A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer
Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is oft...
Saved in:
Published in | Biosensors & bioelectronics Vol. 227; p. 115097 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.
[Display omitted] |
---|---|
AbstractList | Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. [Display omitted] |
ArticleNumber | 115097 |
Author | Chang, An-Yi Chung, Saeromi Singh, Naveen K. Wang, Joseph Hall, Drew A. |
Author_xml | – sequence: 1 givenname: Naveen K. orcidid: 0000-0002-2197-052X surname: Singh fullname: Singh, Naveen K. organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA – sequence: 2 givenname: Saeromi orcidid: 0000-0002-6389-9709 surname: Chung fullname: Chung, Saeromi organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA – sequence: 3 givenname: An-Yi orcidid: 0000-0001-8327-9892 surname: Chang fullname: Chang, An-Yi organization: Department of Nanoengineering, University of California – San Diego, La Jolla, CA, 92093, USA – sequence: 4 givenname: Joseph orcidid: 0000-0002-4921-9674 surname: Wang fullname: Wang, Joseph organization: Department of Nanoengineering, University of California – San Diego, La Jolla, CA, 92093, USA – sequence: 5 givenname: Drew A. orcidid: 0000-0003-0674-074X surname: Hall fullname: Hall, Drew A. email: drewhall@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36858023$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URKeFP8ACeckmgx07TiKxqaryIVViA2vrxX4GD0kc_JxB_HsymnbDomze25xzF_desYs5zcjYayn2Ukjz7rAfYqJ9LWq1l7IRffuM7WTXqkrXqrlgO9E3pmqMUZfsiugghGhlL16wS2W6ptu0HTvc8C21ivMRKB6R_0bIMIzIqWQk4gsU94OHlHlGGKsSJ-Qu5RIpjXxKcywpx_k7X-l0gS-Eq08_51QqIIpU0HNYCkyYX7LnAUbCVw__mn37cPf19lN1_-Xj59ub-8rpvi9VMCIAgJZDcOiM1IC9aozAbkAdNAavPQY5OBRBglYCRD_4zmEdPNatU9fs7Tl3yenXilTsFMnhOMKMaSWrZKPartZ991-0bjtpZC9rtaFvHtB1mNDbJccJ8h_7WOUGdGfA5USUMVgXC5SY5pIhjlYKe1rNHuxpNXtazZ5X29T6H_Ux_Unp_VnCrctjxGzJRZwd-pjRFetTfEr_C5WBs3Y |
CitedBy_id | crossref_primary_10_1002_adhm_202403606 crossref_primary_10_1021_acssensors_3c02004 crossref_primary_10_1021_acssynbio_4c00591 crossref_primary_10_1016_j_talanta_2024_126709 crossref_primary_10_1016_j_cej_2023_144775 crossref_primary_10_3390_gels10070459 crossref_primary_10_1039_D5CC00338E crossref_primary_10_3390_nano14100857 crossref_primary_10_1002_advs_202411339 crossref_primary_10_1021_acs_analchem_4c05004 crossref_primary_10_1021_acssensors_3c01512 crossref_primary_10_1038_s44222_023_00094_w crossref_primary_10_3390_diagnostics15030327 crossref_primary_10_1007_s40843_024_3238_4 crossref_primary_10_1039_D3MA00657C crossref_primary_10_1088_2058_8585_adb8fa crossref_primary_10_1002_adfm_202306516 crossref_primary_10_1016_j_biosx_2024_100500 crossref_primary_10_1002_anse_202400003 crossref_primary_10_1002_admt_202401040 crossref_primary_10_1038_s43246_024_00557_6 crossref_primary_10_1016_j_trac_2023_117510 crossref_primary_10_1021_acsnano_4c10344 crossref_primary_10_1016_j_nanoen_2024_109962 crossref_primary_10_1016_j_bios_2023_115600 crossref_primary_10_3390_s25030654 crossref_primary_10_1021_acsami_4c22054 crossref_primary_10_1002_adhm_202401753 crossref_primary_10_1007_s00216_023_04805_5 crossref_primary_10_1149_2754_2726_ad9f7e crossref_primary_10_1039_D4CS00001C crossref_primary_10_3390_mi14030547 crossref_primary_10_1016_j_cej_2024_157488 crossref_primary_10_1016_j_jpbao_2024_100045 crossref_primary_10_3390_molecules29174157 crossref_primary_10_1007_s00216_023_05047_1 crossref_primary_10_1016_j_jsmc_2024_10_012 crossref_primary_10_1002_advs_202411433 crossref_primary_10_1002_adhm_202404454 crossref_primary_10_1016_j_colsurfb_2024_114384 crossref_primary_10_1016_j_snb_2024_137152 crossref_primary_10_1016_j_sbsr_2024_100636 crossref_primary_10_3390_chemosensors11090470 crossref_primary_10_1016_j_microc_2024_111165 crossref_primary_10_1016_j_bioelechem_2025_108908 crossref_primary_10_3390_bios13040470 |
Cites_doi | 10.1126/scitranslmed.3007095 10.1039/c3lc50431j 10.1016/j.tibtech.2010.10.005 10.1002/elan.201600018 10.1016/j.legalmed.2004.10.008 10.3389/fbioe.2020.01037 10.1002/elan.1140071213 10.1016/j.synthmet.2012.02.024 10.1159/000504387 10.1371/journal.pone.0244297 10.1039/D0CC02337J 10.1126/sciadv.aar2904 10.1039/b510494g 10.24297/jac.v6i2.6583 10.1038/s41598-017-17835-8 10.1021/ac500618v 10.1097/FTD.0b013e31829daa0a 10.1021/acssensors.0c02446 10.1021/acs.langmuir.1c00166 10.1507/endocrj.K09E-340 10.1039/C9AY02406A 10.1002/elps.1150170714 10.1016/j.bios.2020.112038 10.1016/j.bios.2018.02.025 10.1021/acsomega.1c03552 10.1038/s41598-017-13684-7 10.1021/acssensors.1c01734 10.1039/C7LC00192D 10.3390/ph11030080 10.1093/jat/20.6.393 10.1039/D1AY01233A 10.1371/journal.pone.0218910 10.1021/acssensors.7b00729 10.1038/nrendo.2009.106 10.1146/annurev-anchem-071015-041446 10.1002/elan.201200349 10.1021/acschembio.7b00634 10.1021/acs.nanolett.5b04549 10.1038/nature16521 10.1016/j.snb.2021.131100 10.1039/C8LC00968F 10.1016/S0306-4530(00)00057-3 10.1021/acssensors.7b00961 10.1021/jacs.8b03933 10.21037/cdt.2019.04.08 10.1016/j.electacta.2021.138834 10.1016/j.dib.2021.107278 10.1021/acssensors.1c01133 10.1152/ajpregu.00114.2004 10.1021/acssensors.8b00945 10.1021/acssensors.6b00356 10.1126/science.1250169 10.1186/1743-0003-9-21 10.4172/2153-2435.1000355 10.1038/jid.1955.36 10.1126/scitranslmed.aaf2593 10.1021/acs.analchem.5b00041 10.1021/acs.analchem.9b00670 10.1111/j.1469-445X.2000.02058.x 10.1038/s41551-022-00916-z |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2023.115097 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 36858023 10_1016_j_bios_2023_115097 S0956566323000398 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SSH WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-f60faaa41bfcec614ae93560e8be4f4efd4def1bce0f1a430a09bd8ce2fde27c3 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 15:14:26 EDT 2025 Fri Jul 11 10:15:33 EDT 2025 Sat Aug 02 01:41:11 EDT 2025 Tue Jul 01 01:43:06 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Fri Feb 23 02:37:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pseudoknot aptamer Cortisol Electrochemical aptasensor Wearable sensor Sweat monitoring Microfluidic |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-f60faaa41bfcec614ae93560e8be4f4efd4def1bce0f1a430a09bd8ce2fde27c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6389-9709 0000-0003-0674-074X 0000-0002-2197-052X 0000-0002-4921-9674 0000-0001-8327-9892 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0956566323000398 |
PMID | 36858023 |
PQID | 2781619123 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153782498 proquest_miscellaneous_2781619123 pubmed_primary_36858023 crossref_citationtrail_10_1016_j_bios_2023_115097 crossref_primary_10_1016_j_bios_2023_115097 elsevier_sciencedirect_doi_10_1016_j_bios_2023_115097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 2023-May-01 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Singh, Ray, Carlin, Magallanes, Morgan, Laurent, Aronoff-Spencer, Hall (bib58) 2021; 113111 Ghaffari, Yang, Kim, Mansour, Wright, Model, Wright, Rogers, Ray (bib20) 2021; 6 An, Kim, Park, Seo, Kim, Ha, Bae, Kwon (bib1) 2022; 7 Jiang, Li, Yang, Xie, Xiang, Yuan (bib28) 2015; 87 Sakihara, Kageyama, Oki, Doi, Iwasaki, Takayasu, Moriyama, Terui, Nigawara, Hirata, Hashimoto, Suda (bib49) 2010; 57 Humpolicek, Kasparkova, Saha, Stejskal (bib27) 2012; 162 Knutsson, Dahlgren, Marcus, Rosberg, Brönnegård, Stierna, Albertsson-Wikland (bib34) 1997; 82 Shida, Ikeda, Tani, Morioka, Aoki, Ikeda, Watanabe, Ishikawa (bib55) 2020; 15 Chung, Sicklick, Ray, Hall (bib10) 2021; 9 Ferguson, Hoggarth, Maliniak, Ploense, White, Woodward, Hsieh, Bonham, Eisenstein, Kippin, Plaxco, Soh (bib16) 2013; 5 Hu, Liu, Zhang, Huan, Wu, Fu, Tan (bib25) 2014; 86 Singh, Ray, Carlin, Morgan, Magallanes, Laurent, Aronoff-Spencer, Hall (bib59) 2021; 38 Kim, Jeerapan, Imani, Cho, Bandodkar, Cinti, Mercier, Wang (bib31) 2016; 1 Singh, Jain, Das, Goswami (bib56) 2019; 91 Anastasova, Crewther, Bembnowicz, Curto, Ip, Rosa, Yang (bib2) 2017; 93 Brunetti B (bib7) 2015 Wang, Yang, Min, Song, Tu, Mukasa, Ye, Xu, Heflin, McCune, Hsiai, Li, Gao (bib63) 2022; 6 Kinnamon, Ghanta, Lin, Muthukumar, Prasad (bib32) 2017; 7 Mugo, Alberkant, Bernstein, Zenkina (bib38) 2021; 13 Yokus, Songkakul, Pozdin, Bozkurt, Daniele (bib70) 2020; 153 Wang, Zhao, Wang, Yang, Cheng, Liu, Yu, Lin, Zhao, Cheung, Lin, Hojaiji, Weiss, Stojanović, Tomiyama, Andrews, Emaminejad (bib62) 2022; 8 Yang, Chun, Zhang, Pecic, Nakatsuka, Andrews, Worgall, Stojanovic (bib67) 2017; 12 Vinoth, Nakagawa, Mathiyarasu, Mohan (bib61) 2021; 6 Yasuda, Kawai, Ueki, Kishi (bib69) 2005; 7 Shaver, Kundu, Young, Vieira, Sczepanski, Arroyo-Currás (bib54) 2021; 37 Fan, Yang (bib15) 2022; 353 Parlak, Keene, Marais, Curto, Salleo (bib42) 2018; 4 Francis, Stamper, Heikenfeld, Gomez (bib18) 2018; 19 Patel, Park, Bonato, Chan, Rodgers (bib43) 2012; 9 Bandodkar, Jeerapan, You, Nuñez-Flores, Wang (bib4) 2016; 16 Fernandez, Umasankar, Manickam, Nickel, Iwasaki, Kawamoto, Todoki, Scott, Bhansali (bib17) 2017; 7 Herrmann, Mandol (bib24) 1955; 24 Schoukroun-Barnes, Macazo, Gutierrez, Lottermoser, Liu, White (bib52) 2016; 9 Zhen, Liang, Chen, Jia (bib72) 2020; 15 Pali, Jagannath, Lin, Upasham, Sankhalab, Upashama, Muthukumar, Prasad (bib41) 2021; 390 Wu, Huang, Zare (bib65) 2005; 5 Patterson, Galloway, Nimmo (bib44) 2000; 85 Samson, Koh (bib50) 2020; 8 Gao, Emaminejad, Nyein, Challa, Chen, Peck, Fahad, Ota, Shiraki, Kiriya, Lien, Brooks, Davis, Javey (bib19) 2016; 529 Kintz, Tracqui, Mangin, Edel (bib33) 1996; 20 Yasuda, Takeshita, Sawazaki, Iida, Kishi (bib68) 1996; 17 Oncescu, O'Dell, Erickson (bib40) 2013; 13 Singh, Chung, Sveiven, Hall (bib57) 2021; 6 Mahmud, Fang, Wang, Carreiro, Boyer (bib36) 2018 De Giovanni, Fucci (bib12) 2013; 20 Etiwy, Akhrass, Gillinov, Alashi, Wang, Blackburn, Gillinov, Phelan, Gillinov, Houghtaling, Javadikasgari, Desai (bib14) 2019; 9 Windmiller, Wang (bib64) 2013; 25 Hasegawa, Savory, Abe, Ikebukuro (bib22) 2016; 21 Koh, Kang, Xue, Lee, Pielak, Kim, Hwang, Min, Banks, Bastien, Manco, Wang, Ammann, Jang, Won, Han, Ghaffari, Paik, Slepian, Balooch, Huang, Rogers (bib35) 2016; 8 Katchman, Zhu, Christen, Anderson (bib30) 2018; 12 Baker (bib3) 2019; 6 Dang, Manjakkal, Navaraj, Lorenzelli, Vinciguerra, Dahiya (bib11) 2018; 107 Saeed (bib48) 2014; 6 Chrousos (bib9) 2009; 5 huber (bib26) 2016 Brasier, Eckstein (bib6) 2019; 3 Russell, Koren, Rieder, Van Uum (bib47) 2014; 36 Zeng, Peng, Fan, Lin (bib71) 2022; 23 Nyein, Tai, Ngo, Chao, Zhang, Gao, Bariya, Bullock, Kim, Fahad, Javey (bib39) 2018; 3 Drolen, Conklin, Hetterich, Krishnamurthy, Andrade, Dimeglio, Martin, Tran, Yap, Rosenthal, Young (bib13) 2018; 140 Ju, Zhou, Cai, Chen (bib29) 1995; 7 Chen, Tang, Meng, Liu, Wang, Geng, Wu, Qu, Li (bib8) 2020; 56 Plaxco, Soh (bib45) 2011; 29 Robergs, Ghiasvand, Parker (bib46) 2004; 287 Sanjay, Singh, Ngashangva, Goswami (bib51) 2020; 12 Belleperche, DeRosa (bib5) 2018; 11 Martín, Kim, Kurniawan, Sempionatto, Moreto, Tang, Campbell, Shin, Lee, Liu, Wang (bib37) 2017; 2 Stone, Schwartz, Smyth, Kirschbaum, Cohen, Hellhammer, Grossman (bib60) 2001; 26 Heikenfeld (bib23) 2016; 28 Sempionatto, Nakagawa, Pavinatto, Mensah, Imani, Mercier, Wang (bib53) 2017; 17 Xu, Zhang, Jia, Mathewson, Jang, Kim, Fu, Huang, Chava, Wang, Bhole, Wang, Na, Guan, Flavin, Han, Huang, Rogers (bib66) 2014; 344 Gordon, Eisenstein, Soh (bib21) 2018; 3 Mahmud (10.1016/j.bios.2023.115097_bib36) 2018 Brasier (10.1016/j.bios.2023.115097_bib6) 2019; 3 Chen (10.1016/j.bios.2023.115097_bib8) 2020; 56 Ferguson (10.1016/j.bios.2023.115097_bib16) 2013; 5 Sakihara (10.1016/j.bios.2023.115097_bib49) 2010; 57 Yasuda (10.1016/j.bios.2023.115097_bib68) 1996; 17 Kinnamon (10.1016/j.bios.2023.115097_bib32) 2017; 7 Windmiller (10.1016/j.bios.2023.115097_bib64) 2013; 25 Robergs (10.1016/j.bios.2023.115097_bib46) 2004; 287 Gao (10.1016/j.bios.2023.115097_bib19) 2016; 529 Heikenfeld (10.1016/j.bios.2023.115097_bib23) 2016; 28 Anastasova (10.1016/j.bios.2023.115097_bib2) 2017; 93 Vinoth (10.1016/j.bios.2023.115097_bib61) 2021; 6 Ghaffari (10.1016/j.bios.2023.115097_bib20) 2021; 6 Plaxco (10.1016/j.bios.2023.115097_bib45) 2011; 29 Chrousos (10.1016/j.bios.2023.115097_bib9) 2009; 5 Fernandez (10.1016/j.bios.2023.115097_bib17) 2017; 7 Sanjay (10.1016/j.bios.2023.115097_bib51) 2020; 12 Wang (10.1016/j.bios.2023.115097_bib62) 2022; 8 Wang (10.1016/j.bios.2023.115097_bib63) 2022; 6 Saeed (10.1016/j.bios.2023.115097_bib48) 2014; 6 Jiang (10.1016/j.bios.2023.115097_bib28) 2015; 87 Patel (10.1016/j.bios.2023.115097_bib43) 2012; 9 Katchman (10.1016/j.bios.2023.115097_bib30) 2018; 12 Singh (10.1016/j.bios.2023.115097_bib56) 2019; 91 Xu (10.1016/j.bios.2023.115097_bib66) 2014; 344 Russell (10.1016/j.bios.2023.115097_bib47) 2014; 36 Gordon (10.1016/j.bios.2023.115097_bib21) 2018; 3 Knutsson (10.1016/j.bios.2023.115097_bib34) 1997; 82 Singh (10.1016/j.bios.2023.115097_bib58) 2021; 113111 Bandodkar (10.1016/j.bios.2023.115097_bib4) 2016; 16 Samson (10.1016/j.bios.2023.115097_bib50) 2020; 8 Shaver (10.1016/j.bios.2023.115097_bib54) 2021; 37 Oncescu (10.1016/j.bios.2023.115097_bib40) 2013; 13 Nyein (10.1016/j.bios.2023.115097_bib39) 2018; 3 Pali (10.1016/j.bios.2023.115097_bib41) 2021; 390 Etiwy (10.1016/j.bios.2023.115097_bib14) 2019; 9 Herrmann (10.1016/j.bios.2023.115097_bib24) 1955; 24 Yang (10.1016/j.bios.2023.115097_bib67) 2017; 12 Zeng (10.1016/j.bios.2023.115097_bib71) 2022; 23 Brunetti B (10.1016/j.bios.2023.115097_bib7) 2015 Drolen (10.1016/j.bios.2023.115097_bib13) 2018; 140 Ju (10.1016/j.bios.2023.115097_bib29) 1995; 7 Yokus (10.1016/j.bios.2023.115097_bib70) 2020; 153 huber (10.1016/j.bios.2023.115097_bib26) 2016 Stone (10.1016/j.bios.2023.115097_bib60) 2001; 26 Yasuda (10.1016/j.bios.2023.115097_bib69) 2005; 7 An (10.1016/j.bios.2023.115097_bib1) 2022; 7 Hu (10.1016/j.bios.2023.115097_bib25) 2014; 86 Mugo (10.1016/j.bios.2023.115097_bib38) 2021; 13 Singh (10.1016/j.bios.2023.115097_bib59) 2021; 38 Kintz (10.1016/j.bios.2023.115097_bib33) 1996; 20 Schoukroun-Barnes (10.1016/j.bios.2023.115097_bib52) 2016; 9 Koh (10.1016/j.bios.2023.115097_bib35) 2016; 8 Wu (10.1016/j.bios.2023.115097_bib65) 2005; 5 Francis (10.1016/j.bios.2023.115097_bib18) 2018; 19 Singh (10.1016/j.bios.2023.115097_bib57) 2021; 6 Dang (10.1016/j.bios.2023.115097_bib11) 2018; 107 Martín (10.1016/j.bios.2023.115097_bib37) 2017; 2 De Giovanni (10.1016/j.bios.2023.115097_bib12) 2013; 20 Shida (10.1016/j.bios.2023.115097_bib55) 2020; 15 Patterson (10.1016/j.bios.2023.115097_bib44) 2000; 85 Baker (10.1016/j.bios.2023.115097_bib3) 2019; 6 Chung (10.1016/j.bios.2023.115097_bib10) 2021; 9 Humpolicek (10.1016/j.bios.2023.115097_bib27) 2012; 162 Zhen (10.1016/j.bios.2023.115097_bib72) 2020; 15 Sempionatto (10.1016/j.bios.2023.115097_bib53) 2017; 17 Belleperche (10.1016/j.bios.2023.115097_bib5) 2018; 11 Fan (10.1016/j.bios.2023.115097_bib15) 2022; 353 Hasegawa (10.1016/j.bios.2023.115097_bib22) 2016; 21 Kim (10.1016/j.bios.2023.115097_bib31) 2016; 1 Parlak (10.1016/j.bios.2023.115097_bib42) 2018; 4 |
References_xml | – volume: 4 year: 2018 ident: bib42 article-title: Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing publication-title: Sci. Adv. – volume: 5 start-page: 1393 year: 2005 end-page: 1398 ident: bib65 article-title: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding publication-title: Lab Chip – volume: 390 year: 2021 ident: bib41 article-title: CATCH (cortisol apta WATCH): ‘bio-mimic alarm’ to track anxiety, stress, immunity in human sweat publication-title: Electrochim. Acta – volume: 87 start-page: 3094 year: 2015 end-page: 3098 ident: bib28 article-title: Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum publication-title: Anal. Chem. – volume: 8 year: 2022 ident: bib62 article-title: Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring publication-title: Sci. Adv. – volume: 82 start-page: 536 year: 1997 end-page: 540 ident: bib34 article-title: Circadian cortisol rhythms in healthy boys and girls: relationship with age, growth, body composition, and pubertal development publication-title: J. Clin. Endocrinol. Metab. – volume: 6 start-page: 27888 year: 2021 end-page: 27897 ident: bib57 article-title: Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer publication-title: ACS Omega – volume: 28 start-page: 1242 year: 2016 end-page: 1249 ident: bib23 article-title: Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016 publication-title: Electroanalysis – volume: 37 start-page: 5213 year: 2021 end-page: 5221 ident: bib54 article-title: Nuclease hydrolysis does not drive the rapid signaling decay of DNA aptamer-based electrochemical sensors in biological fluids publication-title: Langmuir – volume: 113111 year: 2021 ident: bib58 article-title: Hitting the diagnostic sweet spot: point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer publication-title: Biosens. Bioelectron. – volume: 13 start-page: 3232 year: 2013 end-page: 3238 ident: bib40 article-title: Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva publication-title: Lab Chip – volume: 153 year: 2020 ident: bib70 article-title: Wearable multiplexed biosensor system toward continuous monitoring of metabolites publication-title: Biosens. Bioelectron. – volume: 93 start-page: 139 year: 2017 end-page: 145 ident: bib2 article-title: A wearable multisensing patch for continuous sweat monitoring publication-title: Biosens. Bioelectron., Special Issue Selected papers from the 26th Anniversary World Congress on Biosensors (Part II) – volume: 1 start-page: 1011 year: 2016 end-page: 1019 ident: bib31 article-title: Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system publication-title: ACS Sens. – volume: 29 start-page: 1 year: 2011 end-page: 5 ident: bib45 article-title: Switch-based biosensors: a new approach towards real-time, in vivo molecular detection publication-title: Trends Biotechnol. – volume: 7 start-page: 274 year: 2005 end-page: 277 ident: bib69 article-title: Clinical applications of DNase I, a genetic marker already used for forensic identification publication-title: Leg. Med. – volume: 5 year: 2013 ident: bib16 article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals publication-title: Sci. Transl. Med. – volume: 13 start-page: 4169 year: 2021 end-page: 4173 ident: bib38 article-title: Flexible electrochemical aptasensor for cortisol detection in human sweat publication-title: Anal. Methods – volume: 17 start-page: 1834 year: 2017 end-page: 1842 ident: bib53 article-title: Eyeglasses based wireless electrolyte and metabolite sensor platform publication-title: Lab Chip – volume: 6 start-page: 1174 year: 2021 end-page: 1186 ident: bib61 article-title: Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis publication-title: ACS Sens. – volume: 24 start-page: 225 year: 1955 end-page: 246 ident: bib24 article-title: Studies of ph of sweat produced by different forms of stimulation publication-title: J. Invest. Dermatol. – volume: 91 start-page: 4213 year: 2019 end-page: 4221 ident: bib56 article-title: Dye coupled aptamer-captured enzyme catalyzed reaction for detection of Pan malaria and P. Falciparum species in laboratory settings and instrument-free paper-based platform publication-title: Anal. Chem. – volume: 12 start-page: 3103 year: 2017 end-page: 3112 ident: bib67 article-title: High-affinity nucleic-acid-based receptors for steroids publication-title: ACS Chem. Biol. – volume: 140 start-page: 10169 year: 2018 end-page: 10178 ident: bib13 article-title: pH-driven mechanistic switching from electron transfer to energy transfer between [Ru(bpy)3]2+ and ferrocene derivatives publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 262 year: 2019 end-page: 271 ident: bib14 article-title: Accuracy of wearable heart rate monitors in cardiac rehabilitation publication-title: Cardiovasc. Diagn. Ther. – year: 2015 ident: bib7 article-title: About estimating the limit of detection by the signal to noise approach publication-title: Pharm. Anal. Acta – volume: 3 start-page: 2574 year: 2018 end-page: 2580 ident: bib21 article-title: Direct selection strategy for isolating aptamers with pH-sensitive binding activity publication-title: ACS Sens. – volume: 9 start-page: 21 year: 2012 ident: bib43 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. NeuroEng. Rehabil. – volume: 15 year: 2020 ident: bib55 article-title: Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation publication-title: PLoS One – volume: 9 start-page: 163 year: 2016 end-page: 181 ident: bib52 article-title: Reagentless, structure-switching, electrochemical aptamer-based sensors publication-title: Annu. Rev. Anal. Chem. – volume: 6 start-page: 211 year: 2019 end-page: 259 ident: bib3 article-title: Physiology of sweat gland function: the roles of sweating and sweat composition in human health publication-title: Temp. Multidiscip. Biomed. J. – volume: 6 start-page: 2787 year: 2021 end-page: 2801 ident: bib20 article-title: State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics publication-title: ACS Sens. – year: 2016 ident: bib26 article-title: Continuous Glucose Monitoring (CGM) | 24 Hour Glucose Monitor [WWW Document]. Dexcom – volume: 56 start-page: 9024 year: 2020 end-page: 9027 ident: bib8 article-title: Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes publication-title: Chem. Commun. Camb. Engl. – volume: 12 year: 2018 ident: bib30 article-title: Eccrine sweat as a biofluid for profiling immune biomarkers. PROTEOMICS – clin publication-title: Apple – volume: 23 year: 2022 ident: bib71 article-title: Self-powered and wearable biosensors for healthcare publication-title: Mater. Today Energy – volume: 8 year: 2016 ident: bib35 article-title: A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat publication-title: Sci. Transl. Med. – volume: 7 year: 2017 ident: bib32 article-title: Portable biosensor for monitoring cortisol in low-volume perspired human sweat publication-title: Sci. Rep. – volume: 8 year: 2020 ident: bib50 article-title: Stress monitoring and recent advancements in wearable biosensors publication-title: Front. Bioeng. Biotechnol. – volume: 7 start-page: 99 year: 2022 end-page: 108 ident: bib1 article-title: Wearable cortisol aptasensor for simple and rapid real-time monitoring publication-title: ACS Sens. – volume: 86 start-page: 5009 year: 2014 end-page: 5016 ident: bib25 article-title: Multicolor fluorescent biosensor for multiplexed detection of DNA publication-title: Anal. Chem. – volume: 17 start-page: 1253 year: 1996 end-page: 1256 ident: bib68 article-title: Successful deoxyribonuclease I (DNase I) phenotyping from a small piece of used sock publication-title: Electrophoresis – start-page: 784 year: 2018 end-page: 788 ident: bib36 article-title: Automatic detection of opioid intake using wearable biosensor publication-title: Int. Conf. Comput. Netw. Commun. Proc. Int. Conf. Comput. Netw. Commun. – volume: 25 start-page: 29 year: 2013 end-page: 46 ident: bib64 article-title: Wearable electrochemical sensors and biosensors: a review publication-title: Electroanalysis – volume: 107 start-page: 192 year: 2018 end-page: 202 ident: bib11 article-title: Stretchable wireless system for sweat pH monitoring publication-title: Biosens. Bioelectron. – volume: 529 start-page: 509 year: 2016 end-page: 514 ident: bib19 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature – volume: 85 start-page: 869 year: 2000 end-page: 875 ident: bib44 article-title: Variations in regional sweat composition in normal human males publication-title: Exp. Physiol. – volume: 11 start-page: 80 year: 2018 ident: bib5 article-title: pH-control in aptamer-based diagnostics, therapeutics, and analytical applications publication-title: Pharmaceuticals – volume: 20 start-page: 393 year: 1996 end-page: 397 ident: bib33 article-title: Sweat testing in opioid users with a sweat patch publication-title: J. Anal. Toxicol. – volume: 7 start-page: 1165 year: 1995 end-page: 1170 ident: bib29 article-title: The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode publication-title: Electroanalysis – volume: 3 start-page: 155 year: 2019 end-page: 165 ident: bib6 article-title: Sweat as a source of next-generation digital biomarkers publication-title: Digit. Biomark. – volume: 7 year: 2017 ident: bib17 article-title: Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients publication-title: Sci. Rep. – volume: 16 start-page: 721 year: 2016 end-page: 727 ident: bib4 article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability publication-title: Nano Lett. – volume: 9 year: 2021 ident: bib10 article-title: Development of a soluble KIT electrochemical aptasensor for cancer theranostics publication-title: ACS Sens. – volume: 20 start-page: 545 year: 2013 end-page: 561 ident: bib12 article-title: The current status of sweat testing for drugs of abuse: a review publication-title: Curr. Med. Chem. – volume: 19 start-page: 178 year: 2018 end-page: 185 ident: bib18 article-title: Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement publication-title: Lab Chip – volume: 344 start-page: 70 year: 2014 end-page: 74 ident: bib66 article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin publication-title: Science – volume: 162 start-page: 722 year: 2012 end-page: 727 ident: bib27 article-title: Biocompatibility of polyaniline publication-title: Synth. Met. – volume: 3 start-page: 944 year: 2018 end-page: 952 ident: bib39 article-title: A wearable microfluidic sensing patch for dynamic sweat secretion analysis publication-title: ACS Sens. – volume: 287 start-page: R502 year: 2004 end-page: R516 ident: bib46 article-title: Biochemistry of exercise-induced metabolic acidosis publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 12 start-page: 1333 year: 2020 end-page: 1341 ident: bib51 article-title: A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase publication-title: Anal. Methods – volume: 2 start-page: 1860 year: 2017 end-page: 1868 ident: bib37 article-title: Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection publication-title: ACS Sens. – volume: 21 start-page: 421 year: 2016 ident: bib22 article-title: Methods for improving aptamer binding affinity publication-title: Mol. Basel Switz. – volume: 36 start-page: 30 year: 2014 end-page: 34 ident: bib47 article-title: The detection of cortisol in human sweat: implications for measurement of cortisol in hair publication-title: Ther. Drug Monit. – volume: 26 start-page: 295 year: 2001 end-page: 306 ident: bib60 article-title: Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals publication-title: Psychoneuroendocrinology – volume: 38 year: 2021 ident: bib59 article-title: Dataset on optimization and development of a point-of-care glucometer-based SARS-CoV-2 detection assay using aptamers publication-title: Data Brief – volume: 5 start-page: 374 year: 2009 end-page: 381 ident: bib9 article-title: Stress and disorders of the stress system publication-title: Nat. Rev. Endocrinol. – volume: 353 year: 2022 ident: bib15 article-title: Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein publication-title: Sensor. Actuator. B Chem. – volume: 57 start-page: 331 year: 2010 end-page: 337 ident: bib49 article-title: Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of cushing's syndrome publication-title: Endocr. J. – volume: 15 year: 2020 ident: bib72 article-title: Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection publication-title: PLoS One – volume: 6 start-page: 940 year: 2014 end-page: 957 ident: bib48 article-title: The kinetics of electron transfer reaction of methylene blue and titanium trichloride in different solvents publication-title: J. Adv. Chem. – volume: 6 start-page: 1225 year: 2022 end-page: 1235 ident: bib63 article-title: A wearable electrochemical biosensor for the monitoring of metabolites and nutrients publication-title: Nat. Biomed. Eng. – volume: 5 year: 2013 ident: 10.1016/j.bios.2023.115097_bib16 article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007095 – volume: 13 start-page: 3232 year: 2013 ident: 10.1016/j.bios.2023.115097_bib40 article-title: Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva publication-title: Lab Chip doi: 10.1039/c3lc50431j – volume: 29 start-page: 1 year: 2011 ident: 10.1016/j.bios.2023.115097_bib45 article-title: Switch-based biosensors: a new approach towards real-time, in vivo molecular detection publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.10.005 – volume: 28 start-page: 1242 year: 2016 ident: 10.1016/j.bios.2023.115097_bib23 article-title: Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016 publication-title: Electroanalysis doi: 10.1002/elan.201600018 – volume: 7 start-page: 274 year: 2005 ident: 10.1016/j.bios.2023.115097_bib69 article-title: Clinical applications of DNase I, a genetic marker already used for forensic identification publication-title: Leg. Med. doi: 10.1016/j.legalmed.2004.10.008 – year: 2016 ident: 10.1016/j.bios.2023.115097_bib26 – volume: 8 year: 2020 ident: 10.1016/j.bios.2023.115097_bib50 article-title: Stress monitoring and recent advancements in wearable biosensors publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.01037 – volume: 7 start-page: 1165 year: 1995 ident: 10.1016/j.bios.2023.115097_bib29 article-title: The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode publication-title: Electroanalysis doi: 10.1002/elan.1140071213 – volume: 162 start-page: 722 year: 2012 ident: 10.1016/j.bios.2023.115097_bib27 article-title: Biocompatibility of polyaniline publication-title: Synth. Met. doi: 10.1016/j.synthmet.2012.02.024 – volume: 6 start-page: 211 year: 2019 ident: 10.1016/j.bios.2023.115097_bib3 article-title: Physiology of sweat gland function: the roles of sweating and sweat composition in human health publication-title: Temp. Multidiscip. Biomed. J. – volume: 3 start-page: 155 year: 2019 ident: 10.1016/j.bios.2023.115097_bib6 article-title: Sweat as a source of next-generation digital biomarkers publication-title: Digit. Biomark. doi: 10.1159/000504387 – volume: 15 year: 2020 ident: 10.1016/j.bios.2023.115097_bib72 article-title: Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection publication-title: PLoS One doi: 10.1371/journal.pone.0244297 – volume: 56 start-page: 9024 year: 2020 ident: 10.1016/j.bios.2023.115097_bib8 article-title: Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes publication-title: Chem. Commun. Camb. Engl. doi: 10.1039/D0CC02337J – volume: 4 year: 2018 ident: 10.1016/j.bios.2023.115097_bib42 article-title: Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.aar2904 – volume: 5 start-page: 1393 year: 2005 ident: 10.1016/j.bios.2023.115097_bib65 article-title: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding publication-title: Lab Chip doi: 10.1039/b510494g – volume: 6 start-page: 940 year: 2014 ident: 10.1016/j.bios.2023.115097_bib48 article-title: The kinetics of electron transfer reaction of methylene blue and titanium trichloride in different solvents publication-title: J. Adv. Chem. doi: 10.24297/jac.v6i2.6583 – volume: 7 year: 2017 ident: 10.1016/j.bios.2023.115097_bib17 article-title: Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients publication-title: Sci. Rep. doi: 10.1038/s41598-017-17835-8 – volume: 86 start-page: 5009 year: 2014 ident: 10.1016/j.bios.2023.115097_bib25 article-title: Multicolor fluorescent biosensor for multiplexed detection of DNA publication-title: Anal. Chem. doi: 10.1021/ac500618v – volume: 36 start-page: 30 year: 2014 ident: 10.1016/j.bios.2023.115097_bib47 article-title: The detection of cortisol in human sweat: implications for measurement of cortisol in hair publication-title: Ther. Drug Monit. doi: 10.1097/FTD.0b013e31829daa0a – volume: 6 start-page: 1174 year: 2021 ident: 10.1016/j.bios.2023.115097_bib61 article-title: Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis publication-title: ACS Sens. doi: 10.1021/acssensors.0c02446 – volume: 82 start-page: 536 year: 1997 ident: 10.1016/j.bios.2023.115097_bib34 article-title: Circadian cortisol rhythms in healthy boys and girls: relationship with age, growth, body composition, and pubertal development publication-title: J. Clin. Endocrinol. Metab. – volume: 20 start-page: 545 year: 2013 ident: 10.1016/j.bios.2023.115097_bib12 article-title: The current status of sweat testing for drugs of abuse: a review publication-title: Curr. Med. Chem. – volume: 37 start-page: 5213 year: 2021 ident: 10.1016/j.bios.2023.115097_bib54 article-title: Nuclease hydrolysis does not drive the rapid signaling decay of DNA aptamer-based electrochemical sensors in biological fluids publication-title: Langmuir doi: 10.1021/acs.langmuir.1c00166 – volume: 57 start-page: 331 year: 2010 ident: 10.1016/j.bios.2023.115097_bib49 article-title: Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of cushing's syndrome publication-title: Endocr. J. doi: 10.1507/endocrj.K09E-340 – volume: 12 start-page: 1333 year: 2020 ident: 10.1016/j.bios.2023.115097_bib51 article-title: A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase publication-title: Anal. Methods doi: 10.1039/C9AY02406A – volume: 17 start-page: 1253 year: 1996 ident: 10.1016/j.bios.2023.115097_bib68 article-title: Successful deoxyribonuclease I (DNase I) phenotyping from a small piece of used sock publication-title: Electrophoresis doi: 10.1002/elps.1150170714 – volume: 153 year: 2020 ident: 10.1016/j.bios.2023.115097_bib70 article-title: Wearable multiplexed biosensor system toward continuous monitoring of metabolites publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112038 – volume: 107 start-page: 192 year: 2018 ident: 10.1016/j.bios.2023.115097_bib11 article-title: Stretchable wireless system for sweat pH monitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.02.025 – volume: 6 start-page: 27888 year: 2021 ident: 10.1016/j.bios.2023.115097_bib57 article-title: Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer publication-title: ACS Omega doi: 10.1021/acsomega.1c03552 – volume: 7 year: 2017 ident: 10.1016/j.bios.2023.115097_bib32 article-title: Portable biosensor for monitoring cortisol in low-volume perspired human sweat publication-title: Sci. Rep. doi: 10.1038/s41598-017-13684-7 – start-page: 784 year: 2018 ident: 10.1016/j.bios.2023.115097_bib36 article-title: Automatic detection of opioid intake using wearable biosensor – volume: 7 start-page: 99 year: 2022 ident: 10.1016/j.bios.2023.115097_bib1 article-title: Wearable cortisol aptasensor for simple and rapid real-time monitoring publication-title: ACS Sens. doi: 10.1021/acssensors.1c01734 – volume: 17 start-page: 1834 year: 2017 ident: 10.1016/j.bios.2023.115097_bib53 article-title: Eyeglasses based wireless electrolyte and metabolite sensor platform publication-title: Lab Chip doi: 10.1039/C7LC00192D – volume: 93 start-page: 139 year: 2017 ident: 10.1016/j.bios.2023.115097_bib2 article-title: A wearable multisensing patch for continuous sweat monitoring publication-title: Biosens. Bioelectron., Special Issue Selected papers from the 26th Anniversary World Congress on Biosensors (Part II) – volume: 12 year: 2018 ident: 10.1016/j.bios.2023.115097_bib30 article-title: Eccrine sweat as a biofluid for profiling immune biomarkers. PROTEOMICS – clin publication-title: Apple – volume: 11 start-page: 80 year: 2018 ident: 10.1016/j.bios.2023.115097_bib5 article-title: pH-control in aptamer-based diagnostics, therapeutics, and analytical applications publication-title: Pharmaceuticals doi: 10.3390/ph11030080 – volume: 20 start-page: 393 year: 1996 ident: 10.1016/j.bios.2023.115097_bib33 article-title: Sweat testing in opioid users with a sweat patch publication-title: J. Anal. Toxicol. doi: 10.1093/jat/20.6.393 – volume: 13 start-page: 4169 year: 2021 ident: 10.1016/j.bios.2023.115097_bib38 article-title: Flexible electrochemical aptasensor for cortisol detection in human sweat publication-title: Anal. Methods doi: 10.1039/D1AY01233A – volume: 15 year: 2020 ident: 10.1016/j.bios.2023.115097_bib55 article-title: Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation publication-title: PLoS One doi: 10.1371/journal.pone.0218910 – volume: 2 start-page: 1860 year: 2017 ident: 10.1016/j.bios.2023.115097_bib37 article-title: Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection publication-title: ACS Sens. doi: 10.1021/acssensors.7b00729 – volume: 5 start-page: 374 year: 2009 ident: 10.1016/j.bios.2023.115097_bib9 article-title: Stress and disorders of the stress system publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2009.106 – volume: 9 start-page: 163 year: 2016 ident: 10.1016/j.bios.2023.115097_bib52 article-title: Reagentless, structure-switching, electrochemical aptamer-based sensors publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-071015-041446 – volume: 25 start-page: 29 year: 2013 ident: 10.1016/j.bios.2023.115097_bib64 article-title: Wearable electrochemical sensors and biosensors: a review publication-title: Electroanalysis doi: 10.1002/elan.201200349 – volume: 8 year: 2022 ident: 10.1016/j.bios.2023.115097_bib62 article-title: Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring publication-title: Sci. Adv. – volume: 12 start-page: 3103 year: 2017 ident: 10.1016/j.bios.2023.115097_bib67 article-title: High-affinity nucleic-acid-based receptors for steroids publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00634 – volume: 16 start-page: 721 year: 2016 ident: 10.1016/j.bios.2023.115097_bib4 article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04549 – volume: 529 start-page: 509 year: 2016 ident: 10.1016/j.bios.2023.115097_bib19 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature doi: 10.1038/nature16521 – volume: 353 year: 2022 ident: 10.1016/j.bios.2023.115097_bib15 article-title: Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2021.131100 – volume: 19 start-page: 178 year: 2018 ident: 10.1016/j.bios.2023.115097_bib18 article-title: Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement publication-title: Lab Chip doi: 10.1039/C8LC00968F – volume: 26 start-page: 295 year: 2001 ident: 10.1016/j.bios.2023.115097_bib60 article-title: Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals publication-title: Psychoneuroendocrinology doi: 10.1016/S0306-4530(00)00057-3 – volume: 3 start-page: 944 year: 2018 ident: 10.1016/j.bios.2023.115097_bib39 article-title: A wearable microfluidic sensing patch for dynamic sweat secretion analysis publication-title: ACS Sens. doi: 10.1021/acssensors.7b00961 – volume: 140 start-page: 10169 year: 2018 ident: 10.1016/j.bios.2023.115097_bib13 article-title: pH-driven mechanistic switching from electron transfer to energy transfer between [Ru(bpy)3]2+ and ferrocene derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03933 – volume: 9 start-page: 262 year: 2019 ident: 10.1016/j.bios.2023.115097_bib14 article-title: Accuracy of wearable heart rate monitors in cardiac rehabilitation publication-title: Cardiovasc. Diagn. Ther. doi: 10.21037/cdt.2019.04.08 – volume: 390 year: 2021 ident: 10.1016/j.bios.2023.115097_bib41 article-title: CATCH (cortisol apta WATCH): ‘bio-mimic alarm’ to track anxiety, stress, immunity in human sweat publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138834 – volume: 38 year: 2021 ident: 10.1016/j.bios.2023.115097_bib59 article-title: Dataset on optimization and development of a point-of-care glucometer-based SARS-CoV-2 detection assay using aptamers publication-title: Data Brief doi: 10.1016/j.dib.2021.107278 – volume: 6 start-page: 2787 year: 2021 ident: 10.1016/j.bios.2023.115097_bib20 article-title: State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics publication-title: ACS Sens. doi: 10.1021/acssensors.1c01133 – volume: 287 start-page: R502 year: 2004 ident: 10.1016/j.bios.2023.115097_bib46 article-title: Biochemistry of exercise-induced metabolic acidosis publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00114.2004 – volume: 9 year: 2021 ident: 10.1016/j.bios.2023.115097_bib10 article-title: Development of a soluble KIT electrochemical aptasensor for cancer theranostics publication-title: ACS Sens. – volume: 3 start-page: 2574 year: 2018 ident: 10.1016/j.bios.2023.115097_bib21 article-title: Direct selection strategy for isolating aptamers with pH-sensitive binding activity publication-title: ACS Sens. doi: 10.1021/acssensors.8b00945 – volume: 1 start-page: 1011 year: 2016 ident: 10.1016/j.bios.2023.115097_bib31 article-title: Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system publication-title: ACS Sens. doi: 10.1021/acssensors.6b00356 – volume: 113111 year: 2021 ident: 10.1016/j.bios.2023.115097_bib58 article-title: Hitting the diagnostic sweet spot: point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer publication-title: Biosens. Bioelectron. – volume: 344 start-page: 70 year: 2014 ident: 10.1016/j.bios.2023.115097_bib66 article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin publication-title: Science doi: 10.1126/science.1250169 – volume: 21 start-page: 421 year: 2016 ident: 10.1016/j.bios.2023.115097_bib22 article-title: Methods for improving aptamer binding affinity publication-title: Mol. Basel Switz. – volume: 9 start-page: 21 year: 2012 ident: 10.1016/j.bios.2023.115097_bib43 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-9-21 – year: 2015 ident: 10.1016/j.bios.2023.115097_bib7 article-title: About estimating the limit of detection by the signal to noise approach publication-title: Pharm. Anal. Acta doi: 10.4172/2153-2435.1000355 – volume: 24 start-page: 225 year: 1955 ident: 10.1016/j.bios.2023.115097_bib24 article-title: Studies of ph of sweat produced by different forms of stimulation publication-title: J. Invest. Dermatol. doi: 10.1038/jid.1955.36 – volume: 8 year: 2016 ident: 10.1016/j.bios.2023.115097_bib35 article-title: A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf2593 – volume: 87 start-page: 3094 year: 2015 ident: 10.1016/j.bios.2023.115097_bib28 article-title: Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00041 – volume: 91 start-page: 4213 year: 2019 ident: 10.1016/j.bios.2023.115097_bib56 article-title: Dye coupled aptamer-captured enzyme catalyzed reaction for detection of Pan malaria and P. Falciparum species in laboratory settings and instrument-free paper-based platform publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00670 – volume: 85 start-page: 869 year: 2000 ident: 10.1016/j.bios.2023.115097_bib44 article-title: Variations in regional sweat composition in normal human males publication-title: Exp. Physiol. doi: 10.1111/j.1469-445X.2000.02058.x – volume: 23 year: 2022 ident: 10.1016/j.bios.2023.115097_bib71 article-title: Self-powered and wearable biosensors for healthcare publication-title: Mater. Today Energy – volume: 6 start-page: 1225 year: 2022 ident: 10.1016/j.bios.2023.115097_bib63 article-title: A wearable electrochemical biosensor for the monitoring of metabolites and nutrients publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00916-z |
SSID | ssj0007190 |
Score | 2.5942187 |
Snippet | Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115097 |
SubjectTerms | Aptamers, Nucleotide biomarkers biosensors Cortisol detection limit Electrochemical aptasensor Electrochemistry Electrodes heart rate homeostasis hospitals Humans Hydrocortisone - analysis Hydrogen-Ion Concentration lifestyle Limit of Detection Microfluidic Microfluidics - instrumentation Microfluidics - methods Microfluidics - standards Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Monitoring, Physiologic - standards oligonucleotides prognosis Pseudoknot aptamer Reproducibility of Results Sensitivity and Specificity Stress, Psychological - physiopathology sweat Sweat - chemistry Sweat monitoring violence Wearable Electronic Devices - standards Wearable sensor |
Title | A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer |
URI | https://dx.doi.org/10.1016/j.bios.2023.115097 https://www.ncbi.nlm.nih.gov/pubmed/36858023 https://www.proquest.com/docview/2781619123 https://www.proquest.com/docview/3153782498 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9xADLUQFVI5oAItXVrQIHGrht0kk03muEJFCwgugMQtmk8Ihd0IslS98NuxMwkFCThwTORJJmNn_Jw82wDbihIYY5Fyk6eGC2tjLkXkuaSGkJHVybAhjx8dD8dn4uA8PZ-D3S4XhmiV7d4f9vRmt27P9NvV7Fdl2T-hEnoIRhIE0ZRhSgm_QmRk5TsP_2keWRS-s1C9PZJuE2cCx0uXUyrZHSc7BIyo8NPrzukt8Nk4ob0vsNSiRzYKE1yGOTdZgYXQT_LfCiw-qy64ClcjhrE9Lyf3ijjq7C8aNSVKsZAfwirchS8ZglaGwPGaU5d5hrFoXaI5spvmXacLMaLGXzDFqjs3s9M_k2nNEXGTeVimqlrduNuvcLb3-3R3zNvWCtxgiFNzPxx4pZSItDfOoD6UkwmCH5drJ7xw3grrfKSNG_hIiWSgBlLb3LjYWxdnJvkG8_gI7jswrSLjpfQ68RicSauG1uVZhmr2qcqF6EHUrWlh2rrj1P7iuugIZlcF6aEgPRRBDz349TSmClU33pVOO1UVL2ynQLfw7ritTq8FvlT0p0RN3HSGQlmOSFiiV39bJkFfgfBKyLwHa8EonubaVPXHG61_cGY_4DMdBWLlT5ivb2duA8FPrTcb696ET6P9w_HxI8UMBYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVAg4VFAeDS2wSNzQkthex95jVLVKaZsLrdTbap_g0iZW64D498x47Qgk2gNXe9de74xnvrFnvgH4oKmAMRU5t2VuuXAu5VIkgUtqCJk4k03a5PHT-WR2Lj5f5BcbsN_XwlBaZWf7o01vrXV3ZNTt5qiuqtEXotBDMJIhiKYK0_IBbBI7VT6AzenR8Wy-NshFEj-1EOUeTehqZ2Kal6mWxNqdZp8IGxH307_90134s_VDh09hqwOQbBrX-Aw2_GIbHsaWkr-24ckfBIPP4XLKMLzn1eKHpjR19hP1mmqlWCwRYTUa4m8McStD7HjFqdE8w3C0qVAj2XX7utOFGGXHf2Wa1bd-5ZbfF8uGI-gmDXFM142-9jcv4Pzw4Gx_xrvuCtxilNPwMBkHrbVITLDeoki0lxniH18aL4LwwQnnQ2KsH4dEi2ysx9K40vo0OJ8WNnsJA3wEvwPM6MQGKYPJAsZn0umJ82VRoKRDrkshhpD0e6psRz1OHTCuVJ9jdqlIDorkoKIchvBxPaeOxBv3js57Uam_1EehZ7h33vtergrfK_pZohd-ucJBRYlgWKJjv3tMhu4CEZaQ5RBeRaVYr7Ul9scbvf7Plb2DR7Oz0xN1cjQ_3oXHdCbmWe7BoLlZ-TeIhRrzttP1360_CD0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-invasive+wearable+stress+patch+for+real-time+cortisol+monitoring+using+a+pseudoknot-assisted+aptamer&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Singh%2C+Naveen+K&rft.au=Chung%2C+Saeromi&rft.au=Chang%2C+An-Yi&rft.au=Wang%2C+Joseph&rft.date=2023-05-01&rft.eissn=1873-4235&rft.volume=227&rft.spage=115097&rft_id=info:doi/10.1016%2Fj.bios.2023.115097&rft_id=info%3Apmid%2F36858023&rft.externalDocID=36858023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |