Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize

Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positio...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 27; pp. 11376 - 11381
Main Authors Salvi, Silvio, Sponza, Giorgio, Morgante, Michele, Tomes, Dwight, Niu, Xiaomu, Fengler, Kevin A, Meeley, Robert, Ananiev, Evgueni V, Svitashev, Sergei, Bruggemann, Edward, Li, Bailin, Hainey, Christine F, Radovic, Slobodanka, Zaina, Giusi, Rafalski, J.-Antoni, Tingey, Scott V, Miao, Guo-Hua, Phillips, Ronald L, Tuberosa, Roberto
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.07.2007
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an [almost equal to]2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
AbstractList Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an [almost equal to]2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 ( Vgt1 ), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2 -like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1 , we identified evolutionarily conserved noncoding sequences across the maize–sorghum–rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 ( Vgt1 ), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2 -like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1 , we identified evolutionarily conserved noncoding sequences across the maize–sorghum–rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. cloning gene regulation transformation linkage disequilibrium
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an ...-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.)
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Author Tingey, Scott V
Salvi, Silvio
Morgante, Michele
Phillips, Ronald L
Ananiev, Evgueni V
Hainey, Christine F
Rafalski, J.-Antoni
Radovic, Slobodanka
Miao, Guo-Hua
Tomes, Dwight
Sponza, Giorgio
Fengler, Kevin A
Meeley, Robert
Tuberosa, Roberto
Svitashev, Sergei
Bruggemann, Edward
Niu, Xiaomu
Li, Bailin
Zaina, Giusi
Author_xml – sequence: 1
  fullname: Salvi, Silvio
– sequence: 2
  fullname: Sponza, Giorgio
– sequence: 3
  fullname: Morgante, Michele
– sequence: 4
  fullname: Tomes, Dwight
– sequence: 5
  fullname: Niu, Xiaomu
– sequence: 6
  fullname: Fengler, Kevin A
– sequence: 7
  fullname: Meeley, Robert
– sequence: 8
  fullname: Ananiev, Evgueni V
– sequence: 9
  fullname: Svitashev, Sergei
– sequence: 10
  fullname: Bruggemann, Edward
– sequence: 11
  fullname: Li, Bailin
– sequence: 12
  fullname: Hainey, Christine F
– sequence: 13
  fullname: Radovic, Slobodanka
– sequence: 14
  fullname: Zaina, Giusi
– sequence: 15
  fullname: Rafalski, J.-Antoni
– sequence: 16
  fullname: Tingey, Scott V
– sequence: 17
  fullname: Miao, Guo-Hua
– sequence: 18
  fullname: Phillips, Ronald L
– sequence: 19
  fullname: Tuberosa, Roberto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17595297$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URNPCmRNgcUDisO3Y67V3L5VQxJdUiQP0bHm93sTRxk5tbwr89XhJSKESysmH-c3zvDdzhk6cdwah5wQuCIjycuNUvAABjLCKAHuEZgQaUnDWwAmaAVBR1IyyU3QW4woAmqqGJ-iUiKqpaCNmaDn3LpqwNR3O0tp31i3wwji_thpHczsap03EKkavrUoZu7NpiRXuB39nQqaLZNcG347KJZtUsluDU1A24cHrMWLr8FrZn-YpetyrIZpn-_cc3Xx4_23-qbj-8vHz_N11oSsAVrS65W3ZUUW1UZqVPa9r3tR1p2hbd1oTxRUrCeW8111phG5r1bagWsarMmdQnqOrne5mbNem08blaQa5CXatwg_plZX_VpxdyoXfSgoMGuBZ4M1eIPhsPya5tlGbYVDO-DFKAbxhpGmOgkwwSipWHgVJM-2orjL4-gG48mNwOa48HcmuBZ2-ffm3wYOzPzvNQLUDdPAxBtNL_XsxfvJrB0lATrcjp9uR97eT-y4f9B2k_9vxdj_KVLinmaRCElIKLvtxGJL5njKLj7AZebFDVjH5cGBozpATSnP91a7eKy_VItgob75OwQCIWtSMlb8AMlT0NQ
CitedBy_id crossref_primary_10_1093_g3journal_jkab138
crossref_primary_10_1111_pbi_12696
crossref_primary_10_1016_j_tplants_2019_07_004
crossref_primary_10_1371_journal_pgen_1004562
crossref_primary_10_1093_plcell_koac296
crossref_primary_10_1111_pbi_13429
crossref_primary_10_1007_s00122_012_1933_4
crossref_primary_10_1073_pnas_1720716115
crossref_primary_10_1073_pnas_1718058115
crossref_primary_10_3389_fpls_2022_973347
crossref_primary_10_1007_s00122_011_1700_y
crossref_primary_10_3390_genes14051010
crossref_primary_10_1104_pp_108_131888
crossref_primary_10_1111_tpj_12283
crossref_primary_10_1371_journal_pone_0017573
crossref_primary_10_1073_pnas_1010179107
crossref_primary_10_1007_s00122_010_1402_x
crossref_primary_10_1534_genetics_109_106591
crossref_primary_10_1093_jxb_ers158
crossref_primary_10_1111_pbr_12849
crossref_primary_10_1371_journal_pgen_1002012
crossref_primary_10_1007_s11032_010_9500_7
crossref_primary_10_1111_tpj_14236
crossref_primary_10_1186_s13059_015_0716_z
crossref_primary_10_1534_genetics_109_107557
crossref_primary_10_1007_s00438_016_1225_9
crossref_primary_10_1016_j_crvi_2010_12_015
crossref_primary_10_1093_pcp_pcae121
crossref_primary_10_1016_j_fcr_2024_109380
crossref_primary_10_1111_pbi_13564
crossref_primary_10_1038_s41467_020_18832_8
crossref_primary_10_1534_genetics_116_191726
crossref_primary_10_1007_s00122_010_1339_0
crossref_primary_10_1038_s41477_021_00858_5
crossref_primary_10_1007_s11103_009_9511_0
crossref_primary_10_1534_g3_120_401500
crossref_primary_10_1111_tpj_12029
crossref_primary_10_3390_genes8080199
crossref_primary_10_1111_tpj_70073
crossref_primary_10_1186_s13100_019_0190_3
crossref_primary_10_1016_j_pbi_2020_101985
crossref_primary_10_1016_j_pbi_2008_12_008
crossref_primary_10_1038_nbt_2440
crossref_primary_10_1094_PDIS_08_14_0825_RE
crossref_primary_10_1105_tpc_108_059808
crossref_primary_10_2135_cropsci2010_04_0233
crossref_primary_10_1007_s00122_023_04293_2
crossref_primary_10_1534_g3_113_006148
crossref_primary_10_1371_journal_pone_0203728
crossref_primary_10_1007_s00122_021_03907_x
crossref_primary_10_1111_tpj_16513
crossref_primary_10_1007_s10722_021_01231_3
crossref_primary_10_1007_s00344_024_11261_7
crossref_primary_10_1534_genetics_117_300305
crossref_primary_10_1146_annurev_arplant_070122_030236
crossref_primary_10_1093_g3journal_jkaa050
crossref_primary_10_5504_BBEQ_2012_0016
crossref_primary_10_1111_tpj_12038
crossref_primary_10_1038_s41467_019_10602_5
crossref_primary_10_1111_nph_18769
crossref_primary_10_1016_j_pbi_2019_12_011
crossref_primary_10_1155_2008_496957
crossref_primary_10_1007_s11032_018_0900_4
crossref_primary_10_1007_s11105_018_1069_z
crossref_primary_10_1093_plphys_kiad075
crossref_primary_10_1186_1471_2164_15_1182
crossref_primary_10_1007_s11032_014_0125_0
crossref_primary_10_1007_s00122_020_03753_3
crossref_primary_10_1371_journal_pone_0104188
crossref_primary_10_1534_genetics_114_167155
crossref_primary_10_1016_j_tplants_2016_01_014
crossref_primary_10_1016_j_jplph_2020_153313
crossref_primary_10_1038_s41467_017_02063_5
crossref_primary_10_1007_s42994_021_00039_0
crossref_primary_10_1371_journal_pgen_1006666
crossref_primary_10_3390_plants10061084
crossref_primary_10_1186_s12864_016_3296_8
crossref_primary_10_1534_genetics_107_084830
crossref_primary_10_1016_j_tplants_2023_08_013
crossref_primary_10_1101_gr_140277_112
crossref_primary_10_1093_g3journal_jkab447
crossref_primary_10_4137_EBO_S9369
crossref_primary_10_1016_j_jia_2023_04_022
crossref_primary_10_1007_s11032_018_0868_0
crossref_primary_10_1016_j_molp_2021_03_010
crossref_primary_10_1093_bib_bbae705
crossref_primary_10_3389_fpls_2017_02190
crossref_primary_10_1186_s12870_019_1653_x
crossref_primary_10_48130_forres_0024_0022
crossref_primary_10_1186_s12864_015_2242_5
crossref_primary_10_1105_tpc_113_119982
crossref_primary_10_1111_tpj_14528
crossref_primary_10_1371_journal_pgen_1005670
crossref_primary_10_1007_s00122_015_2491_3
crossref_primary_10_1016_j_cj_2022_06_001
crossref_primary_10_1146_annurev_arplant_080720_090632
crossref_primary_10_1186_s40168_024_01839_4
crossref_primary_10_1534_genetics_114_169367
crossref_primary_10_1111_nph_15297
crossref_primary_10_1038_s41437_021_00422_z
crossref_primary_10_1093_jxb_eru478
crossref_primary_10_1093_dnares_dsac029
crossref_primary_10_1371_journal_pgen_1003246
crossref_primary_10_1534_g3_115_017665
crossref_primary_10_1016_j_genrep_2025_102190
crossref_primary_10_3389_fpls_2022_1017983
crossref_primary_10_1016_j_molp_2014_12_018
crossref_primary_10_1073_pnas_2006633117
crossref_primary_10_1186_1471_2229_9_149
crossref_primary_10_1371_journal_pone_0036807
crossref_primary_10_1002_cppb_20051
crossref_primary_10_1007_s10142_012_0283_2
crossref_primary_10_1111_nph_19005
crossref_primary_10_1186_s12870_014_0356_6
crossref_primary_10_1038_s41477_019_0547_0
crossref_primary_10_1111_j_1365_3040_2011_02397_x
crossref_primary_10_1080_07352689_2021_1920731
crossref_primary_10_1016_j_molp_2022_12_009
crossref_primary_10_1007_s13205_017_0928_x
crossref_primary_10_3389_fpls_2023_1280331
crossref_primary_10_1111_jipb_12168
crossref_primary_10_1016_j_pbi_2024_102670
crossref_primary_10_1186_s12870_023_04553_9
crossref_primary_10_3835_plantgenome2008_02_0089
crossref_primary_10_1002_jsfa_6664
crossref_primary_10_1016_j_cropro_2008_10_012
crossref_primary_10_1007_s00122_012_1866_y
crossref_primary_10_1038_s41588_020_0616_3
crossref_primary_10_1146_annurev_genet_120116_024846
crossref_primary_10_1016_j_tplants_2007_08_012
crossref_primary_10_1007_s10142_009_0114_2
crossref_primary_10_1186_1471_2148_10_2
crossref_primary_10_1093_g3journal_jkad141
crossref_primary_10_1371_journal_pgen_1010157
crossref_primary_10_1007_s13258_021_01187_9
crossref_primary_10_1093_nargab_lqae123
crossref_primary_10_1111_1755_0998_12133
crossref_primary_10_1038_s41477_022_01190_2
crossref_primary_10_1093_jxb_eraf062
crossref_primary_10_3389_fpls_2017_00698
crossref_primary_10_1093_gigascience_giac080
crossref_primary_10_1007_s10535_017_0734_7
crossref_primary_10_1111_tpj_14726
crossref_primary_10_1186_s12864_019_6124_0
crossref_primary_10_1007_s00122_017_2949_6
crossref_primary_10_1093_jxb_eru271
crossref_primary_10_1186_s12864_025_11221_9
crossref_primary_10_3724_SP_J_1006_2012_00935
crossref_primary_10_3389_fpls_2016_01448
crossref_primary_10_1007_s11032_012_9820_x
crossref_primary_10_1016_j_molp_2020_05_012
crossref_primary_10_1007_s10681_018_2155_x
crossref_primary_10_3389_fpls_2018_00101
crossref_primary_10_1111_tpj_13765
crossref_primary_10_1016_j_pbi_2015_01_008
crossref_primary_10_1146_annurev_genet_120213_092443
crossref_primary_10_3390_ijms21082695
crossref_primary_10_1007_s10725_010_9484_7
crossref_primary_10_1007_s00122_013_2072_2
crossref_primary_10_1007_s00438_008_0388_4
crossref_primary_10_1111_jipb_13570
crossref_primary_10_1093_nar_gkx1074
crossref_primary_10_1371_journal_pone_0010065
crossref_primary_10_1016_j_bbagrm_2016_06_006
crossref_primary_10_1038_ng_746
crossref_primary_10_1093_g3journal_jkab059
crossref_primary_10_1146_annurev_arplant_59_032607_092942
crossref_primary_10_3389_fpls_2022_824240
crossref_primary_10_1093_jxb_erv182
crossref_primary_10_1016_j_jfca_2024_105999
crossref_primary_10_1016_j_pbi_2009_01_005
crossref_primary_10_1038_s41588_020_0671_9
crossref_primary_10_3724_SP_J_1259_2011_00108
crossref_primary_10_1371_journal_pone_0024699
crossref_primary_10_1002_plr2_20134
crossref_primary_10_1186_s12864_019_6136_9
crossref_primary_10_1111_j_1744_7909_2010_01020_x
crossref_primary_10_1093_jxb_ern109
crossref_primary_10_1016_j_plantsci_2015_09_022
crossref_primary_10_1371_journal_pone_0151697
crossref_primary_10_1016_j_cell_2024_10_030
crossref_primary_10_2135_cropsci2007_04_0009IPBS
crossref_primary_10_1093_jxb_erv192
crossref_primary_10_1007_s13258_013_0075_7
crossref_primary_10_1093_g3journal_jkac011
crossref_primary_10_3923_pjbs_2018_245_252
crossref_primary_10_2135_cropsci2007_04_0001IPBS
crossref_primary_10_3389_fpls_2023_1094411
crossref_primary_10_3389_fpls_2017_00143
crossref_primary_10_1101_gr_266528_120
crossref_primary_10_1007_s10681_021_02768_1
crossref_primary_10_1007_s13353_017_0419_0
crossref_primary_10_1042_ETLS20210258
crossref_primary_10_1155_2009_957602
crossref_primary_10_1038_s41477_019_0548_z
crossref_primary_10_1007_s00122_023_04370_6
crossref_primary_10_1186_s13059_023_02891_3
crossref_primary_10_1007_s00122_019_03427_9
crossref_primary_10_1073_pnas_1525244113
crossref_primary_10_1534_g3_116_029090
crossref_primary_10_1111_j_1744_7909_2012_01128_x
crossref_primary_10_1016_j_tplants_2013_08_007
crossref_primary_10_1093_genetics_iyac063
crossref_primary_10_1016_j_plantsci_2015_08_007
crossref_primary_10_1186_1471_2164_11_174
crossref_primary_10_3389_fpls_2015_00057
crossref_primary_10_1038_s41588_022_01283_w
crossref_primary_10_1111_ppl_13421
crossref_primary_10_1007_s00122_021_03965_1
crossref_primary_10_1186_s13059_020_02069_1
crossref_primary_10_1146_annurev_arplant_043008_092114
crossref_primary_10_1186_s12870_022_03427_w
crossref_primary_10_1371_journal_pone_0049836
crossref_primary_10_1016_j_copbio_2015_01_001
crossref_primary_10_1038_s41598_017_06153_8
crossref_primary_10_3390_agriculture14030340
crossref_primary_10_1534_genetics_108_092239
crossref_primary_10_1371_journal_pgen_1008241
crossref_primary_10_3835_plantgenome2008_06_0385
crossref_primary_10_1534_g3_116_030338
crossref_primary_10_1007_s10265_011_0470_6
crossref_primary_10_1016_S2095_3119_15_61060_7
crossref_primary_10_1007_s11032_012_9754_3
crossref_primary_10_1126_science_1174276
crossref_primary_10_3389_fpls_2022_992799
crossref_primary_10_1093_gbe_evt109
crossref_primary_10_1007_s11032_015_0275_8
crossref_primary_10_3389_fpls_2019_00820
crossref_primary_10_1038_s41598_023_33250_8
crossref_primary_10_3390_plants10081585
crossref_primary_10_1104_pp_108_125542
crossref_primary_10_3835_plantgenome2010_05_0011
crossref_primary_10_1007_s11427_015_4993_2
crossref_primary_10_1270_jsbbs_18017
crossref_primary_10_1073_pnas_2010250117
crossref_primary_10_1371_journal_pone_0046596
crossref_primary_10_1371_journal_pgen_1010664
crossref_primary_10_1186_s12870_023_04221_y
crossref_primary_10_1242_dev_063511
crossref_primary_10_1104_pp_110_161331
crossref_primary_10_1093_jxb_ery110
crossref_primary_10_1111_nph_13765
crossref_primary_10_1007_s00122_010_1320_y
crossref_primary_10_1007_s13199_019_00616_4
crossref_primary_10_2135_cropsci2009_09_0525
crossref_primary_10_1111_j_1744_7909_2012_01149_x
crossref_primary_10_3390_plants10071300
crossref_primary_10_1186_s13059_017_1273_4
crossref_primary_10_1186_s12864_021_07463_y
crossref_primary_10_1007_s11032_014_0119_y
crossref_primary_10_1017_S1479262111000700
crossref_primary_10_3390_agronomy15030555
crossref_primary_10_1111_mpp_12486
crossref_primary_10_1016_j_pbi_2018_04_004
crossref_primary_10_1073_pnas_0901122106
crossref_primary_10_3389_fgene_2022_1001001
crossref_primary_10_1111_pbr_12596
crossref_primary_10_1016_j_ajhg_2008_03_006
crossref_primary_10_3389_fgene_2021_799681
crossref_primary_10_1016_j_tplants_2007_11_008
crossref_primary_10_3109_07388551_2015_1062743
crossref_primary_10_1093_nar_gkac1195
crossref_primary_10_1371_journal_pone_0133054
crossref_primary_10_1016_j_biotechadv_2010_02_007
crossref_primary_10_1111_jipb_13603
crossref_primary_10_1534_genetics_119_302780
crossref_primary_10_3389_fpls_2024_1371394
crossref_primary_10_1016_j_gene_2018_04_050
crossref_primary_10_1016_j_plantsci_2020_110797
crossref_primary_10_1111_1755_0998_13454
crossref_primary_10_1186_s13059_021_02492_y
crossref_primary_10_1038_nrg3374
crossref_primary_10_48130_SeedBio_2023_0009
crossref_primary_10_2135_cropsci2011_10_0552
crossref_primary_10_1111_nph_15512
crossref_primary_10_1111_jipb_12632
crossref_primary_10_1534_g3_112_005207
crossref_primary_10_1534_g3_119_400884
crossref_primary_10_1016_j_jgg_2020_11_002
crossref_primary_10_1111_j_1439_0523_2011_01893_x
crossref_primary_10_1111_jipb_13639
crossref_primary_10_1016_j_cell_2021_04_014
crossref_primary_10_1038_hdy_2014_123
crossref_primary_10_1186_1471_2229_12_238
crossref_primary_10_3390_agronomy11020230
crossref_primary_10_1371_journal_pone_0019379
crossref_primary_10_1534_genetics_115_184234
crossref_primary_10_1186_s12870_016_0829_x
crossref_primary_10_3389_fpls_2015_00563
crossref_primary_10_1111_tpj_16260
crossref_primary_10_2135_cropsci2013_02_0121
crossref_primary_10_1111_nph_14882
crossref_primary_10_1093_bioinformatics_bts313
crossref_primary_10_1007_s00122_013_2066_0
crossref_primary_10_1016_j_bbagrm_2016_05_010
crossref_primary_10_1534_genetics_109_106922
crossref_primary_10_1093_bfgp_elu002
crossref_primary_10_1111_j_1365_313X_2009_03802_x
crossref_primary_10_1111_j_1365_313X_2009_03848_x
crossref_primary_10_1186_1471_2164_15_433
crossref_primary_10_1007_s00122_016_2787_y
crossref_primary_10_1186_1471_2229_12_93
crossref_primary_10_1007_s00122_020_03560_w
crossref_primary_10_1093_jxb_erab364
crossref_primary_10_1073_pnas_2100036119
crossref_primary_10_1111_nph_16772
crossref_primary_10_1371_journal_pgen_1008882
crossref_primary_10_2478_V10133_009_0004_8
crossref_primary_10_1007_s00122_015_2477_1
crossref_primary_10_1371_journal_pgen_1008764
crossref_primary_10_1016_j_xplc_2019_100010
crossref_primary_10_1093_plcell_koab119
crossref_primary_10_1111_pbi_14362
crossref_primary_10_1007_s10681_015_1468_2
crossref_primary_10_1038_ng_3784
crossref_primary_10_1186_s12864_015_1397_4
crossref_primary_10_3390_plants12234020
crossref_primary_10_1111_nph_14101
crossref_primary_10_1534_g3_119_400838
crossref_primary_10_3389_fgene_2022_819849
crossref_primary_10_1038_hdy_2013_6
crossref_primary_10_1007_s10142_019_00691_2
crossref_primary_10_1038_s41477_018_0133_x
crossref_primary_10_1016_j_tplants_2016_07_013
crossref_primary_10_1016_S1671_2927_11_60303_9
crossref_primary_10_1002_dvg_23399
crossref_primary_10_1016_j_cj_2024_09_014
crossref_primary_10_1534_genetics_108_088849
crossref_primary_10_3390_ijms23137458
crossref_primary_10_1534_genetics_111_136903
crossref_primary_10_1007_s11032_009_9298_3
crossref_primary_10_1007_s00122_012_1915_6
crossref_primary_10_1007_s11032_008_9196_0
crossref_primary_10_1038_ncomms9326
crossref_primary_10_1071_CP14007
crossref_primary_10_1111_j_1467_7652_2008_00343_x
crossref_primary_10_1534_genetics_109_110304
crossref_primary_10_1016_j_tplants_2009_07_005
crossref_primary_10_3390_ijms241914441
crossref_primary_10_1105_tpc_110_081406
crossref_primary_10_1007_s10722_014_0202_6
crossref_primary_10_1007_s00122_010_1361_2
crossref_primary_10_1186_gb_2014_15_2_r40
crossref_primary_10_1038_s41467_020_19333_4
crossref_primary_10_1093_plcell_koac321
crossref_primary_10_1111_nph_15890
crossref_primary_10_1007_s12041_016_0702_6
crossref_primary_10_3389_fpls_2023_1124785
crossref_primary_10_3835_plantgenome2017_09_0083
crossref_primary_10_3390_ijms25031479
crossref_primary_10_1371_journal_pone_0103515
crossref_primary_10_1186_s12864_016_3229_6
crossref_primary_10_1007_s11032_013_0001_3
crossref_primary_10_1186_1471_2229_12_56
crossref_primary_10_1371_journal_pone_0071377
crossref_primary_10_1002_tpg2_20155
crossref_primary_10_1111_pbi_14559
crossref_primary_10_3390_plants13071032
crossref_primary_10_1093_plcell_koab281
crossref_primary_10_1186_gb_2013_14_6_r55
crossref_primary_10_1016_j_cub_2018_07_049
crossref_primary_10_1111_pce_13018
crossref_primary_10_1007_s00122_013_2167_9
crossref_primary_10_1093_plphys_kiae326
crossref_primary_10_1038_srep07663
crossref_primary_10_1111_tpj_13174
crossref_primary_10_1007_s00122_012_1904_9
crossref_primary_10_1093_jxb_erq295
crossref_primary_10_1093_jxb_erad216
crossref_primary_10_3389_fpls_2020_565339
crossref_primary_10_1016_S2095_3119_17_61813_6
crossref_primary_10_1007_s12038_015_9545_1
crossref_primary_10_1007_s00299_017_2127_y
crossref_primary_10_1080_07388551_2020_1768509
crossref_primary_10_1093_hr_uhad278
crossref_primary_10_1111_pce_12067
crossref_primary_10_1073_pnas_1010894108
crossref_primary_10_2478_botcro_2014_0012
crossref_primary_10_1016_j_tplants_2024_04_007
crossref_primary_10_1007_s42976_023_00472_5
crossref_primary_10_1134_S1021443709050185
crossref_primary_10_2135_cropsci2015_10_0632
crossref_primary_10_1186_s13059_016_1009_x
crossref_primary_10_1371_journal_pone_0028009
crossref_primary_10_3835_plantgenome2015_07_0053
crossref_primary_10_1186_s13059_025_03516_7
crossref_primary_10_1186_s12864_017_4421_z
crossref_primary_10_1186_s12870_019_2052_z
crossref_primary_10_1016_j_cub_2018_07_029
crossref_primary_10_1534_g3_118_200798
crossref_primary_10_3835_plantgenome2017_11_0102
crossref_primary_10_1038_ng_2312
crossref_primary_10_1007_s00122_014_2379_7
crossref_primary_10_1186_s12870_018_1385_3
crossref_primary_10_1007_s11105_022_01343_9
crossref_primary_10_1371_journal_pone_0075544
crossref_primary_10_1007_s00122_023_04431_w
crossref_primary_10_3389_fpls_2018_01919
crossref_primary_10_1007_s00425_015_2419_9
crossref_primary_10_1073_pnas_1203189109
crossref_primary_10_1093_plphys_kiad440
crossref_primary_10_1073_pnas_0812798106
crossref_primary_10_1534_g3_114_010686
crossref_primary_10_1093_hr_uhac281
crossref_primary_10_1007_s00122_009_1188_x
crossref_primary_10_2135_cropsci2010_03_0178
crossref_primary_10_2135_cropsci2010_03_0177
crossref_primary_10_1007_s00122_017_2978_1
crossref_primary_10_1016_j_molp_2018_12_016
crossref_primary_10_1073_pnas_1310949110
crossref_primary_10_1007_s00122_012_1807_9
crossref_primary_10_1186_1471_2164_13_684
Cites_doi 10.1073/pnas.201394398
10.1146/annurev.genet.38.072902.092425
10.1105/tpc.104.025700
10.1105/tpc.016238
10.1534/genetics.104.032375
10.1126/science.1126410
10.1105/tpc.012526
10.1038/90135
10.1104/pp.106.088815
10.1093/genetics/141.1.391
10.1038/ng1784
10.1073/pnas.94.13.7076
10.1104/pp.125.3.1198
10.1038/nrg1527
10.1016/j.tig.2004.11.013
10.1534/genetics.105.048603
10.1073/pnas.0611574104
10.1038/ng1615
10.1093/genetics/153.2.993
10.1007/s00122-005-0050-z
10.1023/A:1014838024509
10.1105/tpc.010181
10.1016/S0092-8674(00)81188-5
10.1073/pnas.0503927102
10.1139/g96-120
10.1093/genetics/162.2.917
10.2135/cropsci1994.0011183X003400040010x
10.1111/j.1365-313X.2005.02591.x
10.1073/pnas.91.4.1411
10.1126/science.1101659
10.1073/pnas.052139599
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 3, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 3, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0704145104
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Genetics Abstracts
CrossRef

MEDLINE

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11381
ExternalDocumentID PMC2040906
1300254771
17595297
10_1073_pnas_0704145104
104_27_11376
25436122
US201300787844
Genre Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c5004-bcb6b3d2a2ceac43f6886988da2b8dcc1a6a431266fcd3e7cb8abb0ab46534513
ISSN 0027-8424
IngestDate Thu Aug 21 18:22:43 EDT 2025
Fri Jul 11 16:34:56 EDT 2025
Fri Jul 11 07:32:28 EDT 2025
Fri Jul 11 06:17:48 EDT 2025
Mon Jun 30 08:43:18 EDT 2025
Wed Feb 19 01:40:54 EST 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 02:38:42 EDT 2025
Thu May 30 08:49:40 EDT 2019
Wed Nov 11 00:29:33 EST 2020
Thu May 29 08:42:38 EDT 2025
Thu Apr 03 09:46:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5004-bcb6b3d2a2ceac43f6886988da2b8dcc1a6a431266fcd3e7cb8abb0ab46534513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Contributed by Ronald L. Phillips, May 9, 2007
Author contributions: S. Salvi, M.M., D.T., E.V.A., B.L., J.-A.R., S.V.T., G.-H.M., R.L.P., and R.T. designed research; S. Salvi, G.S., X.N., K.A.F., R.M., E.V.A., S. Svitashev, B.L., C.F.H., S.R., and G.Z. performed research; R.L.P. contributed new reagents/analytic tools; S. Salvi, G.S., M.M., E.B., and S.R. analyzed data; S. Salvi, M.M., D.T., R.L.P., and R.T. wrote the paper; and S.V.T. edited and reviewed the paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2040906
PMID 17595297
PQID 201312729
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0704145104
pnas_primary_104_27_11376_fulltext
proquest_miscellaneous_47421543
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2040906
proquest_miscellaneous_19842485
pnas_primary_104_27_11376
proquest_miscellaneous_70694199
jstor_primary_25436122
crossref_primary_10_1073_pnas_0704145104
fao_agris_US201300787844
proquest_journals_201312729
pubmed_primary_17595297
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-03
PublicationDateYYYYMMDD 2007-07-03
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
Bennett MD (e_1_3_4_23_2) 1995; 40
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
Shaw HS (e_1_3_4_2_2) 1977
Phillips RL (e_1_3_4_10_2) 1992; 47
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
Neuffer MG (e_1_3_4_6_2) 1997
11562485 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84
12724540 - Plant Cell. 2003 May;15(5):1143-58
15716910 - Nat Rev Genet. 2005 Feb;6(2):151-7
16415370 - Genetics. 2006 Apr;172(4):2449-63
17071646 - Plant Physiol. 2006 Dec;142(4):1523-36
17301222 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3348-53
12399399 - Genetics. 2002 Oct;162(2):917-30
18469947 - Genome. 1996 Oct;39(5):957-68
16244856 - Theor Appl Genet. 2005 Dec;112(1):1-11
14555699 - Plant Cell. 2003 Nov;15(11):2730-41
9192694 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81
11972021 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6147-51
10511573 - Genetics. 1999 Oct;153(2):993-1007
16056225 - Nat Genet. 2005 Sep;37(9):997-1002
15568971 - Annu Rev Genet. 2004;38:37-59
16359397 - Plant J. 2005 Dec;44(6):1054-64
16642024 - Nat Genet. 2006 May;38(5):594-7
16614172 - Science. 2006 Jun 2;312(5778):1392-6
15680516 - Trends Genet. 2005 Jan;21(1):60-5
11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13
15377761 - Plant Cell. 2004 Oct;16(10):2719-33
11431702 - Nat Genet. 2001 Jul;28(3):286-9
8536986 - Genetics. 1995 Sep;141(1):391-411
15611184 - Genetics. 2004 Dec;168(4):2169-85
15958531 - Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7
8108422 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411-5
12897253 - Plant Cell. 2003 Aug;15(8):1795-806
15499010 - Science. 2004 Oct 22;306(5696):647-50
11244101 - Plant Physiol. 2001 Mar;125(3):1198-205
9604934 - Cell. 1998 May 15;93(4):593-603
References_xml – ident: e_1_3_4_22_2
  doi: 10.1073/pnas.201394398
– ident: e_1_3_4_1_2
  doi: 10.1146/annurev.genet.38.072902.092425
– ident: e_1_3_4_25_2
  doi: 10.1105/tpc.104.025700
– ident: e_1_3_4_14_2
  doi: 10.1105/tpc.016238
– ident: e_1_3_4_3_2
  doi: 10.1534/genetics.104.032375
– ident: e_1_3_4_35_2
  doi: 10.1126/science.1126410
– ident: e_1_3_4_24_2
  doi: 10.1105/tpc.012526
– ident: e_1_3_4_4_2
  doi: 10.1038/90135
– ident: e_1_3_4_9_2
  doi: 10.1104/pp.106.088815
– ident: e_1_3_4_20_2
  doi: 10.1093/genetics/141.1.391
– ident: e_1_3_4_34_2
  doi: 10.1038/ng1784
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.94.13.7076
– ident: e_1_3_4_27_2
  doi: 10.1104/pp.125.3.1198
– ident: e_1_3_4_32_2
  doi: 10.1038/nrg1527
– ident: e_1_3_4_31_2
  doi: 10.1016/j.tig.2004.11.013
– ident: e_1_3_4_5_2
  doi: 10.1534/genetics.105.048603
– volume: 47
  start-page: 135
  year: 1992
  ident: e_1_3_4_10_2
  publication-title: Proc Ann Corn and Sorghum Res Conf
– start-page: 591
  volume-title: Corn and Corn Improvement
  year: 1977
  ident: e_1_3_4_2_2
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.0611574104
– ident: e_1_3_4_15_2
  doi: 10.1038/ng1615
– volume: 40
  start-page: 199
  year: 1995
  ident: e_1_3_4_23_2
  publication-title: Maydica
– ident: e_1_3_4_11_2
  doi: 10.1093/genetics/153.2.993
– ident: e_1_3_4_7_2
  doi: 10.1007/s00122-005-0050-z
– ident: e_1_3_4_12_2
  doi: 10.1023/A:1014838024509
– ident: e_1_3_4_30_2
  doi: 10.1105/tpc.010181
– ident: e_1_3_4_8_2
  doi: 10.1016/S0092-8674(00)81188-5
– ident: e_1_3_4_26_2
  doi: 10.1073/pnas.0503927102
– ident: e_1_3_4_18_2
  doi: 10.1139/g96-120
– ident: e_1_3_4_33_2
  doi: 10.1093/genetics/162.2.917
– ident: e_1_3_4_17_2
  doi: 10.2135/cropsci1994.0011183X003400040010x
– volume-title: Mutants of Maize
  year: 1997
  ident: e_1_3_4_6_2
– ident: e_1_3_4_21_2
  doi: 10.1111/j.1365-313X.2005.02591.x
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.91.4.1411
– ident: e_1_3_4_19_2
  doi: 10.1126/science.1101659
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.052139599
– reference: 18469947 - Genome. 1996 Oct;39(5):957-68
– reference: 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13
– reference: 12399399 - Genetics. 2002 Oct;162(2):917-30
– reference: 16056225 - Nat Genet. 2005 Sep;37(9):997-1002
– reference: 11244101 - Plant Physiol. 2001 Mar;125(3):1198-205
– reference: 12897253 - Plant Cell. 2003 Aug;15(8):1795-806
– reference: 9192694 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81
– reference: 16614172 - Science. 2006 Jun 2;312(5778):1392-6
– reference: 15716910 - Nat Rev Genet. 2005 Feb;6(2):151-7
– reference: 10511573 - Genetics. 1999 Oct;153(2):993-1007
– reference: 15377761 - Plant Cell. 2004 Oct;16(10):2719-33
– reference: 11431702 - Nat Genet. 2001 Jul;28(3):286-9
– reference: 14555699 - Plant Cell. 2003 Nov;15(11):2730-41
– reference: 15680516 - Trends Genet. 2005 Jan;21(1):60-5
– reference: 16642024 - Nat Genet. 2006 May;38(5):594-7
– reference: 15499010 - Science. 2004 Oct 22;306(5696):647-50
– reference: 12724540 - Plant Cell. 2003 May;15(5):1143-58
– reference: 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36
– reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85
– reference: 15958531 - Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7
– reference: 8108422 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411-5
– reference: 9604934 - Cell. 1998 May 15;93(4):593-603
– reference: 17301222 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3348-53
– reference: 11972021 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6147-51
– reference: 15568971 - Annu Rev Genet. 2004;38:37-59
– reference: 8536986 - Genetics. 1995 Sep;141(1):391-411
– reference: 11562485 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84
– reference: 16244856 - Theor Appl Genet. 2005 Dec;112(1):1-11
– reference: 16415370 - Genetics. 2006 Apr;172(4):2449-63
– reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64
SSID ssj0009580
Score 2.4528747
Snippet Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11376
SubjectTerms alleles
Base Sequence
Biological Sciences
chromosome mapping
Cloning
Conserved Sequence
Corn
DNA, Intergenic
Flint
Flowering
flowering date
Flowering Tops - genetics
Flowers & plants
gene expression regulation
Gene mapping
Genetic variation
Genome, Plant
Genomics
Haplotypes
intergenic DNA
messenger RNA
molecular cloning
Molecular Sequence Data
noncoding region
Oryza - genetics
phenology
Plants
Plants, Genetically Modified
Quantitative genetics
Quantitative Trait Loci
regulatory sequences
Rice
Sorghum
Sorghum - genetics
Time Factors
Vgt1 locus
Zea mays
Zea mays - genetics
Title Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize
URI https://www.jstor.org/stable/25436122
http://www.pnas.org/content/104/27/11376.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17595297
https://www.proquest.com/docview/201312729
https://www.proquest.com/docview/19842485
https://www.proquest.com/docview/47421543
https://www.proquest.com/docview/70694199
https://pubmed.ncbi.nlm.nih.gov/PMC2040906
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGB8W4mEoSmliJ04eJz42Ia2a1Fbqm-V8bZW6BK0tSP2j-Bu5c5yvsSLgpUoT17F8v96d7d_dEfIuyAKVgeV30gh3qwI3d0Kwcw6YMt-LQpfxFE90L8bB-Yx_nfvzweBnh7W0WcfDZHtvXMn_SBXugVwxSvYfJNt0CjfgGuQLnyBh-PwrGWO1TWQspjYs4pNSx6dg0lXkuzccaVsZCdREc2XnS6yNBq0dLC2PgZWFjjVDFhHWjFjbYOI2mil7oxbbHlvosrF4q5pfMK43FE_b8BSjM1a2Y1-O22LHE7X8rvkDkwVclO3ZfVlstRt7tihvr9oHF7rqVFXCr2KtNkCcliaW4tMP3GDobV_ofdERa9kdfxhhV297YEt5FW3d6O2qbrEBaJVhwKhh12Ui6Nh0-F4VhvnNYICGwyrHhVoNQflxrFtsuu1n4Z5NPDzjBYdKhJzvkQceLEuwYsbZ3O0keQ6rkCcz2jqVlGAf7ryh5wXt5aqs6bCYYxea3rfeuUvb7fhB08fkkVnA0NMKjQdkkBVPyEE9mfTE5DF__5RcN_CkDTypgSdt4ElbeFKEJ1W0D0_ahSfV8KQannRRUA3PZ2T25fP047ljCns4iY_EpziJg5ilnvISsPuc5UEYBlEYpsqLwzRJXBUocGzBd8yTlGUiiUMVxyMVYzJAmD92SPZh4NkRoamfjlTgp5ipj3PB4pSxJMn9Uea6Kc-4RYb1RMvEZL3HkS6lZl8IJnG6ZSsZi5w0P_hWJXzZ3fQIJCfVFZhj2QeIRQ61OJsuMOcELCY8i1i6l7ZrLj0hNWAt8nbnM5kbLphFjmtkSKOKVhJf7XqwTrbIm-Yp2Ak8_FNFVm5W0o0QkaG_uwUXHPx_zna3EBgl70bwlucVEtuhCj8C3S4sInoYbRpgFvv-k2JxrbPZe-BGRKPgxe7JPCYPW83xkuyvbzfZK1gKrOPX-v_3C2mCCqU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conserved+noncoding+genomic+sequences+associated+with+a+flowering-time+quantitative+trait+locus+in+maize&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Salvi%2C+Silvio&rft.au=Sponza%2C+Giorgio&rft.au=Morgante%2C+Michele&rft.au=Tomes%2C+Dwight&rft.date=2007-07-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=27&rft.spage=11376&rft.epage=11381&rft_id=info:doi/10.1073%2Fpnas.0704145104&rft.externalDocID=US201300787844
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F27.cover.gif