Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle

Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 36; no. 18; pp. 2684 - 2697
Main Authors Lazar‐Stefanita, Luciana, Scolari, Vittore F, Mercy, Guillaume, Muller, Héloise, Guérin, Thomas M, Thierry, Agnès, Mozziconacci, Julien, Koszul, Romain
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.09.2017
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Synopsis Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Graphical Abstract Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping.
AbstractList Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes ( SMC ) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. image Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Synopsis Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Graphical Abstract Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes ( SMC ) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Synopsis Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping.
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Author Lazar‐Stefanita, Luciana
Mercy, Guillaume
Mozziconacci, Julien
Guérin, Thomas M
Thierry, Agnès
Muller, Héloise
Koszul, Romain
Scolari, Vittore F
AuthorAffiliation 3 Institut Pasteur CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) USR 3756 Paris France
1 Institut Pasteur Department Genomes and Genetics Unité Régulation Spatiale des Génomes Paris France
6 Sorbonne Universités Theoretical Physics for Condensed Matter Lab UPMC Université Paris 06 Paris France
4 Sorbonne Universités UPMC Université Paris 6 Complexité du Vivant Paris France
2 CNRS UMR 3525 Paris France
5 Laboratoire Télomères et Réparation du Chromosome CEA INSERM UMR 967 IRCM Université Paris‐Saclay Fontenay‐aux‐Roses France
7 CNRS UMR 7600 Paris France
AuthorAffiliation_xml – name: 6 Sorbonne Universités Theoretical Physics for Condensed Matter Lab UPMC Université Paris 06 Paris France
– name: 2 CNRS UMR 3525 Paris France
– name: 5 Laboratoire Télomères et Réparation du Chromosome CEA INSERM UMR 967 IRCM Université Paris‐Saclay Fontenay‐aux‐Roses France
– name: 1 Institut Pasteur Department Genomes and Genetics Unité Régulation Spatiale des Génomes Paris France
– name: 3 Institut Pasteur CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) USR 3756 Paris France
– name: 7 CNRS UMR 7600 Paris France
– name: 4 Sorbonne Universités UPMC Université Paris 6 Complexité du Vivant Paris France
Author_xml – sequence: 1
  givenname: Luciana
  surname: Lazar‐Stefanita
  fullname: Lazar‐Stefanita, Luciana
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant
– sequence: 2
  givenname: Vittore F
  surname: Scolari
  fullname: Scolari, Vittore F
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI)
– sequence: 3
  givenname: Guillaume
  surname: Mercy
  fullname: Mercy, Guillaume
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant
– sequence: 4
  givenname: Héloise
  surname: Muller
  fullname: Muller, Héloise
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI)
– sequence: 5
  givenname: Thomas M
  surname: Guérin
  fullname: Guérin, Thomas M
  organization: Laboratoire Télomères et Réparation du Chromosome, CEA, INSERM, UMR 967, IRCM, Université Paris‐Saclay
– sequence: 6
  givenname: Agnès
  surname: Thierry
  fullname: Thierry, Agnès
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI)
– sequence: 7
  givenname: Julien
  orcidid: 0000-0001-5652-0302
  surname: Mozziconacci
  fullname: Mozziconacci, Julien
  email: mozziconacci@lptmc.jussieu.fr
  organization: Sorbonne Universités, Theoretical Physics for Condensed Matter Lab, UPMC Université Paris 06, CNRS, UMR 7600
– sequence: 8
  givenname: Romain
  orcidid: 0000-0002-3086-1173
  surname: Koszul
  fullname: Koszul, Romain
  email: romain.koszul@pasteur.fr
  organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28729434$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-01596511$$DView record in HAL
BookMark eNqFkcFu1DAQhi1URLeFMzeUIxzS2o4drzkgtUuhoEVc4Gw59qTxKrEXOynat-FZeDKSTVmVSsDJsuf__pnxf4KOfPCA0HOCzwinnJ5DV23OKCZCioLRR2hBWIlzigU_QgtMS5IzspTH6CSlDcaYLwV5go7pUlDJCrZAahUaSM6nTHubmeAt-P01RDMW-qh7yPoGMvY2szuvO2fGWp3tQKc-M00MXUihg5TZITp_s9caaNufP8zOtPAUPa51m-DZ3XmKvr67-rK6ztef339YXaxzwzGmuQBLpSyBGV5IzeqaC15VsioFmKKuRVlVRVEtgUlLKOfWsqUlpKh5Ta0ErotT9Gb23Q5VB9aAH0dv1Ta6TsedCtqpPyveNeom3CrOpRSSjwavZoPmAXZ9sVbTGyZclpyQWzJqX941i-HbMP6S6lyaltYewpAUkZRyLFg5SV_cn-vg_DuBUXA-C0wMKUWoDxKC1T5jNWWsDhmPBH9AGNfr3oVpMdf-g3s9c99dC7v_tVFXny4_3ofxDKftFDNEtQlD9GOkf-33CymwzjQ
CitedBy_id crossref_primary_10_1016_j_isci_2024_109343
crossref_primary_10_1038_s41467_022_28416_3
crossref_primary_10_1073_pnas_2219126120
crossref_primary_10_1038_s41467_021_26629_6
crossref_primary_10_1038_s41598_019_48798_7
crossref_primary_10_1126_sciadv_abn7063
crossref_primary_10_1186_s13072_019_0293_6
crossref_primary_10_1186_s13059_020_02041_z
crossref_primary_10_1534_genetics_119_302978
crossref_primary_10_26508_lsa_202101161
crossref_primary_10_1038_s41467_021_23142_8
crossref_primary_10_15252_msb_20188293
crossref_primary_10_15252_embj_2023113475
crossref_primary_10_1016_j_tig_2020_07_003
crossref_primary_10_1111_tra_12539
crossref_primary_10_1016_j_xgen_2023_100439
crossref_primary_10_1038_s41594_022_00780_0
crossref_primary_10_3390_epigenomes6030020
crossref_primary_10_1016_j_cell_2018_12_014
crossref_primary_10_1016_j_xgen_2023_100437
crossref_primary_10_1016_j_molcel_2020_06_033
crossref_primary_10_1073_pnas_2002126117
crossref_primary_10_1016_j_molcel_2024_08_003
crossref_primary_10_1038_s41556_024_01552_2
crossref_primary_10_1051_refdp_201857010
crossref_primary_10_1007_s00294_021_01160_9
crossref_primary_10_1002_2211_5463_13000
crossref_primary_10_1016_j_cell_2023_09_025
crossref_primary_10_1038_s41467_021_23205_w
crossref_primary_10_1146_annurev_genet_072820_034559
crossref_primary_10_1038_s41467_019_12629_0
crossref_primary_10_1063_5_0007316
crossref_primary_10_3390_genes11080902
crossref_primary_10_1371_journal_pbio_3000635
crossref_primary_10_1007_s00294_017_0755_y
crossref_primary_10_1038_s41592_020_0930_9
crossref_primary_10_1126_sciadv_abg4216
crossref_primary_10_1111_eva_13462
crossref_primary_10_1016_j_cell_2023_10_015
crossref_primary_10_1016_j_molcel_2020_01_019
crossref_primary_10_3390_genes10121029
crossref_primary_10_1038_s41588_023_01649_8
crossref_primary_10_1101_sqb_2017_82_033639
crossref_primary_10_1371_journal_pgen_1009763
crossref_primary_10_1146_annurev_biophys_052118_115638
crossref_primary_10_1038_s41556_021_00783_x
crossref_primary_10_1126_science_adm9466
crossref_primary_10_1103_PhysRevLett_121_057801
crossref_primary_10_7554_eLife_74447
crossref_primary_10_7554_eLife_84322
crossref_primary_10_3390_genes13010007
crossref_primary_10_1007_s00294_018_0899_4
crossref_primary_10_1016_j_molcel_2024_02_004
crossref_primary_10_1126_sciadv_adn2955
crossref_primary_10_7554_eLife_78015
crossref_primary_10_1038_s41467_024_44761_x
crossref_primary_10_1016_j_tig_2019_05_003
crossref_primary_10_1016_j_csbj_2020_01_006
crossref_primary_10_1371_journal_pgen_1010705
crossref_primary_10_1038_s41586_020_2244_6
crossref_primary_10_1016_j_molcel_2019_05_021
crossref_primary_10_1038_ncb3594
crossref_primary_10_1371_journal_pgen_1010986
crossref_primary_10_1038_ng_3962
crossref_primary_10_1534_genetics_120_303092
crossref_primary_10_1016_j_celrep_2022_111753
crossref_primary_10_7554_eLife_53558
crossref_primary_10_1038_s41594_019_0307_x
crossref_primary_10_3389_fgene_2021_748239
crossref_primary_10_1083_jcb_202003041
crossref_primary_10_1534_genetics_119_302047
crossref_primary_10_1038_s41598_025_94533_w
crossref_primary_10_1103_PhysRevX_14_041020
crossref_primary_10_1101_gr_267872_120
crossref_primary_10_7554_eLife_80147
crossref_primary_10_1016_j_jsb_2019_08_010
crossref_primary_10_1093_nargab_lqad104
crossref_primary_10_1073_pnas_2425225122
crossref_primary_10_1534_genetics_118_301217
crossref_primary_10_1101_cshperspect_a040147
crossref_primary_10_1146_annurev_micro_011720_122512
crossref_primary_10_1038_s44318_025_00389_1
crossref_primary_10_1371_journal_pbio_3000582
crossref_primary_10_1126_sciadv_aay6804
crossref_primary_10_3390_ijms24129829
crossref_primary_10_1016_j_celrep_2024_114472
crossref_primary_10_1073_pnas_1817829116
crossref_primary_10_15252_embj_2020105393
crossref_primary_10_1016_j_xgen_2022_100163
crossref_primary_10_1088_1361_6633_ac3800
crossref_primary_10_15252_embj_201798014
crossref_primary_10_1186_s13059_022_02632_y
crossref_primary_10_1016_j_celrep_2024_113742
crossref_primary_10_1016_j_molcel_2025_02_005
Cites_doi 10.1126/science.1067799
10.1016/j.ymeth.2012.05.001
10.1038/nrm3888
10.1051/jphys:01982004303053100
10.1002/yea.3005
10.1016/S0092-8674(00)81019-3
10.1002/j.1460-2075.1995.tb00048.x
10.1016/j.gde.2016.03.008
10.1038/nrm.2016.30
10.1016/0263-7855(96)00018-5
10.1038/nmeth.3104
10.1126/science.1201538
10.1186/1471-2164-13-436
10.1186/s13059-015-0766-2
10.1371/journal.pbio.0020259
10.1007/978-1-4939-3079-1_13
10.1083/jcb.201306143
10.1038/nrg3375
10.1140/epjnbp/s40366-016-0029-5
10.1126/science.1236083
10.1073/pnas.1612256114
10.1083/jcb.125.3.517
10.1016/j.devcel.2010.07.013
10.1093/genetics/74.2.267
10.1038/nature13833
10.1101/gad.17257711
10.1186/s13059-015-0679-0
10.1016/0001-8686(87)85003-0
10.1083/jcb.200511129
10.1126/science.aaf4597
10.1016/S0092-8674(04)00415-5
10.1083/jcb.201103138
10.1083/jcb.107.4.1409
10.1093/nar/gks925
10.1016/j.molcel.2015.07.020
10.1101/gad.608210
10.1038/nature07652
10.1016/j.cell.2016.02.007
10.1016/0092-8674(87)90642-8
10.1016/j.gde.2012.11.004
10.1038/ng.3647
10.1126/science.294.5540.115
10.1126/science.1181369
10.1016/j.cell.2015.05.048
10.1126/science.278.5337.460
10.1016/S0960-9822(02)00870-9
10.1534/genetics.108.094359
10.1016/S0092-8674(04)00413-1
10.1101/gad.13.14.1871
10.1016/j.cell.2011.12.012
10.1016/j.cub.2008.06.058
10.1101/gad.194746.112
10.1016/j.celrep.2015.11.041
10.1534/genetics.112.140608
10.1038/21831
10.1016/j.cell.2017.03.024
10.1038/nature08973
10.1016/j.cell.2006.04.041
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2017
2017 The Authors. Published under the terms of the CC BY 4.0 license
2017 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2017
– notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: Attribution
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.201797342
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Luciana Lazar‐Stefanita et al
EISSN 1460-2075
EndPage 2697
ExternalDocumentID PMC5599795
oai_HAL_hal_01596511v1
28729434
10_15252_embj_201797342
EMBJ201797342
Genre article
Journal Article
GrantInformation_xml – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 260822
  funderid: 10.13039/100010663
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03
  funderid: 10.13039/501100001665
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: 260822
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03
– fundername: European Research Council
  grantid: 260822
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 260822
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5002-7ed2996e4c539a4ff575bb9b67ec3ff76bb33b8e49d1255dd48d113f5f2d9e5a3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:27:32 EDT 2025
Fri May 09 12:26:22 EDT 2025
Fri Jul 11 03:21:20 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Tue Jul 01 02:06:02 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
Wed Jan 22 16:47:59 EST 2025
Fri Feb 21 02:37:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords SMC
Hi‐C
chromosome segregation
replication profile
loop extrusion
Chromatin
Repair & Recombination
Hi-C
SMC Subject Categories Cell Cycle
Epigenetics
Genomics & Functional Genomics
DNA Replication
Language English
License Attribution
2017 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5002-7ed2996e4c539a4ff575bb9b67ec3ff76bb33b8e49d1255dd48d113f5f2d9e5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5599795
ORCID 0000-0001-5652-0302
0000-0002-3086-1173
0000-0003-0853-822X
0000-0002-2336-315X
OpenAccessLink https://doi.org/10.15252/embj.201797342
PMID 28729434
PQID 1922507461
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599795
hal_primary_oai_HAL_hal_01596511v1
proquest_miscellaneous_1922507461
pubmed_primary_28729434
crossref_primary_10_15252_embj_201797342
crossref_citationtrail_10_15252_embj_201797342
wiley_primary_10_15252_embj_201797342_EMBJ201797342
springer_journals_10_15252_embj_201797342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2017
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 15 September 2017
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2017
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
References Kim, Tanizawa, Iwasaki, Noma (CR30) 2016; 48
Machín, Torres‐Rosell, Piccoli, Carballo, Cha, Jarmuz, Aragón (CR37) 2006; 173
Yoshida, Asakawa, Toh‐e (CR57) 2002; 12
Humphrey, Dalke, Schulten (CR28) 1996; 14
Marbouty, Ermont, Dujon, Richard, Koszul (CR38) 2014; 31
D'Ambrosio, Kelly, Shirahige, Uhlmann (CR11) 2008; 18
Clemente‐Blanco, Mayán‐Santos, Schneider, Machín, Jarmuz, Tschochner, Aragón (CR8) 2009; 458
Taddei, Gasser (CR51) 2012; 192
Guidi, Ruault, Marbouty, Loïodice, Cournac, Billaudeau, Hocher, Mozziconacci, Koszul, Taddei (CR21) 2015; 16
Morlot, Mozziconacci, Lesne (CR42) 2016; 4
Cournac, Marie‐Nelly, Marbouty, Koszul, Mozziconacci (CR9) 2012; 13
Guacci, Hogan, Koshland (CR20) 1994; 125
Hartwell, Mortimer, Culotti, Culotti (CR23) 1973; 74
Burgess, Kleckner (CR7) 1999; 13
D'Amours, Stegmeier, Amon (CR12) 2004; 117
Stephens, Haase, Vicci, Taylor, Bloom (CR49) 2011; 193
Brewer, Fangman (CR6) 1987; 51
Blat, Kleckner (CR5) 1999; 98
McCune, Danielson, Alvino, Collingwood, Delrow, Fangman, Brewer, Raghuraman (CR40) 2008; 180
Raghuraman, Winzeler, Collingwood, Hunt, Wodicka, Conway, Lockhart, Davis, Brewer, Fangman (CR45) 2001; 294
Daoud, Cotton (CR13) 1982; 43
Dekker, Rippe, Dekker, Kleckner (CR14) 2002; 295
Eser, Chandler‐Brown, Ay, Straight, Duan, Noble, Skotheim (CR17) 2017; 114
Wang, Montero Llopis, Rudner (CR56) 2013; 14
Guillou, Ibarra, Coulon, Casado‐Vela, Rico, Casal, Schwob, Losada, Méndez (CR22) 2010; 24
Hug, Grimaldi, Kruse, Vaquerizas (CR27) 2017; 169
Cournac, Marbouty, Mozziconacci, Koszul, Devaux (CR10) 2016
Lieberman‐Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR35) 2009; 326
Aragon, Martinez‐Perez, Merkenschlager (CR2) 2013; 23
London, Biggins (CR36) 2014; 15
Duan, Andronescu, Schutz, Mcllwain, Kim, Lee, Shendure, Fields, Blau, Noble (CR16) 2010; 465
Glynn, Megee, Yu, Mistrot, Unal, Koshland, DeRisi, Gerton (CR19) 2004; 2
Hicks, Irizarry (CR24) 2015; 16
Naumova, Imakaev, Fudenberg, Zhan, Lajoie, Mirny, Dekker (CR43) 2013; 342
Dekker, Mirny (CR15) 2016; 164
Hirano (CR25) 2012; 26
Uhlmann (CR53) 2016; 17
Rock, Amon (CR47) 2011; 25
Marbouty, Le Gall, Cattoni, Cournac, Koh, Fiche, Mozziconacci, Murray, Koszul, Nollmann (CR39) 2015; 59
Sullivan, Higuchi, Katis, Uhlmann (CR50) 2004; 117
Lesne, Riposo, Roger, Cournac, Mozziconacci (CR34) 2014; 11
Leonard, Sen, Torres, Sutani, Jarmuz, Shirahige, Aragón (CR33) 2015; 13
Uhlmann, Lottspeich, Nasmyth (CR52) 1999; 400
Jacobs, Adams, Szaniszlo, Pringle (CR29) 1988; 107
Knott, Peace, Ostrow, Gan, Rex, Viggiani, Tavaré, Aparicio (CR32) 2012; 148
Hsieh, Weiner, Lajoie, Dekker, Friedman, Rando (CR26) 2015; 162
Mercy, Mozziconacci, Scolari, Yang, Zhao, Thierry, Luo, Mitchell, Shen, Shen, Walker, Zhang, Wu, Xie, Luo, Cai, Dai, Yang, Yuan, Boeke (CR100) 2017; 355
Alipour, Marko (CR1) 2012; 40
Baxter, Sen, Martínez, Carandini, Schvartzman, Diffley, Aragón (CR3) 2011; 331
Renshaw, Ward, Kanemaki, Natsume, Nédélec, Tanaka (CR46) 2010; 19
Visintin, Prinz, Amon (CR55) 1997; 278
Belton, McCord, Gibcus, Naumova, Zhan, Dekker (CR4) 2012; 58
Piatti, Lengauer, Nasmyth (CR44) 1995; 14
Valton, Dekker (CR54) 2016; 36
Saner, Karschau, Natsume, Gierliński, Retkute, Hawkins, Nieduszynski, Blow, de Moura, Tanaka (CR48) 2013; 202
de Gennes (CR18) 1987; 27
Kitamura, Blow, Tanaka (CR31) 2006; 125
Mizuguchi, Fudenberg, Mehta, Belton, Taneja, Folco, FitzGerald, Dekker, Mirny, Barrowman, Grewal (CR41) 2014; 516
1997; 278
2010; 19
2013; 23
2002; 12
2010; 465
2006; 173
2013; 202
1999; 400
2004; 2
2012; 58
2012; 13
2017; 355
2017; 114
2011; 193
1988; 107
2016; 36
2001; 294
2013; 14
2010; 24
1999; 13
2014; 15
1999; 98
2012; 26
2011; 25
2017; 169
2016; 48
2014; 11
2006; 125
2009; 326
2015; 162
2015; 13
2015; 59
2015; 16
1987; 51
2014; 516
1973; 74
2002; 295
1995; 14
2008; 18
2013; 342
1996; 14
2012; 148
2016; 17
2016; 164
2011; 331
2009; 458
2016; 4
2008; 180
1994; 125
1982; 43
2012; 192
2016
2004; 117
2012; 40
1987; 27
2014; 31
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
28871059 - EMBO J. 2017 Sep 15;36(18):2661-2663. doi: 10.15252/embj.201798014.
References_xml – volume: 27
  start-page: 189
  year: 1987
  end-page: 209
  ident: CR18
  article-title: Polymers at an interface; a simplified view
  publication-title: Adv Colloid Interface Sci
– volume: 74
  start-page: 267
  year: 1973
  end-page: 286
  ident: CR23
  article-title: Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants
  publication-title: Genetics
– volume: 125
  start-page: 1297
  year: 2006
  end-page: 1308
  ident: CR31
  article-title: Live‐cell imaging reveals replication of individual replicons in eukaryotic replication factories
  publication-title: Cell
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: CR35
  article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 31
  start-page: 159
  year: 2014
  end-page: 166
  ident: CR38
  article-title: Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure
  publication-title: Yeast Chichester Engl
– volume: 355
  start-page: eaaf4597
  year: 2017
  ident: CR100
  article-title: 3D organization of synthetic and scrambled chromosomes
  publication-title: Science
– volume: 25
  start-page: 1943
  year: 2011
  end-page: 1954
  ident: CR47
  article-title: Cdc15 integrates Tem1 GTPase‐mediated spatial signals with Polo kinase‐mediated temporal cues to activate mitotic exit
  publication-title: Genes Dev
– volume: 117
  start-page: 471
  year: 2004
  end-page: 482
  ident: CR50
  article-title: Cdc14 phosphatase induces rDNA condensation and resolves cohesin‐independent cohesion during budding yeast anaphase
  publication-title: Cell
– volume: 458
  start-page: 219
  year: 2009
  end-page: 222
  ident: CR8
  article-title: Cdc14 inhibits transcription by RNA polymerase I during anaphase
  publication-title: Nature
– volume: 17
  start-page: 399
  year: 2016
  end-page: 412
  ident: CR53
  article-title: SMC complexes: from DNA to chromosomes
  publication-title: Nat Rev Mol Cell Biol
– volume: 14
  start-page: 3788
  year: 1995
  end-page: 3799
  ident: CR44
  article-title: Cdc6 is an unstable protein whose synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast
  publication-title: EMBO J
– volume: 516
  start-page: 432
  year: 2014
  end-page: 435
  ident: CR41
  article-title: Cohesin‐dependent globules and heterochromatin shape 3D genome architecture in
  publication-title: Nature
– volume: 15
  start-page: 736
  year: 2014
  end-page: 748
  ident: CR36
  article-title: Signalling dynamics in the spindle checkpoint response
  publication-title: Nat Rev Mol Cell Biol
– volume: 58
  start-page: 268
  year: 2012
  end-page: 276
  ident: CR4
  article-title: Hi–C: a comprehensive technique to capture the conformation of genomes
  publication-title: Methods
– volume: 125
  start-page: 517
  year: 1994
  end-page: 530
  ident: CR20
  article-title: Chromosome condensation and sister chromatid pairing in budding yeast
  publication-title: J Cell Biol
– volume: 13
  start-page: 2336
  year: 2015
  end-page: 2344
  ident: CR33
  article-title: Condensin relocalization from centromeres to chromosome arms promotes Top2 recruitment during anaphase
  publication-title: Cell Rep
– volume: 192
  start-page: 107
  year: 2012
  end-page: 129
  ident: CR51
  article-title: Structure and function in the budding yeast nucleus
  publication-title: Genetics
– volume: 14
  start-page: 191
  year: 2013
  end-page: 203
  ident: CR56
  article-title: Organization and segregation of bacterial chromosomes
  publication-title: Nat Rev Genet
– volume: 117
  start-page: 455
  year: 2004
  end-page: 469
  ident: CR12
  article-title: Cdc14 and condensin control the dissolution of cohesin‐independent chromosome linkages at repeated DNA
  publication-title: Cell
– volume: 40
  start-page: 11202
  year: 2012
  end-page: 11212
  ident: CR1
  article-title: Self‐organization of domain structures by DNA‐loop‐extruding enzymes
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 204
  year: 2013
  end-page: 211
  ident: CR2
  article-title: Condensin, cohesin and the control of chromatin states
  publication-title: Curr Opin Genet Dev
– volume: 400
  start-page: 37
  year: 1999
  end-page: 42
  ident: CR52
  article-title: Sister‐chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1
  publication-title: Nature
– volume: 26
  start-page: 1659
  year: 2012
  end-page: 1678
  ident: CR25
  article-title: Condensins: universal organizers of chromosomes with diverse functions
  publication-title: Genes Dev
– start-page: 227
  year: 2016
  end-page: 245
  ident: CR10
  article-title: Generation and analysis of chromosomal contact maps of yeast species
  publication-title: Yeast functional genomics
– volume: 193
  start-page: 1167
  year: 2011
  end-page: 1180
  ident: CR49
  article-title: Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
  publication-title: J Cell Biol
– volume: 148
  start-page: 99
  year: 2012
  end-page: 111
  ident: CR32
  article-title: Forkhead transcription factors establish origin timing and long‐range clustering in
  publication-title: Cell
– volume: 19
  start-page: 232
  year: 2010
  end-page: 244
  ident: CR46
  article-title: Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation
  publication-title: Dev Cell
– volume: 164
  start-page: 1110
  year: 2016
  end-page: 1121
  ident: CR15
  article-title: The 3D genome as moderator of chromosomal communication
  publication-title: Cell
– volume: 180
  start-page: 1833
  year: 2008
  end-page: 1847
  ident: CR40
  article-title: The temporal program of chromosome replication: genomewide replication in clb5{Delta}
  publication-title: Genetics
– volume: 162
  start-page: 108
  year: 2015
  end-page: 119
  ident: CR26
  article-title: Mapping nucleosome resolution chromosome folding in yeast by micro‐C
  publication-title: Cell
– volume: 98
  start-page: 249
  year: 1999
  end-page: 259
  ident: CR5
  article-title: Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region
  publication-title: Cell
– volume: 13
  start-page: 1871
  year: 1999
  end-page: 1883
  ident: CR7
  article-title: Collisions between yeast chromosomal loci are governed by three layers of organization
  publication-title: Genes Dev
– volume: 16
  start-page: 206
  year: 2015
  ident: CR21
  article-title: Spatial reorganization of telomeres in long‐lived quiescent cells
  publication-title: Genome Biol
– volume: 331
  start-page: 1328
  year: 2011
  end-page: 1332
  ident: CR3
  article-title: Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes
  publication-title: Science
– volume: 59
  start-page: 588
  year: 2015
  end-page: 602
  ident: CR39
  article-title: Condensin‐ and replication‐mediated bacterial chromosome folding and origin condensation revealed by Hi‐C and super‐resolution imaging
  publication-title: Mol Cell
– volume: 278
  start-page: 460
  year: 1997
  end-page: 463
  ident: CR55
  article-title: CDC20 and CDH1: a family of substrate‐specific activators of APC‐dependent proteolysis
  publication-title: Science
– volume: 48
  start-page: 1242
  year: 2016
  end-page: 1252
  ident: CR30
  article-title: Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast
  publication-title: Nat Genet
– volume: 13
  start-page: 436
  year: 2012
  ident: CR9
  article-title: Normalization of a chromosomal contact map
  publication-title: BMC Genom
– volume: 4
  start-page: 2
  year: 2016
  ident: CR42
  article-title: Network concepts for analyzing 3D genome structure from chromosomal contact maps
  publication-title: EPJ Nonlinear Biomed Phys
– volume: 294
  start-page: 115
  year: 2001
  end-page: 121
  ident: CR45
  article-title: Replication dynamics of the yeast genome
  publication-title: Science
– volume: 295
  start-page: 1306
  year: 2002
  end-page: 1311
  ident: CR14
  article-title: Capturing chromosome conformation
  publication-title: Science
– volume: 2
  start-page: e259
  year: 2004
  ident: CR19
  article-title: Genome‐wide mapping of the cohesin complex in the yeast
  publication-title: PLoS Biol
– volume: 43
  start-page: 531
  year: 1982
  end-page: 538
  ident: CR13
  article-title: Star shaped polymers: a model for the conformation and its concentration dependence
  publication-title: J Phys
– volume: 18
  start-page: 1084
  year: 2008
  end-page: 1089
  ident: CR11
  article-title: Condensin‐dependent rDNA decatenation introduces a temporal pattern to chromosome segregation
  publication-title: Curr Biol
– volume: 24
  start-page: 2812
  year: 2010
  end-page: 2822
  ident: CR22
  article-title: Cohesin organizes chromatin loops at DNA replication factories
  publication-title: Genes Dev
– volume: 51
  start-page: 463
  year: 1987
  end-page: 471
  ident: CR6
  article-title: The localization of replication origins on ARS plasmids in
  publication-title: Cell
– volume: 36
  start-page: 34
  year: 2016
  end-page: 40
  ident: CR54
  article-title: TAD disruption as oncogenic driver
  publication-title: Curr Opin Genet Dev
– volume: 12
  start-page: 944
  year: 2002
  end-page: 950
  ident: CR57
  article-title: Mitotic exit network controls the localization of Cdc14 to the spindle pole body in
  publication-title: Curr Biol
– volume: 114
  start-page: E3061
  year: 2017
  end-page: E3070
  ident: CR17
  article-title: Form and function of topologically associating genomic domains in budding yeast
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 117
  year: 2015
  ident: CR24
  article-title: Quantro: a data‐driven approach to guide the choice of an appropriate normalization method
  publication-title: Genome Biol
– volume: 173
  start-page: 893
  year: 2006
  end-page: 903
  ident: CR37
  article-title: Transcription of ribosomal genes can cause nondisjunction
  publication-title: J Cell Biol
– volume: 202
  start-page: 1001
  year: 2013
  end-page: 1012
  ident: CR48
  article-title: Stochastic association of neighboring replicons creates replication factories in budding yeast
  publication-title: J Cell Biol
– volume: 465
  start-page: 363
  year: 2010
  end-page: 367
  ident: CR16
  article-title: A three‐dimensional model of the yeast genome
  publication-title: Nature
– volume: 342
  start-page: 948
  year: 2013
  end-page: 953
  ident: CR43
  article-title: Organization of the mitotic chromosome
  publication-title: Science
– volume: 107
  start-page: 1409
  year: 1988
  end-page: 1426
  ident: CR29
  article-title: Functions of microtubules in the cell cycle
  publication-title: J Cell Biol
– volume: 169
  start-page: 216
  year: 2017
  end-page: 228
  ident: CR27
  article-title: Chromatin architecture emerges during zygotic genome activation independent of transcription
  publication-title: Cell
– volume: 11
  start-page: 1141
  year: 2014
  end-page: 1143
  ident: CR34
  article-title: 3D genome reconstruction from chromosomal contacts
  publication-title: Nat Methods
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR28
  article-title: VMD: visual molecular dynamics
  publication-title: J Mol Graph
– volume: 125
  start-page: 517
  year: 1994
  end-page: 530
  article-title: Chromosome condensation and sister chromatid pairing in budding yeast
  publication-title: J Cell Biol
– volume: 59
  start-page: 588
  year: 2015
  end-page: 602
  article-title: Condensin‐ and replication‐mediated bacterial chromosome folding and origin condensation revealed by Hi‐C and super‐resolution imaging
  publication-title: Mol Cell
– volume: 14
  start-page: 191
  year: 2013
  end-page: 203
  article-title: Organization and segregation of bacterial chromosomes
  publication-title: Nat Rev Genet
– volume: 43
  start-page: 531
  year: 1982
  end-page: 538
  article-title: Star shaped polymers: a model for the conformation and its concentration dependence
  publication-title: J Phys
– volume: 342
  start-page: 948
  year: 2013
  end-page: 953
  article-title: Organization of the mitotic chromosome
  publication-title: Science
– volume: 4
  start-page: 2
  year: 2016
  article-title: Network concepts for analyzing 3D genome structure from chromosomal contact maps
  publication-title: EPJ Nonlinear Biomed Phys
– volume: 40
  start-page: 11202
  year: 2012
  end-page: 11212
  article-title: Self‐organization of domain structures by DNA‐loop‐extruding enzymes
  publication-title: Nucleic Acids Res
– volume: 173
  start-page: 893
  year: 2006
  end-page: 903
  article-title: Transcription of ribosomal genes can cause nondisjunction
  publication-title: J Cell Biol
– volume: 13
  start-page: 1871
  year: 1999
  end-page: 1883
  article-title: Collisions between yeast chromosomal loci are governed by three layers of organization
  publication-title: Genes Dev
– volume: 180
  start-page: 1833
  year: 2008
  end-page: 1847
  article-title: The temporal program of chromosome replication: genomewide replication in clb5{Delta}
  publication-title: Genetics
– volume: 148
  start-page: 99
  year: 2012
  end-page: 111
  article-title: Forkhead transcription factors establish origin timing and long‐range clustering in
  publication-title: Cell
– volume: 98
  start-page: 249
  year: 1999
  end-page: 259
  article-title: Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region
  publication-title: Cell
– volume: 114
  start-page: E3061
  year: 2017
  end-page: E3070
  article-title: Form and function of topologically associating genomic domains in budding yeast
  publication-title: Proc Natl Acad Sci USA
– volume: 294
  start-page: 115
  year: 2001
  end-page: 121
  article-title: Replication dynamics of the yeast genome
  publication-title: Science
– volume: 164
  start-page: 1110
  year: 2016
  end-page: 1121
  article-title: The 3D genome as moderator of chromosomal communication
  publication-title: Cell
– volume: 13
  start-page: 2336
  year: 2015
  end-page: 2344
  article-title: Condensin relocalization from centromeres to chromosome arms promotes Top2 recruitment during anaphase
  publication-title: Cell Rep
– volume: 17
  start-page: 399
  year: 2016
  end-page: 412
  article-title: SMC complexes: from DNA to chromosomes
  publication-title: Nat Rev Mol Cell Biol
– volume: 13
  start-page: 436
  year: 2012
  article-title: Normalization of a chromosomal contact map
  publication-title: BMC Genom
– volume: 192
  start-page: 107
  year: 2012
  end-page: 129
  article-title: Structure and function in the budding yeast nucleus
  publication-title: Genetics
– volume: 331
  start-page: 1328
  year: 2011
  end-page: 1332
  article-title: Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes
  publication-title: Science
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 107
  start-page: 1409
  year: 1988
  end-page: 1426
  article-title: Functions of microtubules in the cell cycle
  publication-title: J Cell Biol
– volume: 36
  start-page: 34
  year: 2016
  end-page: 40
  article-title: TAD disruption as oncogenic driver
  publication-title: Curr Opin Genet Dev
– volume: 18
  start-page: 1084
  year: 2008
  end-page: 1089
  article-title: Condensin‐dependent rDNA decatenation introduces a temporal pattern to chromosome segregation
  publication-title: Curr Biol
– volume: 16
  start-page: 206
  year: 2015
  article-title: Spatial reorganization of telomeres in long‐lived quiescent cells
  publication-title: Genome Biol
– volume: 193
  start-page: 1167
  year: 2011
  end-page: 1180
  article-title: Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
  publication-title: J Cell Biol
– volume: 27
  start-page: 189
  year: 1987
  end-page: 209
  article-title: Polymers at an interface; a simplified view
  publication-title: Adv Colloid Interface Sci
– volume: 24
  start-page: 2812
  year: 2010
  end-page: 2822
  article-title: Cohesin organizes chromatin loops at DNA replication factories
  publication-title: Genes Dev
– volume: 278
  start-page: 460
  year: 1997
  end-page: 463
  article-title: CDC20 and CDH1: a family of substrate‐specific activators of APC‐dependent proteolysis
  publication-title: Science
– volume: 162
  start-page: 108
  year: 2015
  end-page: 119
  article-title: Mapping nucleosome resolution chromosome folding in yeast by micro‐C
  publication-title: Cell
– volume: 31
  start-page: 159
  year: 2014
  end-page: 166
  article-title: Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure
  publication-title: Yeast Chichester Engl
– volume: 48
  start-page: 1242
  year: 2016
  end-page: 1252
  article-title: Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast
  publication-title: Nat Genet
– volume: 202
  start-page: 1001
  year: 2013
  end-page: 1012
  article-title: Stochastic association of neighboring replicons creates replication factories in budding yeast
  publication-title: J Cell Biol
– volume: 12
  start-page: 944
  year: 2002
  end-page: 950
  article-title: Mitotic exit network controls the localization of Cdc14 to the spindle pole body in
  publication-title: Curr Biol
– volume: 465
  start-page: 363
  year: 2010
  end-page: 367
  article-title: A three‐dimensional model of the yeast genome
  publication-title: Nature
– volume: 117
  start-page: 471
  year: 2004
  end-page: 482
  article-title: Cdc14 phosphatase induces rDNA condensation and resolves cohesin‐independent cohesion during budding yeast anaphase
  publication-title: Cell
– volume: 516
  start-page: 432
  year: 2014
  end-page: 435
  article-title: Cohesin‐dependent globules and heterochromatin shape 3D genome architecture in
  publication-title: Nature
– volume: 16
  start-page: 117
  year: 2015
  article-title: Quantro: a data‐driven approach to guide the choice of an appropriate normalization method
  publication-title: Genome Biol
– volume: 51
  start-page: 463
  year: 1987
  end-page: 471
  article-title: The localization of replication origins on ARS plasmids in
  publication-title: Cell
– volume: 458
  start-page: 219
  year: 2009
  end-page: 222
  article-title: Cdc14 inhibits transcription by RNA polymerase I during anaphase
  publication-title: Nature
– volume: 58
  start-page: 268
  year: 2012
  end-page: 276
  article-title: Hi–C: a comprehensive technique to capture the conformation of genomes
  publication-title: Methods
– volume: 125
  start-page: 1297
  year: 2006
  end-page: 1308
  article-title: Live‐cell imaging reveals replication of individual replicons in eukaryotic replication factories
  publication-title: Cell
– volume: 23
  start-page: 204
  year: 2013
  end-page: 211
  article-title: Condensin, cohesin and the control of chromatin states
  publication-title: Curr Opin Genet Dev
– volume: 19
  start-page: 232
  year: 2010
  end-page: 244
  article-title: Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation
  publication-title: Dev Cell
– volume: 295
  start-page: 1306
  year: 2002
  end-page: 1311
  article-title: Capturing chromosome conformation
  publication-title: Science
– volume: 15
  start-page: 736
  year: 2014
  end-page: 748
  article-title: Signalling dynamics in the spindle checkpoint response
  publication-title: Nat Rev Mol Cell Biol
– start-page: 227
  year: 2016
  end-page: 245
– volume: 117
  start-page: 455
  year: 2004
  end-page: 469
  article-title: Cdc14 and condensin control the dissolution of cohesin‐independent chromosome linkages at repeated DNA
  publication-title: Cell
– volume: 11
  start-page: 1141
  year: 2014
  end-page: 1143
  article-title: 3D genome reconstruction from chromosomal contacts
  publication-title: Nat Methods
– volume: 25
  start-page: 1943
  year: 2011
  end-page: 1954
  article-title: Cdc15 integrates Tem1 GTPase‐mediated spatial signals with Polo kinase‐mediated temporal cues to activate mitotic exit
  publication-title: Genes Dev
– volume: 400
  start-page: 37
  year: 1999
  end-page: 42
  article-title: Sister‐chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1
  publication-title: Nature
– volume: 74
  start-page: 267
  year: 1973
  end-page: 286
  article-title: Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants
  publication-title: Genetics
– volume: 169
  start-page: 216
  year: 2017
  end-page: 228
  article-title: Chromatin architecture emerges during zygotic genome activation independent of transcription
  publication-title: Cell
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  article-title: VMD: visual molecular dynamics
  publication-title: J Mol Graph
– volume: 355
  year: 2017
  article-title: 3D organization of synthetic and scrambled chromosomes
  publication-title: Science
– volume: 26
  start-page: 1659
  year: 2012
  end-page: 1678
  article-title: Condensins: universal organizers of chromosomes with diverse functions
  publication-title: Genes Dev
– volume: 2
  start-page: e259
  year: 2004
  article-title: Genome‐wide mapping of the cohesin complex in the yeast
  publication-title: PLoS Biol
– volume: 14
  start-page: 3788
  year: 1995
  end-page: 3799
  article-title: Cdc6 is an unstable protein whose synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast
  publication-title: EMBO J
– ident: e_1_2_9_15_1
  doi: 10.1126/science.1067799
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ymeth.2012.05.001
– ident: e_1_2_9_37_1
  doi: 10.1038/nrm3888
– ident: e_1_2_9_14_1
  doi: 10.1051/jphys:01982004303053100
– ident: e_1_2_9_39_1
  doi: 10.1002/yea.3005
– ident: e_1_2_9_6_1
  doi: 10.1016/S0092-8674(00)81019-3
– ident: e_1_2_9_46_1
  doi: 10.1002/j.1460-2075.1995.tb00048.x
– ident: e_1_2_9_56_1
  doi: 10.1016/j.gde.2016.03.008
– ident: e_1_2_9_55_1
  doi: 10.1038/nrm.2016.30
– ident: e_1_2_9_29_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_9_35_1
  doi: 10.1038/nmeth.3104
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1201538
– ident: e_1_2_9_10_1
  doi: 10.1186/1471-2164-13-436
– ident: e_1_2_9_22_1
  doi: 10.1186/s13059-015-0766-2
– ident: e_1_2_9_20_1
  doi: 10.1371/journal.pbio.0020259
– ident: e_1_2_9_11_1
  doi: 10.1007/978-1-4939-3079-1_13
– ident: e_1_2_9_50_1
  doi: 10.1083/jcb.201306143
– ident: e_1_2_9_58_1
  doi: 10.1038/nrg3375
– ident: e_1_2_9_44_1
  doi: 10.1140/epjnbp/s40366-016-0029-5
– ident: e_1_2_9_45_1
  doi: 10.1126/science.1236083
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1612256114
– ident: e_1_2_9_21_1
  doi: 10.1083/jcb.125.3.517
– ident: e_1_2_9_48_1
  doi: 10.1016/j.devcel.2010.07.013
– ident: e_1_2_9_24_1
  doi: 10.1093/genetics/74.2.267
– ident: e_1_2_9_43_1
  doi: 10.1038/nature13833
– ident: e_1_2_9_49_1
  doi: 10.1101/gad.17257711
– ident: e_1_2_9_25_1
  doi: 10.1186/s13059-015-0679-0
– ident: e_1_2_9_19_1
  doi: 10.1016/0001-8686(87)85003-0
– ident: e_1_2_9_38_1
  doi: 10.1083/jcb.200511129
– ident: e_1_2_9_42_1
  doi: 10.1126/science.aaf4597
– ident: e_1_2_9_52_1
  doi: 10.1016/S0092-8674(04)00415-5
– ident: e_1_2_9_51_1
  doi: 10.1083/jcb.201103138
– ident: e_1_2_9_30_1
  doi: 10.1083/jcb.107.4.1409
– ident: e_1_2_9_2_1
  doi: 10.1093/nar/gks925
– ident: e_1_2_9_40_1
  doi: 10.1016/j.molcel.2015.07.020
– ident: e_1_2_9_23_1
  doi: 10.1101/gad.608210
– ident: e_1_2_9_9_1
  doi: 10.1038/nature07652
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cell.2016.02.007
– ident: e_1_2_9_7_1
  doi: 10.1016/0092-8674(87)90642-8
– ident: e_1_2_9_3_1
  doi: 10.1016/j.gde.2012.11.004
– ident: e_1_2_9_31_1
  doi: 10.1038/ng.3647
– ident: e_1_2_9_47_1
  doi: 10.1126/science.294.5540.115
– ident: e_1_2_9_36_1
  doi: 10.1126/science.1181369
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cell.2015.05.048
– ident: e_1_2_9_57_1
  doi: 10.1126/science.278.5337.460
– ident: e_1_2_9_59_1
  doi: 10.1016/S0960-9822(02)00870-9
– ident: e_1_2_9_41_1
  doi: 10.1534/genetics.108.094359
– ident: e_1_2_9_13_1
  doi: 10.1016/S0092-8674(04)00413-1
– ident: e_1_2_9_8_1
  doi: 10.1101/gad.13.14.1871
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cell.2011.12.012
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cub.2008.06.058
– ident: e_1_2_9_26_1
  doi: 10.1101/gad.194746.112
– ident: e_1_2_9_34_1
  doi: 10.1016/j.celrep.2015.11.041
– ident: e_1_2_9_53_1
  doi: 10.1534/genetics.112.140608
– ident: e_1_2_9_54_1
  doi: 10.1038/21831
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cell.2017.03.024
– ident: e_1_2_9_17_1
  doi: 10.1038/nature08973
– ident: e_1_2_9_32_1
  doi: 10.1016/j.cell.2006.04.041
– reference: 28871059 - EMBO J. 2017 Sep 15;36(18):2661-2663. doi: 10.15252/embj.201798014.
SSID ssj0005871
Score 2.5337224
Snippet Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2684
SubjectTerms Adenosine Triphosphatases - metabolism
Cell Cycle
Cell Cycle Proteins - metabolism
Chromosomal Proteins, Non-Histone - metabolism
chromosome segregation
Chromosomes, Fungal - metabolism
Cohesins
DNA-Binding Proteins - metabolism
EMBO06
EMBO09
EMBO13
Genetics
Hi‐C
Life Sciences
loop extrusion
Multiprotein Complexes - metabolism
replication profile
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
SMC
Spatio-Temporal Analysis
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgCMEGQcvjAkWm6qJdhN7Ejh0vSx-6qijqopXYWXHG1i2iuahpke7f8C39ss44jyqqKiR2eThO4vHYx8mZM4xtGgjBqSJNBIBOpC9cUoYKEpcpI5Qq3DRQoPDxdzU7k0c_8p5NSLEwrT7E8MGNPCOO1-TgpWv6jD2kGuov3E_iZmmjhcRR-AkF2BKrL5MndyyPIq654mcWmRamU_ehKnbGFYwmpsdzokXex5z3qZPD_9Mxuo3T0-FL9qLDlXy37Qiv2CNfr7KnbabJ5Sp7ttcndltjlkIymvO64WUNHNfDQCR23F1cxuxZJB7BERdyuc-hTViP5wJfUpofXs2JwNcsLnzD2xjHWJZ-ANz8rZZ489fs7PDgdG-WdHkWkiqnAVF7wElJeVnlwpQyBIRwzhmntK9ECFo5J4QrvDSAcCgHkAWkqQh5yMD4vBRv2Eq9qP07xl2BTp46qCCAlDorAT18Wk494sIMp4UJ-9I3sq06EXLKhfHL0mKErGLJKnawyoRtDRf8bvU3Hi66gVYbSpFu9mz3m6VjiHmMwgf7gw_wuTeqxWanxilrv7huLEJdhINaKizztjXyUBcuKzMS0pswPTL_6GbjM_X5PIp1k6KbNvmEbfcdxXajRPPwi4jYk_71wvbg-OvRsPf-v676wJ7TNjFg0vwjW7m6vPbrCLOu3KfoSLeDNx_p
  priority: 102
  providerName: Wiley-Blackwell
Title Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle
URI https://link.springer.com/article/10.15252/embj.201797342
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201797342
https://www.ncbi.nlm.nih.gov/pubmed/28729434
https://www.proquest.com/docview/1922507461
https://hal.sorbonne-universite.fr/hal-01596511
https://pubmed.ncbi.nlm.nih.gov/PMC5599795
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIgSXipbXFlgZxAEOgU38io9labWqWsSBSr1ZcWxri2gWNS3S_pv-lv4yZpJsICpV1VscT-LH-PHZHn8D8M74GJ3K04R7rxMRcpcUsfSJy5ThSuVuEumi8OFXNTsS-8fyuCNJorsw_57fy0xmn8Kp-0EWWNpoLnCsvS9TrslHw1RN_9py5M3KqtlMEWluOg6f__xgMP2szcn48TqyvG4g2Z-SDjFsMwntPYaNDj2ynVbdm3AvVFvwoPUnudyCh9OV-7YnYOniRX1S1ayoPMNVrydTdQwuzhofWUQRwRD9MfGF-dYtPcZFtiRnPqyck5levTgNNWtvMjaytM1_dVkuMfGncLS3-306SzpvCkkpadjTwePUo4IoJTeFiBGBmnPGKR1KHqNWznHu8iCMR9AjvRe5T1MeZcy8CbLgz2C9WlThBTCXY1dOnS999ELorPDYjyfFJCD6y3DwH8HHVSXbsqMaJ48XPy0tOUgrlrRie62M4H3_wa-WZeNm0beotV6K2LFnOweW3iGyMQoz9hsz8GalVIvVTpVTVGFxUVsEtAj6tFAo87xVcv8vXDxmRJc3Aj1Q_yCxYUx1Mm8ouYm3TRs5gg-rhmK7saC-uSC8aUm3FdjuHn7e70Pbd0jhJTyiZ7JuSeUrWD8_uwivEUKduzGsZeLbuOlEY5rM5B9alBYc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVqhcEJTX8jSIAxwCm_h9XEqrZdnthVbqzYpjW1tEs6hpkfbf8Fv4ZczkhaJSIY52HL_GnvnGHs8Q8tr4GJ3UacK8VwkP2iV5LHziMmmYlNpNIj4UXh7K2TGfn4iTLZJ2b2Fqa_fuSrLm1G2Mnux9OHNf0RZLGcU4cN1tLaQWI7I9nc6_zP_Ydehay6oPVniqTevP5y9VDETRjRUaQl5FmVeNJfsb0yGerQXSwR1yu0WSdNqQ_i7ZCuUuudnEltzskp29LpTbPWLxEUZ1WlY0Lz0FDdij2Tok1-d1vCx0F0EBCVL-kfomRD18i3SDgX1osUKTvWp9FiravGqsy-KR_6-fxQYav0-OD_aP9mZJG1khKQSyQBU8iCEZeCGYyXmMANqcM06qULAYlXSOMacDNx4AkPCea5-mLIqYeRNEzh6QUbkuwyNCnYZtnTpf-Og5V1nuYU9P8kkAJJiBIBiTd90k26J1O47RL75ZVD-QKhapYnuqjMmb_ofvjceN64u-Aqr1pdBT9my6sJgHKMdI6NgP6MDLjqgWph0nJy_D-rKyAG4BACouoczDhsh9XaBIZug6b0zUgPyDxoZfytNV7Z4bfbgpI8bkbbdQbMsXqusHwuqV9K8B2_3lh3mfevwfLbwgO7Oj5cIuPh1-fkJuYT5avaTiKRldnF-GZwCtLtzzdjP9BiBRHMI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgiMemgvIaWsAgFrAIncSOHS_LtKOhtBULKnVnxbm2pohmqmaKNH_Dt_BlvTcvFJUKsXTi2LGvH-cmx-cy9s5ACE5lcSQAdCR95qI8FBC5RBmhVObGgQ4KHx6p2bHcP0lPWm5O1bHdu1-SzZkGUmkql9vnELp4Pcm2P3PfiZeljRYSV-A76KbE5HtN1OQPwyOr_a36E4uMM9Mq-_ylgMGmdHtOlMjrePM6bbL_dzpEtvXWNH3I1ltMyXeaQfCI3fLlBrvbRJlcbbD7ky6o22Nm6ThGdVpWPC-BY6OBCOyYXFzUkbNIOIIjJuRyl0MTrB7vBb6iED-8mBN5r1qc-Yo35xvrvPTx__evYoWVP2HH071vk1nUxliIipQWQ-0BNyTlZZEKk8sQEL45Z5zSvhAhaOWcEC7z0gBCoRRAZhDHIqQhAePTXDxla-Wi9M8ZdxlO8NhBAQGk1EkOOLvH-dgjJkxwSxixj10n26IVIKc4GD8sOSJkFUtWsb1VRux9_8B5o71xc9a3aLU-F2lmz3YOLF1DvGMUvthPfIE3nVEtdjt1Tl76xWVlEeYiFNRSYZ5njZH7stClTEhEb8T0wPyDyoZ3ytN5LdRNam7apCP2oRsotl0hqpsbIuqR9K8G273DT_t96sV_1PCa3fu6O7UHn4--bLIHdJnoL3G6xdaWF5f-JWKspXtVz6QrOS8fnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cohesins+and+condensins+orchestrate+the+4D+dynamics+of+yeast+chromosomes+during+the+cell%C2%A0cycle&rft.jtitle=The+EMBO+journal&rft.au=Lazar%E2%80%90Stefanita%2C+Luciana&rft.au=Scolari%2C+Vittore+F&rft.au=Mercy%2C+Guillaume&rft.au=Muller%2C+H%C3%A9loise&rft.date=2017-09-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=36&rft.issue=18&rft.spage=2684&rft.epage=2697&rft_id=info:doi/10.15252%2Fembj.201797342&rft.externalDocID=10_15252_embj_201797342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon