AEDGE: Atomic experiment for dark matter and gravity exploration in space

This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020 ). We propose in this White Paper a concept for a space experiment using cold atom...

Full description

Saved in:
Bibliographic Details
Published inExperimental astronomy Vol. 51; no. 3; pp. 1417 - 1426
Main Authors Bertoldi, Andrea, Bongs, Kai, Bouyer, Philippe, Buchmueller, Oliver, Canuel, Benjamin, Caramete, Laurentiu-Ioan, Chiofalo, Maria Luisa, Coleman, Jonathon, De Roeck, Albert, Ellis, John, Graham, Peter W., Haehnelt, Martin G., Hees, Aurélien, Hogan, Jason, von Klitzing, Wolf, Krutzik, Markus, Lewicki, Marek, McCabe, Christopher, Peters, Achim, Rasel, Ernst, Roura, Albert, Sabulsky, Dylan, Schiller, Stephan, Schubert, Christian, Signorini, Carla, Sorrentino, Fiodor, Singh, Yeshpal, Tino, Guglielmo Maria, Vaskonen, Ville, Zhan, Ming-Sheng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2021
Springer Nature B.V
Springer Link
Subjects
Online AccessGet full text
ISSN0922-6435
1572-9508
DOI10.1007/s10686-021-09701-3

Cover

Loading…
Abstract This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020 ). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.
AbstractList This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020 ). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.
This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7,6 2020). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.
This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity.
Author Haehnelt, Martin G.
Bertoldi, Andrea
Roura, Albert
Buchmueller, Oliver
Canuel, Benjamin
Graham, Peter W.
Ellis, John
Signorini, Carla
von Klitzing, Wolf
Bouyer, Philippe
Caramete, Laurentiu-Ioan
Schiller, Stephan
Zhan, Ming-Sheng
Rasel, Ernst
De Roeck, Albert
Peters, Achim
Vaskonen, Ville
McCabe, Christopher
Bongs, Kai
Chiofalo, Maria Luisa
Krutzik, Markus
Lewicki, Marek
Schubert, Christian
Coleman, Jonathon
Singh, Yeshpal
Sabulsky, Dylan
Sorrentino, Fiodor
Hogan, Jason
Hees, Aurélien
Tino, Guglielmo Maria
Author_xml – sequence: 1
  givenname: Andrea
  surname: Bertoldi
  fullname: Bertoldi, Andrea
  organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298
– sequence: 2
  givenname: Kai
  surname: Bongs
  fullname: Bongs, Kai
  organization: Department of Physics and Astronomy, University of Birmingham
– sequence: 3
  givenname: Philippe
  surname: Bouyer
  fullname: Bouyer, Philippe
  organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298
– sequence: 4
  givenname: Oliver
  orcidid: 0000-0002-3293-3759
  surname: Buchmueller
  fullname: Buchmueller, Oliver
  email: o.buchmueller@imperial.ac.uk
  organization: High Energy Physics Group, Blackett Laboratory, Imperial College
– sequence: 5
  givenname: Benjamin
  surname: Canuel
  fullname: Canuel, Benjamin
  organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298
– sequence: 6
  givenname: Laurentiu-Ioan
  surname: Caramete
  fullname: Caramete, Laurentiu-Ioan
  organization: Institute of Space Science
– sequence: 7
  givenname: Maria Luisa
  surname: Chiofalo
  fullname: Chiofalo, Maria Luisa
  organization: Dipartimento di Fisica “Enrico Fermi”, Universià di Pisa and INFN
– sequence: 8
  givenname: Jonathon
  surname: Coleman
  fullname: Coleman, Jonathon
  organization: University of Liverpool
– sequence: 9
  givenname: Albert
  surname: De Roeck
  fullname: De Roeck, Albert
  organization: Antwerp University, Experimental Physics Department, CERN
– sequence: 10
  givenname: John
  surname: Ellis
  fullname: Ellis, John
  organization: Department of Physics, King’s College London, National Institute of Chemical Physics & Biophysics, Theoretical Physics Department, CERN
– sequence: 11
  givenname: Peter W.
  surname: Graham
  fullname: Graham, Peter W.
  organization: Department of Physics, Stanford University
– sequence: 12
  givenname: Martin G.
  surname: Haehnelt
  fullname: Haehnelt, Martin G.
  organization: Kavli Institute for Cosmology and Institute of Astronomy
– sequence: 13
  givenname: Aurélien
  surname: Hees
  fullname: Hees, Aurélien
  organization: SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Univesité
– sequence: 14
  givenname: Jason
  surname: Hogan
  fullname: Hogan, Jason
  organization: Department of Physics, Stanford University
– sequence: 15
  givenname: Wolf
  surname: von Klitzing
  fullname: von Klitzing, Wolf
  organization: Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas
– sequence: 16
  givenname: Markus
  surname: Krutzik
  fullname: Krutzik, Markus
  organization: Humboldt Universität zu Berlin, Institute of Physics
– sequence: 17
  givenname: Marek
  surname: Lewicki
  fullname: Lewicki, Marek
  organization: Department of Physics, King’s College London, Faculty of Physics, University of Warsaw
– sequence: 18
  givenname: Christopher
  surname: McCabe
  fullname: McCabe, Christopher
  organization: Department of Physics, King’s College London
– sequence: 19
  givenname: Achim
  surname: Peters
  fullname: Peters, Achim
  organization: Humboldt Universität zu Berlin, Institute of Physics
– sequence: 20
  givenname: Ernst
  surname: Rasel
  fullname: Rasel, Ernst
  organization: Institut fuür Quantenoptik, Leibniz Universität Hannover
– sequence: 21
  givenname: Albert
  surname: Roura
  fullname: Roura, Albert
  organization: Institute of Quantum Technologies, German Aerospace Center (DLR)
– sequence: 22
  givenname: Dylan
  surname: Sabulsky
  fullname: Sabulsky, Dylan
  organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298
– sequence: 23
  givenname: Stephan
  surname: Schiller
  fullname: Schiller, Stephan
  organization: Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf
– sequence: 24
  givenname: Christian
  surname: Schubert
  fullname: Schubert, Christian
  organization: Institut fuür Quantenoptik, Leibniz Universität Hannover
– sequence: 25
  givenname: Carla
  surname: Signorini
  fullname: Signorini, Carla
  organization: Dipartimento di Fisica “Enrico Fermi”, Universià di Pisa and INFN
– sequence: 26
  givenname: Fiodor
  surname: Sorrentino
  fullname: Sorrentino, Fiodor
  organization: Istituto Nazionale di Fisica Nucleare
– sequence: 27
  givenname: Yeshpal
  surname: Singh
  fullname: Singh, Yeshpal
  organization: Department of Physics and Astronomy, University of Birmingham
– sequence: 28
  givenname: Guglielmo Maria
  surname: Tino
  fullname: Tino, Guglielmo Maria
  organization: Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, Istituto Nazionale di Fisica Nucleare
– sequence: 29
  givenname: Ville
  surname: Vaskonen
  fullname: Vaskonen, Ville
  organization: Department of Physics, King’s College London, National Institute of Chemical Physics & Biophysics
– sequence: 30
  givenname: Ming-Sheng
  surname: Zhan
  fullname: Zhan, Ming-Sheng
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
BackLink https://hal.science/hal-03419133$$DView record in HAL
BookMark eNp9kMtKAzEARYNUsFZ_wFXAlYvRPCYvd0OtVii40XVIM5k62k7GJIr-vWlHFFx0FQjn3NzcYzDqfOcAOMPoEiMkriJGXPICEVwgJRAu6AEYYyZIoRiSIzBGipCCl5QdgeMYXxDKGBNjcF_Nbu5m17BKftNa6D57F9qN6xJsfIC1Ca9wY1JyAZquhqtgPtr0tcXWPpjU-g62HYy9se4EHDZmHd3pzzkBT7ezx-m8WDzc3U-rRWFLpVLRUCQlIUvGLVE1445bI5ZIYcapEo7y2smaKmYc5lbIUlhpkJFNmX_jytLRCbgYcp_NWve5rAlf2ptWz6uF3t4hWmKFKf3AmT0f2D74t3cXk37x76HL9TRhObtUQspMkYGywccYXPMbi5HezquHeXWeV-_m1TRL8p9k27RbJAXTrverdFBjfqdbufDXao_1DZ13jpE
CitedBy_id crossref_primary_10_1140_epjc_s10052_023_11241_3
crossref_primary_10_1116_5_0178230
crossref_primary_10_1116_5_0185291
crossref_primary_10_1103_PhysRevD_111_064005
crossref_primary_10_1088_1475_7516_2024_05_027
crossref_primary_10_1088_1361_6633_acd203
crossref_primary_10_1088_2058_9565_ace1a3
crossref_primary_10_1140_epjqt_s40507_022_00147_w
crossref_primary_10_1088_1361_6382_ac0236
crossref_primary_10_1364_OE_455678
crossref_primary_10_1038_s42254_022_00452_4
crossref_primary_10_1007_JHEP02_2023_185
crossref_primary_10_1007_JHEP09_2023_036
Cites_doi 10.1142/S0218271813410101
10.1140/epjqt/s40507-020-0080-0
10.1088/0264-9381/29/12/124013
10.1364/OPTICA.3.001381
10.1088/0264-9381/30/16/165017
10.1088/0264-9381/33/3/035010
10.1103/PhysRevD.101.124013
10.1088/0264-9381/31/11/115010
10.1038/s41586-018-0605-1
10.1016/j.crhy.2015.03.009
10.1038/nature13433
10.1103/PhysRevA.98.053443
10.1088/1475-7516/2020/05/011
10.1103/PhysRevLett.110.171102
10.1038/s41526-018-0049-9
10.1103/PhysRevApplied.11.054068
10.1038/s41586-020-2401-y
10.1140/epjst/e2009-01041-7
10.1088/0253-6102/69/1/37
10.1088/0264-9381/32/7/074001
10.1088/1361-6382/ab3583
10.1088/0264-9381/32/2/024001
10.1103/PhysRevLett.123.240402
10.1088/0264-9381/27/19/194002
10.1088/0264-9381/29/12/124007
10.1088/1361-6382/aaa7e0
10.1038/s41586-020-2346-1
10.1103/RevModPhys.90.035005
10.1016/j.crhy.2015.05.002
10.1142/S0217751X2050075X
10.1088/0264-9381/28/9/094011
10.1140/epjd/e2019-100324-6
10.1364/AO.56.001388
10.1103/PhysRevD.102.043001
10.1038/s41598-018-32165-z
10.1038/s41467-018-05219-z
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
DOI 10.1007/s10686-021-09701-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
Computer Science
EISSN 1572-9508
EndPage 1426
ExternalDocumentID oai_HAL_hal_03419133v1
10_1007_s10686_021_09701_3
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z8M
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FD
ABRTQ
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c499t-f308822b56c29d56e6ca7b09156397e36de8d395ae16c7847c8a0a8f4157e44e3
IEDL.DBID U2A
ISSN 0922-6435
IngestDate Fri May 09 12:25:49 EDT 2025
Fri Jul 25 06:56:29 EDT 2025
Tue Jul 01 01:29:18 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Fri Feb 21 02:47:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dark energy
Quantum technology
Dark matter
Gravitational waves
black hole
dark matter: parametrization
cosmic string
LISA
critical phenomena
gravitational radiation detector
LIGO: sensitivity
gravitational radiation
gravitation
VIRGO
dark energy: parametrization
atom
KAGRA
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-f308822b56c29d56e6ca7b09156397e36de8d395ae16c7847c8a0a8f4157e44e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3293-3759
0000-0002-4839-0947
OpenAccessLink https://link.springer.com/10.1007/s10686-021-09701-3
PQID 2584749788
PQPubID 2043589
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03419133v1
proquest_journals_2584749788
crossref_primary_10_1007_s10686_021_09701_3
crossref_citationtrail_10_1007_s10686_021_09701_3
springer_journals_10_1007_s10686_021_09701_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Astrophysical Instrumentation and Methods
PublicationTitle Experimental astronomy
PublicationTitleAbbrev Exp Astron
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Springer Link
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer Link
References Badurina (CR25) 2020; 05
Becker (CR30) 2018; 562
Luo, Chen, Duan, Gong, Hu, Ji (CR12) 2016; 33
Bongs (CR39) 2015; 16
Bender, Begelman, Gair (CR13) 2013; 30
CR16
CR37
Elliott, Krutzik, Williams, Thompson, Aveline (CR31) 2016; 4
Acernese (CR5) 2015; 32
Unnikrishnan (CR7) 2013; D22
Gao, Wang, Zhan (CR43) 2018; 69
Ruan, Guo, Cai, Zhang (CR11) 2020; 35
Canuel (CR23) 2018; 8
El-Neaj (CR1) 2020; 7
Reitze (CR10) 2019; 51
Aveline (CR45) 2020; 582
Mandel, Sesana, Vecchio (CR15) 2018; 35
Tino (CR22) 2019; 73
CR2
Pezzè, Smerzi, Oberthaler, Schmied, Treutlein (CR18) 2018; 90
Graham, Hogan, Kasevich, Rajendran (CR19) 2013; 110
Zhan (CR24) 2019; D28
CR3
Aasi (CR4) 2015; 32
Condon (CR38) 2019; 123
Somiya (CR6) 2012; 29
Kawamura (CR14) 2011; 28
CR29
Aguilera (CR41) 2014; 31
CR28
CR27
Döringshoff (CR34) 2019; 11
Laurent, Massonnet, Cacciapuoti, Salomon (CR36) 2015; 16
Ellis, Vaskonen (CR44) 2020; 101
Dinkelaker (CR33) 2017; 56
Origlia (CR40) 2015; 98
Graham, Hogan, Kasevich, Rajendran (CR20) 2016; D94
CR21
Lezius (CR32) 2016; 3
Lacour (CR42) 2019; 36
Cacciapuoti, Salomon (CR35) 2009; 172
Punturo (CR8) 2010; 27
Sathyaprakash (CR9) 2012; 29
Kuns, Yu, Chen, Adhikari (CR17) 2020; 102
Yin (CR46) 2020; 582
Rosi, Sorrentino, Cacciapuoti, Prevedelli, Tino (CR26) 2014; 510
J Aasi (9701_CR4) 2015; 32
PW Graham (9701_CR20) 2016; D94
K Döringshoff (9701_CR34) 2019; 11
J Ellis (9701_CR44) 2020; 101
YA El-Neaj (9701_CR1) 2020; 7
ER Elliott (9701_CR31) 2016; 4
K Bongs (9701_CR39) 2015; 16
W-H Ruan (9701_CR11) 2020; 35
S Lacour (9701_CR42) 2019; 36
J Luo (9701_CR12) 2016; 33
G Rosi (9701_CR26) 2014; 510
I Mandel (9701_CR15) 2018; 35
D Aguilera (9701_CR41) 2014; 31
B Canuel (9701_CR23) 2018; 8
D Reitze (9701_CR10) 2019; 51
9701_CR21
S Kawamura (9701_CR14) 2011; 28
CS Unnikrishnan (9701_CR7) 2013; D22
PW Graham (9701_CR19) 2013; 110
9701_CR27
F Acernese (9701_CR5) 2015; 32
9701_CR28
9701_CR29
D Gao (9701_CR43) 2018; 69
M Lezius (9701_CR32) 2016; 3
D Becker (9701_CR30) 2018; 562
9701_CR2
D Aveline (9701_CR45) 2020; 582
9701_CR3
K Somiya (9701_CR6) 2012; 29
L Pezzè (9701_CR18) 2018; 90
L Badurina (9701_CR25) 2020; 05
L Cacciapuoti (9701_CR35) 2009; 172
S Origlia (9701_CR40) 2015; 98
J Yin (9701_CR46) 2020; 582
B Sathyaprakash (9701_CR9) 2012; 29
G Condon (9701_CR38) 2019; 123
9701_CR37
9701_CR16
GM Tino (9701_CR22) 2019; 73
P Laurent (9701_CR36) 2015; 16
PL Bender (9701_CR13) 2013; 30
M-S Zhan (9701_CR24) 2019; D28
M Punturo (9701_CR8) 2010; 27
A Dinkelaker (9701_CR33) 2017; 56
KA Kuns (9701_CR17) 2020; 102
References_xml – volume: D22
  start-page: 1341010
  year: 2013
  ident: CR7
  article-title: IndIGO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0218271813410101
– volume: 7
  start-page: 6
  year: 2020
  ident: CR1
  article-title: AEDGE: Atomic experiment for dark matter and gravity exploration in space
  publication-title: EPJ Quant. Technol.
  doi: 10.1140/epjqt/s40507-020-0080-0
– volume: 29
  start-page: 124013
  year: 2012
  ident: CR9
  article-title: Scientific objectives of einstein telescope
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/12/124013
– volume: 3
  start-page: 1381
  year: 2016
  ident: CR32
  article-title: Space-borne frequency comb metrology
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001381
– volume: 30
  start-page: 165017
  year: 2013
  ident: CR13
  article-title: Possible LISA follow-on mission scientific objectives
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/16/165017
– volume: D94
  start-page: 104022
  year: 2016
  ident: CR20
  article-title: Resonant mode for gravitational wave detectors based on atom interferometry
  publication-title: Phys. Rev.
– ident: CR2
– ident: CR16
– ident: CR37
– volume: 33
  start-page: 035010
  year: 2016
  ident: CR12
  article-title: TianQin: A space-borne gravitational wave detector
  publication-title: Classic. Quantum Grav.
  doi: 10.1088/0264-9381/33/3/035010
– volume: 101
  start-page: 12
  year: 2020
  ident: CR44
  article-title: Probes of gravitational waves with atom interferometers
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.124013
– volume: 31
  start-page: 115010
  year: 2014
  ident: CR41
  article-title: STE-QUEST - Test of the universality of free fall using cold atom interferometry
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/11/115010
– volume: 562
  start-page: 391
  year: 2018
  ident: CR30
  article-title: Space-borne Bose–einstein condensation for precision interferometry
  publication-title: Nature
  doi: 10.1038/s41586-018-0605-1
– volume: 16
  start-page: 553
  issue: 5
  year: 2015
  ident: CR39
  article-title: Development of a strontium optical lattice clock for the SOC mission on the ISS
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2015.03.009
– volume: 510
  start-page: 518
  year: 2014
  ident: CR26
  article-title: Precision measurement of the newtonian gravitational constant using cold atoms
  publication-title: Nature
  doi: 10.1038/nature13433
– volume: 98
  start-page: 053443
  year: 2015
  ident: CR40
  article-title: Development of a strontium optical lattice clock for the SOC mission on the ISS
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.053443
– volume: 05
  start-page: 011
  year: 2020
  ident: CR25
  article-title: AION: An atom interferometer observatory and network
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/05/011
– ident: CR29
– volume: 110
  start-page: 171102
  year: 2013
  ident: CR19
  article-title: A new method for gravitational wave detection with atomic sensors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.171102
– volume: D28
  start-page: 1940005
  year: 2019
  ident: CR24
  article-title: ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna
  publication-title: Int. J. Mod. Phys.
– ident: CR27
– volume: 4
  start-page: 16
  year: 2016
  ident: CR31
  article-title: Nasa’s cold atom lab (cal): system development and ground test status
  publication-title: npj Microgravity
  doi: 10.1038/s41526-018-0049-9
– volume: 51
  start-page: 035
  year: 2019
  ident: CR10
  article-title: Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO
  publication-title: Bull. Am. Astron. Soc.
– volume: 11
  start-page: 054068
  year: 2019
  ident: CR34
  article-title: Iodine frequency reference on a sounding rocket
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054068
– volume: 582
  start-page: 501
  year: 2020
  end-page: 505
  ident: CR46
  article-title: Entanglement-based secure quantum cryptography over 1,120 kilometres
  publication-title: Nature
  doi: 10.1038/s41586-020-2401-y
– volume: 172
  start-page: 57
  year: 2009
  ident: CR35
  article-title: The ACES experiment
  publication-title: European Phys. J. Special Topics
  doi: 10.1140/epjst/e2009-01041-7
– ident: CR21
– volume: 69
  start-page: 37
  year: 2018
  ident: CR43
  article-title: Atomic interferometric Gravitational-Wave space observatory (AIGSO)
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/69/1/37
– volume: 32
  start-page: 074001
  year: 2015
  ident: CR4
  article-title: Advanced LIGO
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/7/074001
– volume: 36
  start-page: 195005
  year: 2019
  ident: CR42
  article-title: SAGE: finding IMBH in the black hole desert
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/ab3583
– volume: 32
  start-page: 024001
  year: 2015
  ident: CR5
  article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/2/024001
– ident: CR3
– volume: 123
  start-page: 240402
  year: 2019
  ident: CR38
  article-title: All-Optical Bose-einstein condensates in microgravity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.240402
– volume: 27
  start-page: 194002
  year: 2010
  ident: CR8
  article-title: The Einstein Telescope: A third-generation gravitational wave observatory
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/19/194002
– volume: 29
  start-page: 124007
  year: 2012
  ident: CR6
  article-title: Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/12/124007
– volume: 35
  start-page: 054004
  year: 2018
  ident: CR15
  article-title: The astrophysical science case for a decihertz gravitational-wave detector
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaa7e0
– volume: 582
  start-page: 193
  year: 2020
  end-page: 197
  ident: CR45
  article-title: Observation of Bose–Einstein condensates in an Earth-orbiting research lab
  publication-title: Nature
  doi: 10.1038/s41586-020-2346-1
– volume: 90
  start-page: 035005
  year: 2018
  ident: CR18
  article-title: Quantum metrology with nonclassical states of atomic ensembles
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.035005
– volume: 16
  start-page: 540
  issue: 5
  year: 2015
  ident: CR36
  article-title: The ACES/PHARAO space mission
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2015.05.002
– volume: 35
  start-page: 2050075
  year: 2020
  ident: CR11
  article-title: Taiji program: Gravitational-wave sources
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X2050075X
– volume: 28
  start-page: 094011
  year: 2011
  ident: CR14
  article-title: The Japanese space gravitational wave antenna: DECIGO
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/28/9/094011
– volume: 73
  start-page: 228
  year: 2019
  ident: CR22
  article-title: SAGE: A proposal for a space atomic gravity explorer Eur. Phys. J. D Topical Issue on Quantum Technologies for Gravitational Physics
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2019-100324-6
– volume: 56
  start-page: 1388
  year: 2017
  ident: CR33
  article-title: Space-borne frequency comb metrology
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.001388
– ident: CR28
– volume: 102
  start-page: 043001
  year: 2020
  ident: CR17
  article-title: Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.043001
– volume: 8
  start-page: 14064
  year: 2018
  ident: CR23
  article-title: Exploring gravity with the MIGA large scale atom interferometer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32165-z
– volume: 35
  start-page: 2050075
  year: 2020
  ident: 9701_CR11
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X2050075X
– ident: 9701_CR2
– volume: 32
  start-page: 024001
  year: 2015
  ident: 9701_CR5
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/2/024001
– volume: 73
  start-page: 228
  year: 2019
  ident: 9701_CR22
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2019-100324-6
– ident: 9701_CR29
  doi: 10.1038/s41467-018-05219-z
– volume: 27
  start-page: 194002
  year: 2010
  ident: 9701_CR8
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/19/194002
– volume: D28
  start-page: 1940005
  year: 2019
  ident: 9701_CR24
  publication-title: Int. J. Mod. Phys.
– volume: 36
  start-page: 195005
  year: 2019
  ident: 9701_CR42
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/ab3583
– volume: 30
  start-page: 165017
  year: 2013
  ident: 9701_CR13
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/16/165017
– volume: 3
  start-page: 1381
  year: 2016
  ident: 9701_CR32
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001381
– ident: 9701_CR27
– volume: 4
  start-page: 16
  year: 2016
  ident: 9701_CR31
  publication-title: npj Microgravity
  doi: 10.1038/s41526-018-0049-9
– ident: 9701_CR21
– volume: 110
  start-page: 171102
  year: 2013
  ident: 9701_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.171102
– volume: 510
  start-page: 518
  year: 2014
  ident: 9701_CR26
  publication-title: Nature
  doi: 10.1038/nature13433
– volume: 29
  start-page: 124007
  year: 2012
  ident: 9701_CR6
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/12/124007
– volume: 98
  start-page: 053443
  year: 2015
  ident: 9701_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.053443
– volume: 35
  start-page: 054004
  year: 2018
  ident: 9701_CR15
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaa7e0
– volume: 32
  start-page: 074001
  year: 2015
  ident: 9701_CR4
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/7/074001
– volume: 582
  start-page: 501
  year: 2020
  ident: 9701_CR46
  publication-title: Nature
  doi: 10.1038/s41586-020-2401-y
– ident: 9701_CR37
– volume: 69
  start-page: 37
  year: 2018
  ident: 9701_CR43
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/69/1/37
– volume: 56
  start-page: 1388
  year: 2017
  ident: 9701_CR33
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.001388
– volume: 8
  start-page: 14064
  year: 2018
  ident: 9701_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32165-z
– ident: 9701_CR16
– ident: 9701_CR3
– volume: 101
  start-page: 12
  year: 2020
  ident: 9701_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.124013
– volume: 05
  start-page: 011
  year: 2020
  ident: 9701_CR25
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/05/011
– volume: 123
  start-page: 240402
  year: 2019
  ident: 9701_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.240402
– volume: 29
  start-page: 124013
  year: 2012
  ident: 9701_CR9
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/12/124013
– volume: 33
  start-page: 035010
  year: 2016
  ident: 9701_CR12
  publication-title: Classic. Quantum Grav.
  doi: 10.1088/0264-9381/33/3/035010
– ident: 9701_CR28
– volume: 172
  start-page: 57
  year: 2009
  ident: 9701_CR35
  publication-title: European Phys. J. Special Topics
  doi: 10.1140/epjst/e2009-01041-7
– volume: 102
  start-page: 043001
  year: 2020
  ident: 9701_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.043001
– volume: D94
  start-page: 104022
  year: 2016
  ident: 9701_CR20
  publication-title: Phys. Rev.
– volume: 562
  start-page: 391
  year: 2018
  ident: 9701_CR30
  publication-title: Nature
  doi: 10.1038/s41586-018-0605-1
– volume: 28
  start-page: 094011
  year: 2011
  ident: 9701_CR14
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/28/9/094011
– volume: 90
  start-page: 035005
  year: 2018
  ident: 9701_CR18
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.035005
– volume: 16
  start-page: 553
  issue: 5
  year: 2015
  ident: 9701_CR39
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2015.03.009
– volume: 51
  start-page: 035
  year: 2019
  ident: 9701_CR10
  publication-title: Bull. Am. Astron. Soc.
– volume: 16
  start-page: 540
  issue: 5
  year: 2015
  ident: 9701_CR36
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2015.05.002
– volume: D22
  start-page: 1341010
  year: 2013
  ident: 9701_CR7
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0218271813410101
– volume: 582
  start-page: 193
  year: 2020
  ident: 9701_CR45
  publication-title: Nature
  doi: 10.1038/s41586-020-2346-1
– volume: 7
  start-page: 6
  year: 2020
  ident: 9701_CR1
  publication-title: EPJ Quant. Technol.
  doi: 10.1140/epjqt/s40507-020-0080-0
– volume: 31
  start-page: 115010
  year: 2014
  ident: 9701_CR41
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/11/115010
– volume: 11
  start-page: 054068
  year: 2019
  ident: 9701_CR34
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054068
SSID ssj0009757
Score 2.3617291
Snippet This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1417
SubjectTerms Astronomy
Astrophysics
Chemistry and Earth Sciences
Cold atoms
Computer Science
Dark matter
Experiments
Frequency ranges
Gravitational waves
Microgravity
Observations and Techniques
Phase transitions
Physics
Physics and Astronomy
Short Communication
Statistics for Engineering
Supermassive black holes
Title AEDGE: Atomic experiment for dark matter and gravity exploration in space
URI https://link.springer.com/article/10.1007/s10686-021-09701-3
https://www.proquest.com/docview/2584749788
https://hal.science/hal-03419133
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_chuCLH1PZdI4g4osW1jZNW9_qdM5PfHAwn0qaZChqFTcF_3vv-uFUVPCppbm00Etyv0vufgewxaUIVGJrS3uub_HEdCwZcmWpwGgjuTMKslqH5xeiP-AnQ29YJIWNy2j38kgyW6k_JbuJgAJm0f0NfXSC3QrUPPTdKZBv4ERTql0_5_cM0c1Ce-sVqTI_v-OLOarcUDDkJ6T57XA0szm9RZgvwCKLcu0uwYxJ69CIxrR9_fjwxrZZdp_vTozrsFDWaGDFlK3D7GXeuAzHEbEf77FoQonIbErtzxC3Mi2f79hDRrbJZKoZlSVCgE5i98UoYbcpw_VHmRUY9A6vun2rKKRgKXRoJtbIJSDtJJ5QTqg9YYSSfoJIwaNjPeMKbQLthp40tlA-2isVyI4MRmjcfcO5cVehmj6mpgHM9nGWaz7SBrGXRvhCFRWSJFQa_aaEu02wy_8Zq4JlnIpd3MdTfmTSQYw6iDMdxNhn56PPU86x8af0JqrpQ5DosfvRWUzPOkROh073q92EVqnFuJiU49ihI2GqqBc0YbfU7LT590-u_U98HeacbIjRXk0LqpPnF7OB0GWStKEW7R_s9-h6dH162IZKV3Tb2fh9B2qa5P4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50Ivrij6k4nRpEfNHC2qZp61sZytRNfHDgW0iTDMWtyjYF_3vv2s7pUMG30lxa6CW97-5y3wEccSUinbrGMYEfOjy1DUfFXDs6ssYq7vWivNdh50a0uvzqPrgvaXKoFmYmf08lbiKiY7Lo9MYhur7-PCxw9JTzxKxoTgl2w4LVM0bnCq1sUBbI_PyMb0Zo_oGOQH7BlzMp0dzSXKzBSgkRWVLodB3mbFaF7WREQevnwTs7Zvl1EZMYVWF10pmBlRu1Cou3xeAGXCbEeXzGkjGVH7MpoT9DtMqMGj6xQU6xyVRmGDUjQlhOYv1ybbDHjOFfR9tN6F6c3zVbTtk-wdHoxoydnk_w2UsDob3YBMIKrcIU8UFAyTzrC2Mj48eBsq7QIVopHamGinpo0kPLufW3oJI9Z3YbmBvi3ja8ZywiLoOghfoopGmsDXpLKfdr4E6-p9Qltzi1uOjLKSsy6UCiDmSuA4lzTj7nvBTMGn9KH6KaPgWJFLuVtCXdaxAlHbrab24N6hMtynIrjqRHiWDqoxfV4HSi2enw76_c-Z_4ASy17jpt2b68ud6FZS9fbhStqUNlPHy1ewhexul-vmo_ACGb3-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB7BIipeCixFbLmsquKlBDaJc_EWAdvlFA8gwZPlKwIBAbGhUvn1zORgF0SRUN-iZJzDnsx8Y3u-AfjJZRhr5RrHBH7kcGW7jky4dnRsjZXcy-Ky1uHRcdg_4_vnwflIFn-5271ZkqxyGoilKS827022OZL4Fsa0eRZD4STCgNgfhwlO5OwtmEh_XxzsDol3o4rtM8GgC71vUCfOvH-XV85p_JK2Ro7gzjdLpaUH6k2DbN692nhyvfFYqA399IbW8X8-bga-1vCUpZU-zcKYzduwkA5owvzu9i9bY-VxNR8yaMN0UxWC1UaiDZMn1cU52EuJb3mLpQWlPrNhMQGGSJkZ-XDNbkt6TyZzw6gQEoYEJHZT6yW7yhlaPG2_wVlv93S779SlGxyNIVThZD5Bd08FofYSE4Q21DJSiE0CWki0fmhsbPwkkNYNdYQeUseyK-MM4URkObf-PLTyu9wuAHMjtCuGZ8Yi2jMImKiGg1KJNhipKe53wG3GTOia15zKa9yIISMzdajADhVlhwps8-ulzX3F6vGh9A9UhRdBIuTup4eCznWJDg_D_D9uB5YaTRG1GRgIjxahqYZf3IH1ZuCHl__9yO-fE1-FLyc7PXG4d3ywCFNeqTo0UbQEreLh0S4jbirUSv1rPAMCign1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEDGE%3A+Atomic+experiment+for+dark+matter+and+gravity+exploration+in+space&rft.jtitle=Experimental+astronomy&rft.au=Bertoldi%2C+Andrea&rft.au=Bongs%2C+Kai&rft.au=Bouyer%2C+Philippe&rft.au=Buchmueller%2C+Oliver&rft.date=2021-06-01&rft.pub=Springer+Link&rft.issn=0922-6435&rft.eissn=1572-9508&rft.volume=51&rft.issue=3&rft.spage=1417&rft.epage=1426&rft_id=info:doi/10.1007%2Fs10686-021-09701-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03419133v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0922-6435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0922-6435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0922-6435&client=summon