AEDGE: Atomic experiment for dark matter and gravity exploration in space
This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020 ). We propose in this White Paper a concept for a space experiment using cold atom...
Saved in:
Published in | Experimental astronomy Vol. 51; no. 3; pp. 1417 - 1426 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2021
Springer Nature B.V Springer Link |
Subjects | |
Online Access | Get full text |
ISSN | 0922-6435 1572-9508 |
DOI | 10.1007/s10686-021-09701-3 |
Cover
Loading…
Abstract | This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol.
7
,6
2020
). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. |
---|---|
AbstractList | This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol.
7
,6
2020
). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7,6 2020). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology (AEDGE Collaboration et al. EPJ Quant. Technol. 7 ,6 2020). We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. |
Author | Haehnelt, Martin G. Bertoldi, Andrea Roura, Albert Buchmueller, Oliver Canuel, Benjamin Graham, Peter W. Ellis, John Signorini, Carla von Klitzing, Wolf Bouyer, Philippe Caramete, Laurentiu-Ioan Schiller, Stephan Zhan, Ming-Sheng Rasel, Ernst De Roeck, Albert Peters, Achim Vaskonen, Ville McCabe, Christopher Bongs, Kai Chiofalo, Maria Luisa Krutzik, Markus Lewicki, Marek Schubert, Christian Coleman, Jonathon Singh, Yeshpal Sabulsky, Dylan Sorrentino, Fiodor Hogan, Jason Hees, Aurélien Tino, Guglielmo Maria |
Author_xml | – sequence: 1 givenname: Andrea surname: Bertoldi fullname: Bertoldi, Andrea organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 2 givenname: Kai surname: Bongs fullname: Bongs, Kai organization: Department of Physics and Astronomy, University of Birmingham – sequence: 3 givenname: Philippe surname: Bouyer fullname: Bouyer, Philippe organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 4 givenname: Oliver orcidid: 0000-0002-3293-3759 surname: Buchmueller fullname: Buchmueller, Oliver email: o.buchmueller@imperial.ac.uk organization: High Energy Physics Group, Blackett Laboratory, Imperial College – sequence: 5 givenname: Benjamin surname: Canuel fullname: Canuel, Benjamin organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 6 givenname: Laurentiu-Ioan surname: Caramete fullname: Caramete, Laurentiu-Ioan organization: Institute of Space Science – sequence: 7 givenname: Maria Luisa surname: Chiofalo fullname: Chiofalo, Maria Luisa organization: Dipartimento di Fisica “Enrico Fermi”, Universià di Pisa and INFN – sequence: 8 givenname: Jonathon surname: Coleman fullname: Coleman, Jonathon organization: University of Liverpool – sequence: 9 givenname: Albert surname: De Roeck fullname: De Roeck, Albert organization: Antwerp University, Experimental Physics Department, CERN – sequence: 10 givenname: John surname: Ellis fullname: Ellis, John organization: Department of Physics, King’s College London, National Institute of Chemical Physics & Biophysics, Theoretical Physics Department, CERN – sequence: 11 givenname: Peter W. surname: Graham fullname: Graham, Peter W. organization: Department of Physics, Stanford University – sequence: 12 givenname: Martin G. surname: Haehnelt fullname: Haehnelt, Martin G. organization: Kavli Institute for Cosmology and Institute of Astronomy – sequence: 13 givenname: Aurélien surname: Hees fullname: Hees, Aurélien organization: SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Univesité – sequence: 14 givenname: Jason surname: Hogan fullname: Hogan, Jason organization: Department of Physics, Stanford University – sequence: 15 givenname: Wolf surname: von Klitzing fullname: von Klitzing, Wolf organization: Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas – sequence: 16 givenname: Markus surname: Krutzik fullname: Krutzik, Markus organization: Humboldt Universität zu Berlin, Institute of Physics – sequence: 17 givenname: Marek surname: Lewicki fullname: Lewicki, Marek organization: Department of Physics, King’s College London, Faculty of Physics, University of Warsaw – sequence: 18 givenname: Christopher surname: McCabe fullname: McCabe, Christopher organization: Department of Physics, King’s College London – sequence: 19 givenname: Achim surname: Peters fullname: Peters, Achim organization: Humboldt Universität zu Berlin, Institute of Physics – sequence: 20 givenname: Ernst surname: Rasel fullname: Rasel, Ernst organization: Institut fuür Quantenoptik, Leibniz Universität Hannover – sequence: 21 givenname: Albert surname: Roura fullname: Roura, Albert organization: Institute of Quantum Technologies, German Aerospace Center (DLR) – sequence: 22 givenname: Dylan surname: Sabulsky fullname: Sabulsky, Dylan organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 23 givenname: Stephan surname: Schiller fullname: Schiller, Stephan organization: Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf – sequence: 24 givenname: Christian surname: Schubert fullname: Schubert, Christian organization: Institut fuür Quantenoptik, Leibniz Universität Hannover – sequence: 25 givenname: Carla surname: Signorini fullname: Signorini, Carla organization: Dipartimento di Fisica “Enrico Fermi”, Universià di Pisa and INFN – sequence: 26 givenname: Fiodor surname: Sorrentino fullname: Sorrentino, Fiodor organization: Istituto Nazionale di Fisica Nucleare – sequence: 27 givenname: Yeshpal surname: Singh fullname: Singh, Yeshpal organization: Department of Physics and Astronomy, University of Birmingham – sequence: 28 givenname: Guglielmo Maria surname: Tino fullname: Tino, Guglielmo Maria organization: Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, Istituto Nazionale di Fisica Nucleare – sequence: 29 givenname: Ville surname: Vaskonen fullname: Vaskonen, Ville organization: Department of Physics, King’s College London, National Institute of Chemical Physics & Biophysics – sequence: 30 givenname: Ming-Sheng surname: Zhan fullname: Zhan, Ming-Sheng organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences |
BackLink | https://hal.science/hal-03419133$$DView record in HAL |
BookMark | eNp9kMtKAzEARYNUsFZ_wFXAlYvRPCYvd0OtVii40XVIM5k62k7GJIr-vWlHFFx0FQjn3NzcYzDqfOcAOMPoEiMkriJGXPICEVwgJRAu6AEYYyZIoRiSIzBGipCCl5QdgeMYXxDKGBNjcF_Nbu5m17BKftNa6D57F9qN6xJsfIC1Ca9wY1JyAZquhqtgPtr0tcXWPpjU-g62HYy9se4EHDZmHd3pzzkBT7ezx-m8WDzc3U-rRWFLpVLRUCQlIUvGLVE1445bI5ZIYcapEo7y2smaKmYc5lbIUlhpkJFNmX_jytLRCbgYcp_NWve5rAlf2ptWz6uF3t4hWmKFKf3AmT0f2D74t3cXk37x76HL9TRhObtUQspMkYGywccYXPMbi5HezquHeXWeV-_m1TRL8p9k27RbJAXTrverdFBjfqdbufDXao_1DZ13jpE |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_023_11241_3 crossref_primary_10_1116_5_0178230 crossref_primary_10_1116_5_0185291 crossref_primary_10_1103_PhysRevD_111_064005 crossref_primary_10_1088_1475_7516_2024_05_027 crossref_primary_10_1088_1361_6633_acd203 crossref_primary_10_1088_2058_9565_ace1a3 crossref_primary_10_1140_epjqt_s40507_022_00147_w crossref_primary_10_1088_1361_6382_ac0236 crossref_primary_10_1364_OE_455678 crossref_primary_10_1038_s42254_022_00452_4 crossref_primary_10_1007_JHEP02_2023_185 crossref_primary_10_1007_JHEP09_2023_036 |
Cites_doi | 10.1142/S0218271813410101 10.1140/epjqt/s40507-020-0080-0 10.1088/0264-9381/29/12/124013 10.1364/OPTICA.3.001381 10.1088/0264-9381/30/16/165017 10.1088/0264-9381/33/3/035010 10.1103/PhysRevD.101.124013 10.1088/0264-9381/31/11/115010 10.1038/s41586-018-0605-1 10.1016/j.crhy.2015.03.009 10.1038/nature13433 10.1103/PhysRevA.98.053443 10.1088/1475-7516/2020/05/011 10.1103/PhysRevLett.110.171102 10.1038/s41526-018-0049-9 10.1103/PhysRevApplied.11.054068 10.1038/s41586-020-2401-y 10.1140/epjst/e2009-01041-7 10.1088/0253-6102/69/1/37 10.1088/0264-9381/32/7/074001 10.1088/1361-6382/ab3583 10.1088/0264-9381/32/2/024001 10.1103/PhysRevLett.123.240402 10.1088/0264-9381/27/19/194002 10.1088/0264-9381/29/12/124007 10.1088/1361-6382/aaa7e0 10.1038/s41586-020-2346-1 10.1103/RevModPhys.90.035005 10.1016/j.crhy.2015.05.002 10.1142/S0217751X2050075X 10.1088/0264-9381/28/9/094011 10.1140/epjd/e2019-100324-6 10.1364/AO.56.001388 10.1103/PhysRevD.102.043001 10.1038/s41598-018-32165-z 10.1038/s41467-018-05219-z |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 8FD H8D L7M 1XC VOOES |
DOI | 10.1007/s10686-021-09701-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics Computer Science |
EISSN | 1572-9508 |
EndPage | 1426 |
ExternalDocumentID | oai_HAL_hal_03419133v1 10_1007_s10686_021_09701_3 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FD ABRTQ H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c499t-f308822b56c29d56e6ca7b09156397e36de8d395ae16c7847c8a0a8f4157e44e3 |
IEDL.DBID | U2A |
ISSN | 0922-6435 |
IngestDate | Fri May 09 12:25:49 EDT 2025 Fri Jul 25 06:56:29 EDT 2025 Tue Jul 01 01:29:18 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Fri Feb 21 02:47:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Dark energy Quantum technology Dark matter Gravitational waves black hole dark matter: parametrization cosmic string LISA critical phenomena gravitational radiation detector LIGO: sensitivity gravitational radiation gravitation VIRGO dark energy: parametrization atom KAGRA |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-f308822b56c29d56e6ca7b09156397e36de8d395ae16c7847c8a0a8f4157e44e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3293-3759 0000-0002-4839-0947 |
OpenAccessLink | https://link.springer.com/10.1007/s10686-021-09701-3 |
PQID | 2584749788 |
PQPubID | 2043589 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_03419133v1 proquest_journals_2584749788 crossref_primary_10_1007_s10686_021_09701_3 crossref_citationtrail_10_1007_s10686_021_09701_3 springer_journals_10_1007_s10686_021_09701_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | Astrophysical Instrumentation and Methods |
PublicationTitle | Experimental astronomy |
PublicationTitleAbbrev | Exp Astron |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V Springer Link |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer Link |
References | Badurina (CR25) 2020; 05 Becker (CR30) 2018; 562 Luo, Chen, Duan, Gong, Hu, Ji (CR12) 2016; 33 Bongs (CR39) 2015; 16 Bender, Begelman, Gair (CR13) 2013; 30 CR16 CR37 Elliott, Krutzik, Williams, Thompson, Aveline (CR31) 2016; 4 Acernese (CR5) 2015; 32 Unnikrishnan (CR7) 2013; D22 Gao, Wang, Zhan (CR43) 2018; 69 Ruan, Guo, Cai, Zhang (CR11) 2020; 35 Canuel (CR23) 2018; 8 El-Neaj (CR1) 2020; 7 Reitze (CR10) 2019; 51 Aveline (CR45) 2020; 582 Mandel, Sesana, Vecchio (CR15) 2018; 35 Tino (CR22) 2019; 73 CR2 Pezzè, Smerzi, Oberthaler, Schmied, Treutlein (CR18) 2018; 90 Graham, Hogan, Kasevich, Rajendran (CR19) 2013; 110 Zhan (CR24) 2019; D28 CR3 Aasi (CR4) 2015; 32 Condon (CR38) 2019; 123 Somiya (CR6) 2012; 29 Kawamura (CR14) 2011; 28 CR29 Aguilera (CR41) 2014; 31 CR28 CR27 Döringshoff (CR34) 2019; 11 Laurent, Massonnet, Cacciapuoti, Salomon (CR36) 2015; 16 Ellis, Vaskonen (CR44) 2020; 101 Dinkelaker (CR33) 2017; 56 Origlia (CR40) 2015; 98 Graham, Hogan, Kasevich, Rajendran (CR20) 2016; D94 CR21 Lezius (CR32) 2016; 3 Lacour (CR42) 2019; 36 Cacciapuoti, Salomon (CR35) 2009; 172 Punturo (CR8) 2010; 27 Sathyaprakash (CR9) 2012; 29 Kuns, Yu, Chen, Adhikari (CR17) 2020; 102 Yin (CR46) 2020; 582 Rosi, Sorrentino, Cacciapuoti, Prevedelli, Tino (CR26) 2014; 510 J Aasi (9701_CR4) 2015; 32 PW Graham (9701_CR20) 2016; D94 K Döringshoff (9701_CR34) 2019; 11 J Ellis (9701_CR44) 2020; 101 YA El-Neaj (9701_CR1) 2020; 7 ER Elliott (9701_CR31) 2016; 4 K Bongs (9701_CR39) 2015; 16 W-H Ruan (9701_CR11) 2020; 35 S Lacour (9701_CR42) 2019; 36 J Luo (9701_CR12) 2016; 33 G Rosi (9701_CR26) 2014; 510 I Mandel (9701_CR15) 2018; 35 D Aguilera (9701_CR41) 2014; 31 B Canuel (9701_CR23) 2018; 8 D Reitze (9701_CR10) 2019; 51 9701_CR21 S Kawamura (9701_CR14) 2011; 28 CS Unnikrishnan (9701_CR7) 2013; D22 PW Graham (9701_CR19) 2013; 110 9701_CR27 F Acernese (9701_CR5) 2015; 32 9701_CR28 9701_CR29 D Gao (9701_CR43) 2018; 69 M Lezius (9701_CR32) 2016; 3 D Becker (9701_CR30) 2018; 562 9701_CR2 D Aveline (9701_CR45) 2020; 582 9701_CR3 K Somiya (9701_CR6) 2012; 29 L Pezzè (9701_CR18) 2018; 90 L Badurina (9701_CR25) 2020; 05 L Cacciapuoti (9701_CR35) 2009; 172 S Origlia (9701_CR40) 2015; 98 J Yin (9701_CR46) 2020; 582 B Sathyaprakash (9701_CR9) 2012; 29 G Condon (9701_CR38) 2019; 123 9701_CR37 9701_CR16 GM Tino (9701_CR22) 2019; 73 P Laurent (9701_CR36) 2015; 16 PL Bender (9701_CR13) 2013; 30 M-S Zhan (9701_CR24) 2019; D28 M Punturo (9701_CR8) 2010; 27 A Dinkelaker (9701_CR33) 2017; 56 KA Kuns (9701_CR17) 2020; 102 |
References_xml | – volume: D22 start-page: 1341010 year: 2013 ident: CR7 article-title: IndIGO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India publication-title: Int. J. Mod. Phys. doi: 10.1142/S0218271813410101 – volume: 7 start-page: 6 year: 2020 ident: CR1 article-title: AEDGE: Atomic experiment for dark matter and gravity exploration in space publication-title: EPJ Quant. Technol. doi: 10.1140/epjqt/s40507-020-0080-0 – volume: 29 start-page: 124013 year: 2012 ident: CR9 article-title: Scientific objectives of einstein telescope publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/12/124013 – volume: 3 start-page: 1381 year: 2016 ident: CR32 article-title: Space-borne frequency comb metrology publication-title: Optica doi: 10.1364/OPTICA.3.001381 – volume: 30 start-page: 165017 year: 2013 ident: CR13 article-title: Possible LISA follow-on mission scientific objectives publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/16/165017 – volume: D94 start-page: 104022 year: 2016 ident: CR20 article-title: Resonant mode for gravitational wave detectors based on atom interferometry publication-title: Phys. Rev. – ident: CR2 – ident: CR16 – ident: CR37 – volume: 33 start-page: 035010 year: 2016 ident: CR12 article-title: TianQin: A space-borne gravitational wave detector publication-title: Classic. Quantum Grav. doi: 10.1088/0264-9381/33/3/035010 – volume: 101 start-page: 12 year: 2020 ident: CR44 article-title: Probes of gravitational waves with atom interferometers publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.124013 – volume: 31 start-page: 115010 year: 2014 ident: CR41 article-title: STE-QUEST - Test of the universality of free fall using cold atom interferometry publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/11/115010 – volume: 562 start-page: 391 year: 2018 ident: CR30 article-title: Space-borne Bose–einstein condensation for precision interferometry publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 16 start-page: 553 issue: 5 year: 2015 ident: CR39 article-title: Development of a strontium optical lattice clock for the SOC mission on the ISS publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2015.03.009 – volume: 510 start-page: 518 year: 2014 ident: CR26 article-title: Precision measurement of the newtonian gravitational constant using cold atoms publication-title: Nature doi: 10.1038/nature13433 – volume: 98 start-page: 053443 year: 2015 ident: CR40 article-title: Development of a strontium optical lattice clock for the SOC mission on the ISS publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.053443 – volume: 05 start-page: 011 year: 2020 ident: CR25 article-title: AION: An atom interferometer observatory and network publication-title: JCAP doi: 10.1088/1475-7516/2020/05/011 – ident: CR29 – volume: 110 start-page: 171102 year: 2013 ident: CR19 article-title: A new method for gravitational wave detection with atomic sensors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.171102 – volume: D28 start-page: 1940005 year: 2019 ident: CR24 article-title: ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna publication-title: Int. J. Mod. Phys. – ident: CR27 – volume: 4 start-page: 16 year: 2016 ident: CR31 article-title: Nasa’s cold atom lab (cal): system development and ground test status publication-title: npj Microgravity doi: 10.1038/s41526-018-0049-9 – volume: 51 start-page: 035 year: 2019 ident: CR10 article-title: Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO publication-title: Bull. Am. Astron. Soc. – volume: 11 start-page: 054068 year: 2019 ident: CR34 article-title: Iodine frequency reference on a sounding rocket publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054068 – volume: 582 start-page: 501 year: 2020 end-page: 505 ident: CR46 article-title: Entanglement-based secure quantum cryptography over 1,120 kilometres publication-title: Nature doi: 10.1038/s41586-020-2401-y – volume: 172 start-page: 57 year: 2009 ident: CR35 article-title: The ACES experiment publication-title: European Phys. J. Special Topics doi: 10.1140/epjst/e2009-01041-7 – ident: CR21 – volume: 69 start-page: 37 year: 2018 ident: CR43 article-title: Atomic interferometric Gravitational-Wave space observatory (AIGSO) publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/69/1/37 – volume: 32 start-page: 074001 year: 2015 ident: CR4 article-title: Advanced LIGO publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/32/7/074001 – volume: 36 start-page: 195005 year: 2019 ident: CR42 article-title: SAGE: finding IMBH in the black hole desert publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ab3583 – volume: 32 start-page: 024001 year: 2015 ident: CR5 article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/32/2/024001 – ident: CR3 – volume: 123 start-page: 240402 year: 2019 ident: CR38 article-title: All-Optical Bose-einstein condensates in microgravity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.240402 – volume: 27 start-page: 194002 year: 2010 ident: CR8 article-title: The Einstein Telescope: A third-generation gravitational wave observatory publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/19/194002 – volume: 29 start-page: 124007 year: 2012 ident: CR6 article-title: Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/12/124007 – volume: 35 start-page: 054004 year: 2018 ident: CR15 article-title: The astrophysical science case for a decihertz gravitational-wave detector publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaa7e0 – volume: 582 start-page: 193 year: 2020 end-page: 197 ident: CR45 article-title: Observation of Bose–Einstein condensates in an Earth-orbiting research lab publication-title: Nature doi: 10.1038/s41586-020-2346-1 – volume: 90 start-page: 035005 year: 2018 ident: CR18 article-title: Quantum metrology with nonclassical states of atomic ensembles publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.035005 – volume: 16 start-page: 540 issue: 5 year: 2015 ident: CR36 article-title: The ACES/PHARAO space mission publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2015.05.002 – volume: 35 start-page: 2050075 year: 2020 ident: CR11 article-title: Taiji program: Gravitational-wave sources publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X2050075X – volume: 28 start-page: 094011 year: 2011 ident: CR14 article-title: The Japanese space gravitational wave antenna: DECIGO publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/28/9/094011 – volume: 73 start-page: 228 year: 2019 ident: CR22 article-title: SAGE: A proposal for a space atomic gravity explorer Eur. Phys. J. D Topical Issue on Quantum Technologies for Gravitational Physics publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2019-100324-6 – volume: 56 start-page: 1388 year: 2017 ident: CR33 article-title: Space-borne frequency comb metrology publication-title: Appl. Opt. doi: 10.1364/AO.56.001388 – ident: CR28 – volume: 102 start-page: 043001 year: 2020 ident: CR17 article-title: Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.043001 – volume: 8 start-page: 14064 year: 2018 ident: CR23 article-title: Exploring gravity with the MIGA large scale atom interferometer publication-title: Sci. Rep. doi: 10.1038/s41598-018-32165-z – volume: 35 start-page: 2050075 year: 2020 ident: 9701_CR11 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X2050075X – ident: 9701_CR2 – volume: 32 start-page: 024001 year: 2015 ident: 9701_CR5 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/32/2/024001 – volume: 73 start-page: 228 year: 2019 ident: 9701_CR22 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2019-100324-6 – ident: 9701_CR29 doi: 10.1038/s41467-018-05219-z – volume: 27 start-page: 194002 year: 2010 ident: 9701_CR8 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/19/194002 – volume: D28 start-page: 1940005 year: 2019 ident: 9701_CR24 publication-title: Int. J. Mod. Phys. – volume: 36 start-page: 195005 year: 2019 ident: 9701_CR42 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ab3583 – volume: 30 start-page: 165017 year: 2013 ident: 9701_CR13 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/16/165017 – volume: 3 start-page: 1381 year: 2016 ident: 9701_CR32 publication-title: Optica doi: 10.1364/OPTICA.3.001381 – ident: 9701_CR27 – volume: 4 start-page: 16 year: 2016 ident: 9701_CR31 publication-title: npj Microgravity doi: 10.1038/s41526-018-0049-9 – ident: 9701_CR21 – volume: 110 start-page: 171102 year: 2013 ident: 9701_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.171102 – volume: 510 start-page: 518 year: 2014 ident: 9701_CR26 publication-title: Nature doi: 10.1038/nature13433 – volume: 29 start-page: 124007 year: 2012 ident: 9701_CR6 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/12/124007 – volume: 98 start-page: 053443 year: 2015 ident: 9701_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.053443 – volume: 35 start-page: 054004 year: 2018 ident: 9701_CR15 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaa7e0 – volume: 32 start-page: 074001 year: 2015 ident: 9701_CR4 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/32/7/074001 – volume: 582 start-page: 501 year: 2020 ident: 9701_CR46 publication-title: Nature doi: 10.1038/s41586-020-2401-y – ident: 9701_CR37 – volume: 69 start-page: 37 year: 2018 ident: 9701_CR43 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/69/1/37 – volume: 56 start-page: 1388 year: 2017 ident: 9701_CR33 publication-title: Appl. Opt. doi: 10.1364/AO.56.001388 – volume: 8 start-page: 14064 year: 2018 ident: 9701_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-018-32165-z – ident: 9701_CR16 – ident: 9701_CR3 – volume: 101 start-page: 12 year: 2020 ident: 9701_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.124013 – volume: 05 start-page: 011 year: 2020 ident: 9701_CR25 publication-title: JCAP doi: 10.1088/1475-7516/2020/05/011 – volume: 123 start-page: 240402 year: 2019 ident: 9701_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.240402 – volume: 29 start-page: 124013 year: 2012 ident: 9701_CR9 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/12/124013 – volume: 33 start-page: 035010 year: 2016 ident: 9701_CR12 publication-title: Classic. Quantum Grav. doi: 10.1088/0264-9381/33/3/035010 – ident: 9701_CR28 – volume: 172 start-page: 57 year: 2009 ident: 9701_CR35 publication-title: European Phys. J. Special Topics doi: 10.1140/epjst/e2009-01041-7 – volume: 102 start-page: 043001 year: 2020 ident: 9701_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.043001 – volume: D94 start-page: 104022 year: 2016 ident: 9701_CR20 publication-title: Phys. Rev. – volume: 562 start-page: 391 year: 2018 ident: 9701_CR30 publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 28 start-page: 094011 year: 2011 ident: 9701_CR14 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/28/9/094011 – volume: 90 start-page: 035005 year: 2018 ident: 9701_CR18 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.035005 – volume: 16 start-page: 553 issue: 5 year: 2015 ident: 9701_CR39 publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2015.03.009 – volume: 51 start-page: 035 year: 2019 ident: 9701_CR10 publication-title: Bull. Am. Astron. Soc. – volume: 16 start-page: 540 issue: 5 year: 2015 ident: 9701_CR36 publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2015.05.002 – volume: D22 start-page: 1341010 year: 2013 ident: 9701_CR7 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0218271813410101 – volume: 582 start-page: 193 year: 2020 ident: 9701_CR45 publication-title: Nature doi: 10.1038/s41586-020-2346-1 – volume: 7 start-page: 6 year: 2020 ident: 9701_CR1 publication-title: EPJ Quant. Technol. doi: 10.1140/epjqt/s40507-020-0080-0 – volume: 31 start-page: 115010 year: 2014 ident: 9701_CR41 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/11/115010 – volume: 11 start-page: 054068 year: 2019 ident: 9701_CR34 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054068 |
SSID | ssj0009757 |
Score | 2.3617291 |
Snippet | This article contains a summary of the White Paper submitted in 2019 to the ESA Voyage 2050 process, which was subsequently published in EPJ Quantum Technology... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1417 |
SubjectTerms | Astronomy Astrophysics Chemistry and Earth Sciences Cold atoms Computer Science Dark matter Experiments Frequency ranges Gravitational waves Microgravity Observations and Techniques Phase transitions Physics Physics and Astronomy Short Communication Statistics for Engineering Supermassive black holes |
Title | AEDGE: Atomic experiment for dark matter and gravity exploration in space |
URI | https://link.springer.com/article/10.1007/s10686-021-09701-3 https://www.proquest.com/docview/2584749788 https://hal.science/hal-03419133 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_chuCLH1PZdI4g4osW1jZNW9_qdM5PfHAwn0qaZChqFTcF_3vv-uFUVPCppbm00Etyv0vufgewxaUIVGJrS3uub_HEdCwZcmWpwGgjuTMKslqH5xeiP-AnQ29YJIWNy2j38kgyW6k_JbuJgAJm0f0NfXSC3QrUPPTdKZBv4ERTql0_5_cM0c1Ce-sVqTI_v-OLOarcUDDkJ6T57XA0szm9RZgvwCKLcu0uwYxJ69CIxrR9_fjwxrZZdp_vTozrsFDWaGDFlK3D7GXeuAzHEbEf77FoQonIbErtzxC3Mi2f79hDRrbJZKoZlSVCgE5i98UoYbcpw_VHmRUY9A6vun2rKKRgKXRoJtbIJSDtJJ5QTqg9YYSSfoJIwaNjPeMKbQLthp40tlA-2isVyI4MRmjcfcO5cVehmj6mpgHM9nGWaz7SBrGXRvhCFRWSJFQa_aaEu02wy_8Zq4JlnIpd3MdTfmTSQYw6iDMdxNhn56PPU86x8af0JqrpQ5DosfvRWUzPOkROh073q92EVqnFuJiU49ihI2GqqBc0YbfU7LT590-u_U98HeacbIjRXk0LqpPnF7OB0GWStKEW7R_s9-h6dH162IZKV3Tb2fh9B2qa5P4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50Ivrij6k4nRpEfNHC2qZp61sZytRNfHDgW0iTDMWtyjYF_3vv2s7pUMG30lxa6CW97-5y3wEccSUinbrGMYEfOjy1DUfFXDs6ssYq7vWivNdh50a0uvzqPrgvaXKoFmYmf08lbiKiY7Lo9MYhur7-PCxw9JTzxKxoTgl2w4LVM0bnCq1sUBbI_PyMb0Zo_oGOQH7BlzMp0dzSXKzBSgkRWVLodB3mbFaF7WREQevnwTs7Zvl1EZMYVWF10pmBlRu1Cou3xeAGXCbEeXzGkjGVH7MpoT9DtMqMGj6xQU6xyVRmGDUjQlhOYv1ybbDHjOFfR9tN6F6c3zVbTtk-wdHoxoydnk_w2UsDob3YBMIKrcIU8UFAyTzrC2Mj48eBsq7QIVopHamGinpo0kPLufW3oJI9Z3YbmBvi3ja8ZywiLoOghfoopGmsDXpLKfdr4E6-p9Qltzi1uOjLKSsy6UCiDmSuA4lzTj7nvBTMGn9KH6KaPgWJFLuVtCXdaxAlHbrab24N6hMtynIrjqRHiWDqoxfV4HSi2enw76_c-Z_4ASy17jpt2b68ud6FZS9fbhStqUNlPHy1ewhexul-vmo_ACGb3-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB7BIipeCixFbLmsquKlBDaJc_EWAdvlFA8gwZPlKwIBAbGhUvn1zORgF0SRUN-iZJzDnsx8Y3u-AfjJZRhr5RrHBH7kcGW7jky4dnRsjZXcy-Ky1uHRcdg_4_vnwflIFn-5271ZkqxyGoilKS827022OZL4Fsa0eRZD4STCgNgfhwlO5OwtmEh_XxzsDol3o4rtM8GgC71vUCfOvH-XV85p_JK2Ro7gzjdLpaUH6k2DbN692nhyvfFYqA399IbW8X8-bga-1vCUpZU-zcKYzduwkA5owvzu9i9bY-VxNR8yaMN0UxWC1UaiDZMn1cU52EuJb3mLpQWlPrNhMQGGSJkZ-XDNbkt6TyZzw6gQEoYEJHZT6yW7yhlaPG2_wVlv93S779SlGxyNIVThZD5Bd08FofYSE4Q21DJSiE0CWki0fmhsbPwkkNYNdYQeUseyK-MM4URkObf-PLTyu9wuAHMjtCuGZ8Yi2jMImKiGg1KJNhipKe53wG3GTOia15zKa9yIISMzdajADhVlhwps8-ulzX3F6vGh9A9UhRdBIuTup4eCznWJDg_D_D9uB5YaTRG1GRgIjxahqYZf3IH1ZuCHl__9yO-fE1-FLyc7PXG4d3ywCFNeqTo0UbQEreLh0S4jbirUSv1rPAMCign1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEDGE%3A+Atomic+experiment+for+dark+matter+and+gravity+exploration+in+space&rft.jtitle=Experimental+astronomy&rft.au=Bertoldi%2C+Andrea&rft.au=Bongs%2C+Kai&rft.au=Bouyer%2C+Philippe&rft.au=Buchmueller%2C+Oliver&rft.date=2021-06-01&rft.pub=Springer+Link&rft.issn=0922-6435&rft.eissn=1572-9508&rft.volume=51&rft.issue=3&rft.spage=1417&rft.epage=1426&rft_id=info:doi/10.1007%2Fs10686-021-09701-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03419133v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0922-6435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0922-6435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0922-6435&client=summon |