092_7
crossref_primary_10_1111_mec_13066
crossref_primary_10_1007_s00170_018_1903_3
crossref_primary_10_1534_genetics_116_198424
crossref_primary_10_1002_hyp_10458
crossref_primary_10_1111_evo_13261
crossref_primary_10_1111_j_1365_294X_2006_02934_x
crossref_primary_10_1186_1479_7364_2_3_155
crossref_primary_10_1080_01584197_2022_2063746
crossref_primary_10_1093_molbev_msab294
crossref_primary_10_1007_s11104_020_04780_1
crossref_primary_10_3390_genes13010050
crossref_primary_10_1111_mec_14701
crossref_primary_10_1111_j_1365_2486_2007_01323_x
crossref_primary_10_1371_journal_pone_0030544
crossref_primary_10_1111_mec_13859
crossref_primary_10_1046_j_1365_2486_2002_00536_x
crossref_primary_10_1093_molbev_msi235
crossref_primary_10_1016_j_bse_2006_04_001
crossref_primary_10_1111_j_1365_294X_2010_04952_x
crossref_primary_10_1111_j_1365_294X_2005_02655_x
crossref_primary_10_1371_journal_pone_0101821
crossref_primary_10_1086_656306
crossref_primary_10_1139_cjfas_2015_0430
crossref_primary_10_1111_j_1365_2664_2007_01347_x
crossref_primary_10_1007_s10682_010_9377_2
crossref_primary_10_1029_2005GB002641
crossref_primary_10_1111_eva_12055
crossref_primary_10_3389_fpls_2016_00777
crossref_primary_10_1111_j_1365_294X_2005_02437_x
crossref_primary_10_1111_mec_13605
crossref_primary_10_1111_mec_13847
crossref_primary_10_1073_pnas_1616755114
crossref_primary_10_1111_j_1365_294X_2006_03025_x
crossref_primary_10_1016_j_fishres_2020_105718
crossref_primary_10_1016_j_dsr_2019_103188
crossref_primary_10_1007_s11284_009_0609_2
crossref_primary_10_1111_j_1755_0998_2008_02162_x
crossref_primary_10_7717_peerj_9033
crossref_primary_10_1098_rspb_2011_1823
crossref_primary_10_1111_j_1365_2052_2012_02326_x
crossref_primary_10_1007_s11284_014_1217_3
crossref_primary_10_1111_pbi_13206
crossref_primary_10_1371_journal_pone_0077857
crossref_primary_10_1002_hyp_6217
crossref_primary_10_1371_journal_pone_0153013
crossref_primary_10_1111_j_1365_294X_2008_03709_x
crossref_primary_10_1111_j_1439_0388_2010_00883_x
crossref_primary_10_1002_ece3_3323
crossref_primary_10_1111_j_1365_294X_2011_05311_x
crossref_primary_10_1002_ece3_4411
crossref_primary_10_1029_2001GB001855
crossref_primary_10_1186_s12864_016_2583_8
crossref_primary_10_1111_j_1558_5646_2010_01082_x
crossref_primary_10_1038_nrg2506
crossref_primary_10_1111_j_1365_294X_2006_03112_x
crossref_primary_10_1007_s10529_013_1377_1
crossref_primary_10_1105_tpc_108_059808
crossref_primary_10_1534_genetics_110_124693
crossref_primary_10_1111_eva_12270
crossref_primary_10_1534_genetics_113_154740
crossref_primary_10_1111_j_1365_294X_2010_04941_x
crossref_primary_10_1093_molbev_msq181
crossref_primary_10_1016_j_tig_2010_01_001
crossref_primary_10_1111_j_1365_294X_2009_04272_x
crossref_primary_10_1534_genetics_115_181453
crossref_primary_10_1111_mec_13818
crossref_primary_10_1590_S1415_47572014000300004
crossref_primary_10_1093_molbev_mss121
crossref_primary_10_1111_eva_12266
crossref_primary_10_1111_eva_12264
crossref_primary_10_1093_icb_icn082
crossref_primary_10_1002_ece3_595
crossref_primary_10_1111_mec_13816
crossref_primary_10_1111_mec_12725
crossref_primary_10_1111_jbi_13415
crossref_primary_10_1111_mec_13811
crossref_primary_10_1093_bioinformatics_btv493
crossref_primary_10_1371_journal_pone_0180605
crossref_primary_10_1111_j_1420_9101_2011_02259_x
crossref_primary_10_1038_hdy_2014_80
crossref_primary_10_1080_00028487_2011_588129
crossref_primary_10_1111_eva_12257
crossref_primary_10_1016_j_fishres_2016_02_013
crossref_primary_10_1111_j_1752_4571_2010_00157_x
crossref_primary_10_1111_mec_12957
crossref_primary_10_1111_j_1755_0998_2010_02948_x
crossref_primary_10_1111_j_1365_294X_2006_03027_x
crossref_primary_10_1111_j_1365_294X_2008_04059_x
crossref_primary_10_1093_molbev_msq167
crossref_primary_10_1111_j_1365_2052_2006_01479_x
crossref_primary_10_1186_s13059_016_1027_8
crossref_primary_10_1111_j_1365_294X_2010_04691_x
crossref_primary_10_1111_j_1365_294X_2010_04821_x
crossref_primary_10_1534_genetics_106_062851
crossref_primary_10_1111_j_1420_9101_2012_02526_x
crossref_primary_10_1371_journal_pone_0033636
crossref_primary_10_1016_j_tig_2014_09_010
crossref_primary_10_1371_journal_pone_0005767
crossref_primary_10_1111_mec_12705
crossref_primary_10_1534_genetics_113_152991
crossref_primary_10_1111_j_1365_294X_2007_03414_x
crossref_primary_10_1371_journal_pone_0157809
crossref_primary_10_1016_j_margen_2015_12_009
crossref_primary_10_1093_molbev_msp043
crossref_primary_10_1017_S0016672313000062
crossref_primary_10_1111_gcb_12798
crossref_primary_10_1139_B07_102
crossref_primary_10_1093_jhered_esu033
crossref_primary_10_1111_j_1365_294X_2008_03907_x
crossref_primary_10_1038_hdy_2014_68
crossref_primary_10_1111_j_1365_294X_2011_05015_x
crossref_primary_10_1111_1755_0998_12009_x
crossref_primary_10_1111_j_1365_294X_2008_03960_x
crossref_primary_10_1371_journal_pgen_1006517
crossref_primary_10_1111_j_1469_8137_2010_03401_x
crossref_primary_10_1111_j_1752_4571_2011_00206_x
crossref_primary_10_1111_j_1365_294X_2010_04595_x
crossref_primary_10_1111_j_1365_294X_2008_03851_x
crossref_primary_10_1111_mec_14543
crossref_primary_10_1111_j_0022_1112_2005_00785_x
crossref_primary_10_1111_j_1744_7429_2006_00229_x
crossref_primary_10_1002_ece3_3705
crossref_primary_10_1186_s12711_016_0258_1
crossref_primary_10_1534_genetics_107_082560
crossref_primary_10_1111_j_1558_5646_2009_00779_x
crossref_primary_10_1111_mec_12354
crossref_primary_10_1111_mec_12352
crossref_primary_10_1534_genetics_114_161380
crossref_primary_10_1094_PHYTO_98_4_0413
crossref_primary_10_1111_j_1365_294X_2008_03840_x
crossref_primary_10_1016_j_flora_2019_151497
crossref_primary_10_1111_mec_12358
crossref_primary_10_1641_B580306
crossref_primary_10_1111_jeb_12069
crossref_primary_10_1266_ggs_84_307
crossref_primary_10_3354_meps09246
crossref_primary_10_1007_s10682_009_9350_0
crossref_primary_10_1038_hdy_2009_134
crossref_primary_10_1007_s10682_017_9890_7
crossref_primary_10_1371_journal_pone_0001367
crossref_primary_10_1111_1755_0998_13221
crossref_primary_10_1371_journal_pone_0015529
crossref_primary_10_1111_1755_0998_13225
crossref_primary_10_1002_ece3_1300
crossref_primary_10_1029_2001GB001466
crossref_primary_10_1002_ece3_1546
crossref_primary_10_1186_s12862_015_0280_x
crossref_primary_10_1093_cz_zow088
crossref_primary_10_1111_j_1365_294X_2004_02318_x
crossref_primary_10_1534_g3_116_026914
crossref_primary_10_1007_s11295_013_0624_x
crossref_primary_10_1371_journal_pone_0002209
crossref_primary_10_1111_mec_12330
crossref_primary_10_1534_genetics_109_112391
crossref_primary_10_1111_j_1365_294X_2011_05119_x
crossref_primary_10_1890_03_5225
crossref_primary_10_1111_mec_12337
crossref_primary_10_1007_s11295_011_0368_4
crossref_primary_10_1111_2041_210X_12418
crossref_primary_10_1111_jeb_12046
crossref_primary_10_1214_19_AOAS1301
crossref_primary_10_1534_genetics_120_303780
crossref_primary_10_1111_evo_12410
crossref_primary_10_3390_f6051439
crossref_primary_10_1016_j_ajhg_2014_09_002
crossref_primary_10_1017_S0016672310000121
crossref_primary_10_1016_j_livsci_2011_10_009
crossref_primary_10_1111_mec_12562
crossref_primary_10_1007_s10709_008_9321_3
crossref_primary_10_1111_mec_12561
crossref_primary_10_1016_j_plantsci_2010_09_009
crossref_primary_10_1534_genetics_110_115543
crossref_primary_10_1534_g3_115_016865
crossref_primary_10_1534_genetics_110_118828
crossref_primary_10_4238_2012_September_12_5
crossref_primary_10_1534_genetics_107_084541
crossref_primary_10_1029_2003GB002142
crossref_primary_10_1007_s11295_014_0823_0
crossref_primary_10_1534_genetics_107_081281
crossref_primary_10_1093_jhered_esq094
crossref_primary_10_1038_s42003_022_03159_5
crossref_primary_10_1111_mec_12319
crossref_primary_10_1002_aqc_3373
crossref_primary_10_1111_mec_13647
crossref_primary_10_1080_02755947_2012_676383
crossref_primary_10_1093_nar_gkae1027
crossref_primary_10_1093_molbev_msx193
crossref_primary_10_1198_jasa_2009_0010
crossref_primary_10_1111_j_1365_294X_2008_03755_x
crossref_primary_10_1093_bfgp_elw008
crossref_primary_10_1111_mec_12784
crossref_primary_10_1111_mec_14966
crossref_primary_10_1111_j_1744_7429_2009_00517_x
crossref_primary_10_1111_j_1755_0998_2009_02786_x
crossref_primary_10_1371_journal_pone_0002411
crossref_primary_10_1007_s00227_017_3210_1
crossref_primary_10_1111_j_1365_294X_2008_04004_x
crossref_primary_10_1111_j_1095_8649_2010_02563_x
crossref_primary_10_1111_jeb_12071
crossref_primary_10_1111_j_1365_294X_2010_04573_x
crossref_primary_10_1098_rstb_2010_0178
crossref_primary_10_1007_s11295_016_1010_2
crossref_primary_10_1016_j_marenvres_2013_05_006
crossref_primary_10_1534_genetics_108_092221
crossref_primary_10_1111_wre_12260
crossref_primary_10_1111_j_1365_294X_2010_04716_x
crossref_primary_10_1038_hdy_2012_51
crossref_primary_10_1038_hdy_2012_50
crossref_primary_10_1093_biolinnean_bly063
crossref_primary_10_1111_j_1558_5646_2011_01440_x
crossref_primary_10_1111_j_1420_9101_2005_00982_x
crossref_primary_10_1080_17415977_2019_1683173
crossref_primary_10_1111_j_1365_2486_2004_00736_x
crossref_primary_10_1007_s11295_024_01662_w
crossref_primary_10_1111_j_1600_048X_2012_05826_x
crossref_primary_10_1371_journal_pone_0034339
crossref_primary_10_1002_ece3_722
crossref_primary_10_1007_s10530_024_03267_9
crossref_primary_10_1111_mec_12537
crossref_primary_10_1111_mec_13867
crossref_primary_10_1029_2008GL035746
crossref_primary_10_1186_s12864_024_10141_4
crossref_primary_10_1007_s00300_013_1370_0
crossref_primary_10_1111_j_1529_8817_2003_00766_x
crossref_primary_10_1111_j_1365_2052_2011_02309_x
crossref_primary_10_1890_100063
crossref_primary_10_1111_j_1365_294X_2010_04936_x
crossref_primary_10_1098_rspb_2011_1805
crossref_primary_10_1111_mec_13619
crossref_primary_10_1016_j_margen_2009_07_001
crossref_primary_10_1146_annurev_ecolsys_38_091206_095702
crossref_primary_10_1002_ecy_2382
crossref_primary_10_1534_genetics_106_067728
crossref_primary_10_1111_plb_12381
crossref_primary_10_1111_wre_12122
crossref_primary_10_1186_1471_2164_14_330
crossref_primary_10_1186_1756_3305_7_188
crossref_primary_10_7717_peerj_7780
crossref_primary_10_1086_605870
crossref_primary_10_1093_molbev_msw050
crossref_primary_10_1186_s12864_017_4170_z
crossref_primary_10_1007_s00606_015_1261_7
crossref_primary_10_1534_genetics_111_130732
crossref_primary_10_1111_j_1469_1809_2009_00549_x
crossref_primary_10_1111_j_1365_294X_2007_03442_x
crossref_primary_10_1111_j_1523_1739_2006_00530_x
crossref_primary_10_1002_ece3_70355
crossref_primary_10_1111_j_1365_294X_2008_04064_x
crossref_primary_10_1038_hdy_2009_99
crossref_primary_10_1111_j_1365_294X_2012_05479_x
crossref_primary_10_1007_s00122_024_04610_3
crossref_primary_10_1029_2000JD000255
crossref_primary_10_1016_j_ympev_2012_03_009
crossref_primary_10_1371_journal_pgen_1000862
crossref_primary_10_1029_2000JD000250
crossref_primary_10_1534_g3_114_013896
crossref_primary_10_1111_j_1365_294X_2010_04893_x
crossref_primary_10_1111_j_1365_294X_2010_04771_x
crossref_primary_10_1111_mec_12057
crossref_primary_10_1534_genetics_107_083246
crossref_primary_10_1111_j_1558_5646_2012_01587_x
crossref_primary_10_1111_1744_7917_12906
crossref_primary_10_1534_genetics_112_147231
crossref_primary_10_1038_hdy_2009_74
crossref_primary_10_1111_mec_14475
crossref_primary_10_1093_bioinformatics_bty299
crossref_primary_10_1111_j_1755_0998_2010_02943_x
crossref_primary_10_1111_j_1365_294X_2009_04477_x
crossref_primary_10_1111_j_1365_2486_2008_01652_x
crossref_primary_10_1007_s11295_014_0731_3
crossref_primary_10_3390_ani12111462
crossref_primary_10_1111_ahg_12081
crossref_primary_10_1111_mec_12048
crossref_primary_10_1093_icb_ics099
crossref_primary_10_1111_mec_13377
crossref_primary_10_1111_eva_12942
crossref_primary_10_1111_mec_12284
crossref_primary_10_1016_j_tree_2014_10_009
crossref_primary_10_1642_AUK_16_49_1
crossref_primary_10_3354_meps12109
crossref_primary_10_1111_j_1365_294X_2010_04762_x
crossref_primary_10_1016_j_scitotenv_2023_162258
crossref_primary_10_1016_j_foreco_2022_120748
crossref_primary_10_1038_hdy_2010_55
crossref_primary_10_1002_ece3_2935
crossref_primary_10_1007_s10592_012_0401_7
crossref_primary_10_1111_mec_12282
crossref_primary_10_1534_genetics_106_065102
crossref_primary_10_1007_s10592_011_0213_1
crossref_primary_10_1111_eva_12932
crossref_primary_10_1673_031_014_109
crossref_primary_10_1186_1297_9686_42_32
crossref_primary_10_1093_jhered_esab049
crossref_primary_10_1029_01EO00107
crossref_primary_10_1038_sj_hdy_6800735
crossref_primary_10_1534_genetics_108_086835
crossref_primary_10_1111_mec_12038
crossref_primary_10_1098_rstb_2009_0278
crossref_primary_10_1098_rstb_2009_0274
crossref_primary_10_1111_mec_13360
crossref_primary_10_1016_j_pt_2010_04_002
crossref_primary_10_1111_j_1365_294X_2007_03584_x
crossref_primary_10_1534_genetics_110_120873
crossref_primary_10_1111_j_1365_294X_2006_02931_x
crossref_primary_10_1111_j_1755_0998_2010_02952_x
crossref_primary_10_1002_eap_1522
crossref_primary_10_1371_journal_pgen_1009241
crossref_primary_10_1111_mec_14203
crossref_primary_10_1111_j_1526_100X_2008_00399_x
crossref_primary_10_1111_mec_12260
crossref_primary_10_1111_rec_12692
crossref_primary_10_1111_mec_14438
crossref_primary_10_1111_mec_17706
crossref_primary_10_1111_mec_13100
crossref_primary_10_1111_j_1420_9101_2008_01623_x
crossref_primary_10_1111_mec_13581
crossref_primary_10_1016_j_livsci_2008_07_003
crossref_primary_10_1186_1471_2148_12_94
crossref_primary_10_1007_s10126_009_9234_x
crossref_primary_10_1111_j_1523_1739_2006_00510_x
crossref_primary_10_1111_eva_12907
crossref_primary_10_1111_gcb_13087
crossref_primary_10_1186_1471_2148_12_210
crossref_primary_10_1038_hdy_2009_170
crossref_primary_10_1534_genetics_110_114819
crossref_primary_10_1038_sj_ejhg_5201793
crossref_primary_10_1093_bioinformatics_btr253
crossref_primary_10_1016_j_ajhg_2015_12_022
crossref_primary_10_1111_j_1365_294X_2012_05524_x
crossref_primary_10_1111_nph_12055
crossref_primary_10_1111_mec_12920
crossref_primary_10_1111_j_1365_294X_2012_05731_x
crossref_primary_10_1111_j_1365_294X_2010_04666_x
crossref_primary_10_1016_j_tree_2012_05_012
crossref_primary_10_1111_j_1365_294X_2004_02378_x
crossref_primary_10_1371_journal_pone_0112332
crossref_primary_10_1038_sj_hdy_6800937
crossref_primary_10_1038_s41598_024_68923_5
crossref_primary_10_1016_j_bse_2016_04_012
crossref_primary_10_1139_f2011_075
crossref_primary_10_1111_j_1420_9101_2008_01549_x
crossref_primary_10_1111_j_1365_294X_2011_05035_x
crossref_primary_10_1111_j_1365_294X_2008_03946_x
crossref_primary_10_1111_rec_12280
crossref_primary_10_1111_j_1558_5646_2011_01404_x
crossref_primary_10_1016_j_margen_2015_04_011
crossref_primary_10_1093_g3journal_jkab316
crossref_primary_10_1111_j_1365_294X_2007_03292_x
crossref_primary_10_1186_1755_8794_1_22
crossref_primary_10_1186_s12864_018_4806_7
crossref_primary_10_1111_j_1365_294X_2009_04098_x
crossref_primary_10_1111_j_1365_294X_2010_04786_x
crossref_primary_10_1007_s00251_013_0718_5
crossref_primary_10_1111_j_1365_294X_2007_03435_x
crossref_primary_10_1111_mec_14082
crossref_primary_10_1101_gr_086652_108
crossref_primary_10_1111_j_1744_7429_2007_00382_x
crossref_primary_10_1093_molbev_mst168
crossref_primary_10_1186_s40665_014_0009_x
crossref_primary_10_1098_rspb_2011_1552
crossref_primary_10_1086_679280
crossref_primary_10_1111_j_1365_294X_2011_05388_x
crossref_primary_10_1016_S2095_3119_15_61048_6
crossref_primary_10_1038_s41598_018_32331_3
crossref_primary_10_1046_j_1365_2486_2003_00607_x
crossref_primary_10_1111_j_1365_2486_2009_01921_x
crossref_primary_10_1002_ece3_484
crossref_primary_10_1002_ece3_488
crossref_primary_10_1007_s13595_015_0488_3
crossref_primary_10_1016_j_pbi_2017_02_003
crossref_primary_10_4238_2012_November_12_4
crossref_primary_10_1007_s10709_013_9741_6
crossref_primary_10_1007_s11295_009_0216_y
crossref_primary_10_1073_pnas_0800107105
crossref_primary_10_1029_2002GB001963
crossref_primary_10_1111_j_1752_4571_2007_00008_x
crossref_primary_10_1111_j_1365_294X_2010_04631_x
crossref_primary_10_1007_s10592_021_01425_3
crossref_primary_10_1093_molbev_msu264
crossref_primary_10_1534_genetics_118_301684
crossref_primary_10_1111_j_1365_294X_2006_03060_x
crossref_primary_10_1371_journal_pone_0086668
crossref_primary_10_1007_s10841_015_9778_1
crossref_primary_10_1534_genetics_107_078782
crossref_primary_10_1002_evan_20174
crossref_primary_10_1002_ghg_1848
crossref_primary_10_1093_ve_vez011
crossref_primary_10_1111_j_1755_0998_2010_02869_x
crossref_primary_10_1111_evo_12265
crossref_primary_10_1111_jeb_12776
crossref_primary_10_1371_journal_pone_0147875
crossref_primary_10_1007_s11295_016_1007_x
crossref_primary_10_1146_annurev_genet_111212_133526
crossref_primary_10_1111_jse_12028
crossref_primary_10_1111_j_1365_294X_2009_04513_x
crossref_primary_10_1111_j_1365_2052_2009_01849_x
crossref_primary_10_1371_journal_pgen_1010871
crossref_primary_10_1007_s10530_013_0472_5
crossref_primary_10_1007_s11295_013_0650_8
crossref_primary_10_1111_j_1558_5646_2012_01663_x
crossref_primary_10_1111_j_1526_100X_2011_00861_x
crossref_primary_10_1371_journal_pone_0166146
crossref_primary_10_1186_1471_2156_15_34
crossref_primary_10_1016_j_csbj_2020_02_009
crossref_primary_10_1534_genetics_110_117275
crossref_primary_10_1007_s10592_015_0741_1
crossref_primary_10_1098_rspb_2010_0985
crossref_primary_10_1371_journal_pgen_1004185
crossref_primary_10_1111_j_1365_294X_2008_04053_x
crossref_primary_10_1111_j_1365_294X_2012_05746_x
crossref_primary_10_1111_j_1365_294X_2011_05046_x
crossref_primary_10_1111_mec_15131
crossref_primary_10_1016_j_livsci_2014_05_003
crossref_primary_10_1016_j_livsci_2019_05_002
crossref_primary_10_1134_S1022795413010110
crossref_primary_10_1038_srep25031
crossref_primary_10_7717_peerj_1106
crossref_primary_10_1007_s10709_010_9486_4
crossref_primary_10_1111_j_1365_294X_2007_03577_x
crossref_primary_10_1111_j_1365_294X_2009_04437_x
crossref_primary_10_1017_S1751731109004297
crossref_primary_10_1007_s10841_012_9499_7
crossref_primary_10_1002_ece3_6002
crossref_primary_10_1016_j_gene_2023_147719
crossref_primary_10_1111_j_1420_9101_2010_02093_x
crossref_primary_10_1371_journal_pone_0011913
crossref_primary_10_3390_ani10101895
crossref_primary_10_1111_1755_0998_12629
crossref_primary_10_1111_mec_16693
crossref_primary_10_1093_molbev_mst136
crossref_primary_10_1111_j_1365_294X_2010_04633_x
crossref_primary_10_1111_j_1365_294X_2007_03566_x
Cites_doi 10.1111/j.0014-3820.2005.tb00977.x
10.1093/genetics/153.4.1863
10.1111/j.1365-294X.2006.03099.x
10.1046/j.1420-9101.2001.00304.x
10.1046/j.1365-294X.2003.01783.x
10.1017/S0016672300033607
10.1073/pnas.88.3.839
10.1111/j.1365-294X.2006.03195.x
10.1007/BF01441146
10.1007/b98952
10.1111/j.0014-3820.2003.tb01505.x
10.1111/j.0014-3820.2002.tb00857.x
10.1093/genetics/117.2.255
10.1098/rspb.1996.0237
10.1111/j.1558-5646.1984.tb05657.x
10.1016/S0040-5809(03)00007-8
10.1006/tpbi.1995.1025
10.1093/genetics/160.2.753
10.1046/j.1420-9101.2001.00335.x
10.1093/molbev/msg092
10.1007/978-1-4899-4485-6
10.1146/annurev.ge.29.120195.002153
10.1111/j.1461-0248.2007.01028.x
10.1093/genetics/159.2.893
10.1101/gr.631202
10.1007/BF02432124
10.1146/annurev.ento.46.1.441
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1111/j.1365-294X.2004.02125.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 980
ExternalDocumentID 15012769
10_1111_j_1365_294X_2004_02125_x
MEC2125
ark_67375_WNG_M6TR5ZH1_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AETEA
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c5005-8afad35ea2b9e771eae4e94ab7908fc96db4c7fb054bdacf391c74fedc29a13a3
IEDL.DBID DR2
ISSN 0962-1083
IngestDate Fri Jul 11 01:10:50 EDT 2025
Fri Jul 11 08:36:40 EDT 2025
Wed Feb 19 01:35:44 EST 2025
Tue Jul 01 01:21:31 EDT 2025
Thu Apr 24 22:59:42 EDT 2025
Wed Aug 20 07:24:51 EDT 2025
Wed Oct 30 09:55:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5005-8afad35ea2b9e771eae4e94ab7908fc96db4c7fb054bdacf391c74fedc29a13a3
Notes istex:9A85F07A6FD943FAE3124BAAFBFAF4481ACDCF35
ArticleID:MEC2125
ark:/67375/WNG-M6TR5ZH1-B
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15012769
PQID 17953484
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_71727192
proquest_miscellaneous_17953484
pubmed_primary_15012769
crossref_citationtrail_10_1111_j_1365_294X_2004_02125_x
crossref_primary_10_1111_j_1365_294X_2004_02125_x
wiley_primary_10_1111_j_1365_294X_2004_02125_x_MEC2125
istex_primary_ark_67375_WNG_M6TR5ZH1_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2004
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Kayser M, Brauer S, Stoneking M (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Molecular Biology and Evolution, 20, 893-900.
Balding DJ, Greenhalgh M, Nichols RA (1996) Population genetics of STR loci in Caucasians, Intl. J. Leg. Med., 108, 300-305.
Schlotterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753-763.
Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annual Review of Entomology 46, 441-469.
Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity, Genetica, 96, 3-12.
Wakeley J, Aliacar N (2001) Gene genealogies in a metapopulation. Genetics, 159, 893-905.
Rannala B, Hartigan JA (1996) Estimating gene flow in island populations. Genetical Research Cambridge, 67, 147-158.
Porter AH (2003) A test for deviation from island-model population structure. Molecular Ecology 12, 903-915.
Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865.
Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure, Proceedings of the Royal Society of London, Series B, 263, 1619-1626.
Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proceedings of the National Academy of Sciences USA, 88, 839-843.
Wakeley J (1999) Nonequilibrium migration in human history. Genetics, 153, 1863-1871.
Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74, 175-195.
Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall, London.
Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology, 14, 611-619.
Wright S (1943) Isolation by distance. Genetics, 28, 114-138.
Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York.
Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients, Theoretical Population Biology, 63, 221-230.
Singh RS, Rhomberg LR (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation. Genetics, 117, 255-271.
Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics, 158, 1811-1823.
Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12, 1805-1814.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics, 4, 981-994.
Donnelly P, Tavaré S (1995) Coalescents and genealogical structure under neutrality. Annual Review of Genetics, 29, 401-421.
Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154-166.
Wright S (1969) Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies. University of Chicago Press, Chicago.
1995; 96
1973; 74
2002; 12
2002; 56
2003; 57
1996
1996; 263
1970
2002
2001; 46
1996; 108
2003; 12
2002; 160
1987; 117
1984; 38
1991; 88
1999; 153
1943; 28
2003; 4
1995; 29
2003; 63
2001; 14
2003; 20
2001; 159
1969
2001; 158
1996; 67
e_1_2_6_10_1
Schlotterer C (e_1_2_6_18_1) 2002; 160
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
Kayser M (e_1_2_6_12_1) 2003; 20
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Singh RS (e_1_2_6_17_1) 1987; 117
Wright S (e_1_2_6_28_1) 1969
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annual Review of Entomology 46, 441-469.
– reference: Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proceedings of the National Academy of Sciences USA, 88, 839-843.
– reference: Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall, London.
– reference: Wakeley J, Aliacar N (2001) Gene genealogies in a metapopulation. Genetics, 159, 893-905.
– reference: Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients, Theoretical Population Biology, 63, 221-230.
– reference: Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity, Genetica, 96, 3-12.
– reference: Rannala B, Hartigan JA (1996) Estimating gene flow in island populations. Genetical Research Cambridge, 67, 147-158.
– reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
– reference: Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure, Proceedings of the Royal Society of London, Series B, 263, 1619-1626.
– reference: Schlotterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753-763.
– reference: Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74, 175-195.
– reference: Wright S (1969) Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies. University of Chicago Press, Chicago.
– reference: Donnelly P, Tavaré S (1995) Coalescents and genealogical structure under neutrality. Annual Review of Genetics, 29, 401-421.
– reference: Wright S (1943) Isolation by distance. Genetics, 28, 114-138.
– reference: Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York.
– reference: Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics, 158, 1811-1823.
– reference: Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology, 14, 611-619.
– reference: Wakeley J (1999) Nonequilibrium migration in human history. Genetics, 153, 1863-1871.
– reference: Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865.
– reference: Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics, 4, 981-994.
– reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154-166.
– reference: Kayser M, Brauer S, Stoneking M (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Molecular Biology and Evolution, 20, 893-900.
– reference: Balding DJ, Greenhalgh M, Nichols RA (1996) Population genetics of STR loci in Caucasians, Intl. J. Leg. Med., 108, 300-305.
– reference: Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12, 1805-1814.
– reference: Porter AH (2003) A test for deviation from island-model population structure. Molecular Ecology 12, 903-915.
– reference: Singh RS, Rhomberg LR (1987) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation. Genetics, 117, 255-271.
– volume: 153
  start-page: 1863
  year: 1999
  end-page: 1871
  article-title: Nonequilibrium migration in human history
  publication-title: Genetics
– volume: 4
  start-page: 981
  year: 2003
  end-page: 994
  article-title: The power and promise of population genomics: from genotyping to genome typing
  publication-title: Nature Reviews Genetics
– volume: 263
  start-page: 1619
  year: 1996
  end-page: 1626
  article-title: Evaluating loci for use in the genetic analysis of population structure
  publication-title: Proceedings of the Royal Society of London, Series B
– volume: 46
  start-page: 441
  year: 2001
  end-page: 469
  article-title: Population genomics: genome‐wide sampling of insect populations
  publication-title: Annual Review of Entomology
– volume: 160
  start-page: 753
  year: 2002
  end-page: 763
  article-title: A microsatellite‐based multilocus screen for the identification of local selective sweeps
  publication-title: Genetics
– volume: 12
  start-page: 1805
  year: 2002
  end-page: 1814
  article-title: Interrogating a high‐density SNP map for signatures of natural selection
  publication-title: Genome Research
– volume: 20
  start-page: 893
  year: 2003
  end-page: 900
  article-title: A genome scan to detect candidate regions influenced by local natural selection in human populations
  publication-title: Molecular Biology and Evolution
– year: 1996
– volume: 96
  start-page: 3
  year: 1995
  end-page: 12
  article-title: A method for quantifying differentiation between populations at multi‐allelic loci and its implications for investigating identity and paternity
  publication-title: Genetica
– volume: 57
  start-page: 2628
  year: 2003
  end-page: 2635
– volume: 14
  start-page: 611
  year: 2001
  end-page: 619
  article-title: Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers
  publication-title: Journal of Evolutionary Biology
– volume: 74
  start-page: 175
  year: 1973
  end-page: 195
  article-title: Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms
  publication-title: Genetics
– volume: 158
  start-page: 1811
  year: 2001
  end-page: 1823
  article-title: Interpretation of variation across marker loci as evidence of selection
  publication-title: Genetics
– volume: 56
  start-page: 154
  year: 2002
  end-page: 166
  article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model
  publication-title: Evolution
– volume: 108
  start-page: 300
  year: 1996
  end-page: 305
  article-title: Population genetics of STR loci in Caucasians
  publication-title: Intl. J. Leg. Med.
– volume: 28
  start-page: 114
  year: 1943
  end-page: 138
  article-title: Isolation by distance
  publication-title: Genetics
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– year: 2002
– year: 1969
– volume: 12
  start-page: 903
  year: 2003
  end-page: 915
  article-title: A test for deviation from island‐model population structure
  publication-title: Molecular Ecology
– volume: 88
  start-page: 839
  year: 1991
  end-page: 843
  article-title: Drift, admixture, and selection in human evolution: A study with DNA polymorphisms
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 63
  start-page: 221
  year: 2003
  end-page: 230
  article-title: Likelihood‐based inference for genetic correlation coefficients
  publication-title: Theoretical Population Biology
– year: 1970
– volume: 117
  start-page: 255
  year: 1987
  end-page: 271
  article-title: A comprehensive study of genic variation in natural populations of . II. Estimates of heterozygosity and patterns of geographic variation
  publication-title: Genetics
– volume: 67
  start-page: 147
  year: 1996
  end-page: 158
  article-title: Estimating gene flow in island populations
  publication-title: Genetical Research Cambridge
– volume: 29
  start-page: 401
  year: 1995
  end-page: 421
  article-title: Coalescents and genealogical structure under neutrality
  publication-title: Annual Review of Genetics
– volume: 159
  start-page: 893
  year: 2001
  end-page: 905
  article-title: Gene genealogies in a metapopulation
  publication-title: Genetics
– volume: 14
  start-page: 851
  year: 2001
  end-page: 865
  article-title: The genic view of the process of speciation
  publication-title: Journal of Evolutionary Biology
– ident: e_1_2_6_27_1
  doi: 10.1111/j.0014-3820.2005.tb00977.x
– ident: e_1_2_6_25_1
  doi: 10.1093/genetics/153.4.1863
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-294X.2006.03099.x
– ident: e_1_2_6_24_1
  doi: 10.1046/j.1420-9101.2001.00304.x
– ident: e_1_2_6_15_1
  doi: 10.1046/j.1365-294X.2003.01783.x
– ident: e_1_2_6_16_1
  doi: 10.1017/S0016672300033607
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.88.3.839
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1365-294X.2006.03195.x
– ident: e_1_2_6_4_1
  doi: 10.1007/BF01441146
– ident: e_1_2_6_19_1
  doi: 10.1007/b98952
– ident: e_1_2_6_20_1
  doi: 10.1111/j.0014-3820.2003.tb01505.x
– ident: e_1_2_6_21_1
  doi: 10.1111/j.0014-3820.2002.tb00857.x
– volume: 117
  start-page: 255
  year: 1987
  ident: e_1_2_6_17_1
  article-title: A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and patterns of geographic variation
  publication-title: Genetics
  doi: 10.1093/genetics/117.2.255
– ident: e_1_2_6_6_1
  doi: 10.1098/rspb.1996.0237
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_6_3_1
  doi: 10.1016/S0040-5809(03)00007-8
– ident: e_1_2_6_9_1
  doi: 10.1006/tpbi.1995.1025
– volume: 160
  start-page: 753
  year: 2002
  ident: e_1_2_6_18_1
  article-title: A microsatellite‐based multilocus screen for the identification of local selective sweeps
  publication-title: Genetics
  doi: 10.1093/genetics/160.2.753
– ident: e_1_2_6_29_1
  doi: 10.1046/j.1420-9101.2001.00335.x
– volume: 20
  start-page: 893
  year: 2003
  ident: e_1_2_6_12_1
  article-title: A genome scan to detect candidate regions influenced by local natural selection in human populations
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msg092
– ident: e_1_2_6_11_1
  doi: 10.1007/978-1-4899-4485-6
– ident: e_1_2_6_10_1
  doi: 10.1146/annurev.ge.29.120195.002153
– volume-title: Evolution and the Genetics of Populations. Volume 2: The Theory of Gene Frequencies
  year: 1969
  ident: e_1_2_6_28_1
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1461-0248.2007.01028.x
– ident: e_1_2_6_26_1
  doi: 10.1093/genetics/159.2.893
– ident: e_1_2_6_2_1
  doi: 10.1101/gr.631202
– ident: e_1_2_6_5_1
  doi: 10.1007/BF02432124
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev.ento.46.1.441
SSID ssj0013255
Score 2.3838232
Snippet The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 969
SubjectTerms adaptation
Adaptation, Biological - genetics
Bayes Theorem
beta-binonical
Computer Simulation
gene flow
Gene Frequency
Genetic Markers - genetics
Genetic Variation
Genetics, Population
Genome
Lewontin-Krakauer test
Likelihood Functions
Markov Chains
Models, Genetic
Monte Carlo Method
Population Dynamics
population structure
selection
Selection, Genetic
Title Identifying adaptive genetic divergence among populations from genome scans
URI https://api.istex.fr/ark:/67375/WNG-M6TR5ZH1-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2004.02125.x
https://www.ncbi.nlm.nih.gov/pubmed/15012769
https://www.proquest.com/docview/17953484
https://www.proquest.com/docview/71727192
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5KSqGXPtLXtk2jQ-ltjXdXWq2ObXBqEpJDSKjJRYxeF6e2ydqQ9NdXo7WdOCQQSm-C3Vmk0Yz0afXNDMDXypdGqjrOAEeZ8yBM3tQm5KofnMG4BRYdQfa4Hp7xg5EYLflPFAvT5YdY_3Ajz0jrNTk4mnbTyRNDS_FROub1KFm56BGepAeEj07KWxcKqQBqBOxlXHmaapPUc--HNnaqp6T0q_tg6CaqTdvS_ksYrwbUsVHGvcXc9OyfO7ke_8-IX8GLJXpl3ztzew1P_GQbnnX1LK9ja5ByYF-_gcMuADgFUTF0OKNVlUVjpZhJ5ogMkrKAslTsiM3WZcRaRgEv9Ob0t2dtnPj2LZztD073hvmybkNuBSU2bTCgq4TH0igvZeHRc684RqPoN8Gq2hluZTARLRqHNlSqsJIH72ypsKiwegdbk-nEfwBWRjTHnSlL7FfcKINNI4K1LnAvVNPHDORqjrRdJjWn2hoX-tbhJipNk9Ko5CbXSWn6KoNiLTnrEns8QuZbMoO1AF6OiRgnhf51_FMf1acn4nxY6B8Z7K7sREd3pTsYnPjpotVx_RMVb_jDb0iClBF3Z_C-M7Cb7gniCdQqgzqZyaP7rY8Ge9T6-K-Cn-D5DWPpM2zNLxd-J4KxufmS3OwvMxMlAQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hVgguvCnLqz4gbhtld-31-ghVSqBNDlUqIi7W-HVpSaImkVp-PR5vkjaoSBXi5oNn5cfM-PN6Zj6AD5UvjVR13AGOMudBmLypTchVNziD8Qgs2gDZYd0_5d_GYryiA6JcmLY-xOaHG1lG8tdk4PRDetvKU4iW4uN0z-tQtXLRiYBylwi-0_3qpLzxpJAoUCNkL6PvaartsJ5bv7R1Vu3Ssl_eBkS3cW06mA4fw_l6Sm08yllnuTAd--uPao__ac5P4NEKwLJPrcY9hXt-8gzut5SWV7HVS2Wwr57DUZsDnPKoGDqckWNlUV8pbZI5igdJhUBZ4jtisw2T2JxRzgv1nP70bB73fv4CTg97o4N-vqJuyK2g2qYNBnSV8Fga5aUsPHruFceoF90mWFU7w60MJgJG49CGShVW8uCdLRUWFVYvYWcynfhXwMoI6LgzZYndihtlsGlEsNYF7oVqupiBXG-Stqu65kSvca5v3G_iomlaNGLd5Dotmr7MoNhIztraHneQ-Zj0YCOAF2cUGyeF_j78ogf16ET86Bf6cwb7a0XR0WLpGQYnfrqc6-gCRcUb_vceklBlhN4Z7LUadj08QaECtcqgTnpy53HrQe-AWq__VXAfHvRHg2N9_HV49AYeXgcwvYWdxcXSv4vYbGHeJ5v7DYP8KRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hViAuUN5LC_UBcdtoH_baPtI2IVAaoaoVERfLz0sgiZpEavn1eLxJ2qAiVYibD56VHzPjz-tvZgDe1b4yXDZxB6jmOQ3M5KIxIZdFcEbHI7BsCbKDpn9OPw_ZcMl_wliYNj_E-ocbWkby12jgUxc2jTwxtCQdpmteB5OVs07Ek9u0KQRq-NFpdeNFIVVAjYi9iq5H1Jusnlu_tHFUbeOqX96GQzdhbTqXeo9htJpRS0cZdRZz07G__kj2-H-mvAOPlvCVfGj17Qnc8-OncL8taHkVW92UBPvqGRy3EcApiopop6foVknUVgyaJA7ZICkNKEnVjsh0XUdsRjDiBXtOfnoyizs_ew7nve7ZYT9fFm7ILcPMpkIH7WrmdWWk57z02lMvqY5aUYhgZeMMtTyYCBeN0zbUsrScBu9sJXVZ6_oFbI0nY_8KSBXhHHWmqnRRUyONFoIFa12gnklR6Az4ao-UXWY1x-IaP9SN201cNIWLhjU3qUqLpi4zKNeS0zazxx1k3ic1WAvoixEy4zhT3wYf1Ulzdsq-90t1kMH-Sk9UtFd8hNFjP1nMVHSArKaC_r0HR0wZgXcGL1sFux4eQ6JAIzNokprcedzqpHuIrdf_KrgPD74e9dSXT4PjXXh4zV7ag635xcK_icBsbt4mi_sN9Pcn1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+adaptive+genetic+divergence+among+populations+from+genome+scans&rft.jtitle=Molecular+ecology&rft.au=Beaumont%2C+Mark+A&rft.au=Balding%2C+David+J&rft.date=2004-04-01&rft.issn=0962-1083&rft.volume=13&rft.issue=4&rft.spage=969&rft_id=info:doi/10.1111%2Fj.1365-294x.2004.02125.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon