DT-YOLO: An Improved Object Detection Algorithm for Key Components of Aircraft and Staff in Airport Scenes Based on YOLOv5

With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 6; p. 1705
Main Authors He, Zhige, He, Yuanqing, Lv, Yang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models for airport aprons are relatively scarce, and their accuracy is insufficient. Based on YOLOv5, we propose an improved object detection algorithm, called DT-YOLO, to address these issues. We first built a dataset called AAD-dataset for airport apron scenes by randomly sampling and capturing surveillance videos taken from the real world to support our research. We then introduced a novel module named D-CTR in the backbone, which integrates the global feature extraction capability of Transformers with the limited receptive field of convolutional neural networks (CNNs) to enhance the feature representation ability and overall performance. A dropout layer was introduced to reduce redundant and noisy features, prevent overfitting, and improve the model’s generalization ability. In addition, we utilized deformable convolutions in CNNs to extract features from multi-scale and deformed objects, further enhancing the model’s adaptability and detection accuracy. In terms of loss function design, we modified GIoULoss to address its discontinuities and instability in certain scenes, which effectively mitigated gradient explosion and improved the stability of the model. Finally, experiments were conducted on the self-built AAD-dataset. The results demonstrated that DT-YOLO significantly improved the mean average precision (mAP). Specifically, the mAP increased by 2.6 on the AAD-dataset; moreover, other metrics also showed a certain degree of improvement, including detection speed, AP50, AP75, and so on, which comprehensively proves that DT-YOLO can be applied for real-time object detection in airport aprons, ensuring the safe operation of aircraft and efficient management of airports.
AbstractList With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models for airport aprons are relatively scarce, and their accuracy is insufficient. Based on YOLOv5, we propose an improved object detection algorithm, called DT-YOLO, to address these issues. We first built a dataset called AAD-dataset for airport apron scenes by randomly sampling and capturing surveillance videos taken from the real world to support our research. We then introduced a novel module named D-CTR in the backbone, which integrates the global feature extraction capability of Transformers with the limited receptive field of convolutional neural networks (CNNs) to enhance the feature representation ability and overall performance. A dropout layer was introduced to reduce redundant and noisy features, prevent overfitting, and improve the model’s generalization ability. In addition, we utilized deformable convolutions in CNNs to extract features from multi-scale and deformed objects, further enhancing the model’s adaptability and detection accuracy. In terms of loss function design, we modified GIoULoss to address its discontinuities and instability in certain scenes, which effectively mitigated gradient explosion and improved the stability of the model. Finally, experiments were conducted on the self-built AAD-dataset. The results demonstrated that DT-YOLO significantly improved the mean average precision (mAP). Specifically, the mAP increased by 2.6 on the AAD-dataset; moreover, other metrics also showed a certain degree of improvement, including detection speed, AP50, AP75, and so on, which comprehensively proves that DT-YOLO can be applied for real-time object detection in airport aprons, ensuring the safe operation of aircraft and efficient management of airports.
With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models for airport aprons are relatively scarce, and their accuracy is insufficient. Based on YOLOv5, we propose an improved object detection algorithm, called DT-YOLO, to address these issues. We first built a dataset called AAD-dataset for airport apron scenes by randomly sampling and capturing surveillance videos taken from the real world to support our research. We then introduced a novel module named D-CTR in the backbone, which integrates the global feature extraction capability of Transformers with the limited receptive field of convolutional neural networks (CNNs) to enhance the feature representation ability and overall performance. A dropout layer was introduced to reduce redundant and noisy features, prevent overfitting, and improve the model's generalization ability. In addition, we utilized deformable convolutions in CNNs to extract features from multi-scale and deformed objects, further enhancing the model's adaptability and detection accuracy. In terms of loss function design, we modified GIoULoss to address its discontinuities and instability in certain scenes, which effectively mitigated gradient explosion and improved the stability of the model. Finally, experiments were conducted on the self-built AAD-dataset. The results demonstrated that DT-YOLO significantly improved the mean average precision (mAP). Specifically, the mAP increased by 2.6 on the AAD-dataset; moreover, other metrics also showed a certain degree of improvement, including detection speed, AP50, AP75, and so on, which comprehensively proves that DT-YOLO can be applied for real-time object detection in airport aprons, ensuring the safe operation of aircraft and efficient management of airports.With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models for airport aprons are relatively scarce, and their accuracy is insufficient. Based on YOLOv5, we propose an improved object detection algorithm, called DT-YOLO, to address these issues. We first built a dataset called AAD-dataset for airport apron scenes by randomly sampling and capturing surveillance videos taken from the real world to support our research. We then introduced a novel module named D-CTR in the backbone, which integrates the global feature extraction capability of Transformers with the limited receptive field of convolutional neural networks (CNNs) to enhance the feature representation ability and overall performance. A dropout layer was introduced to reduce redundant and noisy features, prevent overfitting, and improve the model's generalization ability. In addition, we utilized deformable convolutions in CNNs to extract features from multi-scale and deformed objects, further enhancing the model's adaptability and detection accuracy. In terms of loss function design, we modified GIoULoss to address its discontinuities and instability in certain scenes, which effectively mitigated gradient explosion and improved the stability of the model. Finally, experiments were conducted on the self-built AAD-dataset. The results demonstrated that DT-YOLO significantly improved the mean average precision (mAP). Specifically, the mAP increased by 2.6 on the AAD-dataset; moreover, other metrics also showed a certain degree of improvement, including detection speed, AP50, AP75, and so on, which comprehensively proves that DT-YOLO can be applied for real-time object detection in airport aprons, ensuring the safe operation of aircraft and efficient management of airports.
Audience Academic
Author He, Zhige
Lv, Yang
He, Yuanqing
AuthorAffiliation 1 School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China; hezhige@cafuc.edu.cn
2 College Office, Civil Aviation Flight University of China, Guanghan 618307, China; lvyang19950206@163.com
AuthorAffiliation_xml – name: 1 School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China; hezhige@cafuc.edu.cn
– name: 2 College Office, Civil Aviation Flight University of China, Guanghan 618307, China; lvyang19950206@163.com
Author_xml – sequence: 1
  givenname: Zhige
  surname: He
  fullname: He, Zhige
– sequence: 2
  givenname: Yuanqing
  surname: He
  fullname: He, Yuanqing
– sequence: 3
  givenname: Yang
  surname: Lv
  fullname: Lv, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40292818$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhi1URNvAghdAltjAIsW3mfGwQSHlEhEpi5YFK8vjS-poxk5tJ1L79HVICQ1CXhzr-Pd3zm-fc3DigzcAvMbogtIWfUikQjVuUPUMnGFG2JgTgk6e7E_BeUorhAillL8ApwyRlnDMz8D95fX412K--AgnHs6GdQxbo-GiWxmV4aXJJbjg4aRfhujyzQBtiPCHuYPTMKxLFz4nGCycuKiitBlKr-FVltZC53fZdYgZXinjTYKfZSrsQtsV3FYvwXMr-2RePcYR-Pn1y_X0-3i--DabTuZjxdo2j63WHGuGMWWtolx1jdKkxVI3VltFMW4l1Q3uKqO4wqjhNaO15ohJqgjSmo7AbM_VQa7EOrpBxjsRpBO_EyEuhYzZqd6Irma4IRJTZDtGNOo6jmtSdZRUrLUNL6xPe9Z60w1GF185yv4Ienzi3Y1Yhq0obbKas6oQ3j0SYrjdmJTF4JIyfS-9CZskKG4rXn6q-B2Bt_9IV2ETfXmrouK4qRhm9V_VUhYHzttQCqsdVEw45aSpmpYU1cV_VGVpMzhVPtK6kj-68Oap04PFP6NTBO_3AhVDStHYgwQjsRtLcRhL-gA3tc_3
Cites_doi 10.1109/LSP.2024.3451311
10.3390/rs15051259
10.3390/machines11020192
10.20944/preprints202410.1785.v1
10.3390/electronics13030541
10.3390/app132011344
10.1109/ICCNC.2019.8685593
10.1049/ipr2.12514
10.1109/ICCV.2017.322
10.1007/978-3-642-32717-9_15
10.1007/978-3-319-46448-0_2
10.3390/make5040083
10.1007/978-981-99-7962-2_39
10.1109/ICCV.2017.89
10.3390/s24134331
10.1109/ICCV.2015.169
10.1109/ICIP51287.2024.10648203
10.1109/CVPR.2014.81
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.91
10.1109/CVPR.2010.5539906
10.1109/CVPR.2018.00644
10.3390/books978-3-7258-1260-8
10.1007/978-981-13-9042-5_56
10.3390/app10175778
10.3390/app14146182
10.3390/asi7010011
10.1109/TPAMI.2022.3152247
10.1109/CVPR.2017.690
10.3390/app121910128
10.1109/TCSVT.2008.2009253
10.3390/automation5040029
10.1109/CommNet56067.2022.9993862
10.1109/ACCESS.2024.3412204
10.1109/JSTARS.2024.3386696
10.1109/CVPR52729.2023.00721
10.3390/rs15153883
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25061705
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b64172a130fb42d0bb81625b32549f78
PMC11946845
A838275792
40292818
10_3390_s25061705
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Science and Technology Plan Project of Sichuan Province
  grantid: 2022YFG0027
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c499t-fdd81d411349c38cb7cd291ad7fdfc3119a3d71b5ec8c10786436d804a3c20dd3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:37 EDT 2025
Thu Aug 21 18:39:45 EDT 2025
Fri Jul 11 18:31:25 EDT 2025
Fri Jul 25 21:14:58 EDT 2025
Thu May 08 04:14:25 EDT 2025
Tue Jun 10 20:54:21 EDT 2025
Mon Jul 21 05:26:15 EDT 2025
Tue Aug 05 12:04:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords transformer
GIoU
airport apron
YOLOv5
dropout
deformable convolution
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-fdd81d411349c38cb7cd291ad7fdfc3119a3d71b5ec8c10786436d804a3c20dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25061705
PMID 40292818
PQID 3181754146
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b64172a130fb42d0bb81625b32549f78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11946845
proquest_miscellaneous_3195800211
proquest_journals_3181754146
gale_infotracmisc_A838275792
gale_infotracacademiconefile_A838275792
pubmed_primary_40292818
crossref_primary_10_3390_s25061705
PublicationCentury 2000
PublicationDate 2025-03-10
PublicationDateYYYYMMDD 2025-03-10
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Hiromoto (ref_9) 2009; 19
ref_14
ref_12
Yu (ref_40) 2024; 17
ref_11
ref_10
Han (ref_44) 2023; 45
ref_19
ref_18
ref_17
ref_16
ref_15
Connolly (ref_35) 2024; 12
ref_25
ref_24
ref_23
ref_21
ref_20
ref_29
ref_27
Ashqar (ref_5) 2024; 5
ref_26
Ma (ref_37) 2022; 16
Farhadi (ref_22) 2018; 1804
ref_36
ref_34
ref_33
ref_32
ref_31
ref_30
Srivastava (ref_46) 2014; 15
Terven (ref_28) 2023; 5
ref_39
Ren (ref_13) 2016; 39
ref_47
ref_45
ref_43
ref_42
ref_41
ref_1
ref_3
ref_2
ref_49
ref_48
ref_8
Cheng (ref_38) 2024; 31
ref_4
ref_7
ref_6
References_xml – volume: 31
  start-page: 2270
  year: 2024
  ident: ref_38
  article-title: X-YOLO: An Efficient Detection Network of Dangerous Objects in X-ray Baggage Images
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2024.3451311
– ident: ref_49
  doi: 10.3390/rs15051259
– ident: ref_31
  doi: 10.3390/machines11020192
– ident: ref_29
  doi: 10.20944/preprints202410.1785.v1
– ident: ref_8
  doi: 10.3390/electronics13030541
– ident: ref_33
  doi: 10.3390/app132011344
– ident: ref_1
– ident: ref_32
  doi: 10.1109/ICCNC.2019.8685593
– ident: ref_23
– volume: 16
  start-page: 2638
  year: 2022
  ident: ref_37
  article-title: EAOD-Net: Effective anomaly object detection networks for X-ray images
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12514
– ident: ref_14
  doi: 10.1109/ICCV.2017.322
– ident: ref_36
  doi: 10.1007/978-3-642-32717-9_15
– ident: ref_4
– volume: 1804
  start-page: 1
  year: 2018
  ident: ref_22
  article-title: Yolov3: An incremental improvement
  publication-title: Comput. Vis. Pattern Recognit.
– ident: ref_19
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_48
– volume: 5
  start-page: 1680
  year: 2023
  ident: ref_28
  article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5040083
– ident: ref_27
  doi: 10.1007/978-981-99-7962-2_39
– ident: ref_45
– ident: ref_47
  doi: 10.1109/ICCV.2017.89
– ident: ref_3
– ident: ref_24
– ident: ref_34
  doi: 10.3390/s24134331
– ident: ref_12
  doi: 10.1109/ICCV.2015.169
– ident: ref_30
  doi: 10.1109/ICIP51287.2024.10648203
– ident: ref_11
  doi: 10.1109/CVPR.2014.81
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_13
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_20
  doi: 10.1109/CVPR.2016.91
– ident: ref_10
  doi: 10.1109/CVPR.2010.5539906
– ident: ref_16
  doi: 10.1109/CVPR.2018.00644
– ident: ref_6
  doi: 10.3390/books978-3-7258-1260-8
– ident: ref_18
  doi: 10.1007/978-981-13-9042-5_56
– ident: ref_39
  doi: 10.3390/app10175778
– ident: ref_43
  doi: 10.3390/app14146182
– ident: ref_7
  doi: 10.3390/asi7010011
– ident: ref_25
– volume: 45
  start-page: 87
  year: 2023
  ident: ref_44
  article-title: A Survey on Vision Transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref_50
– ident: ref_21
  doi: 10.1109/CVPR.2017.690
– ident: ref_2
– ident: ref_42
  doi: 10.3390/app121910128
– volume: 19
  start-page: 41
  year: 2009
  ident: ref_9
  article-title: Partially parallel architecture for adaBoost-based detection with haar-like features
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2008.2009253
– volume: 5
  start-page: 508
  year: 2024
  ident: ref_5
  article-title: Leveraging Multimodal Large Language Models (MLLMs) for Enhanced Object Detection and Scene Understanding in Thermal Images for Autonomous Driving Systems
  publication-title: Automation
  doi: 10.3390/automation5040029
– ident: ref_17
  doi: 10.1109/CommNet56067.2022.9993862
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_46
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_15
– volume: 12
  start-page: 83876
  year: 2024
  ident: ref_35
  article-title: Deep-Learning-Based Defect Detection for Light Aircraft with Unmanned Aircraft Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3412204
– volume: 17
  start-page: 8313
  year: 2024
  ident: ref_40
  article-title: Improved Deformable Convolution Method for Aircraft Object Detection in Flight Based on Feature Separation in Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2024.3386696
– ident: ref_26
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_41
  doi: 10.3390/rs15153883
SSID ssj0023338
Score 2.442208
Snippet With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1705
SubjectTerms Accuracy
Aeronautics
Aircraft
airport apron
Airports
Algorithms
Civil aviation
Computer vision
Datasets
Deep learning
deformable convolution
dropout
Efficiency
GIoU
Medical imaging equipment
Neural networks
Security management
Telematics
transformer
YOLOv5
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyCAkTlGT2IkdbimlqnjtgVYqJ8vPdiXwom2KBL-emSS72ogDFw57iZ2N4xnPfF80_gzwygoZlatlboKMtCWnzTEpmDwqHoMVLf6IKH763Jyciffn9fnOUV9UEzbKA48Td2AbgTnWYKiNVlS-sFaViNktJ2YT5bDNF3PehkxNVIsj8xp1hPDpxcEVJnpSHq9n2WcQ6f87FO_konmd5E7iOb4DtyfEyLpxpHfhRkj34NaOjuB9-H10mn9dfFy8YV1i42eC4NnC0jcWdhT6odwqse7bxWq97C-_M0Sq7EP4xSgarBLVUrBVZN1y7dYm9swkz-hc38iWia4SRmdfHIVFdohpzzP8N3rgz_oBnB2_O317kk-HKuQOyU2fR-8RooqSZAkdV85K56u2NF5GHx0vy9ZwL0tbB6ccckOFkKXxqhCGu6rwnj-EvYQjewwMyaN33AgXpBGlKawhaakmGukcIoOQwcvNZOsfo3aGRs5BFtFbi2RwSGbYdiC56-ECOoGenED_ywkyeE1G1LQo0VLOTHsLcJwkb6U7xVUla9lWGezPeuJicvPmjRvoaTFfaQx7CLIE5pQMXmyb6U4qUEthdU192pqwd1lm8Gj0mu0rIUVvaWYyUDN_mr3zvCUtLwepbzSHaJSon_yPWXoKNys6vXioRtyHvX59HZ4hpOrt82H1_AEJOxz4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIOQOEVNYid2uKCUUlW89kArLafIz3YlSNrdFAl-PTNJdrsREoe9xE7W9sx45nMm3wC8NkIGZXMZay8DfZJTxugUdBwUD96IEn8EFL98LY5Pxcd5Ph8P3FZjWuV6T-w3atdaOiPfR91DTyfQsN9dXMZUNYrero4lNG7CLaIuo5QuOb8GXBzx18AmhGNI9lfo7ol_PJ_4oJ6q_98NecsjTbMlt9zP0T24O8aNrBoEfR9u-OYB3NliE3wIfw5P4u-zz7O3rGrYcFjgHZsZOmlhh77rk64aVv04w3l15z8Zxqvsk__NaE9oG8qoYG1g1WJplzp0TDeOUXXfwBYNXaVInX2ztDmyA3R-juHT6A9_5Y_g9OjDyfvjeCytEFuEOF0cnMNAVaRETmi5skZal5WpdjK4YDkupuZOpib3VllEiAoDl8KpRGhus8Q5_hh2GhzZU2AIIZ3lWlgvtUh1YjQRTBVBS2sxPvARvFovdn0xMGjUiDxIIvVGIhEckBg2HYj0ur_QLs_q0YZqUwgMtzR63WBE5hJjVIrwzXACuUGqCN6QEGsyTZSU1eMXBjhOIrmqK8VVJnNZZhHsTXqiSdlp81oN6tGkV_W1AkbwctNMd1KaWuPbK-qDSkhhUxrBk0FrNlNCoF7SykSgJvo0mfO0pVmc94TfKA5RKJHv_n9cz-B2RtWJ-2zDPdjpllf-OYZMnXnR28Vf7joVmQ
  priority: 102
  providerName: ProQuest
Title DT-YOLO: An Improved Object Detection Algorithm for Key Components of Aircraft and Staff in Airport Scenes Based on YOLOv5
URI https://www.ncbi.nlm.nih.gov/pubmed/40292818
https://www.proquest.com/docview/3181754146
https://www.proquest.com/docview/3195800211
https://pubmed.ncbi.nlm.nih.gov/PMC11946845
https://doaj.org/article/b64172a130fb42d0bb81625b32549f78
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o2hRAtC4mSIvevsGgkhhzZUQBsEjRRO1j7bSMUB10WUX8-M81AsOHBIDt517N2Z2ZlvM_sNwDMjZFA2k7H2MtCRnDxGp6DjoHjwRuT4IaB4dDw4nIj302y6Basam8sJvPgntKN6UpP6_MWvH1dv0OBfE-JEyP7yAt048Ypn27CLDkmSfR6J9Z8JKedtQWs60xWjP-wvCIa6t3bcUsve__caveGkugmUGx5pdBNuLENJVixkfwu2fHUbrm8QDN6B3_sn8dfxx_ErVlRssX_gHRsb2nxh-75p87AqVpyfzutZc_aNYQjLPvgrRsvEvKIkCzYPrJjVttahYbpyjAr-Bjar6CrNG_tiab1kQ_SHjuGv0QN_ZndhMjo4eXsYL6stxBZRTxMH5zB2FQnxFVqurJHWpXminQwuWJ4kueZOJibzVlkEjQpjmYFTfaG5TfvO8XuwU-GbPQCGqNJZroX1UotE940mzqlB0NJaDBl8BE9Xk11-X5BqlAhGSCLlWiIRDEkM6w7Eg91emNen5dKsSjNAeacaHXEwInV9Y1SCiM5wwr1BqgiekxBL0h-UlNXLQwf4nsR7VRaKq1RmMk8j2Ov0RCuz3eaVGpQrJS1xPcToS6CzieDJupnupMy1ys8vqU-eUVCeJBHcX2jNekiI3XOamQhUR586Y-62VLOzlgMcxSEGSmQP_3uAj-BaSrWL21zEPdhp6kv_GAOqxvRgW04lfqvRux7sDg-OP33utZsTvdaQ_gDOziFb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEG8MBRYE4mTVj3V2jYRQSqhSmjYHUimczD7bSMUpiQuCH8VvZMZO0lhI3HrIxbtxduf1zWxmZwBeaS68NJkIlROeruTkIYKCCr1MvdM8xw8FiodHnf4x_zTOxhvwZ3kXhtIqlzaxNtR2auiMfAdlD5GOo2K_P_8eUtco-nd12UKjEYsD9-snhmzzd_s95O_rJNn7OPrQDxddBUKD3n0VemvRR-Mx1eUzqTRaGJvksbLCW2_SOM5VakWsM2ekweBIImZ3rIy4Sk0SWZvie6_BdQTeiDRKjC8DvBTjvaZ6Ee452pmje0H1zrMW5tWtAf4FgDUEbGdnrsHd3m24tfBTWbcRrDuw4cq7sLVWvfAe_O6Nwi_DwfAt65asOZxwlg01neywnqvqJK-Sdc9OkI7V6TeG_jFD4jGyQdOSMjjY1LPuZGZmyldMlZZRN2HPJiU9pciAfTZkjNkugq1l-Db6wR_ZfTi-EqI_gM0SV_YIGIas1qSKGycUj1WkFRW06ngljEF_xAXwckns4ryp2FFgpEMcKVYcCWCX2LCaQEW26wfT2Umx0NlCdzi6dwpR3mue2EhrGWO4qFMKqr2QAbwhJhZkCpBTRi1uNOA6qahW0ZWpTEQm8iSA7dZMVGHTHl6KQbEwIfPiUuADeLEapm9SWlzpphc0J8_I44_jAB42UrPaEo-SnCgTgGzJU2vP7ZFycloXGEd28I7k2eP_r-s53OiPDgfFYP_o4AncTKgzcp3puA2b1ezCPUV3rdLPah1h8PWqlfIvSzBS9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISH2gPgmMMAgEE_RktipHSSEOkq1sbEisUnlKfgj3iqNdLQZCP40_jrukrRrhMTbHvoSu6l93z_3fAfwwgjplU1lqAvp6UpOFqJT0KFX3BdGZPghoPjxoLdzJD6M0_Ea_FnchaG0yoVNrA21m1o6I99C2UNPJ6hBi2_TIj4Nhm_PvofUQYr-aV2002hEZK_49RPh2_zN7gB5_TJJhu8P3-2EbYeB0GKkX4XeOYzXREw1-ixX1kjrkizWTnrnLY_jTHMnY5MWVlkESgr9d8-pSGhuk8g5ju-9AlclT2PSMTm-AHscsV9TyQj3H23NMdSg2udpx__VbQL-dQYr3rCbqbni-oY34UYbs7J-I2S3YK0ob8PGSiXDO_B7cBh-Ge2PXrN-yZqDisKxkaFTHjYoqjrhq2T902OkY3XyjWGszJB4jOzRtKRsDjb1rD-Z2Zn2FdOlY9RZ2LNJSU8JJbDPlgwz20bH6xi-jX7wR3oXji6F6PdgvcSVPQCG8NVZroUtpBaxjoym4lY9r6W1GJsUATxfEDs_a6p35Ih6iCP5kiMBbBMblhOo4Hb9YDo7zlv9zU1PYKin0eN7IxIXGaNihI6GE8D2UgXwipiYk1lATlnd3m7AdVKBrbyvuEpkKrMkgM3OTFRn2x1eiEHempN5fiH8ATxbDtM3KUWuLKbnNCdLKfqP4wDuN1Kz3JKIkowoE4DqyFNnz92RcnJSFxtHdoieEunD_6_rKVxDdcz3dw_2HsH1hJok10mPm7Bezc6Lxxi5VeZJrSIMvl62Tv4FCipXKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DT-YOLO%3A+An+Improved+Object+Detection+Algorithm+for+Key+Components+of+Aircraft+and+Staff+in+Airport+Scenes+Based+on+YOLOv5&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=He%2C+Zhige&rft.au=He%2C+Yuanqing&rft.au=Lv%2C+Yang&rft.date=2025-03-10&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=6&rft_id=info:doi/10.3390%2Fs25061705&rft.externalDocID=A838275792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon