A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer

Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is oft...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 227; p. 115097
Main Authors Singh, Naveen K., Chung, Saeromi, Chang, An-Yi, Wang, Joseph, Hall, Drew A.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. [Display omitted]
AbstractList Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.
Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.
Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.
Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments. [Display omitted]
ArticleNumber 115097
Author Chang, An-Yi
Chung, Saeromi
Singh, Naveen K.
Wang, Joseph
Hall, Drew A.
Author_xml – sequence: 1
  givenname: Naveen K.
  orcidid: 0000-0002-2197-052X
  surname: Singh
  fullname: Singh, Naveen K.
  organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA
– sequence: 2
  givenname: Saeromi
  orcidid: 0000-0002-6389-9709
  surname: Chung
  fullname: Chung, Saeromi
  organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA
– sequence: 3
  givenname: An-Yi
  orcidid: 0000-0001-8327-9892
  surname: Chang
  fullname: Chang, An-Yi
  organization: Department of Nanoengineering, University of California – San Diego, La Jolla, CA, 92093, USA
– sequence: 4
  givenname: Joseph
  orcidid: 0000-0002-4921-9674
  surname: Wang
  fullname: Wang, Joseph
  organization: Department of Nanoengineering, University of California – San Diego, La Jolla, CA, 92093, USA
– sequence: 5
  givenname: Drew A.
  orcidid: 0000-0003-0674-074X
  surname: Hall
  fullname: Hall, Drew A.
  email: drewhall@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California – San Diego, La Jolla, CA, 92093, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36858023$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URKeFP8ACeckmgx07TiKxqaryIVViA2vrxX4GD0kc_JxB_HsymnbDomze25xzF_desYs5zcjYayn2Ukjz7rAfYqJ9LWq1l7IRffuM7WTXqkrXqrlgO9E3pmqMUZfsiugghGhlL16wS2W6ptu0HTvc8C21ivMRKB6R_0bIMIzIqWQk4gsU94OHlHlGGKsSJ-Qu5RIpjXxKcywpx_k7X-l0gS-Eq08_51QqIIpU0HNYCkyYX7LnAUbCVw__mn37cPf19lN1_-Xj59ub-8rpvi9VMCIAgJZDcOiM1IC9aozAbkAdNAavPQY5OBRBglYCRD_4zmEdPNatU9fs7Tl3yenXilTsFMnhOMKMaSWrZKPartZ991-0bjtpZC9rtaFvHtB1mNDbJccJ8h_7WOUGdGfA5USUMVgXC5SY5pIhjlYKe1rNHuxpNXtazZ5X29T6H_Ux_Unp_VnCrctjxGzJRZwd-pjRFetTfEr_C5WBs3Y
CitedBy_id crossref_primary_10_1002_adhm_202403606
crossref_primary_10_1021_acssensors_3c02004
crossref_primary_10_1021_acssynbio_4c00591
crossref_primary_10_1016_j_talanta_2024_126709
crossref_primary_10_1016_j_cej_2023_144775
crossref_primary_10_3390_gels10070459
crossref_primary_10_1039_D5CC00338E
crossref_primary_10_3390_nano14100857
crossref_primary_10_1002_advs_202411339
crossref_primary_10_1021_acs_analchem_4c05004
crossref_primary_10_1021_acssensors_3c01512
crossref_primary_10_1038_s44222_023_00094_w
crossref_primary_10_3390_diagnostics15030327
crossref_primary_10_1007_s40843_024_3238_4
crossref_primary_10_1039_D3MA00657C
crossref_primary_10_1088_2058_8585_adb8fa
crossref_primary_10_1002_adfm_202306516
crossref_primary_10_1016_j_biosx_2024_100500
crossref_primary_10_1002_anse_202400003
crossref_primary_10_1002_admt_202401040
crossref_primary_10_1038_s43246_024_00557_6
crossref_primary_10_1016_j_trac_2023_117510
crossref_primary_10_1021_acsnano_4c10344
crossref_primary_10_1016_j_nanoen_2024_109962
crossref_primary_10_1016_j_bios_2023_115600
crossref_primary_10_3390_s25030654
crossref_primary_10_1021_acsami_4c22054
crossref_primary_10_1002_adhm_202401753
crossref_primary_10_1007_s00216_023_04805_5
crossref_primary_10_1149_2754_2726_ad9f7e
crossref_primary_10_1039_D4CS00001C
crossref_primary_10_3390_mi14030547
crossref_primary_10_1016_j_cej_2024_157488
crossref_primary_10_1016_j_jpbao_2024_100045
crossref_primary_10_3390_molecules29174157
crossref_primary_10_1007_s00216_023_05047_1
crossref_primary_10_1016_j_jsmc_2024_10_012
crossref_primary_10_1002_advs_202411433
crossref_primary_10_1002_adhm_202404454
crossref_primary_10_1016_j_colsurfb_2024_114384
crossref_primary_10_1016_j_snb_2024_137152
crossref_primary_10_1016_j_sbsr_2024_100636
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_1016_j_microc_2024_111165
crossref_primary_10_1016_j_bioelechem_2025_108908
crossref_primary_10_3390_bios13040470
Cites_doi 10.1126/scitranslmed.3007095
10.1039/c3lc50431j
10.1016/j.tibtech.2010.10.005
10.1002/elan.201600018
10.1016/j.legalmed.2004.10.008
10.3389/fbioe.2020.01037
10.1002/elan.1140071213
10.1016/j.synthmet.2012.02.024
10.1159/000504387
10.1371/journal.pone.0244297
10.1039/D0CC02337J
10.1126/sciadv.aar2904
10.1039/b510494g
10.24297/jac.v6i2.6583
10.1038/s41598-017-17835-8
10.1021/ac500618v
10.1097/FTD.0b013e31829daa0a
10.1021/acssensors.0c02446
10.1021/acs.langmuir.1c00166
10.1507/endocrj.K09E-340
10.1039/C9AY02406A
10.1002/elps.1150170714
10.1016/j.bios.2020.112038
10.1016/j.bios.2018.02.025
10.1021/acsomega.1c03552
10.1038/s41598-017-13684-7
10.1021/acssensors.1c01734
10.1039/C7LC00192D
10.3390/ph11030080
10.1093/jat/20.6.393
10.1039/D1AY01233A
10.1371/journal.pone.0218910
10.1021/acssensors.7b00729
10.1038/nrendo.2009.106
10.1146/annurev-anchem-071015-041446
10.1002/elan.201200349
10.1021/acschembio.7b00634
10.1021/acs.nanolett.5b04549
10.1038/nature16521
10.1016/j.snb.2021.131100
10.1039/C8LC00968F
10.1016/S0306-4530(00)00057-3
10.1021/acssensors.7b00961
10.1021/jacs.8b03933
10.21037/cdt.2019.04.08
10.1016/j.electacta.2021.138834
10.1016/j.dib.2021.107278
10.1021/acssensors.1c01133
10.1152/ajpregu.00114.2004
10.1021/acssensors.8b00945
10.1021/acssensors.6b00356
10.1126/science.1250169
10.1186/1743-0003-9-21
10.4172/2153-2435.1000355
10.1038/jid.1955.36
10.1126/scitranslmed.aaf2593
10.1021/acs.analchem.5b00041
10.1021/acs.analchem.9b00670
10.1111/j.1469-445X.2000.02058.x
10.1038/s41551-022-00916-z
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bios.2023.115097
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 36858023
10_1016_j_bios_2023_115097
S0956566323000398
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
RIG
SBG
SCB
SCH
SSH
WUQ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c499t-f60faaa41bfcec614ae93560e8be4f4efd4def1bce0f1a430a09bd8ce2fde27c3
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Fri Jul 11 15:14:26 EDT 2025
Fri Jul 11 10:15:33 EDT 2025
Sat Aug 02 01:41:11 EDT 2025
Tue Jul 01 01:43:06 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Fri Feb 23 02:37:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pseudoknot aptamer
Cortisol
Electrochemical aptasensor
Wearable sensor
Sweat monitoring
Microfluidic
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-f60faaa41bfcec614ae93560e8be4f4efd4def1bce0f1a430a09bd8ce2fde27c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6389-9709
0000-0003-0674-074X
0000-0002-2197-052X
0000-0002-4921-9674
0000-0001-8327-9892
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0956566323000398
PMID 36858023
PQID 2781619123
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153782498
proquest_miscellaneous_2781619123
pubmed_primary_36858023
crossref_citationtrail_10_1016_j_bios_2023_115097
crossref_primary_10_1016_j_bios_2023_115097
elsevier_sciencedirect_doi_10_1016_j_bios_2023_115097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
2023-May-01
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Singh, Ray, Carlin, Magallanes, Morgan, Laurent, Aronoff-Spencer, Hall (bib58) 2021; 113111
Ghaffari, Yang, Kim, Mansour, Wright, Model, Wright, Rogers, Ray (bib20) 2021; 6
An, Kim, Park, Seo, Kim, Ha, Bae, Kwon (bib1) 2022; 7
Jiang, Li, Yang, Xie, Xiang, Yuan (bib28) 2015; 87
Sakihara, Kageyama, Oki, Doi, Iwasaki, Takayasu, Moriyama, Terui, Nigawara, Hirata, Hashimoto, Suda (bib49) 2010; 57
Humpolicek, Kasparkova, Saha, Stejskal (bib27) 2012; 162
Knutsson, Dahlgren, Marcus, Rosberg, Brönnegård, Stierna, Albertsson-Wikland (bib34) 1997; 82
Shida, Ikeda, Tani, Morioka, Aoki, Ikeda, Watanabe, Ishikawa (bib55) 2020; 15
Chung, Sicklick, Ray, Hall (bib10) 2021; 9
Ferguson, Hoggarth, Maliniak, Ploense, White, Woodward, Hsieh, Bonham, Eisenstein, Kippin, Plaxco, Soh (bib16) 2013; 5
Hu, Liu, Zhang, Huan, Wu, Fu, Tan (bib25) 2014; 86
Singh, Ray, Carlin, Morgan, Magallanes, Laurent, Aronoff-Spencer, Hall (bib59) 2021; 38
Kim, Jeerapan, Imani, Cho, Bandodkar, Cinti, Mercier, Wang (bib31) 2016; 1
Singh, Jain, Das, Goswami (bib56) 2019; 91
Anastasova, Crewther, Bembnowicz, Curto, Ip, Rosa, Yang (bib2) 2017; 93
Brunetti B (bib7) 2015
Wang, Yang, Min, Song, Tu, Mukasa, Ye, Xu, Heflin, McCune, Hsiai, Li, Gao (bib63) 2022; 6
Kinnamon, Ghanta, Lin, Muthukumar, Prasad (bib32) 2017; 7
Mugo, Alberkant, Bernstein, Zenkina (bib38) 2021; 13
Yokus, Songkakul, Pozdin, Bozkurt, Daniele (bib70) 2020; 153
Wang, Zhao, Wang, Yang, Cheng, Liu, Yu, Lin, Zhao, Cheung, Lin, Hojaiji, Weiss, Stojanović, Tomiyama, Andrews, Emaminejad (bib62) 2022; 8
Yang, Chun, Zhang, Pecic, Nakatsuka, Andrews, Worgall, Stojanovic (bib67) 2017; 12
Vinoth, Nakagawa, Mathiyarasu, Mohan (bib61) 2021; 6
Yasuda, Kawai, Ueki, Kishi (bib69) 2005; 7
Shaver, Kundu, Young, Vieira, Sczepanski, Arroyo-Currás (bib54) 2021; 37
Fan, Yang (bib15) 2022; 353
Parlak, Keene, Marais, Curto, Salleo (bib42) 2018; 4
Francis, Stamper, Heikenfeld, Gomez (bib18) 2018; 19
Patel, Park, Bonato, Chan, Rodgers (bib43) 2012; 9
Bandodkar, Jeerapan, You, Nuñez-Flores, Wang (bib4) 2016; 16
Fernandez, Umasankar, Manickam, Nickel, Iwasaki, Kawamoto, Todoki, Scott, Bhansali (bib17) 2017; 7
Herrmann, Mandol (bib24) 1955; 24
Schoukroun-Barnes, Macazo, Gutierrez, Lottermoser, Liu, White (bib52) 2016; 9
Zhen, Liang, Chen, Jia (bib72) 2020; 15
Pali, Jagannath, Lin, Upasham, Sankhalab, Upashama, Muthukumar, Prasad (bib41) 2021; 390
Wu, Huang, Zare (bib65) 2005; 5
Patterson, Galloway, Nimmo (bib44) 2000; 85
Samson, Koh (bib50) 2020; 8
Gao, Emaminejad, Nyein, Challa, Chen, Peck, Fahad, Ota, Shiraki, Kiriya, Lien, Brooks, Davis, Javey (bib19) 2016; 529
Kintz, Tracqui, Mangin, Edel (bib33) 1996; 20
Yasuda, Takeshita, Sawazaki, Iida, Kishi (bib68) 1996; 17
Oncescu, O'Dell, Erickson (bib40) 2013; 13
Singh, Chung, Sveiven, Hall (bib57) 2021; 6
Mahmud, Fang, Wang, Carreiro, Boyer (bib36) 2018
De Giovanni, Fucci (bib12) 2013; 20
Etiwy, Akhrass, Gillinov, Alashi, Wang, Blackburn, Gillinov, Phelan, Gillinov, Houghtaling, Javadikasgari, Desai (bib14) 2019; 9
Windmiller, Wang (bib64) 2013; 25
Hasegawa, Savory, Abe, Ikebukuro (bib22) 2016; 21
Koh, Kang, Xue, Lee, Pielak, Kim, Hwang, Min, Banks, Bastien, Manco, Wang, Ammann, Jang, Won, Han, Ghaffari, Paik, Slepian, Balooch, Huang, Rogers (bib35) 2016; 8
Katchman, Zhu, Christen, Anderson (bib30) 2018; 12
Baker (bib3) 2019; 6
Dang, Manjakkal, Navaraj, Lorenzelli, Vinciguerra, Dahiya (bib11) 2018; 107
Saeed (bib48) 2014; 6
Chrousos (bib9) 2009; 5
huber (bib26) 2016
Brasier, Eckstein (bib6) 2019; 3
Russell, Koren, Rieder, Van Uum (bib47) 2014; 36
Zeng, Peng, Fan, Lin (bib71) 2022; 23
Nyein, Tai, Ngo, Chao, Zhang, Gao, Bariya, Bullock, Kim, Fahad, Javey (bib39) 2018; 3
Drolen, Conklin, Hetterich, Krishnamurthy, Andrade, Dimeglio, Martin, Tran, Yap, Rosenthal, Young (bib13) 2018; 140
Ju, Zhou, Cai, Chen (bib29) 1995; 7
Chen, Tang, Meng, Liu, Wang, Geng, Wu, Qu, Li (bib8) 2020; 56
Plaxco, Soh (bib45) 2011; 29
Robergs, Ghiasvand, Parker (bib46) 2004; 287
Sanjay, Singh, Ngashangva, Goswami (bib51) 2020; 12
Belleperche, DeRosa (bib5) 2018; 11
Martín, Kim, Kurniawan, Sempionatto, Moreto, Tang, Campbell, Shin, Lee, Liu, Wang (bib37) 2017; 2
Stone, Schwartz, Smyth, Kirschbaum, Cohen, Hellhammer, Grossman (bib60) 2001; 26
Heikenfeld (bib23) 2016; 28
Sempionatto, Nakagawa, Pavinatto, Mensah, Imani, Mercier, Wang (bib53) 2017; 17
Xu, Zhang, Jia, Mathewson, Jang, Kim, Fu, Huang, Chava, Wang, Bhole, Wang, Na, Guan, Flavin, Han, Huang, Rogers (bib66) 2014; 344
Gordon, Eisenstein, Soh (bib21) 2018; 3
Mahmud (10.1016/j.bios.2023.115097_bib36) 2018
Brasier (10.1016/j.bios.2023.115097_bib6) 2019; 3
Chen (10.1016/j.bios.2023.115097_bib8) 2020; 56
Ferguson (10.1016/j.bios.2023.115097_bib16) 2013; 5
Sakihara (10.1016/j.bios.2023.115097_bib49) 2010; 57
Yasuda (10.1016/j.bios.2023.115097_bib68) 1996; 17
Kinnamon (10.1016/j.bios.2023.115097_bib32) 2017; 7
Windmiller (10.1016/j.bios.2023.115097_bib64) 2013; 25
Robergs (10.1016/j.bios.2023.115097_bib46) 2004; 287
Gao (10.1016/j.bios.2023.115097_bib19) 2016; 529
Heikenfeld (10.1016/j.bios.2023.115097_bib23) 2016; 28
Anastasova (10.1016/j.bios.2023.115097_bib2) 2017; 93
Vinoth (10.1016/j.bios.2023.115097_bib61) 2021; 6
Ghaffari (10.1016/j.bios.2023.115097_bib20) 2021; 6
Plaxco (10.1016/j.bios.2023.115097_bib45) 2011; 29
Chrousos (10.1016/j.bios.2023.115097_bib9) 2009; 5
Fernandez (10.1016/j.bios.2023.115097_bib17) 2017; 7
Sanjay (10.1016/j.bios.2023.115097_bib51) 2020; 12
Wang (10.1016/j.bios.2023.115097_bib62) 2022; 8
Wang (10.1016/j.bios.2023.115097_bib63) 2022; 6
Saeed (10.1016/j.bios.2023.115097_bib48) 2014; 6
Jiang (10.1016/j.bios.2023.115097_bib28) 2015; 87
Patel (10.1016/j.bios.2023.115097_bib43) 2012; 9
Katchman (10.1016/j.bios.2023.115097_bib30) 2018; 12
Singh (10.1016/j.bios.2023.115097_bib56) 2019; 91
Xu (10.1016/j.bios.2023.115097_bib66) 2014; 344
Russell (10.1016/j.bios.2023.115097_bib47) 2014; 36
Gordon (10.1016/j.bios.2023.115097_bib21) 2018; 3
Knutsson (10.1016/j.bios.2023.115097_bib34) 1997; 82
Singh (10.1016/j.bios.2023.115097_bib58) 2021; 113111
Bandodkar (10.1016/j.bios.2023.115097_bib4) 2016; 16
Samson (10.1016/j.bios.2023.115097_bib50) 2020; 8
Shaver (10.1016/j.bios.2023.115097_bib54) 2021; 37
Oncescu (10.1016/j.bios.2023.115097_bib40) 2013; 13
Nyein (10.1016/j.bios.2023.115097_bib39) 2018; 3
Pali (10.1016/j.bios.2023.115097_bib41) 2021; 390
Etiwy (10.1016/j.bios.2023.115097_bib14) 2019; 9
Herrmann (10.1016/j.bios.2023.115097_bib24) 1955; 24
Yang (10.1016/j.bios.2023.115097_bib67) 2017; 12
Zeng (10.1016/j.bios.2023.115097_bib71) 2022; 23
Brunetti B (10.1016/j.bios.2023.115097_bib7) 2015
Drolen (10.1016/j.bios.2023.115097_bib13) 2018; 140
Ju (10.1016/j.bios.2023.115097_bib29) 1995; 7
Yokus (10.1016/j.bios.2023.115097_bib70) 2020; 153
huber (10.1016/j.bios.2023.115097_bib26) 2016
Stone (10.1016/j.bios.2023.115097_bib60) 2001; 26
Yasuda (10.1016/j.bios.2023.115097_bib69) 2005; 7
An (10.1016/j.bios.2023.115097_bib1) 2022; 7
Hu (10.1016/j.bios.2023.115097_bib25) 2014; 86
Mugo (10.1016/j.bios.2023.115097_bib38) 2021; 13
Singh (10.1016/j.bios.2023.115097_bib59) 2021; 38
Kintz (10.1016/j.bios.2023.115097_bib33) 1996; 20
Schoukroun-Barnes (10.1016/j.bios.2023.115097_bib52) 2016; 9
Koh (10.1016/j.bios.2023.115097_bib35) 2016; 8
Wu (10.1016/j.bios.2023.115097_bib65) 2005; 5
Francis (10.1016/j.bios.2023.115097_bib18) 2018; 19
Singh (10.1016/j.bios.2023.115097_bib57) 2021; 6
Dang (10.1016/j.bios.2023.115097_bib11) 2018; 107
Martín (10.1016/j.bios.2023.115097_bib37) 2017; 2
De Giovanni (10.1016/j.bios.2023.115097_bib12) 2013; 20
Shida (10.1016/j.bios.2023.115097_bib55) 2020; 15
Patterson (10.1016/j.bios.2023.115097_bib44) 2000; 85
Baker (10.1016/j.bios.2023.115097_bib3) 2019; 6
Chung (10.1016/j.bios.2023.115097_bib10) 2021; 9
Humpolicek (10.1016/j.bios.2023.115097_bib27) 2012; 162
Zhen (10.1016/j.bios.2023.115097_bib72) 2020; 15
Sempionatto (10.1016/j.bios.2023.115097_bib53) 2017; 17
Belleperche (10.1016/j.bios.2023.115097_bib5) 2018; 11
Fan (10.1016/j.bios.2023.115097_bib15) 2022; 353
Hasegawa (10.1016/j.bios.2023.115097_bib22) 2016; 21
Kim (10.1016/j.bios.2023.115097_bib31) 2016; 1
Parlak (10.1016/j.bios.2023.115097_bib42) 2018; 4
References_xml – volume: 4
  year: 2018
  ident: bib42
  article-title: Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing
  publication-title: Sci. Adv.
– volume: 5
  start-page: 1393
  year: 2005
  end-page: 1398
  ident: bib65
  article-title: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding
  publication-title: Lab Chip
– volume: 390
  year: 2021
  ident: bib41
  article-title: CATCH (cortisol apta WATCH): ‘bio-mimic alarm’ to track anxiety, stress, immunity in human sweat
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 3094
  year: 2015
  end-page: 3098
  ident: bib28
  article-title: Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum
  publication-title: Anal. Chem.
– volume: 8
  year: 2022
  ident: bib62
  article-title: Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring
  publication-title: Sci. Adv.
– volume: 82
  start-page: 536
  year: 1997
  end-page: 540
  ident: bib34
  article-title: Circadian cortisol rhythms in healthy boys and girls: relationship with age, growth, body composition, and pubertal development
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 6
  start-page: 27888
  year: 2021
  end-page: 27897
  ident: bib57
  article-title: Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer
  publication-title: ACS Omega
– volume: 28
  start-page: 1242
  year: 2016
  end-page: 1249
  ident: bib23
  article-title: Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016
  publication-title: Electroanalysis
– volume: 37
  start-page: 5213
  year: 2021
  end-page: 5221
  ident: bib54
  article-title: Nuclease hydrolysis does not drive the rapid signaling decay of DNA aptamer-based electrochemical sensors in biological fluids
  publication-title: Langmuir
– volume: 113111
  year: 2021
  ident: bib58
  article-title: Hitting the diagnostic sweet spot: point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer
  publication-title: Biosens. Bioelectron.
– volume: 13
  start-page: 3232
  year: 2013
  end-page: 3238
  ident: bib40
  article-title: Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva
  publication-title: Lab Chip
– volume: 153
  year: 2020
  ident: bib70
  article-title: Wearable multiplexed biosensor system toward continuous monitoring of metabolites
  publication-title: Biosens. Bioelectron.
– volume: 93
  start-page: 139
  year: 2017
  end-page: 145
  ident: bib2
  article-title: A wearable multisensing patch for continuous sweat monitoring
  publication-title: Biosens. Bioelectron., Special Issue Selected papers from the 26th Anniversary World Congress on Biosensors (Part II)
– volume: 1
  start-page: 1011
  year: 2016
  end-page: 1019
  ident: bib31
  article-title: Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system
  publication-title: ACS Sens.
– volume: 29
  start-page: 1
  year: 2011
  end-page: 5
  ident: bib45
  article-title: Switch-based biosensors: a new approach towards real-time, in vivo molecular detection
  publication-title: Trends Biotechnol.
– volume: 7
  start-page: 274
  year: 2005
  end-page: 277
  ident: bib69
  article-title: Clinical applications of DNase I, a genetic marker already used for forensic identification
  publication-title: Leg. Med.
– volume: 5
  year: 2013
  ident: bib16
  article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
  publication-title: Sci. Transl. Med.
– volume: 13
  start-page: 4169
  year: 2021
  end-page: 4173
  ident: bib38
  article-title: Flexible electrochemical aptasensor for cortisol detection in human sweat
  publication-title: Anal. Methods
– volume: 17
  start-page: 1834
  year: 2017
  end-page: 1842
  ident: bib53
  article-title: Eyeglasses based wireless electrolyte and metabolite sensor platform
  publication-title: Lab Chip
– volume: 6
  start-page: 1174
  year: 2021
  end-page: 1186
  ident: bib61
  article-title: Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis
  publication-title: ACS Sens.
– volume: 24
  start-page: 225
  year: 1955
  end-page: 246
  ident: bib24
  article-title: Studies of ph of sweat produced by different forms of stimulation
  publication-title: J. Invest. Dermatol.
– volume: 91
  start-page: 4213
  year: 2019
  end-page: 4221
  ident: bib56
  article-title: Dye coupled aptamer-captured enzyme catalyzed reaction for detection of Pan malaria and P. Falciparum species in laboratory settings and instrument-free paper-based platform
  publication-title: Anal. Chem.
– volume: 12
  start-page: 3103
  year: 2017
  end-page: 3112
  ident: bib67
  article-title: High-affinity nucleic-acid-based receptors for steroids
  publication-title: ACS Chem. Biol.
– volume: 140
  start-page: 10169
  year: 2018
  end-page: 10178
  ident: bib13
  article-title: pH-driven mechanistic switching from electron transfer to energy transfer between [Ru(bpy)3]2+ and ferrocene derivatives
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 262
  year: 2019
  end-page: 271
  ident: bib14
  article-title: Accuracy of wearable heart rate monitors in cardiac rehabilitation
  publication-title: Cardiovasc. Diagn. Ther.
– year: 2015
  ident: bib7
  article-title: About estimating the limit of detection by the signal to noise approach
  publication-title: Pharm. Anal. Acta
– volume: 3
  start-page: 2574
  year: 2018
  end-page: 2580
  ident: bib21
  article-title: Direct selection strategy for isolating aptamers with pH-sensitive binding activity
  publication-title: ACS Sens.
– volume: 9
  start-page: 21
  year: 2012
  ident: bib43
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. NeuroEng. Rehabil.
– volume: 15
  year: 2020
  ident: bib55
  article-title: Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation
  publication-title: PLoS One
– volume: 9
  start-page: 163
  year: 2016
  end-page: 181
  ident: bib52
  article-title: Reagentless, structure-switching, electrochemical aptamer-based sensors
  publication-title: Annu. Rev. Anal. Chem.
– volume: 6
  start-page: 211
  year: 2019
  end-page: 259
  ident: bib3
  article-title: Physiology of sweat gland function: the roles of sweating and sweat composition in human health
  publication-title: Temp. Multidiscip. Biomed. J.
– volume: 6
  start-page: 2787
  year: 2021
  end-page: 2801
  ident: bib20
  article-title: State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics
  publication-title: ACS Sens.
– year: 2016
  ident: bib26
  article-title: Continuous Glucose Monitoring (CGM) | 24 Hour Glucose Monitor [WWW Document]. Dexcom
– volume: 56
  start-page: 9024
  year: 2020
  end-page: 9027
  ident: bib8
  article-title: Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes
  publication-title: Chem. Commun. Camb. Engl.
– volume: 12
  year: 2018
  ident: bib30
  article-title: Eccrine sweat as a biofluid for profiling immune biomarkers. PROTEOMICS – clin
  publication-title: Apple
– volume: 23
  year: 2022
  ident: bib71
  article-title: Self-powered and wearable biosensors for healthcare
  publication-title: Mater. Today Energy
– volume: 8
  year: 2016
  ident: bib35
  article-title: A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
  publication-title: Sci. Transl. Med.
– volume: 7
  year: 2017
  ident: bib32
  article-title: Portable biosensor for monitoring cortisol in low-volume perspired human sweat
  publication-title: Sci. Rep.
– volume: 8
  year: 2020
  ident: bib50
  article-title: Stress monitoring and recent advancements in wearable biosensors
  publication-title: Front. Bioeng. Biotechnol.
– volume: 7
  start-page: 99
  year: 2022
  end-page: 108
  ident: bib1
  article-title: Wearable cortisol aptasensor for simple and rapid real-time monitoring
  publication-title: ACS Sens.
– volume: 86
  start-page: 5009
  year: 2014
  end-page: 5016
  ident: bib25
  article-title: Multicolor fluorescent biosensor for multiplexed detection of DNA
  publication-title: Anal. Chem.
– volume: 17
  start-page: 1253
  year: 1996
  end-page: 1256
  ident: bib68
  article-title: Successful deoxyribonuclease I (DNase I) phenotyping from a small piece of used sock
  publication-title: Electrophoresis
– start-page: 784
  year: 2018
  end-page: 788
  ident: bib36
  article-title: Automatic detection of opioid intake using wearable biosensor
  publication-title: Int. Conf. Comput. Netw. Commun. Proc. Int. Conf. Comput. Netw. Commun.
– volume: 25
  start-page: 29
  year: 2013
  end-page: 46
  ident: bib64
  article-title: Wearable electrochemical sensors and biosensors: a review
  publication-title: Electroanalysis
– volume: 107
  start-page: 192
  year: 2018
  end-page: 202
  ident: bib11
  article-title: Stretchable wireless system for sweat pH monitoring
  publication-title: Biosens. Bioelectron.
– volume: 529
  start-page: 509
  year: 2016
  end-page: 514
  ident: bib19
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
– volume: 85
  start-page: 869
  year: 2000
  end-page: 875
  ident: bib44
  article-title: Variations in regional sweat composition in normal human males
  publication-title: Exp. Physiol.
– volume: 11
  start-page: 80
  year: 2018
  ident: bib5
  article-title: pH-control in aptamer-based diagnostics, therapeutics, and analytical applications
  publication-title: Pharmaceuticals
– volume: 20
  start-page: 393
  year: 1996
  end-page: 397
  ident: bib33
  article-title: Sweat testing in opioid users with a sweat patch
  publication-title: J. Anal. Toxicol.
– volume: 7
  start-page: 1165
  year: 1995
  end-page: 1170
  ident: bib29
  article-title: The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode
  publication-title: Electroanalysis
– volume: 3
  start-page: 155
  year: 2019
  end-page: 165
  ident: bib6
  article-title: Sweat as a source of next-generation digital biomarkers
  publication-title: Digit. Biomark.
– volume: 7
  year: 2017
  ident: bib17
  article-title: Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients
  publication-title: Sci. Rep.
– volume: 16
  start-page: 721
  year: 2016
  end-page: 727
  ident: bib4
  article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability
  publication-title: Nano Lett.
– volume: 9
  year: 2021
  ident: bib10
  article-title: Development of a soluble KIT electrochemical aptasensor for cancer theranostics
  publication-title: ACS Sens.
– volume: 20
  start-page: 545
  year: 2013
  end-page: 561
  ident: bib12
  article-title: The current status of sweat testing for drugs of abuse: a review
  publication-title: Curr. Med. Chem.
– volume: 19
  start-page: 178
  year: 2018
  end-page: 185
  ident: bib18
  article-title: Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement
  publication-title: Lab Chip
– volume: 344
  start-page: 70
  year: 2014
  end-page: 74
  ident: bib66
  article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin
  publication-title: Science
– volume: 162
  start-page: 722
  year: 2012
  end-page: 727
  ident: bib27
  article-title: Biocompatibility of polyaniline
  publication-title: Synth. Met.
– volume: 3
  start-page: 944
  year: 2018
  end-page: 952
  ident: bib39
  article-title: A wearable microfluidic sensing patch for dynamic sweat secretion analysis
  publication-title: ACS Sens.
– volume: 287
  start-page: R502
  year: 2004
  end-page: R516
  ident: bib46
  article-title: Biochemistry of exercise-induced metabolic acidosis
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 12
  start-page: 1333
  year: 2020
  end-page: 1341
  ident: bib51
  article-title: A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase
  publication-title: Anal. Methods
– volume: 2
  start-page: 1860
  year: 2017
  end-page: 1868
  ident: bib37
  article-title: Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection
  publication-title: ACS Sens.
– volume: 21
  start-page: 421
  year: 2016
  ident: bib22
  article-title: Methods for improving aptamer binding affinity
  publication-title: Mol. Basel Switz.
– volume: 36
  start-page: 30
  year: 2014
  end-page: 34
  ident: bib47
  article-title: The detection of cortisol in human sweat: implications for measurement of cortisol in hair
  publication-title: Ther. Drug Monit.
– volume: 26
  start-page: 295
  year: 2001
  end-page: 306
  ident: bib60
  article-title: Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals
  publication-title: Psychoneuroendocrinology
– volume: 38
  year: 2021
  ident: bib59
  article-title: Dataset on optimization and development of a point-of-care glucometer-based SARS-CoV-2 detection assay using aptamers
  publication-title: Data Brief
– volume: 5
  start-page: 374
  year: 2009
  end-page: 381
  ident: bib9
  article-title: Stress and disorders of the stress system
  publication-title: Nat. Rev. Endocrinol.
– volume: 353
  year: 2022
  ident: bib15
  article-title: Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein
  publication-title: Sensor. Actuator. B Chem.
– volume: 57
  start-page: 331
  year: 2010
  end-page: 337
  ident: bib49
  article-title: Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of cushing's syndrome
  publication-title: Endocr. J.
– volume: 15
  year: 2020
  ident: bib72
  article-title: Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection
  publication-title: PLoS One
– volume: 6
  start-page: 940
  year: 2014
  end-page: 957
  ident: bib48
  article-title: The kinetics of electron transfer reaction of methylene blue and titanium trichloride in different solvents
  publication-title: J. Adv. Chem.
– volume: 6
  start-page: 1225
  year: 2022
  end-page: 1235
  ident: bib63
  article-title: A wearable electrochemical biosensor for the monitoring of metabolites and nutrients
  publication-title: Nat. Biomed. Eng.
– volume: 5
  year: 2013
  ident: 10.1016/j.bios.2023.115097_bib16
  article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007095
– volume: 13
  start-page: 3232
  year: 2013
  ident: 10.1016/j.bios.2023.115097_bib40
  article-title: Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva
  publication-title: Lab Chip
  doi: 10.1039/c3lc50431j
– volume: 29
  start-page: 1
  year: 2011
  ident: 10.1016/j.bios.2023.115097_bib45
  article-title: Switch-based biosensors: a new approach towards real-time, in vivo molecular detection
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.10.005
– volume: 28
  start-page: 1242
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib23
  article-title: Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016
  publication-title: Electroanalysis
  doi: 10.1002/elan.201600018
– volume: 7
  start-page: 274
  year: 2005
  ident: 10.1016/j.bios.2023.115097_bib69
  article-title: Clinical applications of DNase I, a genetic marker already used for forensic identification
  publication-title: Leg. Med.
  doi: 10.1016/j.legalmed.2004.10.008
– year: 2016
  ident: 10.1016/j.bios.2023.115097_bib26
– volume: 8
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib50
  article-title: Stress monitoring and recent advancements in wearable biosensors
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.01037
– volume: 7
  start-page: 1165
  year: 1995
  ident: 10.1016/j.bios.2023.115097_bib29
  article-title: The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode
  publication-title: Electroanalysis
  doi: 10.1002/elan.1140071213
– volume: 162
  start-page: 722
  year: 2012
  ident: 10.1016/j.bios.2023.115097_bib27
  article-title: Biocompatibility of polyaniline
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2012.02.024
– volume: 6
  start-page: 211
  year: 2019
  ident: 10.1016/j.bios.2023.115097_bib3
  article-title: Physiology of sweat gland function: the roles of sweating and sweat composition in human health
  publication-title: Temp. Multidiscip. Biomed. J.
– volume: 3
  start-page: 155
  year: 2019
  ident: 10.1016/j.bios.2023.115097_bib6
  article-title: Sweat as a source of next-generation digital biomarkers
  publication-title: Digit. Biomark.
  doi: 10.1159/000504387
– volume: 15
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib72
  article-title: Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244297
– volume: 56
  start-page: 9024
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib8
  article-title: Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes
  publication-title: Chem. Commun. Camb. Engl.
  doi: 10.1039/D0CC02337J
– volume: 4
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib42
  article-title: Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar2904
– volume: 5
  start-page: 1393
  year: 2005
  ident: 10.1016/j.bios.2023.115097_bib65
  article-title: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding
  publication-title: Lab Chip
  doi: 10.1039/b510494g
– volume: 6
  start-page: 940
  year: 2014
  ident: 10.1016/j.bios.2023.115097_bib48
  article-title: The kinetics of electron transfer reaction of methylene blue and titanium trichloride in different solvents
  publication-title: J. Adv. Chem.
  doi: 10.24297/jac.v6i2.6583
– volume: 7
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib17
  article-title: Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17835-8
– volume: 86
  start-page: 5009
  year: 2014
  ident: 10.1016/j.bios.2023.115097_bib25
  article-title: Multicolor fluorescent biosensor for multiplexed detection of DNA
  publication-title: Anal. Chem.
  doi: 10.1021/ac500618v
– volume: 36
  start-page: 30
  year: 2014
  ident: 10.1016/j.bios.2023.115097_bib47
  article-title: The detection of cortisol in human sweat: implications for measurement of cortisol in hair
  publication-title: Ther. Drug Monit.
  doi: 10.1097/FTD.0b013e31829daa0a
– volume: 6
  start-page: 1174
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib61
  article-title: Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c02446
– volume: 82
  start-page: 536
  year: 1997
  ident: 10.1016/j.bios.2023.115097_bib34
  article-title: Circadian cortisol rhythms in healthy boys and girls: relationship with age, growth, body composition, and pubertal development
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 20
  start-page: 545
  year: 2013
  ident: 10.1016/j.bios.2023.115097_bib12
  article-title: The current status of sweat testing for drugs of abuse: a review
  publication-title: Curr. Med. Chem.
– volume: 37
  start-page: 5213
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib54
  article-title: Nuclease hydrolysis does not drive the rapid signaling decay of DNA aptamer-based electrochemical sensors in biological fluids
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00166
– volume: 57
  start-page: 331
  year: 2010
  ident: 10.1016/j.bios.2023.115097_bib49
  article-title: Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of cushing's syndrome
  publication-title: Endocr. J.
  doi: 10.1507/endocrj.K09E-340
– volume: 12
  start-page: 1333
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib51
  article-title: A smartphone-based fiber-optic aptasensor for label-free detection of Plasmodium falciparum glutamate dehydrogenase
  publication-title: Anal. Methods
  doi: 10.1039/C9AY02406A
– volume: 17
  start-page: 1253
  year: 1996
  ident: 10.1016/j.bios.2023.115097_bib68
  article-title: Successful deoxyribonuclease I (DNase I) phenotyping from a small piece of used sock
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150170714
– volume: 153
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib70
  article-title: Wearable multiplexed biosensor system toward continuous monitoring of metabolites
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112038
– volume: 107
  start-page: 192
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib11
  article-title: Stretchable wireless system for sweat pH monitoring
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.02.025
– volume: 6
  start-page: 27888
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib57
  article-title: Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c03552
– volume: 7
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib32
  article-title: Portable biosensor for monitoring cortisol in low-volume perspired human sweat
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13684-7
– start-page: 784
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib36
  article-title: Automatic detection of opioid intake using wearable biosensor
– volume: 7
  start-page: 99
  year: 2022
  ident: 10.1016/j.bios.2023.115097_bib1
  article-title: Wearable cortisol aptasensor for simple and rapid real-time monitoring
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c01734
– volume: 17
  start-page: 1834
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib53
  article-title: Eyeglasses based wireless electrolyte and metabolite sensor platform
  publication-title: Lab Chip
  doi: 10.1039/C7LC00192D
– volume: 93
  start-page: 139
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib2
  article-title: A wearable multisensing patch for continuous sweat monitoring
  publication-title: Biosens. Bioelectron., Special Issue Selected papers from the 26th Anniversary World Congress on Biosensors (Part II)
– volume: 12
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib30
  article-title: Eccrine sweat as a biofluid for profiling immune biomarkers. PROTEOMICS – clin
  publication-title: Apple
– volume: 11
  start-page: 80
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib5
  article-title: pH-control in aptamer-based diagnostics, therapeutics, and analytical applications
  publication-title: Pharmaceuticals
  doi: 10.3390/ph11030080
– volume: 20
  start-page: 393
  year: 1996
  ident: 10.1016/j.bios.2023.115097_bib33
  article-title: Sweat testing in opioid users with a sweat patch
  publication-title: J. Anal. Toxicol.
  doi: 10.1093/jat/20.6.393
– volume: 13
  start-page: 4169
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib38
  article-title: Flexible electrochemical aptasensor for cortisol detection in human sweat
  publication-title: Anal. Methods
  doi: 10.1039/D1AY01233A
– volume: 15
  year: 2020
  ident: 10.1016/j.bios.2023.115097_bib55
  article-title: Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218910
– volume: 2
  start-page: 1860
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib37
  article-title: Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00729
– volume: 5
  start-page: 374
  year: 2009
  ident: 10.1016/j.bios.2023.115097_bib9
  article-title: Stress and disorders of the stress system
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2009.106
– volume: 9
  start-page: 163
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib52
  article-title: Reagentless, structure-switching, electrochemical aptamer-based sensors
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-071015-041446
– volume: 25
  start-page: 29
  year: 2013
  ident: 10.1016/j.bios.2023.115097_bib64
  article-title: Wearable electrochemical sensors and biosensors: a review
  publication-title: Electroanalysis
  doi: 10.1002/elan.201200349
– volume: 8
  year: 2022
  ident: 10.1016/j.bios.2023.115097_bib62
  article-title: Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring
  publication-title: Sci. Adv.
– volume: 12
  start-page: 3103
  year: 2017
  ident: 10.1016/j.bios.2023.115097_bib67
  article-title: High-affinity nucleic-acid-based receptors for steroids
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00634
– volume: 16
  start-page: 721
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib4
  article-title: Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04549
– volume: 529
  start-page: 509
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib19
  article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 353
  year: 2022
  ident: 10.1016/j.bios.2023.115097_bib15
  article-title: Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2021.131100
– volume: 19
  start-page: 178
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib18
  article-title: Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement
  publication-title: Lab Chip
  doi: 10.1039/C8LC00968F
– volume: 26
  start-page: 295
  year: 2001
  ident: 10.1016/j.bios.2023.115097_bib60
  article-title: Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/S0306-4530(00)00057-3
– volume: 3
  start-page: 944
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib39
  article-title: A wearable microfluidic sensing patch for dynamic sweat secretion analysis
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00961
– volume: 140
  start-page: 10169
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib13
  article-title: pH-driven mechanistic switching from electron transfer to energy transfer between [Ru(bpy)3]2+ and ferrocene derivatives
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03933
– volume: 9
  start-page: 262
  year: 2019
  ident: 10.1016/j.bios.2023.115097_bib14
  article-title: Accuracy of wearable heart rate monitors in cardiac rehabilitation
  publication-title: Cardiovasc. Diagn. Ther.
  doi: 10.21037/cdt.2019.04.08
– volume: 390
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib41
  article-title: CATCH (cortisol apta WATCH): ‘bio-mimic alarm’ to track anxiety, stress, immunity in human sweat
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138834
– volume: 38
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib59
  article-title: Dataset on optimization and development of a point-of-care glucometer-based SARS-CoV-2 detection assay using aptamers
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107278
– volume: 6
  start-page: 2787
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib20
  article-title: State of sweat: emerging wearable systems for real-time, noninvasive sweat sensing and analytics
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c01133
– volume: 287
  start-page: R502
  year: 2004
  ident: 10.1016/j.bios.2023.115097_bib46
  article-title: Biochemistry of exercise-induced metabolic acidosis
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00114.2004
– volume: 9
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib10
  article-title: Development of a soluble KIT electrochemical aptasensor for cancer theranostics
  publication-title: ACS Sens.
– volume: 3
  start-page: 2574
  year: 2018
  ident: 10.1016/j.bios.2023.115097_bib21
  article-title: Direct selection strategy for isolating aptamers with pH-sensitive binding activity
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00945
– volume: 1
  start-page: 1011
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib31
  article-title: Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00356
– volume: 113111
  year: 2021
  ident: 10.1016/j.bios.2023.115097_bib58
  article-title: Hitting the diagnostic sweet spot: point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer
  publication-title: Biosens. Bioelectron.
– volume: 344
  start-page: 70
  year: 2014
  ident: 10.1016/j.bios.2023.115097_bib66
  article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin
  publication-title: Science
  doi: 10.1126/science.1250169
– volume: 21
  start-page: 421
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib22
  article-title: Methods for improving aptamer binding affinity
  publication-title: Mol. Basel Switz.
– volume: 9
  start-page: 21
  year: 2012
  ident: 10.1016/j.bios.2023.115097_bib43
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-21
– year: 2015
  ident: 10.1016/j.bios.2023.115097_bib7
  article-title: About estimating the limit of detection by the signal to noise approach
  publication-title: Pharm. Anal. Acta
  doi: 10.4172/2153-2435.1000355
– volume: 24
  start-page: 225
  year: 1955
  ident: 10.1016/j.bios.2023.115097_bib24
  article-title: Studies of ph of sweat produced by different forms of stimulation
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.1955.36
– volume: 8
  year: 2016
  ident: 10.1016/j.bios.2023.115097_bib35
  article-title: A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf2593
– volume: 87
  start-page: 3094
  year: 2015
  ident: 10.1016/j.bios.2023.115097_bib28
  article-title: Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00041
– volume: 91
  start-page: 4213
  year: 2019
  ident: 10.1016/j.bios.2023.115097_bib56
  article-title: Dye coupled aptamer-captured enzyme catalyzed reaction for detection of Pan malaria and P. Falciparum species in laboratory settings and instrument-free paper-based platform
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00670
– volume: 85
  start-page: 869
  year: 2000
  ident: 10.1016/j.bios.2023.115097_bib44
  article-title: Variations in regional sweat composition in normal human males
  publication-title: Exp. Physiol.
  doi: 10.1111/j.1469-445X.2000.02058.x
– volume: 23
  year: 2022
  ident: 10.1016/j.bios.2023.115097_bib71
  article-title: Self-powered and wearable biosensors for healthcare
  publication-title: Mater. Today Energy
– volume: 6
  start-page: 1225
  year: 2022
  ident: 10.1016/j.bios.2023.115097_bib63
  article-title: A wearable electrochemical biosensor for the monitoring of metabolites and nutrients
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00916-z
SSID ssj0007190
Score 2.5942187
Snippet Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115097
SubjectTerms Aptamers, Nucleotide
biomarkers
biosensors
Cortisol
detection limit
Electrochemical aptasensor
Electrochemistry
Electrodes
heart rate
homeostasis
hospitals
Humans
Hydrocortisone - analysis
Hydrogen-Ion Concentration
lifestyle
Limit of Detection
Microfluidic
Microfluidics - instrumentation
Microfluidics - methods
Microfluidics - standards
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Monitoring, Physiologic - standards
oligonucleotides
prognosis
Pseudoknot aptamer
Reproducibility of Results
Sensitivity and Specificity
Stress, Psychological - physiopathology
sweat
Sweat - chemistry
Sweat monitoring
violence
Wearable Electronic Devices - standards
Wearable sensor
Title A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer
URI https://dx.doi.org/10.1016/j.bios.2023.115097
https://www.ncbi.nlm.nih.gov/pubmed/36858023
https://www.proquest.com/docview/2781619123
https://www.proquest.com/docview/3153782498
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9xADLUQFVI5oAItXVrQIHGrht0kk03muEJFCwgugMQtmk8Ihd0IslS98NuxMwkFCThwTORJJmNn_Jw82wDbihIYY5Fyk6eGC2tjLkXkuaSGkJHVybAhjx8dD8dn4uA8PZ-D3S4XhmiV7d4f9vRmt27P9NvV7Fdl2T-hEnoIRhIE0ZRhSgm_QmRk5TsP_2keWRS-s1C9PZJuE2cCx0uXUyrZHSc7BIyo8NPrzukt8Nk4ob0vsNSiRzYKE1yGOTdZgYXQT_LfCiw-qy64ClcjhrE9Lyf3ijjq7C8aNSVKsZAfwirchS8ZglaGwPGaU5d5hrFoXaI5spvmXacLMaLGXzDFqjs3s9M_k2nNEXGTeVimqlrduNuvcLb3-3R3zNvWCtxgiFNzPxx4pZSItDfOoD6UkwmCH5drJ7xw3grrfKSNG_hIiWSgBlLb3LjYWxdnJvkG8_gI7jswrSLjpfQ68RicSauG1uVZhmr2qcqF6EHUrWlh2rrj1P7iuugIZlcF6aEgPRRBDz349TSmClU33pVOO1UVL2ynQLfw7ritTq8FvlT0p0RN3HSGQlmOSFiiV39bJkFfgfBKyLwHa8EonubaVPXHG61_cGY_4DMdBWLlT5ivb2duA8FPrTcb696ET6P9w_HxI8UMBYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVAg4VFAeDS2wSNzQkthex95jVLVKaZsLrdTbap_g0iZW64D498x47Qgk2gNXe9de74xnvrFnvgH4oKmAMRU5t2VuuXAu5VIkgUtqCJk4k03a5PHT-WR2Lj5f5BcbsN_XwlBaZWf7o01vrXV3ZNTt5qiuqtEXotBDMJIhiKYK0_IBbBI7VT6AzenR8Wy-NshFEj-1EOUeTehqZ2Kal6mWxNqdZp8IGxH307_90134s_VDh09hqwOQbBrX-Aw2_GIbHsaWkr-24ckfBIPP4XLKMLzn1eKHpjR19hP1mmqlWCwRYTUa4m8McStD7HjFqdE8w3C0qVAj2XX7utOFGGXHf2Wa1bd-5ZbfF8uGI-gmDXFM142-9jcv4Pzw4Gx_xrvuCtxilNPwMBkHrbVITLDeoki0lxniH18aL4LwwQnnQ2KsH4dEi2ysx9K40vo0OJ8WNnsJA3wEvwPM6MQGKYPJAsZn0umJ82VRoKRDrkshhpD0e6psRz1OHTCuVJ9jdqlIDorkoKIchvBxPaeOxBv3js57Uam_1EehZ7h33vtergrfK_pZohd-ucJBRYlgWKJjv3tMhu4CEZaQ5RBeRaVYr7Ul9scbvf7Plb2DR7Oz0xN1cjQ_3oXHdCbmWe7BoLlZ-TeIhRrzttP1360_CD0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-invasive+wearable+stress+patch+for+real-time+cortisol+monitoring+using+a+pseudoknot-assisted+aptamer&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Singh%2C+Naveen+K&rft.au=Chung%2C+Saeromi&rft.au=Chang%2C+An-Yi&rft.au=Wang%2C+Joseph&rft.date=2023-05-01&rft.eissn=1873-4235&rft.volume=227&rft.spage=115097&rft_id=info:doi/10.1016%2Fj.bios.2023.115097&rft_id=info%3Apmid%2F36858023&rft.externalDocID=36858023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon