Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positio...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 27; pp. 11376 - 11381 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.07.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an [almost equal to]2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. |
---|---|
AbstractList | Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an [almost equal to]2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 ( Vgt1 ), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2 -like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1 , we identified evolutionarily conserved noncoding sequences across the maize–sorghum–rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 ( Vgt1 ), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2 -like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1 , we identified evolutionarily conserved noncoding sequences across the maize–sorghum–rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. cloning gene regulation transformation linkage disequilibrium Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an ...-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.) Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an ≈2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution. |
Author | Tingey, Scott V Salvi, Silvio Morgante, Michele Phillips, Ronald L Ananiev, Evgueni V Hainey, Christine F Rafalski, J.-Antoni Radovic, Slobodanka Miao, Guo-Hua Tomes, Dwight Sponza, Giorgio Fengler, Kevin A Meeley, Robert Tuberosa, Roberto Svitashev, Sergei Bruggemann, Edward Niu, Xiaomu Li, Bailin Zaina, Giusi |
Author_xml | – sequence: 1 fullname: Salvi, Silvio – sequence: 2 fullname: Sponza, Giorgio – sequence: 3 fullname: Morgante, Michele – sequence: 4 fullname: Tomes, Dwight – sequence: 5 fullname: Niu, Xiaomu – sequence: 6 fullname: Fengler, Kevin A – sequence: 7 fullname: Meeley, Robert – sequence: 8 fullname: Ananiev, Evgueni V – sequence: 9 fullname: Svitashev, Sergei – sequence: 10 fullname: Bruggemann, Edward – sequence: 11 fullname: Li, Bailin – sequence: 12 fullname: Hainey, Christine F – sequence: 13 fullname: Radovic, Slobodanka – sequence: 14 fullname: Zaina, Giusi – sequence: 15 fullname: Rafalski, J.-Antoni – sequence: 16 fullname: Tingey, Scott V – sequence: 17 fullname: Miao, Guo-Hua – sequence: 18 fullname: Phillips, Ronald L – sequence: 19 fullname: Tuberosa, Roberto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17595297$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URNPCmRNgcUDisO3Y67V3L5VQxJdUiQP0bHm93sTRxk5tbwr89XhJSKESysmH-c3zvDdzhk6cdwah5wQuCIjycuNUvAABjLCKAHuEZgQaUnDWwAmaAVBR1IyyU3QW4woAmqqGJ-iUiKqpaCNmaDn3LpqwNR3O0tp31i3wwji_thpHczsap03EKkavrUoZu7NpiRXuB39nQqaLZNcG347KJZtUsluDU1A24cHrMWLr8FrZn-YpetyrIZpn-_cc3Xx4_23-qbj-8vHz_N11oSsAVrS65W3ZUUW1UZqVPa9r3tR1p2hbd1oTxRUrCeW8111phG5r1bagWsarMmdQnqOrne5mbNem08blaQa5CXatwg_plZX_VpxdyoXfSgoMGuBZ4M1eIPhsPya5tlGbYVDO-DFKAbxhpGmOgkwwSipWHgVJM-2orjL4-gG48mNwOa48HcmuBZ2-ffm3wYOzPzvNQLUDdPAxBtNL_XsxfvJrB0lATrcjp9uR97eT-y4f9B2k_9vxdj_KVLinmaRCElIKLvtxGJL5njKLj7AZebFDVjH5cGBozpATSnP91a7eKy_VItgob75OwQCIWtSMlb8AMlT0NQ |
CitedBy_id | crossref_primary_10_1093_g3journal_jkab138 crossref_primary_10_1111_pbi_12696 crossref_primary_10_1016_j_tplants_2019_07_004 crossref_primary_10_1371_journal_pgen_1004562 crossref_primary_10_1093_plcell_koac296 crossref_primary_10_1111_pbi_13429 crossref_primary_10_1007_s00122_012_1933_4 crossref_primary_10_1073_pnas_1720716115 crossref_primary_10_1073_pnas_1718058115 crossref_primary_10_3389_fpls_2022_973347 crossref_primary_10_1007_s00122_011_1700_y crossref_primary_10_3390_genes14051010 crossref_primary_10_1104_pp_108_131888 crossref_primary_10_1111_tpj_12283 crossref_primary_10_1371_journal_pone_0017573 crossref_primary_10_1073_pnas_1010179107 crossref_primary_10_1007_s00122_010_1402_x crossref_primary_10_1534_genetics_109_106591 crossref_primary_10_1093_jxb_ers158 crossref_primary_10_1111_pbr_12849 crossref_primary_10_1371_journal_pgen_1002012 crossref_primary_10_1007_s11032_010_9500_7 crossref_primary_10_1111_tpj_14236 crossref_primary_10_1186_s13059_015_0716_z crossref_primary_10_1534_genetics_109_107557 crossref_primary_10_1007_s00438_016_1225_9 crossref_primary_10_1016_j_crvi_2010_12_015 crossref_primary_10_1093_pcp_pcae121 crossref_primary_10_1016_j_fcr_2024_109380 crossref_primary_10_1111_pbi_13564 crossref_primary_10_1038_s41467_020_18832_8 crossref_primary_10_1534_genetics_116_191726 crossref_primary_10_1007_s00122_010_1339_0 crossref_primary_10_1038_s41477_021_00858_5 crossref_primary_10_1007_s11103_009_9511_0 crossref_primary_10_1534_g3_120_401500 crossref_primary_10_1111_tpj_12029 crossref_primary_10_3390_genes8080199 crossref_primary_10_1111_tpj_70073 crossref_primary_10_1186_s13100_019_0190_3 crossref_primary_10_1016_j_pbi_2020_101985 crossref_primary_10_1016_j_pbi_2008_12_008 crossref_primary_10_1038_nbt_2440 crossref_primary_10_1094_PDIS_08_14_0825_RE crossref_primary_10_1105_tpc_108_059808 crossref_primary_10_2135_cropsci2010_04_0233 crossref_primary_10_1007_s00122_023_04293_2 crossref_primary_10_1534_g3_113_006148 crossref_primary_10_1371_journal_pone_0203728 crossref_primary_10_1007_s00122_021_03907_x crossref_primary_10_1111_tpj_16513 crossref_primary_10_1007_s10722_021_01231_3 crossref_primary_10_1007_s00344_024_11261_7 crossref_primary_10_1534_genetics_117_300305 crossref_primary_10_1146_annurev_arplant_070122_030236 crossref_primary_10_1093_g3journal_jkaa050 crossref_primary_10_5504_BBEQ_2012_0016 crossref_primary_10_1111_tpj_12038 crossref_primary_10_1038_s41467_019_10602_5 crossref_primary_10_1111_nph_18769 crossref_primary_10_1016_j_pbi_2019_12_011 crossref_primary_10_1155_2008_496957 crossref_primary_10_1007_s11032_018_0900_4 crossref_primary_10_1007_s11105_018_1069_z crossref_primary_10_1093_plphys_kiad075 crossref_primary_10_1186_1471_2164_15_1182 crossref_primary_10_1007_s11032_014_0125_0 crossref_primary_10_1007_s00122_020_03753_3 crossref_primary_10_1371_journal_pone_0104188 crossref_primary_10_1534_genetics_114_167155 crossref_primary_10_1016_j_tplants_2016_01_014 crossref_primary_10_1016_j_jplph_2020_153313 crossref_primary_10_1038_s41467_017_02063_5 crossref_primary_10_1007_s42994_021_00039_0 crossref_primary_10_1371_journal_pgen_1006666 crossref_primary_10_3390_plants10061084 crossref_primary_10_1186_s12864_016_3296_8 crossref_primary_10_1534_genetics_107_084830 crossref_primary_10_1016_j_tplants_2023_08_013 crossref_primary_10_1101_gr_140277_112 crossref_primary_10_1093_g3journal_jkab447 crossref_primary_10_4137_EBO_S9369 crossref_primary_10_1016_j_jia_2023_04_022 crossref_primary_10_1007_s11032_018_0868_0 crossref_primary_10_1016_j_molp_2021_03_010 crossref_primary_10_1093_bib_bbae705 crossref_primary_10_3389_fpls_2017_02190 crossref_primary_10_1186_s12870_019_1653_x crossref_primary_10_48130_forres_0024_0022 crossref_primary_10_1186_s12864_015_2242_5 crossref_primary_10_1105_tpc_113_119982 crossref_primary_10_1111_tpj_14528 crossref_primary_10_1371_journal_pgen_1005670 crossref_primary_10_1007_s00122_015_2491_3 crossref_primary_10_1016_j_cj_2022_06_001 crossref_primary_10_1146_annurev_arplant_080720_090632 crossref_primary_10_1186_s40168_024_01839_4 crossref_primary_10_1534_genetics_114_169367 crossref_primary_10_1111_nph_15297 crossref_primary_10_1038_s41437_021_00422_z crossref_primary_10_1093_jxb_eru478 crossref_primary_10_1093_dnares_dsac029 crossref_primary_10_1371_journal_pgen_1003246 crossref_primary_10_1534_g3_115_017665 crossref_primary_10_1016_j_genrep_2025_102190 crossref_primary_10_3389_fpls_2022_1017983 crossref_primary_10_1016_j_molp_2014_12_018 crossref_primary_10_1073_pnas_2006633117 crossref_primary_10_1186_1471_2229_9_149 crossref_primary_10_1371_journal_pone_0036807 crossref_primary_10_1002_cppb_20051 crossref_primary_10_1007_s10142_012_0283_2 crossref_primary_10_1111_nph_19005 crossref_primary_10_1186_s12870_014_0356_6 crossref_primary_10_1038_s41477_019_0547_0 crossref_primary_10_1111_j_1365_3040_2011_02397_x crossref_primary_10_1080_07352689_2021_1920731 crossref_primary_10_1016_j_molp_2022_12_009 crossref_primary_10_1007_s13205_017_0928_x crossref_primary_10_3389_fpls_2023_1280331 crossref_primary_10_1111_jipb_12168 crossref_primary_10_1016_j_pbi_2024_102670 crossref_primary_10_1186_s12870_023_04553_9 crossref_primary_10_3835_plantgenome2008_02_0089 crossref_primary_10_1002_jsfa_6664 crossref_primary_10_1016_j_cropro_2008_10_012 crossref_primary_10_1007_s00122_012_1866_y crossref_primary_10_1038_s41588_020_0616_3 crossref_primary_10_1146_annurev_genet_120116_024846 crossref_primary_10_1016_j_tplants_2007_08_012 crossref_primary_10_1007_s10142_009_0114_2 crossref_primary_10_1186_1471_2148_10_2 crossref_primary_10_1093_g3journal_jkad141 crossref_primary_10_1371_journal_pgen_1010157 crossref_primary_10_1007_s13258_021_01187_9 crossref_primary_10_1093_nargab_lqae123 crossref_primary_10_1111_1755_0998_12133 crossref_primary_10_1038_s41477_022_01190_2 crossref_primary_10_1093_jxb_eraf062 crossref_primary_10_3389_fpls_2017_00698 crossref_primary_10_1093_gigascience_giac080 crossref_primary_10_1007_s10535_017_0734_7 crossref_primary_10_1111_tpj_14726 crossref_primary_10_1186_s12864_019_6124_0 crossref_primary_10_1007_s00122_017_2949_6 crossref_primary_10_1093_jxb_eru271 crossref_primary_10_1186_s12864_025_11221_9 crossref_primary_10_3724_SP_J_1006_2012_00935 crossref_primary_10_3389_fpls_2016_01448 crossref_primary_10_1007_s11032_012_9820_x crossref_primary_10_1016_j_molp_2020_05_012 crossref_primary_10_1007_s10681_018_2155_x crossref_primary_10_3389_fpls_2018_00101 crossref_primary_10_1111_tpj_13765 crossref_primary_10_1016_j_pbi_2015_01_008 crossref_primary_10_1146_annurev_genet_120213_092443 crossref_primary_10_3390_ijms21082695 crossref_primary_10_1007_s10725_010_9484_7 crossref_primary_10_1007_s00122_013_2072_2 crossref_primary_10_1007_s00438_008_0388_4 crossref_primary_10_1111_jipb_13570 crossref_primary_10_1093_nar_gkx1074 crossref_primary_10_1371_journal_pone_0010065 crossref_primary_10_1016_j_bbagrm_2016_06_006 crossref_primary_10_1038_ng_746 crossref_primary_10_1093_g3journal_jkab059 crossref_primary_10_1146_annurev_arplant_59_032607_092942 crossref_primary_10_3389_fpls_2022_824240 crossref_primary_10_1093_jxb_erv182 crossref_primary_10_1016_j_jfca_2024_105999 crossref_primary_10_1016_j_pbi_2009_01_005 crossref_primary_10_1038_s41588_020_0671_9 crossref_primary_10_3724_SP_J_1259_2011_00108 crossref_primary_10_1371_journal_pone_0024699 crossref_primary_10_1002_plr2_20134 crossref_primary_10_1186_s12864_019_6136_9 crossref_primary_10_1111_j_1744_7909_2010_01020_x crossref_primary_10_1093_jxb_ern109 crossref_primary_10_1016_j_plantsci_2015_09_022 crossref_primary_10_1371_journal_pone_0151697 crossref_primary_10_1016_j_cell_2024_10_030 crossref_primary_10_2135_cropsci2007_04_0009IPBS crossref_primary_10_1093_jxb_erv192 crossref_primary_10_1007_s13258_013_0075_7 crossref_primary_10_1093_g3journal_jkac011 crossref_primary_10_3923_pjbs_2018_245_252 crossref_primary_10_2135_cropsci2007_04_0001IPBS crossref_primary_10_3389_fpls_2023_1094411 crossref_primary_10_3389_fpls_2017_00143 crossref_primary_10_1101_gr_266528_120 crossref_primary_10_1007_s10681_021_02768_1 crossref_primary_10_1007_s13353_017_0419_0 crossref_primary_10_1042_ETLS20210258 crossref_primary_10_1155_2009_957602 crossref_primary_10_1038_s41477_019_0548_z crossref_primary_10_1007_s00122_023_04370_6 crossref_primary_10_1186_s13059_023_02891_3 crossref_primary_10_1007_s00122_019_03427_9 crossref_primary_10_1073_pnas_1525244113 crossref_primary_10_1534_g3_116_029090 crossref_primary_10_1111_j_1744_7909_2012_01128_x crossref_primary_10_1016_j_tplants_2013_08_007 crossref_primary_10_1093_genetics_iyac063 crossref_primary_10_1016_j_plantsci_2015_08_007 crossref_primary_10_1186_1471_2164_11_174 crossref_primary_10_3389_fpls_2015_00057 crossref_primary_10_1038_s41588_022_01283_w crossref_primary_10_1111_ppl_13421 crossref_primary_10_1007_s00122_021_03965_1 crossref_primary_10_1186_s13059_020_02069_1 crossref_primary_10_1146_annurev_arplant_043008_092114 crossref_primary_10_1186_s12870_022_03427_w crossref_primary_10_1371_journal_pone_0049836 crossref_primary_10_1016_j_copbio_2015_01_001 crossref_primary_10_1038_s41598_017_06153_8 crossref_primary_10_3390_agriculture14030340 crossref_primary_10_1534_genetics_108_092239 crossref_primary_10_1371_journal_pgen_1008241 crossref_primary_10_3835_plantgenome2008_06_0385 crossref_primary_10_1534_g3_116_030338 crossref_primary_10_1007_s10265_011_0470_6 crossref_primary_10_1016_S2095_3119_15_61060_7 crossref_primary_10_1007_s11032_012_9754_3 crossref_primary_10_1126_science_1174276 crossref_primary_10_3389_fpls_2022_992799 crossref_primary_10_1093_gbe_evt109 crossref_primary_10_1007_s11032_015_0275_8 crossref_primary_10_3389_fpls_2019_00820 crossref_primary_10_1038_s41598_023_33250_8 crossref_primary_10_3390_plants10081585 crossref_primary_10_1104_pp_108_125542 crossref_primary_10_3835_plantgenome2010_05_0011 crossref_primary_10_1007_s11427_015_4993_2 crossref_primary_10_1270_jsbbs_18017 crossref_primary_10_1073_pnas_2010250117 crossref_primary_10_1371_journal_pone_0046596 crossref_primary_10_1371_journal_pgen_1010664 crossref_primary_10_1186_s12870_023_04221_y crossref_primary_10_1242_dev_063511 crossref_primary_10_1104_pp_110_161331 crossref_primary_10_1093_jxb_ery110 crossref_primary_10_1111_nph_13765 crossref_primary_10_1007_s00122_010_1320_y crossref_primary_10_1007_s13199_019_00616_4 crossref_primary_10_2135_cropsci2009_09_0525 crossref_primary_10_1111_j_1744_7909_2012_01149_x crossref_primary_10_3390_plants10071300 crossref_primary_10_1186_s13059_017_1273_4 crossref_primary_10_1186_s12864_021_07463_y crossref_primary_10_1007_s11032_014_0119_y crossref_primary_10_1017_S1479262111000700 crossref_primary_10_3390_agronomy15030555 crossref_primary_10_1111_mpp_12486 crossref_primary_10_1016_j_pbi_2018_04_004 crossref_primary_10_1073_pnas_0901122106 crossref_primary_10_3389_fgene_2022_1001001 crossref_primary_10_1111_pbr_12596 crossref_primary_10_1016_j_ajhg_2008_03_006 crossref_primary_10_3389_fgene_2021_799681 crossref_primary_10_1016_j_tplants_2007_11_008 crossref_primary_10_3109_07388551_2015_1062743 crossref_primary_10_1093_nar_gkac1195 crossref_primary_10_1371_journal_pone_0133054 crossref_primary_10_1016_j_biotechadv_2010_02_007 crossref_primary_10_1111_jipb_13603 crossref_primary_10_1534_genetics_119_302780 crossref_primary_10_3389_fpls_2024_1371394 crossref_primary_10_1016_j_gene_2018_04_050 crossref_primary_10_1016_j_plantsci_2020_110797 crossref_primary_10_1111_1755_0998_13454 crossref_primary_10_1186_s13059_021_02492_y crossref_primary_10_1038_nrg3374 crossref_primary_10_48130_SeedBio_2023_0009 crossref_primary_10_2135_cropsci2011_10_0552 crossref_primary_10_1111_nph_15512 crossref_primary_10_1111_jipb_12632 crossref_primary_10_1534_g3_112_005207 crossref_primary_10_1534_g3_119_400884 crossref_primary_10_1016_j_jgg_2020_11_002 crossref_primary_10_1111_j_1439_0523_2011_01893_x crossref_primary_10_1111_jipb_13639 crossref_primary_10_1016_j_cell_2021_04_014 crossref_primary_10_1038_hdy_2014_123 crossref_primary_10_1186_1471_2229_12_238 crossref_primary_10_3390_agronomy11020230 crossref_primary_10_1371_journal_pone_0019379 crossref_primary_10_1534_genetics_115_184234 crossref_primary_10_1186_s12870_016_0829_x crossref_primary_10_3389_fpls_2015_00563 crossref_primary_10_1111_tpj_16260 crossref_primary_10_2135_cropsci2013_02_0121 crossref_primary_10_1111_nph_14882 crossref_primary_10_1093_bioinformatics_bts313 crossref_primary_10_1007_s00122_013_2066_0 crossref_primary_10_1016_j_bbagrm_2016_05_010 crossref_primary_10_1534_genetics_109_106922 crossref_primary_10_1093_bfgp_elu002 crossref_primary_10_1111_j_1365_313X_2009_03802_x crossref_primary_10_1111_j_1365_313X_2009_03848_x crossref_primary_10_1186_1471_2164_15_433 crossref_primary_10_1007_s00122_016_2787_y crossref_primary_10_1186_1471_2229_12_93 crossref_primary_10_1007_s00122_020_03560_w crossref_primary_10_1093_jxb_erab364 crossref_primary_10_1073_pnas_2100036119 crossref_primary_10_1111_nph_16772 crossref_primary_10_1371_journal_pgen_1008882 crossref_primary_10_2478_V10133_009_0004_8 crossref_primary_10_1007_s00122_015_2477_1 crossref_primary_10_1371_journal_pgen_1008764 crossref_primary_10_1016_j_xplc_2019_100010 crossref_primary_10_1093_plcell_koab119 crossref_primary_10_1111_pbi_14362 crossref_primary_10_1007_s10681_015_1468_2 crossref_primary_10_1038_ng_3784 crossref_primary_10_1186_s12864_015_1397_4 crossref_primary_10_3390_plants12234020 crossref_primary_10_1111_nph_14101 crossref_primary_10_1534_g3_119_400838 crossref_primary_10_3389_fgene_2022_819849 crossref_primary_10_1038_hdy_2013_6 crossref_primary_10_1007_s10142_019_00691_2 crossref_primary_10_1038_s41477_018_0133_x crossref_primary_10_1016_j_tplants_2016_07_013 crossref_primary_10_1016_S1671_2927_11_60303_9 crossref_primary_10_1002_dvg_23399 crossref_primary_10_1016_j_cj_2024_09_014 crossref_primary_10_1534_genetics_108_088849 crossref_primary_10_3390_ijms23137458 crossref_primary_10_1534_genetics_111_136903 crossref_primary_10_1007_s11032_009_9298_3 crossref_primary_10_1007_s00122_012_1915_6 crossref_primary_10_1007_s11032_008_9196_0 crossref_primary_10_1038_ncomms9326 crossref_primary_10_1071_CP14007 crossref_primary_10_1111_j_1467_7652_2008_00343_x crossref_primary_10_1534_genetics_109_110304 crossref_primary_10_1016_j_tplants_2009_07_005 crossref_primary_10_3390_ijms241914441 crossref_primary_10_1105_tpc_110_081406 crossref_primary_10_1007_s10722_014_0202_6 crossref_primary_10_1007_s00122_010_1361_2 crossref_primary_10_1186_gb_2014_15_2_r40 crossref_primary_10_1038_s41467_020_19333_4 crossref_primary_10_1093_plcell_koac321 crossref_primary_10_1111_nph_15890 crossref_primary_10_1007_s12041_016_0702_6 crossref_primary_10_3389_fpls_2023_1124785 crossref_primary_10_3835_plantgenome2017_09_0083 crossref_primary_10_3390_ijms25031479 crossref_primary_10_1371_journal_pone_0103515 crossref_primary_10_1186_s12864_016_3229_6 crossref_primary_10_1007_s11032_013_0001_3 crossref_primary_10_1186_1471_2229_12_56 crossref_primary_10_1371_journal_pone_0071377 crossref_primary_10_1002_tpg2_20155 crossref_primary_10_1111_pbi_14559 crossref_primary_10_3390_plants13071032 crossref_primary_10_1093_plcell_koab281 crossref_primary_10_1186_gb_2013_14_6_r55 crossref_primary_10_1016_j_cub_2018_07_049 crossref_primary_10_1111_pce_13018 crossref_primary_10_1007_s00122_013_2167_9 crossref_primary_10_1093_plphys_kiae326 crossref_primary_10_1038_srep07663 crossref_primary_10_1111_tpj_13174 crossref_primary_10_1007_s00122_012_1904_9 crossref_primary_10_1093_jxb_erq295 crossref_primary_10_1093_jxb_erad216 crossref_primary_10_3389_fpls_2020_565339 crossref_primary_10_1016_S2095_3119_17_61813_6 crossref_primary_10_1007_s12038_015_9545_1 crossref_primary_10_1007_s00299_017_2127_y crossref_primary_10_1080_07388551_2020_1768509 crossref_primary_10_1093_hr_uhad278 crossref_primary_10_1111_pce_12067 crossref_primary_10_1073_pnas_1010894108 crossref_primary_10_2478_botcro_2014_0012 crossref_primary_10_1016_j_tplants_2024_04_007 crossref_primary_10_1007_s42976_023_00472_5 crossref_primary_10_1134_S1021443709050185 crossref_primary_10_2135_cropsci2015_10_0632 crossref_primary_10_1186_s13059_016_1009_x crossref_primary_10_1371_journal_pone_0028009 crossref_primary_10_3835_plantgenome2015_07_0053 crossref_primary_10_1186_s13059_025_03516_7 crossref_primary_10_1186_s12864_017_4421_z crossref_primary_10_1186_s12870_019_2052_z crossref_primary_10_1016_j_cub_2018_07_029 crossref_primary_10_1534_g3_118_200798 crossref_primary_10_3835_plantgenome2017_11_0102 crossref_primary_10_1038_ng_2312 crossref_primary_10_1007_s00122_014_2379_7 crossref_primary_10_1186_s12870_018_1385_3 crossref_primary_10_1007_s11105_022_01343_9 crossref_primary_10_1371_journal_pone_0075544 crossref_primary_10_1007_s00122_023_04431_w crossref_primary_10_3389_fpls_2018_01919 crossref_primary_10_1007_s00425_015_2419_9 crossref_primary_10_1073_pnas_1203189109 crossref_primary_10_1093_plphys_kiad440 crossref_primary_10_1073_pnas_0812798106 crossref_primary_10_1534_g3_114_010686 crossref_primary_10_1093_hr_uhac281 crossref_primary_10_1007_s00122_009_1188_x crossref_primary_10_2135_cropsci2010_03_0178 crossref_primary_10_2135_cropsci2010_03_0177 crossref_primary_10_1007_s00122_017_2978_1 crossref_primary_10_1016_j_molp_2018_12_016 crossref_primary_10_1073_pnas_1310949110 crossref_primary_10_1007_s00122_012_1807_9 crossref_primary_10_1186_1471_2164_13_684 |
Cites_doi | 10.1073/pnas.201394398 10.1146/annurev.genet.38.072902.092425 10.1105/tpc.104.025700 10.1105/tpc.016238 10.1534/genetics.104.032375 10.1126/science.1126410 10.1105/tpc.012526 10.1038/90135 10.1104/pp.106.088815 10.1093/genetics/141.1.391 10.1038/ng1784 10.1073/pnas.94.13.7076 10.1104/pp.125.3.1198 10.1038/nrg1527 10.1016/j.tig.2004.11.013 10.1534/genetics.105.048603 10.1073/pnas.0611574104 10.1038/ng1615 10.1093/genetics/153.2.993 10.1007/s00122-005-0050-z 10.1023/A:1014838024509 10.1105/tpc.010181 10.1016/S0092-8674(00)81188-5 10.1073/pnas.0503927102 10.1139/g96-120 10.1093/genetics/162.2.917 10.2135/cropsci1994.0011183X003400040010x 10.1111/j.1365-313X.2005.02591.x 10.1073/pnas.91.4.1411 10.1126/science.1101659 10.1073/pnas.052139599 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 3, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 3, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0704145104 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11381 |
ExternalDocumentID | PMC2040906 1300254771 17595297 10_1073_pnas_0704145104 104_27_11376 25436122 US201300787844 |
Genre | Journal Article Comparative Study Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c5004-bcb6b3d2a2ceac43f6886988da2b8dcc1a6a431266fcd3e7cb8abb0ab46534513 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:22:43 EDT 2025 Fri Jul 11 16:34:56 EDT 2025 Fri Jul 11 07:32:28 EDT 2025 Fri Jul 11 06:17:48 EDT 2025 Mon Jun 30 08:43:18 EDT 2025 Wed Feb 19 01:40:54 EST 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 02:38:42 EDT 2025 Thu May 30 08:49:40 EDT 2019 Wed Nov 11 00:29:33 EST 2020 Thu May 29 08:42:38 EDT 2025 Thu Apr 03 09:46:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5004-bcb6b3d2a2ceac43f6886988da2b8dcc1a6a431266fcd3e7cb8abb0ab46534513 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Contributed by Ronald L. Phillips, May 9, 2007 Author contributions: S. Salvi, M.M., D.T., E.V.A., B.L., J.-A.R., S.V.T., G.-H.M., R.L.P., and R.T. designed research; S. Salvi, G.S., X.N., K.A.F., R.M., E.V.A., S. Svitashev, B.L., C.F.H., S.R., and G.Z. performed research; R.L.P. contributed new reagents/analytic tools; S. Salvi, G.S., M.M., E.B., and S.R. analyzed data; S. Salvi, M.M., D.T., R.L.P., and R.T. wrote the paper; and S.V.T. edited and reviewed the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2040906 |
PMID | 17595297 |
PQID | 201312729 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0704145104 pnas_primary_104_27_11376_fulltext proquest_miscellaneous_47421543 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2040906 proquest_miscellaneous_19842485 pnas_primary_104_27_11376 proquest_miscellaneous_70694199 jstor_primary_25436122 crossref_primary_10_1073_pnas_0704145104 fao_agris_US201300787844 proquest_journals_201312729 pubmed_primary_17595297 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-07-03 |
PublicationDateYYYYMMDD | 2007-07-03 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 Bennett MD (e_1_3_4_23_2) 1995; 40 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 Shaw HS (e_1_3_4_2_2) 1977 Phillips RL (e_1_3_4_10_2) 1992; 47 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 Neuffer MG (e_1_3_4_6_2) 1997 11562485 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84 12724540 - Plant Cell. 2003 May;15(5):1143-58 15716910 - Nat Rev Genet. 2005 Feb;6(2):151-7 16415370 - Genetics. 2006 Apr;172(4):2449-63 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36 17301222 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3348-53 12399399 - Genetics. 2002 Oct;162(2):917-30 18469947 - Genome. 1996 Oct;39(5):957-68 16244856 - Theor Appl Genet. 2005 Dec;112(1):1-11 14555699 - Plant Cell. 2003 Nov;15(11):2730-41 9192694 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81 11972021 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6147-51 10511573 - Genetics. 1999 Oct;153(2):993-1007 16056225 - Nat Genet. 2005 Sep;37(9):997-1002 15568971 - Annu Rev Genet. 2004;38:37-59 16359397 - Plant J. 2005 Dec;44(6):1054-64 16642024 - Nat Genet. 2006 May;38(5):594-7 16614172 - Science. 2006 Jun 2;312(5778):1392-6 15680516 - Trends Genet. 2005 Jan;21(1):60-5 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13 15377761 - Plant Cell. 2004 Oct;16(10):2719-33 11431702 - Nat Genet. 2001 Jul;28(3):286-9 8536986 - Genetics. 1995 Sep;141(1):391-411 15611184 - Genetics. 2004 Dec;168(4):2169-85 15958531 - Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7 8108422 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411-5 12897253 - Plant Cell. 2003 Aug;15(8):1795-806 15499010 - Science. 2004 Oct 22;306(5696):647-50 11244101 - Plant Physiol. 2001 Mar;125(3):1198-205 9604934 - Cell. 1998 May 15;93(4):593-603 |
References_xml | – ident: e_1_3_4_22_2 doi: 10.1073/pnas.201394398 – ident: e_1_3_4_1_2 doi: 10.1146/annurev.genet.38.072902.092425 – ident: e_1_3_4_25_2 doi: 10.1105/tpc.104.025700 – ident: e_1_3_4_14_2 doi: 10.1105/tpc.016238 – ident: e_1_3_4_3_2 doi: 10.1534/genetics.104.032375 – ident: e_1_3_4_35_2 doi: 10.1126/science.1126410 – ident: e_1_3_4_24_2 doi: 10.1105/tpc.012526 – ident: e_1_3_4_4_2 doi: 10.1038/90135 – ident: e_1_3_4_9_2 doi: 10.1104/pp.106.088815 – ident: e_1_3_4_20_2 doi: 10.1093/genetics/141.1.391 – ident: e_1_3_4_34_2 doi: 10.1038/ng1784 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.94.13.7076 – ident: e_1_3_4_27_2 doi: 10.1104/pp.125.3.1198 – ident: e_1_3_4_32_2 doi: 10.1038/nrg1527 – ident: e_1_3_4_31_2 doi: 10.1016/j.tig.2004.11.013 – ident: e_1_3_4_5_2 doi: 10.1534/genetics.105.048603 – volume: 47 start-page: 135 year: 1992 ident: e_1_3_4_10_2 publication-title: Proc Ann Corn and Sorghum Res Conf – start-page: 591 volume-title: Corn and Corn Improvement year: 1977 ident: e_1_3_4_2_2 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.0611574104 – ident: e_1_3_4_15_2 doi: 10.1038/ng1615 – volume: 40 start-page: 199 year: 1995 ident: e_1_3_4_23_2 publication-title: Maydica – ident: e_1_3_4_11_2 doi: 10.1093/genetics/153.2.993 – ident: e_1_3_4_7_2 doi: 10.1007/s00122-005-0050-z – ident: e_1_3_4_12_2 doi: 10.1023/A:1014838024509 – ident: e_1_3_4_30_2 doi: 10.1105/tpc.010181 – ident: e_1_3_4_8_2 doi: 10.1016/S0092-8674(00)81188-5 – ident: e_1_3_4_26_2 doi: 10.1073/pnas.0503927102 – ident: e_1_3_4_18_2 doi: 10.1139/g96-120 – ident: e_1_3_4_33_2 doi: 10.1093/genetics/162.2.917 – ident: e_1_3_4_17_2 doi: 10.2135/cropsci1994.0011183X003400040010x – volume-title: Mutants of Maize year: 1997 ident: e_1_3_4_6_2 – ident: e_1_3_4_21_2 doi: 10.1111/j.1365-313X.2005.02591.x – ident: e_1_3_4_16_2 doi: 10.1073/pnas.91.4.1411 – ident: e_1_3_4_19_2 doi: 10.1126/science.1101659 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.052139599 – reference: 18469947 - Genome. 1996 Oct;39(5):957-68 – reference: 11999837 - Plant Mol Biol. 2002 Mar-Apr;48(5-6):601-13 – reference: 12399399 - Genetics. 2002 Oct;162(2):917-30 – reference: 16056225 - Nat Genet. 2005 Sep;37(9):997-1002 – reference: 11244101 - Plant Physiol. 2001 Mar;125(3):1198-205 – reference: 12897253 - Plant Cell. 2003 Aug;15(8):1795-806 – reference: 9192694 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81 – reference: 16614172 - Science. 2006 Jun 2;312(5778):1392-6 – reference: 15716910 - Nat Rev Genet. 2005 Feb;6(2):151-7 – reference: 10511573 - Genetics. 1999 Oct;153(2):993-1007 – reference: 15377761 - Plant Cell. 2004 Oct;16(10):2719-33 – reference: 11431702 - Nat Genet. 2001 Jul;28(3):286-9 – reference: 14555699 - Plant Cell. 2003 Nov;15(11):2730-41 – reference: 15680516 - Trends Genet. 2005 Jan;21(1):60-5 – reference: 16642024 - Nat Genet. 2006 May;38(5):594-7 – reference: 15499010 - Science. 2004 Oct 22;306(5696):647-50 – reference: 12724540 - Plant Cell. 2003 May;15(5):1143-58 – reference: 17071646 - Plant Physiol. 2006 Dec;142(4):1523-36 – reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85 – reference: 15958531 - Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7 – reference: 8108422 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411-5 – reference: 9604934 - Cell. 1998 May 15;93(4):593-603 – reference: 17301222 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3348-53 – reference: 11972021 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6147-51 – reference: 15568971 - Annu Rev Genet. 2004;38:37-59 – reference: 8536986 - Genetics. 1995 Sep;141(1):391-411 – reference: 11562485 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84 – reference: 16244856 - Theor Appl Genet. 2005 Dec;112(1):1-11 – reference: 16415370 - Genetics. 2006 Apr;172(4):2449-63 – reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64 |
SSID | ssj0009580 |
Score | 2.4528747 |
Snippet | Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11376 |
SubjectTerms | alleles Base Sequence Biological Sciences chromosome mapping Cloning Conserved Sequence Corn DNA, Intergenic Flint Flowering flowering date Flowering Tops - genetics Flowers & plants gene expression regulation Gene mapping Genetic variation Genome, Plant Genomics Haplotypes intergenic DNA messenger RNA molecular cloning Molecular Sequence Data noncoding region Oryza - genetics phenology Plants Plants, Genetically Modified Quantitative genetics Quantitative Trait Loci regulatory sequences Rice Sorghum Sorghum - genetics Time Factors Vgt1 locus Zea mays Zea mays - genetics |
Title | Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize |
URI | https://www.jstor.org/stable/25436122 http://www.pnas.org/content/104/27/11376.abstract https://www.ncbi.nlm.nih.gov/pubmed/17595297 https://www.proquest.com/docview/201312729 https://www.proquest.com/docview/19842485 https://www.proquest.com/docview/47421543 https://www.proquest.com/docview/70694199 https://pubmed.ncbi.nlm.nih.gov/PMC2040906 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGB8W4mEoSmliJ04eJz42Ia2a1Fbqm-V8bZW6BK0tSP2j-Bu5c5yvsSLgpUoT17F8v96d7d_dEfIuyAKVgeV30gh3qwI3d0Kwcw6YMt-LQpfxFE90L8bB-Yx_nfvzweBnh7W0WcfDZHtvXMn_SBXugVwxSvYfJNt0CjfgGuQLnyBh-PwrGWO1TWQspjYs4pNSx6dg0lXkuzccaVsZCdREc2XnS6yNBq0dLC2PgZWFjjVDFhHWjFjbYOI2mil7oxbbHlvosrF4q5pfMK43FE_b8BSjM1a2Y1-O22LHE7X8rvkDkwVclO3ZfVlstRt7tihvr9oHF7rqVFXCr2KtNkCcliaW4tMP3GDobV_ofdERa9kdfxhhV297YEt5FW3d6O2qbrEBaJVhwKhh12Ui6Nh0-F4VhvnNYICGwyrHhVoNQflxrFtsuu1n4Z5NPDzjBYdKhJzvkQceLEuwYsbZ3O0keQ6rkCcz2jqVlGAf7ryh5wXt5aqs6bCYYxea3rfeuUvb7fhB08fkkVnA0NMKjQdkkBVPyEE9mfTE5DF__5RcN_CkDTypgSdt4ElbeFKEJ1W0D0_ahSfV8KQannRRUA3PZ2T25fP047ljCns4iY_EpziJg5ilnvISsPuc5UEYBlEYpsqLwzRJXBUocGzBd8yTlGUiiUMVxyMVYzJAmD92SPZh4NkRoamfjlTgp5ipj3PB4pSxJMn9Uea6Kc-4RYb1RMvEZL3HkS6lZl8IJnG6ZSsZi5w0P_hWJXzZ3fQIJCfVFZhj2QeIRQ61OJsuMOcELCY8i1i6l7ZrLj0hNWAt8nbnM5kbLphFjmtkSKOKVhJf7XqwTrbIm-Yp2Ak8_FNFVm5W0o0QkaG_uwUXHPx_zna3EBgl70bwlucVEtuhCj8C3S4sInoYbRpgFvv-k2JxrbPZe-BGRKPgxe7JPCYPW83xkuyvbzfZK1gKrOPX-v_3C2mCCqU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conserved+noncoding+genomic+sequences+associated+with+a+flowering-time+quantitative+trait+locus+in+maize&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Salvi%2C+Silvio&rft.au=Sponza%2C+Giorgio&rft.au=Morgante%2C+Michele&rft.au=Tomes%2C+Dwight&rft.date=2007-07-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=27&rft.spage=11376&rft.epage=11381&rft_id=info:doi/10.1073%2Fpnas.0704145104&rft.externalDocID=US201300787844 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F27.cover.gif |