Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐...
Saved in:
Published in | The EMBO journal Vol. 36; no. 18; pp. 2684 - 2697 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.09.2017
EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the
Saccharomyces cerevisiae
genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Synopsis
Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase.
Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle.
Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle.
Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase.
Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism.
Graphical Abstract
Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping. |
---|---|
AbstractList | Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (
SMC
) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the
Saccharomyces cerevisiae
genome throughout the cell cycle and investigate the roles of
SMC
complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the
rDNA
loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
image
Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how
SMC
complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase.
Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle.
Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle.
Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase.
Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Synopsis Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Graphical Abstract Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes ( SMC ) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome‐wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher‐order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long‐range intra‐chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin‐dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin‐mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle‐dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. Synopsis Hi‐C analysis at 15 distinct stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle. This illustrates how SMC complexes control chromosome looping and suggests that condensin contributes to chromosome segregation during anaphase. Genome‐wide Hi‐C contact maps provide a comprehensive overview of genome reorganization throughout the cell cycle. Three different chromosome folding states, basic (G1), condensed (metaphase) and extended (anaphase), alternate during the cycle. Altered contacts upon microtubule destabilization imply microtubule‐induced stretching in anaphase. Formation of a condensin‐dependent intra‐chromosomal loop during anaphase bridges rDNA with the centromere, possibly through a loop extrusion mechanism. Hi‐C analysis at 15 distinct synchronization stages provides a comprehensive map of chromosome dynamics throughout the budding yeast cell cycle, and illustrates how SMC complexes control chromosome looping. Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division. |
Author | Lazar‐Stefanita, Luciana Mercy, Guillaume Mozziconacci, Julien Guérin, Thomas M Thierry, Agnès Muller, Héloise Koszul, Romain Scolari, Vittore F |
AuthorAffiliation | 3 Institut Pasteur CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) USR 3756 Paris France 1 Institut Pasteur Department Genomes and Genetics Unité Régulation Spatiale des Génomes Paris France 6 Sorbonne Universités Theoretical Physics for Condensed Matter Lab UPMC Université Paris 06 Paris France 4 Sorbonne Universités UPMC Université Paris 6 Complexité du Vivant Paris France 2 CNRS UMR 3525 Paris France 5 Laboratoire Télomères et Réparation du Chromosome CEA INSERM UMR 967 IRCM Université Paris‐Saclay Fontenay‐aux‐Roses France 7 CNRS UMR 7600 Paris France |
AuthorAffiliation_xml | – name: 6 Sorbonne Universités Theoretical Physics for Condensed Matter Lab UPMC Université Paris 06 Paris France – name: 2 CNRS UMR 3525 Paris France – name: 5 Laboratoire Télomères et Réparation du Chromosome CEA INSERM UMR 967 IRCM Université Paris‐Saclay Fontenay‐aux‐Roses France – name: 1 Institut Pasteur Department Genomes and Genetics Unité Régulation Spatiale des Génomes Paris France – name: 3 Institut Pasteur CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) USR 3756 Paris France – name: 7 CNRS UMR 7600 Paris France – name: 4 Sorbonne Universités UPMC Université Paris 6 Complexité du Vivant Paris France |
Author_xml | – sequence: 1 givenname: Luciana surname: Lazar‐Stefanita fullname: Lazar‐Stefanita, Luciana organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant – sequence: 2 givenname: Vittore F surname: Scolari fullname: Scolari, Vittore F organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) – sequence: 3 givenname: Guillaume surname: Mercy fullname: Mercy, Guillaume organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant – sequence: 4 givenname: Héloise surname: Muller fullname: Muller, Héloise organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) – sequence: 5 givenname: Thomas M surname: Guérin fullname: Guérin, Thomas M organization: Laboratoire Télomères et Réparation du Chromosome, CEA, INSERM, UMR 967, IRCM, Université Paris‐Saclay – sequence: 6 givenname: Agnès surname: Thierry fullname: Thierry, Agnès organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) – sequence: 7 givenname: Julien orcidid: 0000-0001-5652-0302 surname: Mozziconacci fullname: Mozziconacci, Julien email: mozziconacci@lptmc.jussieu.fr organization: Sorbonne Universités, Theoretical Physics for Condensed Matter Lab, UPMC Université Paris 06, CNRS, UMR 7600 – sequence: 8 givenname: Romain orcidid: 0000-0002-3086-1173 surname: Koszul fullname: Koszul, Romain email: romain.koszul@pasteur.fr organization: Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, CNRS, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28729434$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-01596511$$DView record in HAL |
BookMark | eNqFkcFu1DAQhi1URLeFMzeUIxzS2o4drzkgtUuhoEVc4Gw59qTxKrEXOynat-FZeDKSTVmVSsDJsuf__pnxf4KOfPCA0HOCzwinnJ5DV23OKCZCioLRR2hBWIlzigU_QgtMS5IzspTH6CSlDcaYLwV5go7pUlDJCrZAahUaSM6nTHubmeAt-P01RDMW-qh7yPoGMvY2szuvO2fGWp3tQKc-M00MXUihg5TZITp_s9caaNufP8zOtPAUPa51m-DZ3XmKvr67-rK6ztef339YXaxzwzGmuQBLpSyBGV5IzeqaC15VsioFmKKuRVlVRVEtgUlLKOfWsqUlpKh5Ta0ErotT9Gb23Q5VB9aAH0dv1Ta6TsedCtqpPyveNeom3CrOpRSSjwavZoPmAXZ9sVbTGyZclpyQWzJqX941i-HbMP6S6lyaltYewpAUkZRyLFg5SV_cn-vg_DuBUXA-C0wMKUWoDxKC1T5jNWWsDhmPBH9AGNfr3oVpMdf-g3s9c99dC7v_tVFXny4_3ofxDKftFDNEtQlD9GOkf-33CymwzjQ |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_109343 crossref_primary_10_1038_s41467_022_28416_3 crossref_primary_10_1073_pnas_2219126120 crossref_primary_10_1038_s41467_021_26629_6 crossref_primary_10_1038_s41598_019_48798_7 crossref_primary_10_1126_sciadv_abn7063 crossref_primary_10_1186_s13072_019_0293_6 crossref_primary_10_1186_s13059_020_02041_z crossref_primary_10_1534_genetics_119_302978 crossref_primary_10_26508_lsa_202101161 crossref_primary_10_1038_s41467_021_23142_8 crossref_primary_10_15252_msb_20188293 crossref_primary_10_15252_embj_2023113475 crossref_primary_10_1016_j_tig_2020_07_003 crossref_primary_10_1111_tra_12539 crossref_primary_10_1016_j_xgen_2023_100439 crossref_primary_10_1038_s41594_022_00780_0 crossref_primary_10_3390_epigenomes6030020 crossref_primary_10_1016_j_cell_2018_12_014 crossref_primary_10_1016_j_xgen_2023_100437 crossref_primary_10_1016_j_molcel_2020_06_033 crossref_primary_10_1073_pnas_2002126117 crossref_primary_10_1016_j_molcel_2024_08_003 crossref_primary_10_1038_s41556_024_01552_2 crossref_primary_10_1051_refdp_201857010 crossref_primary_10_1007_s00294_021_01160_9 crossref_primary_10_1002_2211_5463_13000 crossref_primary_10_1016_j_cell_2023_09_025 crossref_primary_10_1038_s41467_021_23205_w crossref_primary_10_1146_annurev_genet_072820_034559 crossref_primary_10_1038_s41467_019_12629_0 crossref_primary_10_1063_5_0007316 crossref_primary_10_3390_genes11080902 crossref_primary_10_1371_journal_pbio_3000635 crossref_primary_10_1007_s00294_017_0755_y crossref_primary_10_1038_s41592_020_0930_9 crossref_primary_10_1126_sciadv_abg4216 crossref_primary_10_1111_eva_13462 crossref_primary_10_1016_j_cell_2023_10_015 crossref_primary_10_1016_j_molcel_2020_01_019 crossref_primary_10_3390_genes10121029 crossref_primary_10_1038_s41588_023_01649_8 crossref_primary_10_1101_sqb_2017_82_033639 crossref_primary_10_1371_journal_pgen_1009763 crossref_primary_10_1146_annurev_biophys_052118_115638 crossref_primary_10_1038_s41556_021_00783_x crossref_primary_10_1126_science_adm9466 crossref_primary_10_1103_PhysRevLett_121_057801 crossref_primary_10_7554_eLife_74447 crossref_primary_10_7554_eLife_84322 crossref_primary_10_3390_genes13010007 crossref_primary_10_1007_s00294_018_0899_4 crossref_primary_10_1016_j_molcel_2024_02_004 crossref_primary_10_1126_sciadv_adn2955 crossref_primary_10_7554_eLife_78015 crossref_primary_10_1038_s41467_024_44761_x crossref_primary_10_1016_j_tig_2019_05_003 crossref_primary_10_1016_j_csbj_2020_01_006 crossref_primary_10_1371_journal_pgen_1010705 crossref_primary_10_1038_s41586_020_2244_6 crossref_primary_10_1016_j_molcel_2019_05_021 crossref_primary_10_1038_ncb3594 crossref_primary_10_1371_journal_pgen_1010986 crossref_primary_10_1038_ng_3962 crossref_primary_10_1534_genetics_120_303092 crossref_primary_10_1016_j_celrep_2022_111753 crossref_primary_10_7554_eLife_53558 crossref_primary_10_1038_s41594_019_0307_x crossref_primary_10_3389_fgene_2021_748239 crossref_primary_10_1083_jcb_202003041 crossref_primary_10_1534_genetics_119_302047 crossref_primary_10_1038_s41598_025_94533_w crossref_primary_10_1103_PhysRevX_14_041020 crossref_primary_10_1101_gr_267872_120 crossref_primary_10_7554_eLife_80147 crossref_primary_10_1016_j_jsb_2019_08_010 crossref_primary_10_1093_nargab_lqad104 crossref_primary_10_1073_pnas_2425225122 crossref_primary_10_1534_genetics_118_301217 crossref_primary_10_1101_cshperspect_a040147 crossref_primary_10_1146_annurev_micro_011720_122512 crossref_primary_10_1038_s44318_025_00389_1 crossref_primary_10_1371_journal_pbio_3000582 crossref_primary_10_1126_sciadv_aay6804 crossref_primary_10_3390_ijms24129829 crossref_primary_10_1016_j_celrep_2024_114472 crossref_primary_10_1073_pnas_1817829116 crossref_primary_10_15252_embj_2020105393 crossref_primary_10_1016_j_xgen_2022_100163 crossref_primary_10_1088_1361_6633_ac3800 crossref_primary_10_15252_embj_201798014 crossref_primary_10_1186_s13059_022_02632_y crossref_primary_10_1016_j_celrep_2024_113742 crossref_primary_10_1016_j_molcel_2025_02_005 |
Cites_doi | 10.1126/science.1067799 10.1016/j.ymeth.2012.05.001 10.1038/nrm3888 10.1051/jphys:01982004303053100 10.1002/yea.3005 10.1016/S0092-8674(00)81019-3 10.1002/j.1460-2075.1995.tb00048.x 10.1016/j.gde.2016.03.008 10.1038/nrm.2016.30 10.1016/0263-7855(96)00018-5 10.1038/nmeth.3104 10.1126/science.1201538 10.1186/1471-2164-13-436 10.1186/s13059-015-0766-2 10.1371/journal.pbio.0020259 10.1007/978-1-4939-3079-1_13 10.1083/jcb.201306143 10.1038/nrg3375 10.1140/epjnbp/s40366-016-0029-5 10.1126/science.1236083 10.1073/pnas.1612256114 10.1083/jcb.125.3.517 10.1016/j.devcel.2010.07.013 10.1093/genetics/74.2.267 10.1038/nature13833 10.1101/gad.17257711 10.1186/s13059-015-0679-0 10.1016/0001-8686(87)85003-0 10.1083/jcb.200511129 10.1126/science.aaf4597 10.1016/S0092-8674(04)00415-5 10.1083/jcb.201103138 10.1083/jcb.107.4.1409 10.1093/nar/gks925 10.1016/j.molcel.2015.07.020 10.1101/gad.608210 10.1038/nature07652 10.1016/j.cell.2016.02.007 10.1016/0092-8674(87)90642-8 10.1016/j.gde.2012.11.004 10.1038/ng.3647 10.1126/science.294.5540.115 10.1126/science.1181369 10.1016/j.cell.2015.05.048 10.1126/science.278.5337.460 10.1016/S0960-9822(02)00870-9 10.1534/genetics.108.094359 10.1016/S0092-8674(04)00413-1 10.1101/gad.13.14.1871 10.1016/j.cell.2011.12.012 10.1016/j.cub.2008.06.058 10.1101/gad.194746.112 10.1016/j.celrep.2015.11.041 10.1534/genetics.112.140608 10.1038/21831 10.1016/j.cell.2017.03.024 10.1038/nature08973 10.1016/j.cell.2006.04.041 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2017 2017 The Authors. Published under the terms of the CC BY 4.0 license 2017 The Authors. Published under the terms of the CC BY 4.0 license. Attribution |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2017 – notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2017 The Authors. Published under the terms of the CC BY 4.0 license. – notice: Attribution |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.201797342 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Luciana Lazar‐Stefanita et al |
EISSN | 1460-2075 |
EndPage | 2697 |
ExternalDocumentID | PMC5599795 oai_HAL_hal_01596511v1 28729434 10_15252_embj_201797342 EMBJ201797342 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 260822 funderid: 10.13039/100010663 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03 funderid: 10.13039/501100001665 – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: 260822 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03 – fundername: European Research Council grantid: 260822 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐13‐BSV6‐0012‐02; ANR‐14‐SYNB‐0001‐03 – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 260822 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5002-7ed2996e4c539a4ff575bb9b67ec3ff76bb33b8e49d1255dd48d113f5f2d9e5a3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:27:32 EDT 2025 Fri May 09 12:26:22 EDT 2025 Fri Jul 11 03:21:20 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Tue Jul 01 02:06:02 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 Wed Jan 22 16:47:59 EST 2025 Fri Feb 21 02:37:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | SMC Hi‐C chromosome segregation replication profile loop extrusion Chromatin Repair & Recombination Hi-C SMC Subject Categories Cell Cycle Epigenetics Genomics & Functional Genomics DNA Replication |
Language | English |
License | Attribution 2017 The Authors. Published under the terms of the CC BY 4.0 license. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5002-7ed2996e4c539a4ff575bb9b67ec3ff76bb33b8e49d1255dd48d113f5f2d9e5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5599795 |
ORCID | 0000-0001-5652-0302 0000-0002-3086-1173 0000-0003-0853-822X 0000-0002-2336-315X |
OpenAccessLink | https://doi.org/10.15252/embj.201797342 |
PMID | 28729434 |
PQID | 1922507461 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599795 hal_primary_oai_HAL_hal_01596511v1 proquest_miscellaneous_1922507461 pubmed_primary_28729434 crossref_primary_10_15252_embj_201797342 crossref_citationtrail_10_15252_embj_201797342 wiley_primary_10_15252_embj_201797342_EMBJ201797342 springer_journals_10_15252_embj_201797342 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2017 |
PublicationDateYYYYMMDD | 2017-09-15 |
PublicationDate_xml | – month: 09 year: 2017 text: 15 September 2017 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc |
References | Kim, Tanizawa, Iwasaki, Noma (CR30) 2016; 48 Machín, Torres‐Rosell, Piccoli, Carballo, Cha, Jarmuz, Aragón (CR37) 2006; 173 Yoshida, Asakawa, Toh‐e (CR57) 2002; 12 Humphrey, Dalke, Schulten (CR28) 1996; 14 Marbouty, Ermont, Dujon, Richard, Koszul (CR38) 2014; 31 D'Ambrosio, Kelly, Shirahige, Uhlmann (CR11) 2008; 18 Clemente‐Blanco, Mayán‐Santos, Schneider, Machín, Jarmuz, Tschochner, Aragón (CR8) 2009; 458 Taddei, Gasser (CR51) 2012; 192 Guidi, Ruault, Marbouty, Loïodice, Cournac, Billaudeau, Hocher, Mozziconacci, Koszul, Taddei (CR21) 2015; 16 Morlot, Mozziconacci, Lesne (CR42) 2016; 4 Cournac, Marie‐Nelly, Marbouty, Koszul, Mozziconacci (CR9) 2012; 13 Guacci, Hogan, Koshland (CR20) 1994; 125 Hartwell, Mortimer, Culotti, Culotti (CR23) 1973; 74 Burgess, Kleckner (CR7) 1999; 13 D'Amours, Stegmeier, Amon (CR12) 2004; 117 Stephens, Haase, Vicci, Taylor, Bloom (CR49) 2011; 193 Brewer, Fangman (CR6) 1987; 51 Blat, Kleckner (CR5) 1999; 98 McCune, Danielson, Alvino, Collingwood, Delrow, Fangman, Brewer, Raghuraman (CR40) 2008; 180 Raghuraman, Winzeler, Collingwood, Hunt, Wodicka, Conway, Lockhart, Davis, Brewer, Fangman (CR45) 2001; 294 Daoud, Cotton (CR13) 1982; 43 Dekker, Rippe, Dekker, Kleckner (CR14) 2002; 295 Eser, Chandler‐Brown, Ay, Straight, Duan, Noble, Skotheim (CR17) 2017; 114 Wang, Montero Llopis, Rudner (CR56) 2013; 14 Guillou, Ibarra, Coulon, Casado‐Vela, Rico, Casal, Schwob, Losada, Méndez (CR22) 2010; 24 Hug, Grimaldi, Kruse, Vaquerizas (CR27) 2017; 169 Cournac, Marbouty, Mozziconacci, Koszul, Devaux (CR10) 2016 Lieberman‐Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR35) 2009; 326 Aragon, Martinez‐Perez, Merkenschlager (CR2) 2013; 23 London, Biggins (CR36) 2014; 15 Duan, Andronescu, Schutz, Mcllwain, Kim, Lee, Shendure, Fields, Blau, Noble (CR16) 2010; 465 Glynn, Megee, Yu, Mistrot, Unal, Koshland, DeRisi, Gerton (CR19) 2004; 2 Hicks, Irizarry (CR24) 2015; 16 Naumova, Imakaev, Fudenberg, Zhan, Lajoie, Mirny, Dekker (CR43) 2013; 342 Dekker, Mirny (CR15) 2016; 164 Hirano (CR25) 2012; 26 Uhlmann (CR53) 2016; 17 Rock, Amon (CR47) 2011; 25 Marbouty, Le Gall, Cattoni, Cournac, Koh, Fiche, Mozziconacci, Murray, Koszul, Nollmann (CR39) 2015; 59 Sullivan, Higuchi, Katis, Uhlmann (CR50) 2004; 117 Lesne, Riposo, Roger, Cournac, Mozziconacci (CR34) 2014; 11 Leonard, Sen, Torres, Sutani, Jarmuz, Shirahige, Aragón (CR33) 2015; 13 Uhlmann, Lottspeich, Nasmyth (CR52) 1999; 400 Jacobs, Adams, Szaniszlo, Pringle (CR29) 1988; 107 Knott, Peace, Ostrow, Gan, Rex, Viggiani, Tavaré, Aparicio (CR32) 2012; 148 Hsieh, Weiner, Lajoie, Dekker, Friedman, Rando (CR26) 2015; 162 Mercy, Mozziconacci, Scolari, Yang, Zhao, Thierry, Luo, Mitchell, Shen, Shen, Walker, Zhang, Wu, Xie, Luo, Cai, Dai, Yang, Yuan, Boeke (CR100) 2017; 355 Alipour, Marko (CR1) 2012; 40 Baxter, Sen, Martínez, Carandini, Schvartzman, Diffley, Aragón (CR3) 2011; 331 Renshaw, Ward, Kanemaki, Natsume, Nédélec, Tanaka (CR46) 2010; 19 Visintin, Prinz, Amon (CR55) 1997; 278 Belton, McCord, Gibcus, Naumova, Zhan, Dekker (CR4) 2012; 58 Piatti, Lengauer, Nasmyth (CR44) 1995; 14 Valton, Dekker (CR54) 2016; 36 Saner, Karschau, Natsume, Gierliński, Retkute, Hawkins, Nieduszynski, Blow, de Moura, Tanaka (CR48) 2013; 202 de Gennes (CR18) 1987; 27 Kitamura, Blow, Tanaka (CR31) 2006; 125 Mizuguchi, Fudenberg, Mehta, Belton, Taneja, Folco, FitzGerald, Dekker, Mirny, Barrowman, Grewal (CR41) 2014; 516 1997; 278 2010; 19 2013; 23 2002; 12 2010; 465 2006; 173 2013; 202 1999; 400 2004; 2 2012; 58 2012; 13 2017; 355 2017; 114 2011; 193 1988; 107 2016; 36 2001; 294 2013; 14 2010; 24 1999; 13 2014; 15 1999; 98 2012; 26 2011; 25 2017; 169 2016; 48 2014; 11 2006; 125 2009; 326 2015; 162 2015; 13 2015; 59 2015; 16 1987; 51 2014; 516 1973; 74 2002; 295 1995; 14 2008; 18 2013; 342 1996; 14 2012; 148 2016; 17 2016; 164 2011; 331 2009; 458 2016; 4 2008; 180 1994; 125 1982; 43 2012; 192 2016 2004; 117 2012; 40 1987; 27 2014; 31 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 28871059 - EMBO J. 2017 Sep 15;36(18):2661-2663. doi: 10.15252/embj.201798014. |
References_xml | – volume: 27 start-page: 189 year: 1987 end-page: 209 ident: CR18 article-title: Polymers at an interface; a simplified view publication-title: Adv Colloid Interface Sci – volume: 74 start-page: 267 year: 1973 end-page: 286 ident: CR23 article-title: Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants publication-title: Genetics – volume: 125 start-page: 1297 year: 2006 end-page: 1308 ident: CR31 article-title: Live‐cell imaging reveals replication of individual replicons in eukaryotic replication factories publication-title: Cell – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: CR35 article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome publication-title: Science – volume: 31 start-page: 159 year: 2014 end-page: 166 ident: CR38 article-title: Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure publication-title: Yeast Chichester Engl – volume: 355 start-page: eaaf4597 year: 2017 ident: CR100 article-title: 3D organization of synthetic and scrambled chromosomes publication-title: Science – volume: 25 start-page: 1943 year: 2011 end-page: 1954 ident: CR47 article-title: Cdc15 integrates Tem1 GTPase‐mediated spatial signals with Polo kinase‐mediated temporal cues to activate mitotic exit publication-title: Genes Dev – volume: 117 start-page: 471 year: 2004 end-page: 482 ident: CR50 article-title: Cdc14 phosphatase induces rDNA condensation and resolves cohesin‐independent cohesion during budding yeast anaphase publication-title: Cell – volume: 458 start-page: 219 year: 2009 end-page: 222 ident: CR8 article-title: Cdc14 inhibits transcription by RNA polymerase I during anaphase publication-title: Nature – volume: 17 start-page: 399 year: 2016 end-page: 412 ident: CR53 article-title: SMC complexes: from DNA to chromosomes publication-title: Nat Rev Mol Cell Biol – volume: 14 start-page: 3788 year: 1995 end-page: 3799 ident: CR44 article-title: Cdc6 is an unstable protein whose synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast publication-title: EMBO J – volume: 516 start-page: 432 year: 2014 end-page: 435 ident: CR41 article-title: Cohesin‐dependent globules and heterochromatin shape 3D genome architecture in publication-title: Nature – volume: 15 start-page: 736 year: 2014 end-page: 748 ident: CR36 article-title: Signalling dynamics in the spindle checkpoint response publication-title: Nat Rev Mol Cell Biol – volume: 58 start-page: 268 year: 2012 end-page: 276 ident: CR4 article-title: Hi–C: a comprehensive technique to capture the conformation of genomes publication-title: Methods – volume: 125 start-page: 517 year: 1994 end-page: 530 ident: CR20 article-title: Chromosome condensation and sister chromatid pairing in budding yeast publication-title: J Cell Biol – volume: 13 start-page: 2336 year: 2015 end-page: 2344 ident: CR33 article-title: Condensin relocalization from centromeres to chromosome arms promotes Top2 recruitment during anaphase publication-title: Cell Rep – volume: 192 start-page: 107 year: 2012 end-page: 129 ident: CR51 article-title: Structure and function in the budding yeast nucleus publication-title: Genetics – volume: 14 start-page: 191 year: 2013 end-page: 203 ident: CR56 article-title: Organization and segregation of bacterial chromosomes publication-title: Nat Rev Genet – volume: 117 start-page: 455 year: 2004 end-page: 469 ident: CR12 article-title: Cdc14 and condensin control the dissolution of cohesin‐independent chromosome linkages at repeated DNA publication-title: Cell – volume: 40 start-page: 11202 year: 2012 end-page: 11212 ident: CR1 article-title: Self‐organization of domain structures by DNA‐loop‐extruding enzymes publication-title: Nucleic Acids Res – volume: 23 start-page: 204 year: 2013 end-page: 211 ident: CR2 article-title: Condensin, cohesin and the control of chromatin states publication-title: Curr Opin Genet Dev – volume: 400 start-page: 37 year: 1999 end-page: 42 ident: CR52 article-title: Sister‐chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 publication-title: Nature – volume: 26 start-page: 1659 year: 2012 end-page: 1678 ident: CR25 article-title: Condensins: universal organizers of chromosomes with diverse functions publication-title: Genes Dev – start-page: 227 year: 2016 end-page: 245 ident: CR10 article-title: Generation and analysis of chromosomal contact maps of yeast species publication-title: Yeast functional genomics – volume: 193 start-page: 1167 year: 2011 end-page: 1180 ident: CR49 article-title: Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring publication-title: J Cell Biol – volume: 148 start-page: 99 year: 2012 end-page: 111 ident: CR32 article-title: Forkhead transcription factors establish origin timing and long‐range clustering in publication-title: Cell – volume: 19 start-page: 232 year: 2010 end-page: 244 ident: CR46 article-title: Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation publication-title: Dev Cell – volume: 164 start-page: 1110 year: 2016 end-page: 1121 ident: CR15 article-title: The 3D genome as moderator of chromosomal communication publication-title: Cell – volume: 180 start-page: 1833 year: 2008 end-page: 1847 ident: CR40 article-title: The temporal program of chromosome replication: genomewide replication in clb5{Delta} publication-title: Genetics – volume: 162 start-page: 108 year: 2015 end-page: 119 ident: CR26 article-title: Mapping nucleosome resolution chromosome folding in yeast by micro‐C publication-title: Cell – volume: 98 start-page: 249 year: 1999 end-page: 259 ident: CR5 article-title: Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region publication-title: Cell – volume: 13 start-page: 1871 year: 1999 end-page: 1883 ident: CR7 article-title: Collisions between yeast chromosomal loci are governed by three layers of organization publication-title: Genes Dev – volume: 16 start-page: 206 year: 2015 ident: CR21 article-title: Spatial reorganization of telomeres in long‐lived quiescent cells publication-title: Genome Biol – volume: 331 start-page: 1328 year: 2011 end-page: 1332 ident: CR3 article-title: Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes publication-title: Science – volume: 59 start-page: 588 year: 2015 end-page: 602 ident: CR39 article-title: Condensin‐ and replication‐mediated bacterial chromosome folding and origin condensation revealed by Hi‐C and super‐resolution imaging publication-title: Mol Cell – volume: 278 start-page: 460 year: 1997 end-page: 463 ident: CR55 article-title: CDC20 and CDH1: a family of substrate‐specific activators of APC‐dependent proteolysis publication-title: Science – volume: 48 start-page: 1242 year: 2016 end-page: 1252 ident: CR30 article-title: Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast publication-title: Nat Genet – volume: 13 start-page: 436 year: 2012 ident: CR9 article-title: Normalization of a chromosomal contact map publication-title: BMC Genom – volume: 4 start-page: 2 year: 2016 ident: CR42 article-title: Network concepts for analyzing 3D genome structure from chromosomal contact maps publication-title: EPJ Nonlinear Biomed Phys – volume: 294 start-page: 115 year: 2001 end-page: 121 ident: CR45 article-title: Replication dynamics of the yeast genome publication-title: Science – volume: 295 start-page: 1306 year: 2002 end-page: 1311 ident: CR14 article-title: Capturing chromosome conformation publication-title: Science – volume: 2 start-page: e259 year: 2004 ident: CR19 article-title: Genome‐wide mapping of the cohesin complex in the yeast publication-title: PLoS Biol – volume: 43 start-page: 531 year: 1982 end-page: 538 ident: CR13 article-title: Star shaped polymers: a model for the conformation and its concentration dependence publication-title: J Phys – volume: 18 start-page: 1084 year: 2008 end-page: 1089 ident: CR11 article-title: Condensin‐dependent rDNA decatenation introduces a temporal pattern to chromosome segregation publication-title: Curr Biol – volume: 24 start-page: 2812 year: 2010 end-page: 2822 ident: CR22 article-title: Cohesin organizes chromatin loops at DNA replication factories publication-title: Genes Dev – volume: 51 start-page: 463 year: 1987 end-page: 471 ident: CR6 article-title: The localization of replication origins on ARS plasmids in publication-title: Cell – volume: 36 start-page: 34 year: 2016 end-page: 40 ident: CR54 article-title: TAD disruption as oncogenic driver publication-title: Curr Opin Genet Dev – volume: 12 start-page: 944 year: 2002 end-page: 950 ident: CR57 article-title: Mitotic exit network controls the localization of Cdc14 to the spindle pole body in publication-title: Curr Biol – volume: 114 start-page: E3061 year: 2017 end-page: E3070 ident: CR17 article-title: Form and function of topologically associating genomic domains in budding yeast publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 117 year: 2015 ident: CR24 article-title: Quantro: a data‐driven approach to guide the choice of an appropriate normalization method publication-title: Genome Biol – volume: 173 start-page: 893 year: 2006 end-page: 903 ident: CR37 article-title: Transcription of ribosomal genes can cause nondisjunction publication-title: J Cell Biol – volume: 202 start-page: 1001 year: 2013 end-page: 1012 ident: CR48 article-title: Stochastic association of neighboring replicons creates replication factories in budding yeast publication-title: J Cell Biol – volume: 465 start-page: 363 year: 2010 end-page: 367 ident: CR16 article-title: A three‐dimensional model of the yeast genome publication-title: Nature – volume: 342 start-page: 948 year: 2013 end-page: 953 ident: CR43 article-title: Organization of the mitotic chromosome publication-title: Science – volume: 107 start-page: 1409 year: 1988 end-page: 1426 ident: CR29 article-title: Functions of microtubules in the cell cycle publication-title: J Cell Biol – volume: 169 start-page: 216 year: 2017 end-page: 228 ident: CR27 article-title: Chromatin architecture emerges during zygotic genome activation independent of transcription publication-title: Cell – volume: 11 start-page: 1141 year: 2014 end-page: 1143 ident: CR34 article-title: 3D genome reconstruction from chromosomal contacts publication-title: Nat Methods – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR28 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph – volume: 125 start-page: 517 year: 1994 end-page: 530 article-title: Chromosome condensation and sister chromatid pairing in budding yeast publication-title: J Cell Biol – volume: 59 start-page: 588 year: 2015 end-page: 602 article-title: Condensin‐ and replication‐mediated bacterial chromosome folding and origin condensation revealed by Hi‐C and super‐resolution imaging publication-title: Mol Cell – volume: 14 start-page: 191 year: 2013 end-page: 203 article-title: Organization and segregation of bacterial chromosomes publication-title: Nat Rev Genet – volume: 43 start-page: 531 year: 1982 end-page: 538 article-title: Star shaped polymers: a model for the conformation and its concentration dependence publication-title: J Phys – volume: 342 start-page: 948 year: 2013 end-page: 953 article-title: Organization of the mitotic chromosome publication-title: Science – volume: 4 start-page: 2 year: 2016 article-title: Network concepts for analyzing 3D genome structure from chromosomal contact maps publication-title: EPJ Nonlinear Biomed Phys – volume: 40 start-page: 11202 year: 2012 end-page: 11212 article-title: Self‐organization of domain structures by DNA‐loop‐extruding enzymes publication-title: Nucleic Acids Res – volume: 173 start-page: 893 year: 2006 end-page: 903 article-title: Transcription of ribosomal genes can cause nondisjunction publication-title: J Cell Biol – volume: 13 start-page: 1871 year: 1999 end-page: 1883 article-title: Collisions between yeast chromosomal loci are governed by three layers of organization publication-title: Genes Dev – volume: 180 start-page: 1833 year: 2008 end-page: 1847 article-title: The temporal program of chromosome replication: genomewide replication in clb5{Delta} publication-title: Genetics – volume: 148 start-page: 99 year: 2012 end-page: 111 article-title: Forkhead transcription factors establish origin timing and long‐range clustering in publication-title: Cell – volume: 98 start-page: 249 year: 1999 end-page: 259 article-title: Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region publication-title: Cell – volume: 114 start-page: E3061 year: 2017 end-page: E3070 article-title: Form and function of topologically associating genomic domains in budding yeast publication-title: Proc Natl Acad Sci USA – volume: 294 start-page: 115 year: 2001 end-page: 121 article-title: Replication dynamics of the yeast genome publication-title: Science – volume: 164 start-page: 1110 year: 2016 end-page: 1121 article-title: The 3D genome as moderator of chromosomal communication publication-title: Cell – volume: 13 start-page: 2336 year: 2015 end-page: 2344 article-title: Condensin relocalization from centromeres to chromosome arms promotes Top2 recruitment during anaphase publication-title: Cell Rep – volume: 17 start-page: 399 year: 2016 end-page: 412 article-title: SMC complexes: from DNA to chromosomes publication-title: Nat Rev Mol Cell Biol – volume: 13 start-page: 436 year: 2012 article-title: Normalization of a chromosomal contact map publication-title: BMC Genom – volume: 192 start-page: 107 year: 2012 end-page: 129 article-title: Structure and function in the budding yeast nucleus publication-title: Genetics – volume: 331 start-page: 1328 year: 2011 end-page: 1332 article-title: Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes publication-title: Science – volume: 326 start-page: 289 year: 2009 end-page: 293 article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome publication-title: Science – volume: 107 start-page: 1409 year: 1988 end-page: 1426 article-title: Functions of microtubules in the cell cycle publication-title: J Cell Biol – volume: 36 start-page: 34 year: 2016 end-page: 40 article-title: TAD disruption as oncogenic driver publication-title: Curr Opin Genet Dev – volume: 18 start-page: 1084 year: 2008 end-page: 1089 article-title: Condensin‐dependent rDNA decatenation introduces a temporal pattern to chromosome segregation publication-title: Curr Biol – volume: 16 start-page: 206 year: 2015 article-title: Spatial reorganization of telomeres in long‐lived quiescent cells publication-title: Genome Biol – volume: 193 start-page: 1167 year: 2011 end-page: 1180 article-title: Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring publication-title: J Cell Biol – volume: 27 start-page: 189 year: 1987 end-page: 209 article-title: Polymers at an interface; a simplified view publication-title: Adv Colloid Interface Sci – volume: 24 start-page: 2812 year: 2010 end-page: 2822 article-title: Cohesin organizes chromatin loops at DNA replication factories publication-title: Genes Dev – volume: 278 start-page: 460 year: 1997 end-page: 463 article-title: CDC20 and CDH1: a family of substrate‐specific activators of APC‐dependent proteolysis publication-title: Science – volume: 162 start-page: 108 year: 2015 end-page: 119 article-title: Mapping nucleosome resolution chromosome folding in yeast by micro‐C publication-title: Cell – volume: 31 start-page: 159 year: 2014 end-page: 166 article-title: Purification of G1 daughter cells from different Saccharomycetes species through an optimized centrifugal elutriation procedure publication-title: Yeast Chichester Engl – volume: 48 start-page: 1242 year: 2016 end-page: 1252 article-title: Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast publication-title: Nat Genet – volume: 202 start-page: 1001 year: 2013 end-page: 1012 article-title: Stochastic association of neighboring replicons creates replication factories in budding yeast publication-title: J Cell Biol – volume: 12 start-page: 944 year: 2002 end-page: 950 article-title: Mitotic exit network controls the localization of Cdc14 to the spindle pole body in publication-title: Curr Biol – volume: 465 start-page: 363 year: 2010 end-page: 367 article-title: A three‐dimensional model of the yeast genome publication-title: Nature – volume: 117 start-page: 471 year: 2004 end-page: 482 article-title: Cdc14 phosphatase induces rDNA condensation and resolves cohesin‐independent cohesion during budding yeast anaphase publication-title: Cell – volume: 516 start-page: 432 year: 2014 end-page: 435 article-title: Cohesin‐dependent globules and heterochromatin shape 3D genome architecture in publication-title: Nature – volume: 16 start-page: 117 year: 2015 article-title: Quantro: a data‐driven approach to guide the choice of an appropriate normalization method publication-title: Genome Biol – volume: 51 start-page: 463 year: 1987 end-page: 471 article-title: The localization of replication origins on ARS plasmids in publication-title: Cell – volume: 458 start-page: 219 year: 2009 end-page: 222 article-title: Cdc14 inhibits transcription by RNA polymerase I during anaphase publication-title: Nature – volume: 58 start-page: 268 year: 2012 end-page: 276 article-title: Hi–C: a comprehensive technique to capture the conformation of genomes publication-title: Methods – volume: 125 start-page: 1297 year: 2006 end-page: 1308 article-title: Live‐cell imaging reveals replication of individual replicons in eukaryotic replication factories publication-title: Cell – volume: 23 start-page: 204 year: 2013 end-page: 211 article-title: Condensin, cohesin and the control of chromatin states publication-title: Curr Opin Genet Dev – volume: 19 start-page: 232 year: 2010 end-page: 244 article-title: Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation publication-title: Dev Cell – volume: 295 start-page: 1306 year: 2002 end-page: 1311 article-title: Capturing chromosome conformation publication-title: Science – volume: 15 start-page: 736 year: 2014 end-page: 748 article-title: Signalling dynamics in the spindle checkpoint response publication-title: Nat Rev Mol Cell Biol – start-page: 227 year: 2016 end-page: 245 – volume: 117 start-page: 455 year: 2004 end-page: 469 article-title: Cdc14 and condensin control the dissolution of cohesin‐independent chromosome linkages at repeated DNA publication-title: Cell – volume: 11 start-page: 1141 year: 2014 end-page: 1143 article-title: 3D genome reconstruction from chromosomal contacts publication-title: Nat Methods – volume: 25 start-page: 1943 year: 2011 end-page: 1954 article-title: Cdc15 integrates Tem1 GTPase‐mediated spatial signals with Polo kinase‐mediated temporal cues to activate mitotic exit publication-title: Genes Dev – volume: 400 start-page: 37 year: 1999 end-page: 42 article-title: Sister‐chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 publication-title: Nature – volume: 74 start-page: 267 year: 1973 end-page: 286 article-title: Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants publication-title: Genetics – volume: 169 start-page: 216 year: 2017 end-page: 228 article-title: Chromatin architecture emerges during zygotic genome activation independent of transcription publication-title: Cell – volume: 14 start-page: 33 year: 1996 end-page: 38 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph – volume: 355 year: 2017 article-title: 3D organization of synthetic and scrambled chromosomes publication-title: Science – volume: 26 start-page: 1659 year: 2012 end-page: 1678 article-title: Condensins: universal organizers of chromosomes with diverse functions publication-title: Genes Dev – volume: 2 start-page: e259 year: 2004 article-title: Genome‐wide mapping of the cohesin complex in the yeast publication-title: PLoS Biol – volume: 14 start-page: 3788 year: 1995 end-page: 3799 article-title: Cdc6 is an unstable protein whose synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast publication-title: EMBO J – ident: e_1_2_9_15_1 doi: 10.1126/science.1067799 – ident: e_1_2_9_5_1 doi: 10.1016/j.ymeth.2012.05.001 – ident: e_1_2_9_37_1 doi: 10.1038/nrm3888 – ident: e_1_2_9_14_1 doi: 10.1051/jphys:01982004303053100 – ident: e_1_2_9_39_1 doi: 10.1002/yea.3005 – ident: e_1_2_9_6_1 doi: 10.1016/S0092-8674(00)81019-3 – ident: e_1_2_9_46_1 doi: 10.1002/j.1460-2075.1995.tb00048.x – ident: e_1_2_9_56_1 doi: 10.1016/j.gde.2016.03.008 – ident: e_1_2_9_55_1 doi: 10.1038/nrm.2016.30 – ident: e_1_2_9_29_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_9_35_1 doi: 10.1038/nmeth.3104 – ident: e_1_2_9_4_1 doi: 10.1126/science.1201538 – ident: e_1_2_9_10_1 doi: 10.1186/1471-2164-13-436 – ident: e_1_2_9_22_1 doi: 10.1186/s13059-015-0766-2 – ident: e_1_2_9_20_1 doi: 10.1371/journal.pbio.0020259 – ident: e_1_2_9_11_1 doi: 10.1007/978-1-4939-3079-1_13 – ident: e_1_2_9_50_1 doi: 10.1083/jcb.201306143 – ident: e_1_2_9_58_1 doi: 10.1038/nrg3375 – ident: e_1_2_9_44_1 doi: 10.1140/epjnbp/s40366-016-0029-5 – ident: e_1_2_9_45_1 doi: 10.1126/science.1236083 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.1612256114 – ident: e_1_2_9_21_1 doi: 10.1083/jcb.125.3.517 – ident: e_1_2_9_48_1 doi: 10.1016/j.devcel.2010.07.013 – ident: e_1_2_9_24_1 doi: 10.1093/genetics/74.2.267 – ident: e_1_2_9_43_1 doi: 10.1038/nature13833 – ident: e_1_2_9_49_1 doi: 10.1101/gad.17257711 – ident: e_1_2_9_25_1 doi: 10.1186/s13059-015-0679-0 – ident: e_1_2_9_19_1 doi: 10.1016/0001-8686(87)85003-0 – ident: e_1_2_9_38_1 doi: 10.1083/jcb.200511129 – ident: e_1_2_9_42_1 doi: 10.1126/science.aaf4597 – ident: e_1_2_9_52_1 doi: 10.1016/S0092-8674(04)00415-5 – ident: e_1_2_9_51_1 doi: 10.1083/jcb.201103138 – ident: e_1_2_9_30_1 doi: 10.1083/jcb.107.4.1409 – ident: e_1_2_9_2_1 doi: 10.1093/nar/gks925 – ident: e_1_2_9_40_1 doi: 10.1016/j.molcel.2015.07.020 – ident: e_1_2_9_23_1 doi: 10.1101/gad.608210 – ident: e_1_2_9_9_1 doi: 10.1038/nature07652 – ident: e_1_2_9_16_1 doi: 10.1016/j.cell.2016.02.007 – ident: e_1_2_9_7_1 doi: 10.1016/0092-8674(87)90642-8 – ident: e_1_2_9_3_1 doi: 10.1016/j.gde.2012.11.004 – ident: e_1_2_9_31_1 doi: 10.1038/ng.3647 – ident: e_1_2_9_47_1 doi: 10.1126/science.294.5540.115 – ident: e_1_2_9_36_1 doi: 10.1126/science.1181369 – ident: e_1_2_9_27_1 doi: 10.1016/j.cell.2015.05.048 – ident: e_1_2_9_57_1 doi: 10.1126/science.278.5337.460 – ident: e_1_2_9_59_1 doi: 10.1016/S0960-9822(02)00870-9 – ident: e_1_2_9_41_1 doi: 10.1534/genetics.108.094359 – ident: e_1_2_9_13_1 doi: 10.1016/S0092-8674(04)00413-1 – ident: e_1_2_9_8_1 doi: 10.1101/gad.13.14.1871 – ident: e_1_2_9_33_1 doi: 10.1016/j.cell.2011.12.012 – ident: e_1_2_9_12_1 doi: 10.1016/j.cub.2008.06.058 – ident: e_1_2_9_26_1 doi: 10.1101/gad.194746.112 – ident: e_1_2_9_34_1 doi: 10.1016/j.celrep.2015.11.041 – ident: e_1_2_9_53_1 doi: 10.1534/genetics.112.140608 – ident: e_1_2_9_54_1 doi: 10.1038/21831 – ident: e_1_2_9_28_1 doi: 10.1016/j.cell.2017.03.024 – ident: e_1_2_9_17_1 doi: 10.1038/nature08973 – ident: e_1_2_9_32_1 doi: 10.1016/j.cell.2006.04.041 – reference: 28871059 - EMBO J. 2017 Sep 15;36(18):2661-2663. doi: 10.15252/embj.201798014. |
SSID | ssj0005871 |
Score | 2.5337224 |
Snippet | Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2684 |
SubjectTerms | Adenosine Triphosphatases - metabolism Cell Cycle Cell Cycle Proteins - metabolism Chromosomal Proteins, Non-Histone - metabolism chromosome segregation Chromosomes, Fungal - metabolism Cohesins DNA-Binding Proteins - metabolism EMBO06 EMBO09 EMBO13 Genetics Hi‐C Life Sciences loop extrusion Multiprotein Complexes - metabolism replication profile Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology SMC Spatio-Temporal Analysis |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgCMEGQcvjAkWm6qJdhN7Ejh0vSx-6qijqopXYWXHG1i2iuahpke7f8C39ss44jyqqKiR2eThO4vHYx8mZM4xtGgjBqSJNBIBOpC9cUoYKEpcpI5Qq3DRQoPDxdzU7k0c_8p5NSLEwrT7E8MGNPCOO1-TgpWv6jD2kGuov3E_iZmmjhcRR-AkF2BKrL5MndyyPIq654mcWmRamU_ehKnbGFYwmpsdzokXex5z3qZPD_9Mxuo3T0-FL9qLDlXy37Qiv2CNfr7KnbabJ5Sp7ttcndltjlkIymvO64WUNHNfDQCR23F1cxuxZJB7BERdyuc-hTViP5wJfUpofXs2JwNcsLnzD2xjHWJZ-ANz8rZZ489fs7PDgdG-WdHkWkiqnAVF7wElJeVnlwpQyBIRwzhmntK9ECFo5J4QrvDSAcCgHkAWkqQh5yMD4vBRv2Eq9qP07xl2BTp46qCCAlDorAT18Wk494sIMp4UJ-9I3sq06EXLKhfHL0mKErGLJKnawyoRtDRf8bvU3Hi66gVYbSpFu9mz3m6VjiHmMwgf7gw_wuTeqxWanxilrv7huLEJdhINaKizztjXyUBcuKzMS0pswPTL_6GbjM_X5PIp1k6KbNvmEbfcdxXajRPPwi4jYk_71wvbg-OvRsPf-v676wJ7TNjFg0vwjW7m6vPbrCLOu3KfoSLeDNx_p priority: 102 providerName: Wiley-Blackwell |
Title | Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle |
URI | https://link.springer.com/article/10.15252/embj.201797342 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201797342 https://www.ncbi.nlm.nih.gov/pubmed/28729434 https://www.proquest.com/docview/1922507461 https://hal.sorbonne-universite.fr/hal-01596511 https://pubmed.ncbi.nlm.nih.gov/PMC5599795 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIgSXipbXFlgZxAEOgU38io9labWqWsSBSr1ZcWxri2gWNS3S_pv-lv4yZpJsICpV1VscT-LH-PHZHn8D8M74GJ3K04R7rxMRcpcUsfSJy5ThSuVuEumi8OFXNTsS-8fyuCNJorsw_57fy0xmn8Kp-0EWWNpoLnCsvS9TrslHw1RN_9py5M3KqtlMEWluOg6f__xgMP2szcn48TqyvG4g2Z-SDjFsMwntPYaNDj2ynVbdm3AvVFvwoPUnudyCh9OV-7YnYOniRX1S1ayoPMNVrydTdQwuzhofWUQRwRD9MfGF-dYtPcZFtiRnPqyck5levTgNNWtvMjaytM1_dVkuMfGncLS3-306SzpvCkkpadjTwePUo4IoJTeFiBGBmnPGKR1KHqNWznHu8iCMR9AjvRe5T1MeZcy8CbLgz2C9WlThBTCXY1dOnS999ELorPDYjyfFJCD6y3DwH8HHVSXbsqMaJ48XPy0tOUgrlrRie62M4H3_wa-WZeNm0beotV6K2LFnOweW3iGyMQoz9hsz8GalVIvVTpVTVGFxUVsEtAj6tFAo87xVcv8vXDxmRJc3Aj1Q_yCxYUx1Mm8ouYm3TRs5gg-rhmK7saC-uSC8aUm3FdjuHn7e70Pbd0jhJTyiZ7JuSeUrWD8_uwivEUKduzGsZeLbuOlEY5rM5B9alBYc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVqhcEJTX8jSIAxwCm_h9XEqrZdnthVbqzYpjW1tEs6hpkfbf8Fv4ZczkhaJSIY52HL_GnvnGHs8Q8tr4GJ3UacK8VwkP2iV5LHziMmmYlNpNIj4UXh7K2TGfn4iTLZJ2b2Fqa_fuSrLm1G2Mnux9OHNf0RZLGcU4cN1tLaQWI7I9nc6_zP_Ydehay6oPVniqTevP5y9VDETRjRUaQl5FmVeNJfsb0yGerQXSwR1yu0WSdNqQ_i7ZCuUuudnEltzskp29LpTbPWLxEUZ1WlY0Lz0FDdij2Tok1-d1vCx0F0EBCVL-kfomRD18i3SDgX1osUKTvWp9FiravGqsy-KR_6-fxQYav0-OD_aP9mZJG1khKQSyQBU8iCEZeCGYyXmMANqcM06qULAYlXSOMacDNx4AkPCea5-mLIqYeRNEzh6QUbkuwyNCnYZtnTpf-Og5V1nuYU9P8kkAJJiBIBiTd90k26J1O47RL75ZVD-QKhapYnuqjMmb_ofvjceN64u-Aqr1pdBT9my6sJgHKMdI6NgP6MDLjqgWph0nJy_D-rKyAG4BACouoczDhsh9XaBIZug6b0zUgPyDxoZfytNV7Z4bfbgpI8bkbbdQbMsXqusHwuqV9K8B2_3lh3mfevwfLbwgO7Oj5cIuPh1-fkJuYT5avaTiKRldnF-GZwCtLtzzdjP9BiBRHMI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgiMemgvIaWsAgFrAIncSOHS_LtKOhtBULKnVnxbm2pohmqmaKNH_Dt_BlvTcvFJUKsXTi2LGvH-cmx-cy9s5ACE5lcSQAdCR95qI8FBC5RBmhVObGgQ4KHx6p2bHcP0lPWm5O1bHdu1-SzZkGUmkql9vnELp4Pcm2P3PfiZeljRYSV-A76KbE5HtN1OQPwyOr_a36E4uMM9Mq-_ylgMGmdHtOlMjrePM6bbL_dzpEtvXWNH3I1ltMyXeaQfCI3fLlBrvbRJlcbbD7ky6o22Nm6ThGdVpWPC-BY6OBCOyYXFzUkbNIOIIjJuRyl0MTrB7vBb6iED-8mBN5r1qc-Yo35xvrvPTx__evYoWVP2HH071vk1nUxliIipQWQ-0BNyTlZZEKk8sQEL45Z5zSvhAhaOWcEC7z0gBCoRRAZhDHIqQhAePTXDxla-Wi9M8ZdxlO8NhBAQGk1EkOOLvH-dgjJkxwSxixj10n26IVIKc4GD8sOSJkFUtWsb1VRux9_8B5o71xc9a3aLU-F2lmz3YOLF1DvGMUvthPfIE3nVEtdjt1Tl76xWVlEeYiFNRSYZ5njZH7stClTEhEb8T0wPyDyoZ3ytN5LdRNam7apCP2oRsotl0hqpsbIuqR9K8G273DT_t96sV_1PCa3fu6O7UHn4--bLIHdJnoL3G6xdaWF5f-JWKspXtVz6QrOS8fnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cohesins+and+condensins+orchestrate+the+4D+dynamics+of+yeast+chromosomes+during+the+cell%C2%A0cycle&rft.jtitle=The+EMBO+journal&rft.au=Lazar%E2%80%90Stefanita%2C+Luciana&rft.au=Scolari%2C+Vittore+F&rft.au=Mercy%2C+Guillaume&rft.au=Muller%2C+H%C3%A9loise&rft.date=2017-09-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=36&rft.issue=18&rft.spage=2684&rft.epage=2697&rft_id=info:doi/10.15252%2Fembj.201797342&rft.externalDocID=10_15252_embj_201797342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |