Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China

Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 13; no. 12; pp. 1733 - 1751
Main Authors Hao, Chenyang, Jiao, Chengzhi, Hou, Jian, Li, Tian, Liu, Hongxia, Wang, Yuquan, Zheng, Jun, Liu, Hong, Bi, Zhihong, Xu, Fengfeng, Zhao, Jing, Ma, Lin, Wang, Yamei, Majeed, Uzma, Liu, Xu, Appels, Rudi, Maccaferri, Marco, Tuberosa, Roberto, Lu, Hongfeng, Zhang, Xueyong
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 07.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. Resequencing 145 landmark cultivars revealed the reshaped and optimized processes involved in changing the genomic landscape of new cultivars since the 1950s. Significant asymmetric breeding selection was detected among the three sub-genomes. A strategy was proposed for evaluating the breeding value of any given line on the basis of the accumulation of very large, beneficial haplotypes in centromere-spanning LD blocks.
AbstractList Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. Resequencing 145 landmark cultivars revealed the reshaped and optimized processes involved in changing the genomic landscape of new cultivars since the 1950s. Significant asymmetric breeding selection was detected among the three sub-genomes. A strategy was proposed for evaluating the breeding value of any given line on the basis of the accumulation of very large, beneficial haplotypes in centromere-spanning LD blocks.
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.
Author Liu, Xu
Zhang, Xueyong
Ma, Lin
Liu, Hongxia
Jiao, Chengzhi
Liu, Hong
Hao, Chenyang
Appels, Rudi
Li, Tian
Tuberosa, Roberto
Zhao, Jing
Hou, Jian
Wang, Yuquan
Xu, Fengfeng
Wang, Yamei
Maccaferri, Marco
Lu, Hongfeng
Zheng, Jun
Majeed, Uzma
Bi, Zhihong
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Hao
  fullname: Hao, Chenyang
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 2
  givenname: Chengzhi
  surname: Jiao
  fullname: Jiao, Chengzhi
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 3
  givenname: Jian
  surname: Hou
  fullname: Hou, Jian
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 4
  givenname: Tian
  surname: Li
  fullname: Li, Tian
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 5
  givenname: Hongxia
  surname: Liu
  fullname: Liu, Hongxia
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 6
  givenname: Yuquan
  surname: Wang
  fullname: Wang, Yuquan
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 7
  givenname: Jun
  surname: Zheng
  fullname: Zheng, Jun
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 8
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 9
  givenname: Zhihong
  surname: Bi
  fullname: Bi, Zhihong
  organization: Novogene Bioinformatics Institute, Beijing 100083, China
– sequence: 10
  givenname: Fengfeng
  surname: Xu
  fullname: Xu, Fengfeng
  organization: Novogene Bioinformatics Institute, Beijing 100083, China
– sequence: 11
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 12
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 13
  givenname: Yamei
  surname: Wang
  fullname: Wang, Yamei
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 14
  givenname: Uzma
  surname: Majeed
  fullname: Majeed, Uzma
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 15
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 16
  givenname: Rudi
  surname: Appels
  fullname: Appels, Rudi
  organization: AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia
– sequence: 17
  givenname: Marco
  surname: Maccaferri
  fullname: Maccaferri, Marco
  organization: Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
– sequence: 18
  givenname: Roberto
  surname: Tuberosa
  fullname: Tuberosa, Roberto
  organization: Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
– sequence: 19
  givenname: Hongfeng
  surname: Lu
  fullname: Lu, Hongfeng
  email: emilydearlu@163.com
  organization: Novogene Bioinformatics Institute, Beijing 100083, China
– sequence: 20
  givenname: Xueyong
  surname: Zhang
  fullname: Zhang, Xueyong
  email: zhangxueyong@caas.cn
  organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32896642$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhiNURC_wAiyQl2ySHjtXS2zKqC2VRkLqgFhajn3SekjswXZGmofoO-NoCgsWFSufxfefI__feXZincUse0-hoECby20xuXFXMGBQAC8A6KvsjLY1y3nXtCdpbtoqZ1Cz0-w8hC1AA11TvslOS9bxpqnYWfZ0jwF_zWiVsQ_EDYRWNVlLqyfpf5LVPEazlz6Qe9yjHAO5CodpwuiNIpu5zx_QugnJBkdU0ThLUpJsondp2Y2brUZPbhMTDzsk18OQqEAS9uMRZSSfPaJe7hpLVo_GyrfZ6yFdwXfP70X2_eb62-pLvv56e7e6Wueq4jzmWCkYZC-V6gdgcqBcUdWVGrCtu64uFdM9rXTf9o3qdceapleaUwqKIe8HLC-yj8e9O-_S50MUkwkKx1FadHMQrOIda2to4T_QCjrOOZQJ_fCMzv2EWuy8SS0exJ-2E8COgPIuBI_DX4SCWJSKrViUikWpAC6S0hTq_gkpE-VSdvTSjC9HPx2jmLrcG_QiKJNUp9J9MiG0My_FfwMsgb5Z
CitedBy_id crossref_primary_10_1007_s00122_025_04826_x
crossref_primary_10_3390_ijms252111677
crossref_primary_10_1007_s00122_021_03837_8
crossref_primary_10_1186_s12870_024_05841_8
crossref_primary_10_3389_fpls_2023_1222681
crossref_primary_10_1038_s41467_021_23879_2
crossref_primary_10_1016_j_jgg_2022_02_025
crossref_primary_10_1016_j_plantsci_2023_111676
crossref_primary_10_1093_plphys_kiad319
crossref_primary_10_34133_plantphenomics_0171
crossref_primary_10_1007_s00122_023_04474_z
crossref_primary_10_1007_s11032_024_01455_y
crossref_primary_10_3389_fgene_2021_684702
crossref_primary_10_1186_s12870_022_03442_x
crossref_primary_10_1186_s12864_022_08520_w
crossref_primary_10_1007_s11032_024_01496_3
crossref_primary_10_3390_plants10061167
crossref_primary_10_1016_j_cj_2021_01_001
crossref_primary_10_1016_j_gene_2022_146399
crossref_primary_10_1016_j_jcs_2024_103966
crossref_primary_10_1007_s10142_021_00774_z
crossref_primary_10_1016_j_xplc_2023_100549
crossref_primary_10_3389_fpls_2023_1203253
crossref_primary_10_1186_s12870_024_05956_y
crossref_primary_10_1038_s41467_023_43643_y
crossref_primary_10_1186_s12915_023_01670_7
crossref_primary_10_1016_j_jgg_2023_02_015
crossref_primary_10_1126_sciadv_adg1012
crossref_primary_10_1007_s00122_021_04023_6
crossref_primary_10_1007_s11427_022_2202_3
crossref_primary_10_3389_fgene_2022_956921
crossref_primary_10_1016_j_jare_2022_04_003
crossref_primary_10_1016_j_cj_2024_05_011
crossref_primary_10_1007_s00122_024_04652_7
crossref_primary_10_1007_s00122_023_04297_y
crossref_primary_10_1007_s00122_023_04467_y
crossref_primary_10_1186_s12870_023_04278_9
crossref_primary_10_1038_s41467_022_31581_0
crossref_primary_10_1016_j_cj_2023_03_007
crossref_primary_10_1111_pbr_13094
crossref_primary_10_1016_j_cj_2025_01_012
crossref_primary_10_1016_j_xplc_2022_100325
crossref_primary_10_1093_jxb_erab024
crossref_primary_10_1186_s12870_024_05885_w
crossref_primary_10_1038_s41467_024_54172_7
crossref_primary_10_1016_j_xplc_2021_100211
crossref_primary_10_3390_agriculture14060941
crossref_primary_10_7717_peerj_11811
crossref_primary_10_3389_fpls_2023_1131205
crossref_primary_10_3390_ijms23137056
crossref_primary_10_3390_ijms24087245
crossref_primary_10_1007_s00122_024_04661_6
crossref_primary_10_1038_s41467_025_57750_5
crossref_primary_10_1186_s12870_023_04537_9
crossref_primary_10_3390_plants14010027
crossref_primary_10_3390_genes13071112
crossref_primary_10_1016_j_molp_2024_01_010
crossref_primary_10_1016_j_molp_2023_10_015
crossref_primary_10_1111_pbi_14385
crossref_primary_10_1016_j_xplc_2024_101222
crossref_primary_10_1007_s00122_023_04286_1
crossref_primary_10_1016_j_cj_2023_05_007
crossref_primary_10_1186_s12870_021_03183_3
crossref_primary_10_1111_pbi_70032
crossref_primary_10_48130_seedbio_0024_0007
crossref_primary_10_3389_fpls_2022_897772
crossref_primary_10_1093_plphys_kiae175
crossref_primary_10_1007_s00122_023_04331_z
crossref_primary_10_1038_s41467_023_44003_6
crossref_primary_10_1038_s41467_024_46419_0
crossref_primary_10_1016_S2095_3119_21_63699_7
crossref_primary_10_1038_s41467_023_36271_z
crossref_primary_10_1186_s13059_023_02932_x
crossref_primary_10_1007_s42994_021_00047_0
crossref_primary_10_1038_s41467_023_36901_6
crossref_primary_10_1016_j_jia_2023_02_013
crossref_primary_10_1186_s12915_020_00917_x
crossref_primary_10_1111_pce_15117
crossref_primary_10_3724_SP_J_1006_2022_11039
crossref_primary_10_3389_fpls_2023_1305547
crossref_primary_10_1016_j_jia_2024_12_003
crossref_primary_10_3390_agronomy14030608
crossref_primary_10_1038_s41598_021_85226_1
crossref_primary_10_1002_tpg2_20435
crossref_primary_10_1016_j_molp_2024_05_006
crossref_primary_10_1111_pbi_14032
crossref_primary_10_1007_s00122_022_04133_9
crossref_primary_10_1007_s00122_024_04802_x
crossref_primary_10_1016_j_indcrop_2024_118660
crossref_primary_10_1016_j_xplc_2024_100879
crossref_primary_10_1016_j_cell_2022_04_036
crossref_primary_10_1016_j_jia_2023_04_023
crossref_primary_10_3390_agronomy13092408
crossref_primary_10_1007_s00122_023_04502_y
crossref_primary_10_1016_j_indcrop_2022_115437
crossref_primary_10_3389_fpls_2022_840614
crossref_primary_10_1016_j_jgg_2023_08_002
crossref_primary_10_1016_j_molp_2023_07_009
crossref_primary_10_1186_s12870_024_05968_8
crossref_primary_10_1093_plphys_kiac029
crossref_primary_10_1186_s12870_023_04343_3
crossref_primary_10_1007_s11427_022_2178_7
crossref_primary_10_3389_fpls_2022_927407
crossref_primary_10_1038_s41477_023_01432_x
crossref_primary_10_1016_j_molp_2021_11_007
crossref_primary_10_1186_s13059_023_03044_2
crossref_primary_10_1111_pbi_14323
crossref_primary_10_1111_nph_18500
crossref_primary_10_3390_plants12173021
crossref_primary_10_1111_jpi_12841
crossref_primary_10_1111_pbi_14605
crossref_primary_10_1016_j_molp_2022_01_004
crossref_primary_10_1139_gen_2021_0074
crossref_primary_10_1016_j_cj_2022_06_014
crossref_primary_10_1111_pbi_14211
crossref_primary_10_1007_s42994_023_00131_7
crossref_primary_10_1016_j_molp_2024_09_007
crossref_primary_10_1093_plcell_koad229
crossref_primary_10_3390_plants10020382
crossref_primary_10_1038_s41586_024_08277_0
crossref_primary_10_1016_j_molp_2023_09_001
crossref_primary_10_1111_tpj_16023
crossref_primary_10_1111_jipb_13759
crossref_primary_10_1186_s12864_023_09934_w
crossref_primary_10_3390_agronomy15020325
crossref_primary_10_1007_s11032_022_01303_x
crossref_primary_10_1038_s41477_023_01406_z
crossref_primary_10_3389_fpls_2022_1048860
crossref_primary_10_1371_journal_pone_0295021
crossref_primary_10_3389_fpls_2021_808136
crossref_primary_10_3390_ijms23105587
crossref_primary_10_1007_s00122_021_03801_6
crossref_primary_10_1016_j_jafr_2024_101529
crossref_primary_10_1002_tpg2_20480
crossref_primary_10_1007_s11032_024_01520_6
crossref_primary_10_1111_tpj_16432
crossref_primary_10_1016_j_gene_2024_148309
crossref_primary_10_1016_j_xplc_2023_100608
crossref_primary_10_1111_tpj_16676
crossref_primary_10_1186_s12870_023_04098_x
crossref_primary_10_1186_s12870_024_05042_3
crossref_primary_10_3390_plants13091259
crossref_primary_10_1007_s00122_024_04738_2
crossref_primary_10_1038_s41477_024_01873_y
crossref_primary_10_1007_s00425_023_04114_2
crossref_primary_10_1186_s13059_024_03315_6
crossref_primary_10_3390_ijms24087056
crossref_primary_10_1007_s00122_020_03729_3
crossref_primary_10_1111_tpj_16708
crossref_primary_10_1016_j_molp_2021_12_019
crossref_primary_10_3390_antiox13080899
crossref_primary_10_1016_j_molp_2025_01_005
crossref_primary_10_3389_fpls_2022_923734
Cites_doi 10.1111/pbi.12240
10.1093/molbev/msl004
10.1101/gr.094052.109
10.1093/jxb/erg151
10.1093/bioinformatics/btu393
10.1016/j.fcr.2015.03.013
10.1038/ng.3807
10.1038/s41588-019-0381-3
10.1086/521987
10.1534/genetics.120.303501
10.1038/s41467-019-09134-9
10.1073/pnas.1010894108
10.1007/s00122-002-1016-z
10.1038/ncomms5392
10.1007/s00425-001-0691-3
10.1111/pbi.12044
10.1186/s13059-015-0606-4
10.1038/s41587-019-0152-9
10.1534/g3.116.028233
10.1007/s001220050673
10.1038/ng.2312
10.1093/bioinformatics/bti403
10.1126/science.aar6343
10.1086/519795
10.1104/pp.122.1.255
10.1186/s13059-019-1631-5
10.1111/tpj.13515
10.1016/j.ajhg.2010.11.011
10.1007/s11032-011-9608-4
10.3732/ajb.92.6.1045
10.1111/pbi.12288
10.2135/cropsci2010.12.0680
10.1038/ng.3199
10.1093/bioinformatics/btr330
10.1016/j.tplants.2015.04.013
10.1016/j.tplants.2019.10.012
10.1534/genetics.105.044727
10.1038/nbt.3096
10.1093/nar/gkq603
10.1101/gr.100545.109
10.1038/s41588-019-0393-z
10.1016/S0031-9422(02)00428-4
10.1126/sciadv.aav0536
10.3389/fpls.2017.02115
10.1007/s00122-019-03367-4
10.1038/ng.3887
10.1016/S1360-1385(03)00134-1
10.1016/j.quaint.2016.02.059
10.1093/bioinformatics/btp352
10.1534/genetics.112.146316
10.1111/pbi.12735
10.1093/bioinformatics/bti430
10.1038/s41588-018-0182-0
10.1111/j.1467-7652.2012.00717.x
10.1534/g3.116.038711
10.1038/s41477-019-0577-7
10.1038/nature11532
10.1111/pbi.12183
10.1007/s00122-002-0959-4
10.1126/science.aar7191
10.1126/science.aar6089
10.1093/bioinformatics/btw051
10.1534/genetics.103.016303
10.1101/gr.097261.109
10.1007/s10681-008-9745-y
10.1038/ng.2310
10.1101/gr.107524.110
10.1186/s13059-019-1744-x
10.1093/bioinformatics/btp324
10.1139/g98-037
10.1111/tpj.12366
10.1111/j.1365-313x.2012.05122.x
10.1186/1471-2164-11-702
10.1038/s41588-019-0382-2
10.1534/genetics.113.150029
10.1038/srep41247
10.1126/science.aba5435
10.1371/journal.pbio.3000071
10.1126/science.277.5329.1063
10.1126/science.1174320
10.1101/gr.073585.107
10.1111/pbi.12770
10.1073/pnas.252763199
ContentType Journal Article
Copyright 2020 The Author
Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Author
– notice: Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.molp.2020.09.001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1752-9867
EndPage 1751
ExternalDocumentID 32896642
10_1016_j_molp_2020_09_001
S1674205220302963
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--M
.2P
.I3
0R~
123
2WC
4.4
457
53G
7-5
70D
8P~
AABVA
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
CZ4
DU5
E3Z
EBS
EE~
EFJIC
EFLBG
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NU-
O9-
OAUVE
OK1
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TR2
W8F
X7H
~91
~G-
1RT
AAEDT
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
CKLRP
CW9
EJD
H13
O0~
OVD
SSH
TEORI
TGP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c499t-e4c0fabaccbf02af19c1c83d0e758853c2db14db7b6cbd8266bcd9110c2e9bfe3
IEDL.DBID AIKHN
ISSN 1674-2052
1752-9867
IngestDate Thu Jul 10 19:01:59 EDT 2025
Fri Jul 11 15:29:16 EDT 2025
Thu Apr 03 07:03:34 EDT 2025
Tue Jul 01 01:40:49 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Fri Feb 23 02:46:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords wheat breeding
founder genotype
asymmetric selection
haplotype block
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-e4c0fabaccbf02af19c1c83d0e758853c2db14db7b6cbd8266bcd9110c2e9bfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1674205220302963/pdf
PMID 32896642
PQID 2440899903
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2498275070
proquest_miscellaneous_2440899903
pubmed_primary_32896642
crossref_primary_10_1016_j_molp_2020_09_001
crossref_citationtrail_10_1016_j_molp_2020_09_001
elsevier_sciencedirect_doi_10_1016_j_molp_2020_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-07
PublicationDateYYYYMMDD 2020-12-07
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Mol Plant
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hickey, Hafeez, Robinson, Jackson, Leal-Bertioli, Tester, Gao, Godwin, Hayes, Wulff (bib28) 2019; 37
Pont, Leroy, Seidel, Tondelli, Duchemin, Armisen, Lang, Bustos-Korts, Goué, Balfourier (bib60) 2019; 51
Ge, You, Wang, Hao, Dong, Li, Zhang (bib23) 2012; 52
Pont, Murat, Guizard, Flores, Foucrier, Bidet, Quraishi, Alaux, Doležel, Fahima (bib59) 2013; 76
Alonge, Shumate, Puiu, Zimin, Salzberg (bib4) 2020
Li, Durbin (bib40) 2009; 25
Jiang, Dian, Liu, Wu (bib33) 2003; 62
Simons, Fellers, Trick, Zhang, Tai, Gill, Faris (bib64) 2006; 172
Snowdon, Abbadi, Kox, Schmutzer, Leckband (bib65) 2015; 20
Gu, Gu, Eils, Schlesner, Brors (bib25) 2014; 30
Wang, Sun, Ge, Zhao, Hou, Wang, Lyu, Chen, Xu, Guo (bib77) 2020; 368
DeGiorgio, Huber, Hubisz, Hellmann, Nielsen (bib16) 2016; 32
Song, Guan, Hu, Guo, Yang, Wang, Liu, Wang, Lu, Zhou (bib66) 2020; 6
Jordan, Wang, Lun, Gardiner, MacLachlan, Hucl, Wiebe, Wong, Forrest, IWGS Consortium (bib35) 2015; 16
Qin, Zhang, Liu, Yu, Cao, Tian, Liao, Siddique (bib62) 2015; 177
Hou, Li, Wang, Hao, Liu, Zhang (bib29) 2017; 15
Peng, Sun, Nevo (bib57) 2011; 28
Edwards, Wilcox, Barrero, Fleury, Cavanagh, Forrest, Hayden, Moolhuijzen, Keeble-Gagnère, Bellgard (bib18) 2012; 10
Mason-Gamer (bib50) 2005; 92
Ai, Fang, Yang, Huang, Chen, Mao, Zhang, Zhang, Cui, He (bib1) 2015; 47
Peleman, van der Voort (bib55) 2003; 8
Sun, Zhou, Chen, Shi, Zhao, Zhao, Song, Zhang, Cui, Dong (bib67) 2018; 50
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib41) 2009; 25
Joukhadar, Daetwyler, Bansal, Gendall, Hayden (bib36) 2017; 8
Zhou, Chen, Cheng, Chen, Zhu, Wang, Liu, Qi, Chen, Jiang (bib83) 2018; 16
Huang, Kurata, Wei, Wang, Wang, Zhao, Zhao, Liu, Lu, Li (bib31) 2012; 490
Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly (bib61) 2007; 81
Berkman, Visendi, Lee, Stiller, Manoli, Lorenc, Lai, Batley, Fleury, Šimková (bib6) 2013; 11
Hao, Wang, Chao, Li, Liu, Wang, Zhang (bib26) 2017; 7
Wang, Tu, Lin, Lin, Wang, Yang, Ye, Shen, Li, Zhang (bib75) 2017; 49
Wang, Li, Hakonarson (bib73) 2010; 38
Caldwell, Dvorak, Lagudah, Akhunov, Luo, Wolters, Powell (bib11) 2004; 167
Danecek, Auton, Abecasis, Albers, Banks, DePristo, Handsaker, Lunter, Marth, Sherry (bib14) 2011; 27
Vilella, Severin, Ureta-Vidal, Heng, Durbin, Birney (bib71) 2009; 19
Balfourier, Bouchet, Robert, De Oliveira, Rimbert, Kitt, Choulet, International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux (bib5) 2019; 5
Börner, Röder, Korzun (bib7) 1997; 95
Lai, Lorenc, Lee, Berkman, Bayer, Visendi, Ruperao, Fitzgerald, Zander, Chan (bib39) 2015; 13
Bosse, Megens, Frantz, Madsen, Larson, Paudel, Duijvesteijn, Harlizius, Hagemeijer, Crooijmans (bib8) 2014; 5
Akhunov, Akhunova, Anderson, Anderson, Blake, Clegg, Coleman-Derr, Conley, Crossman, Deal (bib2) 2010; 11
Browning, Browning (bib10) 2013; 194
Feldman, Levy (bib20) 2012; 192
Peng, Ronin, Fahima, Röder, Li, Nevo, Korol (bib56) 2003; 100
Davies, Tetlow, Bowsher, Emes (bib15) 2003; 54
Poland, Bradbury, Buckler, Nelson (bib58) 2011; 108
Browning, Browning (bib9) 2007; 81
Vrinten, Nakamura (bib72) 2000; 122
Fradgley, Gardner, Cockram, Elderfield, Hickey, Howell, Jackson, Mackay (bib21) 2019; 17
Ramírez-González, Borrill, Lang, Harrington, Brinton, Venturini, Davey, Jacobs, van Ex, Pasha (bib63) 2018; 361
Maccaferri, Ricci, Salvi, Milner, Noli, Martelli, Casadio, Akhunov, Scalabrin, Vendramin (bib47) 2015; 13
McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (bib51) 2010; 20
Wang, Chen, Ma (bib76) 2019; 20
Cheng, Liu, Wen, Nie, Xu, Chen, Li, Wang, Zheng, Li (bib13) 2019; 20
Fang, Wang, Hu, Jia, Chen, Liu, Zhang, Guan, Chen, Zhou (bib19) 2017; 49
He, Pasam, Shi, Kant, Keeble-Gagnere, Kay, Forrest, Fritz, Hucl, Wiebe (bib27) 2019; 51
Vilella, Blanco-Garcia, Hutter, Rozas (bib70) 2005; 21
Mutti, Bhullar, Gill (bib54) 2017; 7
Liu, Lister, Zhao, Staff, Jones, Zhou, Pokharia, Petrie, Pathak, Lu (bib43) 2016; 426
Kronenberg, Fiddes, Gordon, Murali, Cantsilieris, Meyerson, Underwood, Nelson, Chaisson, Dougherty (bib38) 2018; 360
Li, Zhu, Ruan, Qian, Fang, Shi, Li, Li, Shan, Kristiansen (bib42) 2010; 20
Mao, Cai, Olyarchuk, Wei (bib49) 2005; 21
Dvorak, Akhunov, Akhunov, Deal, Luo (bib17) 2006; 23
Yang, Lee, Goddard, Visscher (bib79) 2011; 88
Chen, Patterson, Reich (bib12) 2010; 20
Genschel, Abel, Lörz, Lütticke (bib24) 2002; 214
Montenegro, Golicz, Bayer, Hurgobin, Lee, Chan, Visendi, Lai, Doležel, Batley (bib53) 2017; 90
Liu, Rasheed, He, Imtiaz, Arif, Mahmood, Ghafoor, Siddiqui, Ilyas, Wen (bib44) 2019; 132
Maccaferri, Harris, Twardziok, Pasam, Gundlach, Spannagl, Ormanbekova, Lux, Prade, Milner (bib48) 2019; 51
Jiao, Zhao, Ren, Song, Zeng, Guo, Wang, Liu, Chen, Li (bib34) 2012; 44
Lu, Wei, Li, Wang, Wu, Liu, Zhang, Chen, Xiao, Jian (bib45) 2019; 10
Yang, Zhang, Xia, Laurie, Yang, He (bib78) 2009; 165
Zhou, Jiang, Wang, Gou, Lyu, Li, Yu, Shu, Zhao, Ma (bib82) 2015; 33
Alexander, Novembre, Lange (bib3) 2009; 19
Zhang, Li, Wang, Wang, You, Dong (bib80) 2002; 106
Tanksley, McCouch (bib69) 1997; 277
(bib32) 2018; 361
Huang, Börner, Röder, Ganal (bib30) 2002; 105
Khan, Garg, Roorkiwal, Golicz, Edwards, Varshney (bib37) 2020; 25
Ma, Cheng, Qin, Qiu, Heng, Yang, Ren, Wang, Bi, Ma (bib46) 2013; 73
Zhou, Stephens (bib81) 2012; 44
Wang, Wong, Forrest, Allen, Chao, Huang, Maccaferri, Salvi, Milner, Cattivelli (bib74) 2014; 12
Zhuang (bib84) 2003
Gao, Ming, Hu, Li (bib22) 2016; 6
Talbert, Smith, Blake (bib68) 1998; 41
McMullen, Kresovich, Villeda, Bradbury, Li, Sun, Flint-Garcia, Thornsberry, Acharya, Bottoms (bib52) 2009; 325
Chen (10.1016/j.molp.2020.09.001_bib12) 2010; 20
Hickey (10.1016/j.molp.2020.09.001_bib28) 2019; 37
Balfourier (10.1016/j.molp.2020.09.001_bib5) 2019; 5
Börner (10.1016/j.molp.2020.09.001_bib7) 1997; 95
Yang (10.1016/j.molp.2020.09.001_bib78) 2009; 165
Cheng (10.1016/j.molp.2020.09.001_bib13) 2019; 20
Fang (10.1016/j.molp.2020.09.001_bib19) 2017; 49
Danecek (10.1016/j.molp.2020.09.001_bib14) 2011; 27
Wang (10.1016/j.molp.2020.09.001_bib75) 2017; 49
Wang (10.1016/j.molp.2020.09.001_bib73) 2010; 38
Davies (10.1016/j.molp.2020.09.001_bib15) 2003; 54
Feldman (10.1016/j.molp.2020.09.001_bib20) 2012; 192
Sun (10.1016/j.molp.2020.09.001_bib67) 2018; 50
Peng (10.1016/j.molp.2020.09.001_bib56) 2003; 100
Joukhadar (10.1016/j.molp.2020.09.001_bib36) 2017; 8
Akhunov (10.1016/j.molp.2020.09.001_bib2) 2010; 11
Genschel (10.1016/j.molp.2020.09.001_bib24) 2002; 214
Peng (10.1016/j.molp.2020.09.001_bib57) 2011; 28
Berkman (10.1016/j.molp.2020.09.001_bib6) 2013; 11
Tanksley (10.1016/j.molp.2020.09.001_bib69) 1997; 277
Peleman (10.1016/j.molp.2020.09.001_bib55) 2003; 8
Huang (10.1016/j.molp.2020.09.001_bib30) 2002; 105
Simons (10.1016/j.molp.2020.09.001_bib64) 2006; 172
Jiang (10.1016/j.molp.2020.09.001_bib33) 2003; 62
Kronenberg (10.1016/j.molp.2020.09.001_bib38) 2018; 360
Bosse (10.1016/j.molp.2020.09.001_bib8) 2014; 5
Liu (10.1016/j.molp.2020.09.001_bib43) 2016; 426
Vilella (10.1016/j.molp.2020.09.001_bib71) 2009; 19
Purcell (10.1016/j.molp.2020.09.001_bib61) 2007; 81
Yang (10.1016/j.molp.2020.09.001_bib79) 2011; 88
Alexander (10.1016/j.molp.2020.09.001_bib3) 2009; 19
Huang (10.1016/j.molp.2020.09.001_bib31) 2012; 490
Vrinten (10.1016/j.molp.2020.09.001_bib72) 2000; 122
Browning (10.1016/j.molp.2020.09.001_bib10) 2013; 194
Zhou (10.1016/j.molp.2020.09.001_bib82) 2015; 33
Poland (10.1016/j.molp.2020.09.001_bib58) 2011; 108
Lai (10.1016/j.molp.2020.09.001_bib39) 2015; 13
Snowdon (10.1016/j.molp.2020.09.001_bib65) 2015; 20
Talbert (10.1016/j.molp.2020.09.001_bib68) 1998; 41
Jiao (10.1016/j.molp.2020.09.001_bib34) 2012; 44
Zhang (10.1016/j.molp.2020.09.001_bib80) 2002; 106
Ge (10.1016/j.molp.2020.09.001_bib23) 2012; 52
Ai (10.1016/j.molp.2020.09.001_bib1) 2015; 47
He (10.1016/j.molp.2020.09.001_bib27) 2019; 51
Wang (10.1016/j.molp.2020.09.001_bib76) 2019; 20
Edwards (10.1016/j.molp.2020.09.001_bib18) 2012; 10
Zhou (10.1016/j.molp.2020.09.001_bib83) 2018; 16
Li (10.1016/j.molp.2020.09.001_bib41) 2009; 25
Song (10.1016/j.molp.2020.09.001_bib66) 2020; 6
Ma (10.1016/j.molp.2020.09.001_bib46) 2013; 73
DeGiorgio (10.1016/j.molp.2020.09.001_bib16) 2016; 32
Maccaferri (10.1016/j.molp.2020.09.001_bib48) 2019; 51
Browning (10.1016/j.molp.2020.09.001_bib9) 2007; 81
Hou (10.1016/j.molp.2020.09.001_bib29) 2017; 15
McKenna (10.1016/j.molp.2020.09.001_bib51) 2010; 20
Ramírez-González (10.1016/j.molp.2020.09.001_bib63) 2018; 361
McMullen (10.1016/j.molp.2020.09.001_bib52) 2009; 325
Zhuang (10.1016/j.molp.2020.09.001_bib84) 2003
(10.1016/j.molp.2020.09.001_bib32) 2018; 361
Lu (10.1016/j.molp.2020.09.001_bib45) 2019; 10
Li (10.1016/j.molp.2020.09.001_bib42) 2010; 20
Pont (10.1016/j.molp.2020.09.001_bib59) 2013; 76
Hao (10.1016/j.molp.2020.09.001_bib26) 2017; 7
Mutti (10.1016/j.molp.2020.09.001_bib54) 2017; 7
Mao (10.1016/j.molp.2020.09.001_bib49) 2005; 21
Qin (10.1016/j.molp.2020.09.001_bib62) 2015; 177
Fradgley (10.1016/j.molp.2020.09.001_bib21) 2019; 17
Wang (10.1016/j.molp.2020.09.001_bib74) 2014; 12
Liu (10.1016/j.molp.2020.09.001_bib44) 2019; 132
Wang (10.1016/j.molp.2020.09.001_bib77) 2020; 368
Maccaferri (10.1016/j.molp.2020.09.001_bib47) 2015; 13
Caldwell (10.1016/j.molp.2020.09.001_bib11) 2004; 167
Li (10.1016/j.molp.2020.09.001_bib40) 2009; 25
Khan (10.1016/j.molp.2020.09.001_bib37) 2020; 25
Montenegro (10.1016/j.molp.2020.09.001_bib53) 2017; 90
Dvorak (10.1016/j.molp.2020.09.001_bib17) 2006; 23
Gao (10.1016/j.molp.2020.09.001_bib22) 2016; 6
Gu (10.1016/j.molp.2020.09.001_bib25) 2014; 30
Mason-Gamer (10.1016/j.molp.2020.09.001_bib50) 2005; 92
Zhou (10.1016/j.molp.2020.09.001_bib81) 2012; 44
Jordan (10.1016/j.molp.2020.09.001_bib35) 2015; 16
Vilella (10.1016/j.molp.2020.09.001_bib70) 2005; 21
Alonge (10.1016/j.molp.2020.09.001_bib4) 2020
Pont (10.1016/j.molp.2020.09.001_bib60) 2019; 51
References_xml – volume: 11
  start-page: 564
  year: 2013
  end-page: 571
  ident: bib6
  article-title: Dispersion and domestication shaped the genome of bread wheat
  publication-title: Plant Biotechnol. J.
– volume: 7
  start-page: 1225
  year: 2017
  end-page: 1237
  ident: bib54
  article-title: Evolution of gene expression balance among homeologs of natural polyploids
  publication-title: G3 (Bethesda)
– volume: 51
  start-page: 905
  year: 2019
  end-page: 911
  ident: bib60
  article-title: Tracing the ancestry of modern bread wheats
  publication-title: Nat. Genet.
– volume: 20
  start-page: 22
  year: 2019
  ident: bib76
  article-title: Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication
  publication-title: Genome Biol.
– volume: 81
  start-page: 1084
  year: 2007
  end-page: 1097
  ident: bib9
  article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
  publication-title: Am. J. Hum. Genet.
– volume: 11
  start-page: 702
  year: 2010
  ident: bib2
  article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes
  publication-title: BMC Genomics
– volume: 27
  start-page: 2156
  year: 2011
  end-page: 2158
  ident: bib14
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
– volume: 360
  start-page: eaar6343
  year: 2018
  ident: bib38
  article-title: High-resolution comparative analysis of great ape genomes
  publication-title: Science
– volume: 28
  start-page: 281
  year: 2011
  end-page: 301
  ident: bib57
  article-title: Domestication evolution, genetics and genomics in wheat
  publication-title: Mol. Breed.
– volume: 20
  start-page: 136
  year: 2019
  ident: bib13
  article-title: Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat
  publication-title: Genome Biol.
– year: 2003
  ident: bib84
  article-title: Chinese Wheat Improvement and Pedigree Analysis (In Chinese)
– volume: 38
  start-page: e164
  year: 2010
  ident: bib73
  article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: 217
  year: 2015
  end-page: 225
  ident: bib1
  article-title: Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing
  publication-title: Nat. Genet.
– volume: 44
  start-page: 821
  year: 2012
  end-page: 824
  ident: bib81
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat. Genet.
– volume: 165
  start-page: 445
  year: 2009
  end-page: 452
  ident: bib78
  article-title: Distribution of the photoperiod insensitive
  publication-title: Euphytica
– volume: 6
  start-page: 1563
  year: 2016
  end-page: 1571
  ident: bib22
  article-title: New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era
  publication-title: G3 (Bethesda)
– volume: 13
  start-page: 97
  year: 2015
  end-page: 104
  ident: bib39
  article-title: Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat
  publication-title: Plant Biotechnol. J.
– volume: 92
  start-page: 1045
  year: 2005
  end-page: 1058
  ident: bib50
  article-title: The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae)
  publication-title: Am. J. Bot.
– volume: 54
  start-page: 1351
  year: 2003
  end-page: 1360
  ident: bib15
  article-title: Molecular and biochemical characterization of cytosolic phosphoglucomutase in wheat endosperm (
  publication-title: J. Exp. Bot.
– volume: 122
  start-page: 255
  year: 2000
  end-page: 264
  ident: bib72
  article-title: Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues
  publication-title: Plant Physiol.
– volume: 325
  start-page: 737
  year: 2009
  end-page: 740
  ident: bib52
  article-title: Genetic properties of the maize nested association mapping population
  publication-title: Science
– volume: 5
  start-page: 4392
  year: 2014
  ident: bib8
  article-title: Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression
  publication-title: Nat. Commun.
– volume: 5
  start-page: eaav0536
  year: 2019
  ident: bib5
  article-title: Worldwide phylogeography and history of wheat genetic diversity
  publication-title: Sci. Adv.
– volume: 21
  start-page: 2791
  year: 2005
  end-page: 2793
  ident: bib70
  article-title: VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data
  publication-title: Bioinformatics
– volume: 16
  start-page: 48
  year: 2015
  ident: bib35
  article-title: A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes
  publication-title: Genome Biol.
– year: 2020
  ident: bib4
  article-title: Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies
  publication-title: Genetics
– volume: 50
  start-page: 1289
  year: 2018
  end-page: 1295
  ident: bib67
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
– volume: 23
  start-page: 1386
  year: 2006
  end-page: 1396
  ident: bib17
  article-title: Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat
  publication-title: Mol. Biol. Evol.
– volume: 361
  start-page: eaar7191
  year: 2018
  ident: bib32
  article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome
  publication-title: Science
– volume: 8
  start-page: 2115
  year: 2017
  ident: bib36
  article-title: Genetic diversity, population structure and ancestral origin of Australian wheat
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 410
  year: 2015
  end-page: 413
  ident: bib65
  article-title: Heterotic Haplotype Capture: precision breeding for hybrid performance
  publication-title: Trends Plant Sci.
– volume: 25
  start-page: 148
  year: 2020
  end-page: 158
  ident: bib37
  article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement
  publication-title: Trends Plant Sci.
– volume: 21
  start-page: 3787
  year: 2005
  end-page: 3793
  ident: bib49
  article-title: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary
  publication-title: Bioinformatics
– volume: 192
  start-page: 763
  year: 2012
  end-page: 774
  ident: bib20
  article-title: Genome evolution due to allopolyploidization in wheat
  publication-title: Genetics
– volume: 361
  start-page: eaar6089
  year: 2018
  ident: bib63
  article-title: The transcriptional landscape of polyploid wheat
  publication-title: Science
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib40
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– volume: 108
  start-page: 6893
  year: 2011
  end-page: 6898
  ident: bib58
  article-title: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 76
  start-page: 1030
  year: 2013
  end-page: 1044
  ident: bib59
  article-title: Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes
  publication-title: Plant J.
– volume: 8
  start-page: 330
  year: 2003
  end-page: 334
  ident: bib55
  article-title: Breeding by design
  publication-title: Trends Plant Sci.
– volume: 37
  start-page: 744
  year: 2019
  end-page: 754
  ident: bib28
  article-title: Breeding crops to feed 10 billion
  publication-title: Nat. Biotechnol.
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  ident: bib61
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
– volume: 277
  start-page: 1063
  year: 1997
  end-page: 1066
  ident: bib69
  article-title: Seed banks and molecular maps: unlocking genetic potential from the wild
  publication-title: Science
– volume: 10
  start-page: 1154
  year: 2019
  ident: bib45
  article-title: Whole-genome resequencing reveals
  publication-title: Nat. Commun.
– volume: 44
  start-page: 812
  year: 2012
  end-page: 815
  ident: bib34
  article-title: Genome-wide genetic changes during modern breeding of maize
  publication-title: Nat. Genet.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib41
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 49
  start-page: 579
  year: 2017
  end-page: 587
  ident: bib75
  article-title: Asymmetric subgenome selection and
  publication-title: Nat. Genet.
– volume: 490
  start-page: 497
  year: 2012
  end-page: 501
  ident: bib31
  article-title: A map of rice genome variation reveals the origin of cultivated rice
  publication-title: Nature
– volume: 167
  start-page: 941
  year: 2004
  end-page: 947
  ident: bib11
  article-title: Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor
  publication-title: Genetics
– volume: 20
  start-page: 265
  year: 2010
  end-page: 272
  ident: bib42
  article-title: De novo assembly of human genomes with massively parallel short read sequencing
  publication-title: Genome Res.
– volume: 73
  start-page: 190
  year: 2013
  end-page: 200
  ident: bib46
  article-title: encodes an arginase that plays critical roles in panicle development and grain production in rice
  publication-title: Plant J.
– volume: 172
  start-page: 547
  year: 2006
  end-page: 555
  ident: bib64
  article-title: Molecular characterization of the major wheat domestication gene
  publication-title: Genetics
– volume: 19
  start-page: 1655
  year: 2009
  end-page: 1664
  ident: bib3
  article-title: Fast model-based estimation of ancestry in unrelated individuals
  publication-title: Genome Res.
– volume: 52
  start-page: 1218
  year: 2012
  end-page: 1228
  ident: bib23
  article-title: Genome selection sweep and association analysis shed light on future breeding by design in wheat
  publication-title: Crop Sci.
– volume: 30
  start-page: 2811
  year: 2014
  end-page: 2812
  ident: bib25
  article-title: implements and enhances circular visualization in R
  publication-title: Bioinformatics
– volume: 49
  start-page: 1089
  year: 2017
  end-page: 1098
  ident: bib19
  article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits
  publication-title: Nat. Genet.
– volume: 214
  start-page: 813
  year: 2002
  end-page: 820
  ident: bib24
  article-title: The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation
  publication-title: Planta
– volume: 51
  start-page: 896
  year: 2019
  end-page: 904
  ident: bib27
  article-title: Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome
  publication-title: Nat. Genet.
– volume: 16
  start-page: 280
  year: 2018
  end-page: 291
  ident: bib83
  article-title: Uncovering the dispersion history, adaptive evolution and selection of wheat in China
  publication-title: Plant Biotechnol. J.
– volume: 426
  start-page: 107
  year: 2016
  end-page: 119
  ident: bib43
  article-title: The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats
  publication-title: Quaternary Int.
– volume: 90
  start-page: 1007
  year: 2017
  end-page: 1013
  ident: bib53
  article-title: The pangenome of hexaploid bread wheat
  publication-title: Plant J.
– volume: 13
  start-page: 648
  year: 2015
  end-page: 663
  ident: bib47
  article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding
  publication-title: Plant Biotechnol. J.
– volume: 368
  start-page: eaba5435
  year: 2020
  ident: bib77
  article-title: Horizontal gene transfer of
  publication-title: Science
– volume: 106
  start-page: 112
  year: 2002
  end-page: 117
  ident: bib80
  article-title: An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production
  publication-title: Theor. Appl. Genet.
– volume: 51
  start-page: 885
  year: 2019
  end-page: 895
  ident: bib48
  article-title: Durum wheat genome highlights past domestication signatures and future improvement targets
  publication-title: Nat. Genet.
– volume: 15
  start-page: 1533
  year: 2017
  end-page: 1543
  ident: bib29
  article-title: ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding
  publication-title: Plant Biotechnol. J.
– volume: 62
  start-page: 47
  year: 2003
  end-page: 52
  ident: bib33
  article-title: Isolation and characterization of two fructokinase cDNA clones from rice
  publication-title: Phytochemistry
– volume: 33
  start-page: 408
  year: 2015
  end-page: 414
  ident: bib82
  article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
  publication-title: Nat. Biotechnol.
– volume: 100
  start-page: 2489
  year: 2003
  end-page: 2494
  ident: bib56
  article-title: Domestication quantitative trait loci in
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: bib51
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
– volume: 95
  start-page: 1133
  year: 1997
  end-page: 1137
  ident: bib7
  article-title: Comparative molecular mapping of GA insensitive
  publication-title: Theor. Appl. Genet.
– volume: 177
  start-page: 117
  year: 2015
  end-page: 124
  ident: bib62
  article-title: Wheat yield improvements in China: past trends and future directions
  publication-title: Field Crops Res.
– volume: 6
  start-page: 34
  year: 2020
  end-page: 45
  ident: bib66
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of
  publication-title: Nat. Plants
– volume: 194
  start-page: 459
  year: 2013
  end-page: 471
  ident: bib10
  article-title: Improving the accuracy and efficiency of identity-by-descent detection in population data
  publication-title: Genetics
– volume: 10
  start-page: 703
  year: 2012
  end-page: 708
  ident: bib18
  article-title: Bread matters: a national initiative to profile the genetic diversity of Australian wheat
  publication-title: Plant Biotechnol. J.
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: bib79
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
– volume: 19
  start-page: 327
  year: 2009
  end-page: 335
  ident: bib71
  article-title: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates
  publication-title: Genome Res.
– volume: 12
  start-page: 787
  year: 2014
  end-page: 796
  ident: bib74
  article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array
  publication-title: Plant Biotechnol. J.
– volume: 105
  start-page: 699
  year: 2002
  end-page: 707
  ident: bib30
  article-title: Assessing genetic diversity of wheat (
  publication-title: Theor. Appl. Genet.
– volume: 20
  start-page: 393
  year: 2010
  end-page: 402
  ident: bib12
  article-title: Population differentiation as a test for selective sweeps
  publication-title: Genome Res.
– volume: 7
  start-page: 41247
  year: 2017
  ident: bib26
  article-title: The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat
  publication-title: Sci. Rep.
– volume: 41
  start-page: 402
  year: 1998
  end-page: 407
  ident: bib68
  article-title: More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA
  publication-title: Genome
– volume: 32
  start-page: 1895
  year: 2016
  end-page: 1897
  ident: bib16
  article-title: SWEEPFINDER2: increased sensitivity, robustness, and flexibility
  publication-title: Bioinformatics
– volume: 17
  start-page: e3000071
  year: 2019
  ident: bib21
  article-title: A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders
  publication-title: PLoS Biol.
– volume: 132
  start-page: 2509
  year: 2019
  end-page: 2523
  ident: bib44
  article-title: Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding
  publication-title: Theor. Appl. Genet.
– volume: 13
  start-page: 97
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib39
  article-title: Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12240
– volume: 23
  start-page: 1386
  year: 2006
  ident: 10.1016/j.molp.2020.09.001_bib17
  article-title: Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl004
– volume: 19
  start-page: 1655
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib3
  article-title: Fast model-based estimation of ancestry in unrelated individuals
  publication-title: Genome Res.
  doi: 10.1101/gr.094052.109
– volume: 54
  start-page: 1351
  year: 2003
  ident: 10.1016/j.molp.2020.09.001_bib15
  article-title: Molecular and biochemical characterization of cytosolic phosphoglucomutase in wheat endosperm (Triticum aestivum L. cv. Axona)
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg151
– volume: 30
  start-page: 2811
  year: 2014
  ident: 10.1016/j.molp.2020.09.001_bib25
  article-title: circlize implements and enhances circular visualization in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu393
– volume: 177
  start-page: 117
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib62
  article-title: Wheat yield improvements in China: past trends and future directions
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.03.013
– volume: 49
  start-page: 579
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib75
  article-title: Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3807
– volume: 51
  start-page: 885
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib48
  article-title: Durum wheat genome highlights past domestication signatures and future improvement targets
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0381-3
– volume: 81
  start-page: 1084
  year: 2007
  ident: 10.1016/j.molp.2020.09.001_bib9
  article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/521987
– year: 2020
  ident: 10.1016/j.molp.2020.09.001_bib4
  article-title: Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies
  publication-title: Genetics
  doi: 10.1534/genetics.120.303501
– volume: 10
  start-page: 1154
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib45
  article-title: Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09134-9
– volume: 108
  start-page: 6893
  year: 2011
  ident: 10.1016/j.molp.2020.09.001_bib58
  article-title: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1010894108
– volume: 106
  start-page: 112
  year: 2002
  ident: 10.1016/j.molp.2020.09.001_bib80
  article-title: An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-002-1016-z
– volume: 5
  start-page: 4392
  year: 2014
  ident: 10.1016/j.molp.2020.09.001_bib8
  article-title: Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5392
– volume: 214
  start-page: 813
  year: 2002
  ident: 10.1016/j.molp.2020.09.001_bib24
  article-title: The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation
  publication-title: Planta
  doi: 10.1007/s00425-001-0691-3
– volume: 11
  start-page: 564
  year: 2013
  ident: 10.1016/j.molp.2020.09.001_bib6
  article-title: Dispersion and domestication shaped the genome of bread wheat
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12044
– volume: 16
  start-page: 48
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib35
  article-title: A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0606-4
– volume: 37
  start-page: 744
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib28
  article-title: Breeding crops to feed 10 billion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0152-9
– volume: 6
  start-page: 1563
  year: 2016
  ident: 10.1016/j.molp.2020.09.001_bib22
  article-title: New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.116.028233
– volume: 95
  start-page: 1133
  year: 1997
  ident: 10.1016/j.molp.2020.09.001_bib7
  article-title: Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220050673
– volume: 44
  start-page: 812
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib34
  article-title: Genome-wide genetic changes during modern breeding of maize
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2312
– volume: 21
  start-page: 2791
  year: 2005
  ident: 10.1016/j.molp.2020.09.001_bib70
  article-title: VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti403
– volume: 360
  start-page: eaar6343
  year: 2018
  ident: 10.1016/j.molp.2020.09.001_bib38
  article-title: High-resolution comparative analysis of great ape genomes
  publication-title: Science
  doi: 10.1126/science.aar6343
– volume: 81
  start-page: 559
  year: 2007
  ident: 10.1016/j.molp.2020.09.001_bib61
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 122
  start-page: 255
  year: 2000
  ident: 10.1016/j.molp.2020.09.001_bib72
  article-title: Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.1.255
– volume: 20
  start-page: 22
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib76
  article-title: Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1631-5
– volume: 90
  start-page: 1007
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib53
  article-title: The pangenome of hexaploid bread wheat
  publication-title: Plant J.
  doi: 10.1111/tpj.13515
– volume: 88
  start-page: 76
  year: 2011
  ident: 10.1016/j.molp.2020.09.001_bib79
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 28
  start-page: 281
  year: 2011
  ident: 10.1016/j.molp.2020.09.001_bib57
  article-title: Domestication evolution, genetics and genomics in wheat
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-011-9608-4
– year: 2003
  ident: 10.1016/j.molp.2020.09.001_bib84
– volume: 92
  start-page: 1045
  year: 2005
  ident: 10.1016/j.molp.2020.09.001_bib50
  article-title: The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae)
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.92.6.1045
– volume: 13
  start-page: 648
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib47
  article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12288
– volume: 52
  start-page: 1218
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib23
  article-title: Genome selection sweep and association analysis shed light on future breeding by design in wheat
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2010.12.0680
– volume: 47
  start-page: 217
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib1
  article-title: Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3199
– volume: 27
  start-page: 2156
  year: 2011
  ident: 10.1016/j.molp.2020.09.001_bib14
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr330
– volume: 20
  start-page: 410
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib65
  article-title: Heterotic Haplotype Capture: precision breeding for hybrid performance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.04.013
– volume: 25
  start-page: 148
  year: 2020
  ident: 10.1016/j.molp.2020.09.001_bib37
  article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.10.012
– volume: 172
  start-page: 547
  year: 2006
  ident: 10.1016/j.molp.2020.09.001_bib64
  article-title: Molecular characterization of the major wheat domestication gene Q
  publication-title: Genetics
  doi: 10.1534/genetics.105.044727
– volume: 33
  start-page: 408
  year: 2015
  ident: 10.1016/j.molp.2020.09.001_bib82
  article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3096
– volume: 38
  start-page: e164
  year: 2010
  ident: 10.1016/j.molp.2020.09.001_bib73
  article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq603
– volume: 20
  start-page: 393
  year: 2010
  ident: 10.1016/j.molp.2020.09.001_bib12
  article-title: Population differentiation as a test for selective sweeps
  publication-title: Genome Res.
  doi: 10.1101/gr.100545.109
– volume: 51
  start-page: 905
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib60
  article-title: Tracing the ancestry of modern bread wheats
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0393-z
– volume: 62
  start-page: 47
  year: 2003
  ident: 10.1016/j.molp.2020.09.001_bib33
  article-title: Isolation and characterization of two fructokinase cDNA clones from rice
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00428-4
– volume: 5
  start-page: eaav0536
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib5
  article-title: Worldwide phylogeography and history of wheat genetic diversity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav0536
– volume: 8
  start-page: 2115
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib36
  article-title: Genetic diversity, population structure and ancestral origin of Australian wheat
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02115
– volume: 132
  start-page: 2509
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib44
  article-title: Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-019-03367-4
– volume: 49
  start-page: 1089
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib19
  article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3887
– volume: 8
  start-page: 330
  year: 2003
  ident: 10.1016/j.molp.2020.09.001_bib55
  article-title: Breeding by design
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(03)00134-1
– volume: 426
  start-page: 107
  year: 2016
  ident: 10.1016/j.molp.2020.09.001_bib43
  article-title: The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats
  publication-title: Quaternary Int.
  doi: 10.1016/j.quaint.2016.02.059
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib41
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 192
  start-page: 763
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib20
  article-title: Genome evolution due to allopolyploidization in wheat
  publication-title: Genetics
  doi: 10.1534/genetics.112.146316
– volume: 15
  start-page: 1533
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib29
  article-title: ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12735
– volume: 21
  start-page: 3787
  year: 2005
  ident: 10.1016/j.molp.2020.09.001_bib49
  article-title: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti430
– volume: 50
  start-page: 1289
  year: 2018
  ident: 10.1016/j.molp.2020.09.001_bib67
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0182-0
– volume: 10
  start-page: 703
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib18
  article-title: Bread matters: a national initiative to profile the genetic diversity of Australian wheat
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2012.00717.x
– volume: 7
  start-page: 1225
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib54
  article-title: Evolution of gene expression balance among homeologs of natural polyploids
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.116.038711
– volume: 6
  start-page: 34
  year: 2020
  ident: 10.1016/j.molp.2020.09.001_bib66
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0577-7
– volume: 490
  start-page: 497
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib31
  article-title: A map of rice genome variation reveals the origin of cultivated rice
  publication-title: Nature
  doi: 10.1038/nature11532
– volume: 12
  start-page: 787
  year: 2014
  ident: 10.1016/j.molp.2020.09.001_bib74
  article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12183
– volume: 105
  start-page: 699
  year: 2002
  ident: 10.1016/j.molp.2020.09.001_bib30
  article-title: Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-002-0959-4
– volume: 361
  start-page: eaar7191
  year: 2018
  ident: 10.1016/j.molp.2020.09.001_bib32
  article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome
  publication-title: Science
  doi: 10.1126/science.aar7191
– volume: 361
  start-page: eaar6089
  year: 2018
  ident: 10.1016/j.molp.2020.09.001_bib63
  article-title: The transcriptional landscape of polyploid wheat
  publication-title: Science
  doi: 10.1126/science.aar6089
– volume: 32
  start-page: 1895
  year: 2016
  ident: 10.1016/j.molp.2020.09.001_bib16
  article-title: SWEEPFINDER2: increased sensitivity, robustness, and flexibility
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw051
– volume: 167
  start-page: 941
  year: 2004
  ident: 10.1016/j.molp.2020.09.001_bib11
  article-title: Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor
  publication-title: Genetics
  doi: 10.1534/genetics.103.016303
– volume: 20
  start-page: 265
  year: 2010
  ident: 10.1016/j.molp.2020.09.001_bib42
  article-title: De novo assembly of human genomes with massively parallel short read sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.097261.109
– volume: 165
  start-page: 445
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib78
  article-title: Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars
  publication-title: Euphytica
  doi: 10.1007/s10681-008-9745-y
– volume: 44
  start-page: 821
  year: 2012
  ident: 10.1016/j.molp.2020.09.001_bib81
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 20
  start-page: 1297
  year: 2010
  ident: 10.1016/j.molp.2020.09.001_bib51
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
  doi: 10.1101/gr.107524.110
– volume: 20
  start-page: 136
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib13
  article-title: Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1744-x
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib40
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 41
  start-page: 402
  year: 1998
  ident: 10.1016/j.molp.2020.09.001_bib68
  article-title: More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA
  publication-title: Genome
  doi: 10.1139/g98-037
– volume: 76
  start-page: 1030
  year: 2013
  ident: 10.1016/j.molp.2020.09.001_bib59
  article-title: Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes
  publication-title: Plant J.
  doi: 10.1111/tpj.12366
– volume: 73
  start-page: 190
  year: 2013
  ident: 10.1016/j.molp.2020.09.001_bib46
  article-title: OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313x.2012.05122.x
– volume: 11
  start-page: 702
  year: 2010
  ident: 10.1016/j.molp.2020.09.001_bib2
  article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-702
– volume: 51
  start-page: 896
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib27
  article-title: Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0382-2
– volume: 194
  start-page: 459
  year: 2013
  ident: 10.1016/j.molp.2020.09.001_bib10
  article-title: Improving the accuracy and efficiency of identity-by-descent detection in population data
  publication-title: Genetics
  doi: 10.1534/genetics.113.150029
– volume: 7
  start-page: 41247
  year: 2017
  ident: 10.1016/j.molp.2020.09.001_bib26
  article-title: The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat
  publication-title: Sci. Rep.
  doi: 10.1038/srep41247
– volume: 368
  start-page: eaba5435
  year: 2020
  ident: 10.1016/j.molp.2020.09.001_bib77
  article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat
  publication-title: Science
  doi: 10.1126/science.aba5435
– volume: 17
  start-page: e3000071
  year: 2019
  ident: 10.1016/j.molp.2020.09.001_bib21
  article-title: A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000071
– volume: 277
  start-page: 1063
  year: 1997
  ident: 10.1016/j.molp.2020.09.001_bib69
  article-title: Seed banks and molecular maps: unlocking genetic potential from the wild
  publication-title: Science
  doi: 10.1126/science.277.5329.1063
– volume: 325
  start-page: 737
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib52
  article-title: Genetic properties of the maize nested association mapping population
  publication-title: Science
  doi: 10.1126/science.1174320
– volume: 19
  start-page: 327
  year: 2009
  ident: 10.1016/j.molp.2020.09.001_bib71
  article-title: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates
  publication-title: Genome Res.
  doi: 10.1101/gr.073585.107
– volume: 16
  start-page: 280
  year: 2018
  ident: 10.1016/j.molp.2020.09.001_bib83
  article-title: Uncovering the dispersion history, adaptive evolution and selection of wheat in China
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12770
– volume: 100
  start-page: 2489
  year: 2003
  ident: 10.1016/j.molp.2020.09.001_bib56
  article-title: Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.252763199
SSID ssj0060863
Score 2.6136346
Snippet Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1733
SubjectTerms asymmetric selection
breeding programs
breeding value
China
chromosomes
crops
cultivars
depth
founder genotype
frequency
genes
genomics
germplasm
grain yield
haplotype block
haplotypes
linkage disequilibrium
pedigree
phenotype
plant breeding
spring
wheat
wheat breeding
Title Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China
URI https://dx.doi.org/10.1016/j.molp.2020.09.001
https://www.ncbi.nlm.nih.gov/pubmed/32896642
https://www.proquest.com/docview/2440899903
https://www.proquest.com/docview/2498275070
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF71wYEL4k14RIPEDZnsw4_sMYkoKZQKNVTKzdpdr6tAbVdJWqk_gv_MzNquxKE5cLQ1I612xvNYf_sNYx-sEVKUPol8ppMoTjIbaWKglcaUyrk4Kx2dQ34_Tefn8ddlstxjs_4uDMEqu9jfxvQQrbs3o243R1er1WhB-HnJsX5AP5XoR_vsUCqdomsfTo6_zU_7gJxi1R5w9igfkUJ3d6aFeVXNJdFWSv6pZa68Lz_dV3-GPHT0mD3qCkiYtGt8wvZ8_ZQ9mDZY5N0-Y38ISRfA0ZiSoClBxAmcmLqozPo3EH_m6gZbWTjzN1ghbmCyua0qGqrlAENIRIytlYdFGI6DFgPUhAWdll9AGMDk1_AFZejgFlri4w2gWAjpMF23qRBWNYS53M_Z-dHnn7N51E1ciBx2PtvIx46XxhrnbMmlKYV2wo1VwT22FZjYnSysiAub2dTZAjuT1LoCwyV30mtbevWCHdRN7V8xEIXgpUqEVVLHQvuxiXWRCKexxFAySwZM9Pucu46OnKZiXOY97uxXTrbJyTY51wS-G7CPdzpXLRnHTumkN1_-j0vlmC126r3vbZ3jt0Y_UEztm-tNLmk8N7oyV7tk9Jg48zM-YC9bR7lbq8LuNsWG7_V_ruwNe0hPAU2TvWUH2_W1f4c10dYO0ednZyc_hp3vD9n-8XL6F-t-DVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKi0QviPLVBQqDxA2FtZ2v9bFbUbaw7YFtpb1ZtuOghSapdreV-iP4z8w4SSUO3UOvyViyMpOZN87LG8Y-WSOkKH0a-VylUZLmNlKkQCuNKWPnkrx0dA55epZNLpLv83S-xY76f2GIVtnl_janh2zdXRl2T3N4tVgMZ8SflxzxA8apxDh6xHYQDeQ0v-FkPu7TcYaYPbDs0Toi8-7PmZbkVTWXJFop-ZdWt_K-6nQf-gxV6PgZe9rBRzhsd7jHtnz9nD0eNwjxbl-wv8SjC9RoLEjQlCCSFKamLiqz_AOknrm4wUYWfvobxIcrOFzdVhWN1HKACSQivdbKwyyMxkF_Aa6EGZ2V_4Iwfskv4Rva0LEttLLHK0CzkNBhvGwLISxqCFO5X7KL46_nR5Oom7cQOex71pFPHC-NNc7ZkktTCuWEG8UF99hUYFl3srAiKWxuM2cL7Esy6wpMltxJr2zp41dsu25qv89AFIKXcSpsLFUilB-ZRBWpcAoBRizzdMBE_5y168TIaSbGpe5ZZ781-UaTbzRXRL0bsM93a65aKY6N1mnvPv1fQGmsFRvXfex9rfFNo88npvbN9UpLGs6NgczjTTZqRIr5OR-w122g3O01xt42w3bvzQN39oE9mZyfTvX05OzHW7ZLdwKvJn_HttfLa3-A6Ght34fo_wfMDAyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resequencing+of+145+Landmark+Cultivars+Reveals+Asymmetric+Sub-genome+Selection+and+Strong+Founder+Genotype+Effects+on+Wheat+Breeding+in+China&rft.jtitle=Molecular+plant&rft.au=Hao%2C+Chenyang&rft.au=Jiao%2C+Chengzhi&rft.au=Hou%2C+Jian&rft.au=Li%2C+Tian&rft.date=2020-12-07&rft.issn=1674-2052&rft.volume=13&rft.issue=12+p.1733-1751&rft.spage=1733&rft.epage=1751&rft_id=info:doi/10.1016%2Fj.molp.2020.09.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon