Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set...
Saved in:
Published in | Molecular plant Vol. 13; no. 12; pp. 1733 - 1751 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
07.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.
Resequencing 145 landmark cultivars revealed the reshaped and optimized processes involved in changing the genomic landscape of new cultivars since the 1950s. Significant asymmetric breeding selection was detected among the three sub-genomes. A strategy was proposed for evaluating the breeding value of any given line on the basis of the accumulation of very large, beneficial haplotypes in centromere-spanning LD blocks. |
---|---|
AbstractList | Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding.Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. Resequencing 145 landmark cultivars revealed the reshaped and optimized processes involved in changing the genomic landscape of new cultivars since the 1950s. Significant asymmetric breeding selection was detected among the three sub-genomes. A strategy was proposed for evaluating the breeding value of any given line on the basis of the accumulation of very large, beneficial haplotypes in centromere-spanning LD blocks. Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes. More than 3000 wheat cultivars have been registered, released, and documented since 1949 in China. In this study, a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced. A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94× for each cultivar, and more than 60.92 million SNPs and 2.54 million InDels were captured, based on the Chinese Spring RefSeq genome v1.0. Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes, with distinct genomic regions and phenotypes targeted by different breeders across the decades. There are very clear instances illustrating how introduced Italian and other foreign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars. Importantly, the resequencing data also highlighted significant asymmetric breeding selection among the three sub-genomes: this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes. Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding. Conserved and extended sharing of linkage disequilibrium (LD) blocks was highlighted among pedigree-related cultivars, in which fewer haplotype differences were detected. Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value. Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars, we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation (pyramiding) of beneficial haplotypes. Collectively, our study demonstrates the influence of “founder genotypes” on the output of breeding efforts over many decades and also suggests that founder genotype perspectives are in fact more dynamic when applied in the context of modern genomics-informed breeding. |
Author | Liu, Xu Zhang, Xueyong Ma, Lin Liu, Hongxia Jiao, Chengzhi Liu, Hong Hao, Chenyang Appels, Rudi Li, Tian Tuberosa, Roberto Zhao, Jing Hou, Jian Wang, Yuquan Xu, Fengfeng Wang, Yamei Maccaferri, Marco Lu, Hongfeng Zheng, Jun Majeed, Uzma Bi, Zhihong |
Author_xml | – sequence: 1 givenname: Chenyang surname: Hao fullname: Hao, Chenyang organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 2 givenname: Chengzhi surname: Jiao fullname: Jiao, Chengzhi organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 3 givenname: Jian surname: Hou fullname: Hou, Jian organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 4 givenname: Tian surname: Li fullname: Li, Tian organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 5 givenname: Hongxia surname: Liu fullname: Liu, Hongxia organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 6 givenname: Yuquan surname: Wang fullname: Wang, Yuquan organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 7 givenname: Jun surname: Zheng fullname: Zheng, Jun organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 8 givenname: Hong surname: Liu fullname: Liu, Hong organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 9 givenname: Zhihong surname: Bi fullname: Bi, Zhihong organization: Novogene Bioinformatics Institute, Beijing 100083, China – sequence: 10 givenname: Fengfeng surname: Xu fullname: Xu, Fengfeng organization: Novogene Bioinformatics Institute, Beijing 100083, China – sequence: 11 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 12 givenname: Lin surname: Ma fullname: Ma, Lin organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 13 givenname: Yamei surname: Wang fullname: Wang, Yamei organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 14 givenname: Uzma surname: Majeed fullname: Majeed, Uzma organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 15 givenname: Xu surname: Liu fullname: Liu, Xu organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 16 givenname: Rudi surname: Appels fullname: Appels, Rudi organization: AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia – sequence: 17 givenname: Marco surname: Maccaferri fullname: Maccaferri, Marco organization: Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy – sequence: 18 givenname: Roberto surname: Tuberosa fullname: Tuberosa, Roberto organization: Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy – sequence: 19 givenname: Hongfeng surname: Lu fullname: Lu, Hongfeng email: emilydearlu@163.com organization: Novogene Bioinformatics Institute, Beijing 100083, China – sequence: 20 givenname: Xueyong surname: Zhang fullname: Zhang, Xueyong email: zhangxueyong@caas.cn organization: Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32896642$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhiNURC_wAiyQl2ySHjtXS2zKqC2VRkLqgFhajn3SekjswXZGmofoO-NoCgsWFSufxfefI__feXZincUse0-hoECby20xuXFXMGBQAC8A6KvsjLY1y3nXtCdpbtoqZ1Cz0-w8hC1AA11TvslOS9bxpqnYWfZ0jwF_zWiVsQ_EDYRWNVlLqyfpf5LVPEazlz6Qe9yjHAO5CodpwuiNIpu5zx_QugnJBkdU0ThLUpJsondp2Y2brUZPbhMTDzsk18OQqEAS9uMRZSSfPaJe7hpLVo_GyrfZ6yFdwXfP70X2_eb62-pLvv56e7e6Wueq4jzmWCkYZC-V6gdgcqBcUdWVGrCtu64uFdM9rXTf9o3qdceapleaUwqKIe8HLC-yj8e9O-_S50MUkwkKx1FadHMQrOIda2to4T_QCjrOOZQJ_fCMzv2EWuy8SS0exJ-2E8COgPIuBI_DX4SCWJSKrViUikWpAC6S0hTq_gkpE-VSdvTSjC9HPx2jmLrcG_QiKJNUp9J9MiG0My_FfwMsgb5Z |
CitedBy_id | crossref_primary_10_1007_s00122_025_04826_x crossref_primary_10_3390_ijms252111677 crossref_primary_10_1007_s00122_021_03837_8 crossref_primary_10_1186_s12870_024_05841_8 crossref_primary_10_3389_fpls_2023_1222681 crossref_primary_10_1038_s41467_021_23879_2 crossref_primary_10_1016_j_jgg_2022_02_025 crossref_primary_10_1016_j_plantsci_2023_111676 crossref_primary_10_1093_plphys_kiad319 crossref_primary_10_34133_plantphenomics_0171 crossref_primary_10_1007_s00122_023_04474_z crossref_primary_10_1007_s11032_024_01455_y crossref_primary_10_3389_fgene_2021_684702 crossref_primary_10_1186_s12870_022_03442_x crossref_primary_10_1186_s12864_022_08520_w crossref_primary_10_1007_s11032_024_01496_3 crossref_primary_10_3390_plants10061167 crossref_primary_10_1016_j_cj_2021_01_001 crossref_primary_10_1016_j_gene_2022_146399 crossref_primary_10_1016_j_jcs_2024_103966 crossref_primary_10_1007_s10142_021_00774_z crossref_primary_10_1016_j_xplc_2023_100549 crossref_primary_10_3389_fpls_2023_1203253 crossref_primary_10_1186_s12870_024_05956_y crossref_primary_10_1038_s41467_023_43643_y crossref_primary_10_1186_s12915_023_01670_7 crossref_primary_10_1016_j_jgg_2023_02_015 crossref_primary_10_1126_sciadv_adg1012 crossref_primary_10_1007_s00122_021_04023_6 crossref_primary_10_1007_s11427_022_2202_3 crossref_primary_10_3389_fgene_2022_956921 crossref_primary_10_1016_j_jare_2022_04_003 crossref_primary_10_1016_j_cj_2024_05_011 crossref_primary_10_1007_s00122_024_04652_7 crossref_primary_10_1007_s00122_023_04297_y crossref_primary_10_1007_s00122_023_04467_y crossref_primary_10_1186_s12870_023_04278_9 crossref_primary_10_1038_s41467_022_31581_0 crossref_primary_10_1016_j_cj_2023_03_007 crossref_primary_10_1111_pbr_13094 crossref_primary_10_1016_j_cj_2025_01_012 crossref_primary_10_1016_j_xplc_2022_100325 crossref_primary_10_1093_jxb_erab024 crossref_primary_10_1186_s12870_024_05885_w crossref_primary_10_1038_s41467_024_54172_7 crossref_primary_10_1016_j_xplc_2021_100211 crossref_primary_10_3390_agriculture14060941 crossref_primary_10_7717_peerj_11811 crossref_primary_10_3389_fpls_2023_1131205 crossref_primary_10_3390_ijms23137056 crossref_primary_10_3390_ijms24087245 crossref_primary_10_1007_s00122_024_04661_6 crossref_primary_10_1038_s41467_025_57750_5 crossref_primary_10_1186_s12870_023_04537_9 crossref_primary_10_3390_plants14010027 crossref_primary_10_3390_genes13071112 crossref_primary_10_1016_j_molp_2024_01_010 crossref_primary_10_1016_j_molp_2023_10_015 crossref_primary_10_1111_pbi_14385 crossref_primary_10_1016_j_xplc_2024_101222 crossref_primary_10_1007_s00122_023_04286_1 crossref_primary_10_1016_j_cj_2023_05_007 crossref_primary_10_1186_s12870_021_03183_3 crossref_primary_10_1111_pbi_70032 crossref_primary_10_48130_seedbio_0024_0007 crossref_primary_10_3389_fpls_2022_897772 crossref_primary_10_1093_plphys_kiae175 crossref_primary_10_1007_s00122_023_04331_z crossref_primary_10_1038_s41467_023_44003_6 crossref_primary_10_1038_s41467_024_46419_0 crossref_primary_10_1016_S2095_3119_21_63699_7 crossref_primary_10_1038_s41467_023_36271_z crossref_primary_10_1186_s13059_023_02932_x crossref_primary_10_1007_s42994_021_00047_0 crossref_primary_10_1038_s41467_023_36901_6 crossref_primary_10_1016_j_jia_2023_02_013 crossref_primary_10_1186_s12915_020_00917_x crossref_primary_10_1111_pce_15117 crossref_primary_10_3724_SP_J_1006_2022_11039 crossref_primary_10_3389_fpls_2023_1305547 crossref_primary_10_1016_j_jia_2024_12_003 crossref_primary_10_3390_agronomy14030608 crossref_primary_10_1038_s41598_021_85226_1 crossref_primary_10_1002_tpg2_20435 crossref_primary_10_1016_j_molp_2024_05_006 crossref_primary_10_1111_pbi_14032 crossref_primary_10_1007_s00122_022_04133_9 crossref_primary_10_1007_s00122_024_04802_x crossref_primary_10_1016_j_indcrop_2024_118660 crossref_primary_10_1016_j_xplc_2024_100879 crossref_primary_10_1016_j_cell_2022_04_036 crossref_primary_10_1016_j_jia_2023_04_023 crossref_primary_10_3390_agronomy13092408 crossref_primary_10_1007_s00122_023_04502_y crossref_primary_10_1016_j_indcrop_2022_115437 crossref_primary_10_3389_fpls_2022_840614 crossref_primary_10_1016_j_jgg_2023_08_002 crossref_primary_10_1016_j_molp_2023_07_009 crossref_primary_10_1186_s12870_024_05968_8 crossref_primary_10_1093_plphys_kiac029 crossref_primary_10_1186_s12870_023_04343_3 crossref_primary_10_1007_s11427_022_2178_7 crossref_primary_10_3389_fpls_2022_927407 crossref_primary_10_1038_s41477_023_01432_x crossref_primary_10_1016_j_molp_2021_11_007 crossref_primary_10_1186_s13059_023_03044_2 crossref_primary_10_1111_pbi_14323 crossref_primary_10_1111_nph_18500 crossref_primary_10_3390_plants12173021 crossref_primary_10_1111_jpi_12841 crossref_primary_10_1111_pbi_14605 crossref_primary_10_1016_j_molp_2022_01_004 crossref_primary_10_1139_gen_2021_0074 crossref_primary_10_1016_j_cj_2022_06_014 crossref_primary_10_1111_pbi_14211 crossref_primary_10_1007_s42994_023_00131_7 crossref_primary_10_1016_j_molp_2024_09_007 crossref_primary_10_1093_plcell_koad229 crossref_primary_10_3390_plants10020382 crossref_primary_10_1038_s41586_024_08277_0 crossref_primary_10_1016_j_molp_2023_09_001 crossref_primary_10_1111_tpj_16023 crossref_primary_10_1111_jipb_13759 crossref_primary_10_1186_s12864_023_09934_w crossref_primary_10_3390_agronomy15020325 crossref_primary_10_1007_s11032_022_01303_x crossref_primary_10_1038_s41477_023_01406_z crossref_primary_10_3389_fpls_2022_1048860 crossref_primary_10_1371_journal_pone_0295021 crossref_primary_10_3389_fpls_2021_808136 crossref_primary_10_3390_ijms23105587 crossref_primary_10_1007_s00122_021_03801_6 crossref_primary_10_1016_j_jafr_2024_101529 crossref_primary_10_1002_tpg2_20480 crossref_primary_10_1007_s11032_024_01520_6 crossref_primary_10_1111_tpj_16432 crossref_primary_10_1016_j_gene_2024_148309 crossref_primary_10_1016_j_xplc_2023_100608 crossref_primary_10_1111_tpj_16676 crossref_primary_10_1186_s12870_023_04098_x crossref_primary_10_1186_s12870_024_05042_3 crossref_primary_10_3390_plants13091259 crossref_primary_10_1007_s00122_024_04738_2 crossref_primary_10_1038_s41477_024_01873_y crossref_primary_10_1007_s00425_023_04114_2 crossref_primary_10_1186_s13059_024_03315_6 crossref_primary_10_3390_ijms24087056 crossref_primary_10_1007_s00122_020_03729_3 crossref_primary_10_1111_tpj_16708 crossref_primary_10_1016_j_molp_2021_12_019 crossref_primary_10_3390_antiox13080899 crossref_primary_10_1016_j_molp_2025_01_005 crossref_primary_10_3389_fpls_2022_923734 |
Cites_doi | 10.1111/pbi.12240 10.1093/molbev/msl004 10.1101/gr.094052.109 10.1093/jxb/erg151 10.1093/bioinformatics/btu393 10.1016/j.fcr.2015.03.013 10.1038/ng.3807 10.1038/s41588-019-0381-3 10.1086/521987 10.1534/genetics.120.303501 10.1038/s41467-019-09134-9 10.1073/pnas.1010894108 10.1007/s00122-002-1016-z 10.1038/ncomms5392 10.1007/s00425-001-0691-3 10.1111/pbi.12044 10.1186/s13059-015-0606-4 10.1038/s41587-019-0152-9 10.1534/g3.116.028233 10.1007/s001220050673 10.1038/ng.2312 10.1093/bioinformatics/bti403 10.1126/science.aar6343 10.1086/519795 10.1104/pp.122.1.255 10.1186/s13059-019-1631-5 10.1111/tpj.13515 10.1016/j.ajhg.2010.11.011 10.1007/s11032-011-9608-4 10.3732/ajb.92.6.1045 10.1111/pbi.12288 10.2135/cropsci2010.12.0680 10.1038/ng.3199 10.1093/bioinformatics/btr330 10.1016/j.tplants.2015.04.013 10.1016/j.tplants.2019.10.012 10.1534/genetics.105.044727 10.1038/nbt.3096 10.1093/nar/gkq603 10.1101/gr.100545.109 10.1038/s41588-019-0393-z 10.1016/S0031-9422(02)00428-4 10.1126/sciadv.aav0536 10.3389/fpls.2017.02115 10.1007/s00122-019-03367-4 10.1038/ng.3887 10.1016/S1360-1385(03)00134-1 10.1016/j.quaint.2016.02.059 10.1093/bioinformatics/btp352 10.1534/genetics.112.146316 10.1111/pbi.12735 10.1093/bioinformatics/bti430 10.1038/s41588-018-0182-0 10.1111/j.1467-7652.2012.00717.x 10.1534/g3.116.038711 10.1038/s41477-019-0577-7 10.1038/nature11532 10.1111/pbi.12183 10.1007/s00122-002-0959-4 10.1126/science.aar7191 10.1126/science.aar6089 10.1093/bioinformatics/btw051 10.1534/genetics.103.016303 10.1101/gr.097261.109 10.1007/s10681-008-9745-y 10.1038/ng.2310 10.1101/gr.107524.110 10.1186/s13059-019-1744-x 10.1093/bioinformatics/btp324 10.1139/g98-037 10.1111/tpj.12366 10.1111/j.1365-313x.2012.05122.x 10.1186/1471-2164-11-702 10.1038/s41588-019-0382-2 10.1534/genetics.113.150029 10.1038/srep41247 10.1126/science.aba5435 10.1371/journal.pbio.3000071 10.1126/science.277.5329.1063 10.1126/science.1174320 10.1101/gr.073585.107 10.1111/pbi.12770 10.1073/pnas.252763199 |
ContentType | Journal Article |
Copyright | 2020 The Author Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 The Author – notice: Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2020.09.001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 1751 |
ExternalDocumentID | 32896642 10_1016_j_molp_2020_09_001 S1674205220302963 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 7-5 70D 8P~ AABVA AACTN AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABGRD ABJNI ABMAC ABNKS ABVKL ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 CZ4 DU5 E3Z EBS EE~ EFJIC EFLBG ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NU- O9- OAUVE OK1 P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TR2 W8F X7H ~91 ~G- 1RT AAEDT AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGHFR AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION CKLRP CW9 EJD H13 O0~ OVD SSH TEORI TGP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-e4c0fabaccbf02af19c1c83d0e758853c2db14db7b6cbd8266bcd9110c2e9bfe3 |
IEDL.DBID | AIKHN |
ISSN | 1674-2052 1752-9867 |
IngestDate | Thu Jul 10 19:01:59 EDT 2025 Fri Jul 11 15:29:16 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Tue Jul 01 01:40:49 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Fri Feb 23 02:46:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | wheat breeding founder genotype asymmetric selection haplotype block |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-e4c0fabaccbf02af19c1c83d0e758853c2db14db7b6cbd8266bcd9110c2e9bfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1674205220302963/pdf |
PMID | 32896642 |
PQID | 2440899903 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2498275070 proquest_miscellaneous_2440899903 pubmed_primary_32896642 crossref_primary_10_1016_j_molp_2020_09_001 crossref_citationtrail_10_1016_j_molp_2020_09_001 elsevier_sciencedirect_doi_10_1016_j_molp_2020_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-07 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hickey, Hafeez, Robinson, Jackson, Leal-Bertioli, Tester, Gao, Godwin, Hayes, Wulff (bib28) 2019; 37 Pont, Leroy, Seidel, Tondelli, Duchemin, Armisen, Lang, Bustos-Korts, Goué, Balfourier (bib60) 2019; 51 Ge, You, Wang, Hao, Dong, Li, Zhang (bib23) 2012; 52 Pont, Murat, Guizard, Flores, Foucrier, Bidet, Quraishi, Alaux, Doležel, Fahima (bib59) 2013; 76 Alonge, Shumate, Puiu, Zimin, Salzberg (bib4) 2020 Li, Durbin (bib40) 2009; 25 Jiang, Dian, Liu, Wu (bib33) 2003; 62 Simons, Fellers, Trick, Zhang, Tai, Gill, Faris (bib64) 2006; 172 Snowdon, Abbadi, Kox, Schmutzer, Leckband (bib65) 2015; 20 Gu, Gu, Eils, Schlesner, Brors (bib25) 2014; 30 Wang, Sun, Ge, Zhao, Hou, Wang, Lyu, Chen, Xu, Guo (bib77) 2020; 368 DeGiorgio, Huber, Hubisz, Hellmann, Nielsen (bib16) 2016; 32 Song, Guan, Hu, Guo, Yang, Wang, Liu, Wang, Lu, Zhou (bib66) 2020; 6 Jordan, Wang, Lun, Gardiner, MacLachlan, Hucl, Wiebe, Wong, Forrest, IWGS Consortium (bib35) 2015; 16 Qin, Zhang, Liu, Yu, Cao, Tian, Liao, Siddique (bib62) 2015; 177 Hou, Li, Wang, Hao, Liu, Zhang (bib29) 2017; 15 Peng, Sun, Nevo (bib57) 2011; 28 Edwards, Wilcox, Barrero, Fleury, Cavanagh, Forrest, Hayden, Moolhuijzen, Keeble-Gagnère, Bellgard (bib18) 2012; 10 Mason-Gamer (bib50) 2005; 92 Ai, Fang, Yang, Huang, Chen, Mao, Zhang, Zhang, Cui, He (bib1) 2015; 47 Peleman, van der Voort (bib55) 2003; 8 Sun, Zhou, Chen, Shi, Zhao, Zhao, Song, Zhang, Cui, Dong (bib67) 2018; 50 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib41) 2009; 25 Joukhadar, Daetwyler, Bansal, Gendall, Hayden (bib36) 2017; 8 Zhou, Chen, Cheng, Chen, Zhu, Wang, Liu, Qi, Chen, Jiang (bib83) 2018; 16 Huang, Kurata, Wei, Wang, Wang, Zhao, Zhao, Liu, Lu, Li (bib31) 2012; 490 Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly (bib61) 2007; 81 Berkman, Visendi, Lee, Stiller, Manoli, Lorenc, Lai, Batley, Fleury, Šimková (bib6) 2013; 11 Hao, Wang, Chao, Li, Liu, Wang, Zhang (bib26) 2017; 7 Wang, Tu, Lin, Lin, Wang, Yang, Ye, Shen, Li, Zhang (bib75) 2017; 49 Wang, Li, Hakonarson (bib73) 2010; 38 Caldwell, Dvorak, Lagudah, Akhunov, Luo, Wolters, Powell (bib11) 2004; 167 Danecek, Auton, Abecasis, Albers, Banks, DePristo, Handsaker, Lunter, Marth, Sherry (bib14) 2011; 27 Vilella, Severin, Ureta-Vidal, Heng, Durbin, Birney (bib71) 2009; 19 Balfourier, Bouchet, Robert, De Oliveira, Rimbert, Kitt, Choulet, International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux (bib5) 2019; 5 Börner, Röder, Korzun (bib7) 1997; 95 Lai, Lorenc, Lee, Berkman, Bayer, Visendi, Ruperao, Fitzgerald, Zander, Chan (bib39) 2015; 13 Bosse, Megens, Frantz, Madsen, Larson, Paudel, Duijvesteijn, Harlizius, Hagemeijer, Crooijmans (bib8) 2014; 5 Akhunov, Akhunova, Anderson, Anderson, Blake, Clegg, Coleman-Derr, Conley, Crossman, Deal (bib2) 2010; 11 Browning, Browning (bib10) 2013; 194 Feldman, Levy (bib20) 2012; 192 Peng, Ronin, Fahima, Röder, Li, Nevo, Korol (bib56) 2003; 100 Davies, Tetlow, Bowsher, Emes (bib15) 2003; 54 Poland, Bradbury, Buckler, Nelson (bib58) 2011; 108 Browning, Browning (bib9) 2007; 81 Vrinten, Nakamura (bib72) 2000; 122 Fradgley, Gardner, Cockram, Elderfield, Hickey, Howell, Jackson, Mackay (bib21) 2019; 17 Ramírez-González, Borrill, Lang, Harrington, Brinton, Venturini, Davey, Jacobs, van Ex, Pasha (bib63) 2018; 361 Maccaferri, Ricci, Salvi, Milner, Noli, Martelli, Casadio, Akhunov, Scalabrin, Vendramin (bib47) 2015; 13 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (bib51) 2010; 20 Wang, Chen, Ma (bib76) 2019; 20 Cheng, Liu, Wen, Nie, Xu, Chen, Li, Wang, Zheng, Li (bib13) 2019; 20 Fang, Wang, Hu, Jia, Chen, Liu, Zhang, Guan, Chen, Zhou (bib19) 2017; 49 He, Pasam, Shi, Kant, Keeble-Gagnere, Kay, Forrest, Fritz, Hucl, Wiebe (bib27) 2019; 51 Vilella, Blanco-Garcia, Hutter, Rozas (bib70) 2005; 21 Mutti, Bhullar, Gill (bib54) 2017; 7 Liu, Lister, Zhao, Staff, Jones, Zhou, Pokharia, Petrie, Pathak, Lu (bib43) 2016; 426 Kronenberg, Fiddes, Gordon, Murali, Cantsilieris, Meyerson, Underwood, Nelson, Chaisson, Dougherty (bib38) 2018; 360 Li, Zhu, Ruan, Qian, Fang, Shi, Li, Li, Shan, Kristiansen (bib42) 2010; 20 Mao, Cai, Olyarchuk, Wei (bib49) 2005; 21 Dvorak, Akhunov, Akhunov, Deal, Luo (bib17) 2006; 23 Yang, Lee, Goddard, Visscher (bib79) 2011; 88 Chen, Patterson, Reich (bib12) 2010; 20 Genschel, Abel, Lörz, Lütticke (bib24) 2002; 214 Montenegro, Golicz, Bayer, Hurgobin, Lee, Chan, Visendi, Lai, Doležel, Batley (bib53) 2017; 90 Liu, Rasheed, He, Imtiaz, Arif, Mahmood, Ghafoor, Siddiqui, Ilyas, Wen (bib44) 2019; 132 Maccaferri, Harris, Twardziok, Pasam, Gundlach, Spannagl, Ormanbekova, Lux, Prade, Milner (bib48) 2019; 51 Jiao, Zhao, Ren, Song, Zeng, Guo, Wang, Liu, Chen, Li (bib34) 2012; 44 Lu, Wei, Li, Wang, Wu, Liu, Zhang, Chen, Xiao, Jian (bib45) 2019; 10 Yang, Zhang, Xia, Laurie, Yang, He (bib78) 2009; 165 Zhou, Jiang, Wang, Gou, Lyu, Li, Yu, Shu, Zhao, Ma (bib82) 2015; 33 Alexander, Novembre, Lange (bib3) 2009; 19 Zhang, Li, Wang, Wang, You, Dong (bib80) 2002; 106 Tanksley, McCouch (bib69) 1997; 277 (bib32) 2018; 361 Huang, Börner, Röder, Ganal (bib30) 2002; 105 Khan, Garg, Roorkiwal, Golicz, Edwards, Varshney (bib37) 2020; 25 Ma, Cheng, Qin, Qiu, Heng, Yang, Ren, Wang, Bi, Ma (bib46) 2013; 73 Zhou, Stephens (bib81) 2012; 44 Wang, Wong, Forrest, Allen, Chao, Huang, Maccaferri, Salvi, Milner, Cattivelli (bib74) 2014; 12 Zhuang (bib84) 2003 Gao, Ming, Hu, Li (bib22) 2016; 6 Talbert, Smith, Blake (bib68) 1998; 41 McMullen, Kresovich, Villeda, Bradbury, Li, Sun, Flint-Garcia, Thornsberry, Acharya, Bottoms (bib52) 2009; 325 Chen (10.1016/j.molp.2020.09.001_bib12) 2010; 20 Hickey (10.1016/j.molp.2020.09.001_bib28) 2019; 37 Balfourier (10.1016/j.molp.2020.09.001_bib5) 2019; 5 Börner (10.1016/j.molp.2020.09.001_bib7) 1997; 95 Yang (10.1016/j.molp.2020.09.001_bib78) 2009; 165 Cheng (10.1016/j.molp.2020.09.001_bib13) 2019; 20 Fang (10.1016/j.molp.2020.09.001_bib19) 2017; 49 Danecek (10.1016/j.molp.2020.09.001_bib14) 2011; 27 Wang (10.1016/j.molp.2020.09.001_bib75) 2017; 49 Wang (10.1016/j.molp.2020.09.001_bib73) 2010; 38 Davies (10.1016/j.molp.2020.09.001_bib15) 2003; 54 Feldman (10.1016/j.molp.2020.09.001_bib20) 2012; 192 Sun (10.1016/j.molp.2020.09.001_bib67) 2018; 50 Peng (10.1016/j.molp.2020.09.001_bib56) 2003; 100 Joukhadar (10.1016/j.molp.2020.09.001_bib36) 2017; 8 Akhunov (10.1016/j.molp.2020.09.001_bib2) 2010; 11 Genschel (10.1016/j.molp.2020.09.001_bib24) 2002; 214 Peng (10.1016/j.molp.2020.09.001_bib57) 2011; 28 Berkman (10.1016/j.molp.2020.09.001_bib6) 2013; 11 Tanksley (10.1016/j.molp.2020.09.001_bib69) 1997; 277 Peleman (10.1016/j.molp.2020.09.001_bib55) 2003; 8 Huang (10.1016/j.molp.2020.09.001_bib30) 2002; 105 Simons (10.1016/j.molp.2020.09.001_bib64) 2006; 172 Jiang (10.1016/j.molp.2020.09.001_bib33) 2003; 62 Kronenberg (10.1016/j.molp.2020.09.001_bib38) 2018; 360 Bosse (10.1016/j.molp.2020.09.001_bib8) 2014; 5 Liu (10.1016/j.molp.2020.09.001_bib43) 2016; 426 Vilella (10.1016/j.molp.2020.09.001_bib71) 2009; 19 Purcell (10.1016/j.molp.2020.09.001_bib61) 2007; 81 Yang (10.1016/j.molp.2020.09.001_bib79) 2011; 88 Alexander (10.1016/j.molp.2020.09.001_bib3) 2009; 19 Huang (10.1016/j.molp.2020.09.001_bib31) 2012; 490 Vrinten (10.1016/j.molp.2020.09.001_bib72) 2000; 122 Browning (10.1016/j.molp.2020.09.001_bib10) 2013; 194 Zhou (10.1016/j.molp.2020.09.001_bib82) 2015; 33 Poland (10.1016/j.molp.2020.09.001_bib58) 2011; 108 Lai (10.1016/j.molp.2020.09.001_bib39) 2015; 13 Snowdon (10.1016/j.molp.2020.09.001_bib65) 2015; 20 Talbert (10.1016/j.molp.2020.09.001_bib68) 1998; 41 Jiao (10.1016/j.molp.2020.09.001_bib34) 2012; 44 Zhang (10.1016/j.molp.2020.09.001_bib80) 2002; 106 Ge (10.1016/j.molp.2020.09.001_bib23) 2012; 52 Ai (10.1016/j.molp.2020.09.001_bib1) 2015; 47 He (10.1016/j.molp.2020.09.001_bib27) 2019; 51 Wang (10.1016/j.molp.2020.09.001_bib76) 2019; 20 Edwards (10.1016/j.molp.2020.09.001_bib18) 2012; 10 Zhou (10.1016/j.molp.2020.09.001_bib83) 2018; 16 Li (10.1016/j.molp.2020.09.001_bib41) 2009; 25 Song (10.1016/j.molp.2020.09.001_bib66) 2020; 6 Ma (10.1016/j.molp.2020.09.001_bib46) 2013; 73 DeGiorgio (10.1016/j.molp.2020.09.001_bib16) 2016; 32 Maccaferri (10.1016/j.molp.2020.09.001_bib48) 2019; 51 Browning (10.1016/j.molp.2020.09.001_bib9) 2007; 81 Hou (10.1016/j.molp.2020.09.001_bib29) 2017; 15 McKenna (10.1016/j.molp.2020.09.001_bib51) 2010; 20 Ramírez-González (10.1016/j.molp.2020.09.001_bib63) 2018; 361 McMullen (10.1016/j.molp.2020.09.001_bib52) 2009; 325 Zhuang (10.1016/j.molp.2020.09.001_bib84) 2003 (10.1016/j.molp.2020.09.001_bib32) 2018; 361 Lu (10.1016/j.molp.2020.09.001_bib45) 2019; 10 Li (10.1016/j.molp.2020.09.001_bib42) 2010; 20 Pont (10.1016/j.molp.2020.09.001_bib59) 2013; 76 Hao (10.1016/j.molp.2020.09.001_bib26) 2017; 7 Mutti (10.1016/j.molp.2020.09.001_bib54) 2017; 7 Mao (10.1016/j.molp.2020.09.001_bib49) 2005; 21 Qin (10.1016/j.molp.2020.09.001_bib62) 2015; 177 Fradgley (10.1016/j.molp.2020.09.001_bib21) 2019; 17 Wang (10.1016/j.molp.2020.09.001_bib74) 2014; 12 Liu (10.1016/j.molp.2020.09.001_bib44) 2019; 132 Wang (10.1016/j.molp.2020.09.001_bib77) 2020; 368 Maccaferri (10.1016/j.molp.2020.09.001_bib47) 2015; 13 Caldwell (10.1016/j.molp.2020.09.001_bib11) 2004; 167 Li (10.1016/j.molp.2020.09.001_bib40) 2009; 25 Khan (10.1016/j.molp.2020.09.001_bib37) 2020; 25 Montenegro (10.1016/j.molp.2020.09.001_bib53) 2017; 90 Dvorak (10.1016/j.molp.2020.09.001_bib17) 2006; 23 Gao (10.1016/j.molp.2020.09.001_bib22) 2016; 6 Gu (10.1016/j.molp.2020.09.001_bib25) 2014; 30 Mason-Gamer (10.1016/j.molp.2020.09.001_bib50) 2005; 92 Zhou (10.1016/j.molp.2020.09.001_bib81) 2012; 44 Jordan (10.1016/j.molp.2020.09.001_bib35) 2015; 16 Vilella (10.1016/j.molp.2020.09.001_bib70) 2005; 21 Alonge (10.1016/j.molp.2020.09.001_bib4) 2020 Pont (10.1016/j.molp.2020.09.001_bib60) 2019; 51 |
References_xml | – volume: 11 start-page: 564 year: 2013 end-page: 571 ident: bib6 article-title: Dispersion and domestication shaped the genome of bread wheat publication-title: Plant Biotechnol. J. – volume: 7 start-page: 1225 year: 2017 end-page: 1237 ident: bib54 article-title: Evolution of gene expression balance among homeologs of natural polyploids publication-title: G3 (Bethesda) – volume: 51 start-page: 905 year: 2019 end-page: 911 ident: bib60 article-title: Tracing the ancestry of modern bread wheats publication-title: Nat. Genet. – volume: 20 start-page: 22 year: 2019 ident: bib76 article-title: Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication publication-title: Genome Biol. – volume: 81 start-page: 1084 year: 2007 end-page: 1097 ident: bib9 article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering publication-title: Am. J. Hum. Genet. – volume: 11 start-page: 702 year: 2010 ident: bib2 article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes publication-title: BMC Genomics – volume: 27 start-page: 2156 year: 2011 end-page: 2158 ident: bib14 article-title: The variant call format and VCFtools publication-title: Bioinformatics – volume: 360 start-page: eaar6343 year: 2018 ident: bib38 article-title: High-resolution comparative analysis of great ape genomes publication-title: Science – volume: 28 start-page: 281 year: 2011 end-page: 301 ident: bib57 article-title: Domestication evolution, genetics and genomics in wheat publication-title: Mol. Breed. – volume: 20 start-page: 136 year: 2019 ident: bib13 article-title: Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat publication-title: Genome Biol. – year: 2003 ident: bib84 article-title: Chinese Wheat Improvement and Pedigree Analysis (In Chinese) – volume: 38 start-page: e164 year: 2010 ident: bib73 article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data publication-title: Nucleic Acids Res. – volume: 47 start-page: 217 year: 2015 end-page: 225 ident: bib1 article-title: Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing publication-title: Nat. Genet. – volume: 44 start-page: 821 year: 2012 end-page: 824 ident: bib81 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat. Genet. – volume: 165 start-page: 445 year: 2009 end-page: 452 ident: bib78 article-title: Distribution of the photoperiod insensitive publication-title: Euphytica – volume: 6 start-page: 1563 year: 2016 end-page: 1571 ident: bib22 article-title: New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era publication-title: G3 (Bethesda) – volume: 13 start-page: 97 year: 2015 end-page: 104 ident: bib39 article-title: Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat publication-title: Plant Biotechnol. J. – volume: 92 start-page: 1045 year: 2005 end-page: 1058 ident: bib50 article-title: The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae) publication-title: Am. J. Bot. – volume: 54 start-page: 1351 year: 2003 end-page: 1360 ident: bib15 article-title: Molecular and biochemical characterization of cytosolic phosphoglucomutase in wheat endosperm ( publication-title: J. Exp. Bot. – volume: 122 start-page: 255 year: 2000 end-page: 264 ident: bib72 article-title: Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues publication-title: Plant Physiol. – volume: 325 start-page: 737 year: 2009 end-page: 740 ident: bib52 article-title: Genetic properties of the maize nested association mapping population publication-title: Science – volume: 5 start-page: 4392 year: 2014 ident: bib8 article-title: Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression publication-title: Nat. Commun. – volume: 5 start-page: eaav0536 year: 2019 ident: bib5 article-title: Worldwide phylogeography and history of wheat genetic diversity publication-title: Sci. Adv. – volume: 21 start-page: 2791 year: 2005 end-page: 2793 ident: bib70 article-title: VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data publication-title: Bioinformatics – volume: 16 start-page: 48 year: 2015 ident: bib35 article-title: A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes publication-title: Genome Biol. – year: 2020 ident: bib4 article-title: Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies publication-title: Genetics – volume: 50 start-page: 1289 year: 2018 end-page: 1295 ident: bib67 article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes publication-title: Nat. Genet. – volume: 23 start-page: 1386 year: 2006 end-page: 1396 ident: bib17 article-title: Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat publication-title: Mol. Biol. Evol. – volume: 361 start-page: eaar7191 year: 2018 ident: bib32 article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome publication-title: Science – volume: 8 start-page: 2115 year: 2017 ident: bib36 article-title: Genetic diversity, population structure and ancestral origin of Australian wheat publication-title: Front. Plant Sci. – volume: 20 start-page: 410 year: 2015 end-page: 413 ident: bib65 article-title: Heterotic Haplotype Capture: precision breeding for hybrid performance publication-title: Trends Plant Sci. – volume: 25 start-page: 148 year: 2020 end-page: 158 ident: bib37 article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement publication-title: Trends Plant Sci. – volume: 21 start-page: 3787 year: 2005 end-page: 3793 ident: bib49 article-title: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary publication-title: Bioinformatics – volume: 192 start-page: 763 year: 2012 end-page: 774 ident: bib20 article-title: Genome evolution due to allopolyploidization in wheat publication-title: Genetics – volume: 361 start-page: eaar6089 year: 2018 ident: bib63 article-title: The transcriptional landscape of polyploid wheat publication-title: Science – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib40 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – volume: 108 start-page: 6893 year: 2011 end-page: 6898 ident: bib58 article-title: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize publication-title: Proc. Natl. Acad. Sci. U S A – volume: 76 start-page: 1030 year: 2013 end-page: 1044 ident: bib59 article-title: Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes publication-title: Plant J. – volume: 8 start-page: 330 year: 2003 end-page: 334 ident: bib55 article-title: Breeding by design publication-title: Trends Plant Sci. – volume: 37 start-page: 744 year: 2019 end-page: 754 ident: bib28 article-title: Breeding crops to feed 10 billion publication-title: Nat. Biotechnol. – volume: 81 start-page: 559 year: 2007 end-page: 575 ident: bib61 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am. J. Hum. Genet. – volume: 277 start-page: 1063 year: 1997 end-page: 1066 ident: bib69 article-title: Seed banks and molecular maps: unlocking genetic potential from the wild publication-title: Science – volume: 10 start-page: 1154 year: 2019 ident: bib45 article-title: Whole-genome resequencing reveals publication-title: Nat. Commun. – volume: 44 start-page: 812 year: 2012 end-page: 815 ident: bib34 article-title: Genome-wide genetic changes during modern breeding of maize publication-title: Nat. Genet. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib41 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 49 start-page: 579 year: 2017 end-page: 587 ident: bib75 article-title: Asymmetric subgenome selection and publication-title: Nat. Genet. – volume: 490 start-page: 497 year: 2012 end-page: 501 ident: bib31 article-title: A map of rice genome variation reveals the origin of cultivated rice publication-title: Nature – volume: 167 start-page: 941 year: 2004 end-page: 947 ident: bib11 article-title: Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor publication-title: Genetics – volume: 20 start-page: 265 year: 2010 end-page: 272 ident: bib42 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res. – volume: 73 start-page: 190 year: 2013 end-page: 200 ident: bib46 article-title: encodes an arginase that plays critical roles in panicle development and grain production in rice publication-title: Plant J. – volume: 172 start-page: 547 year: 2006 end-page: 555 ident: bib64 article-title: Molecular characterization of the major wheat domestication gene publication-title: Genetics – volume: 19 start-page: 1655 year: 2009 end-page: 1664 ident: bib3 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. – volume: 52 start-page: 1218 year: 2012 end-page: 1228 ident: bib23 article-title: Genome selection sweep and association analysis shed light on future breeding by design in wheat publication-title: Crop Sci. – volume: 30 start-page: 2811 year: 2014 end-page: 2812 ident: bib25 article-title: implements and enhances circular visualization in R publication-title: Bioinformatics – volume: 49 start-page: 1089 year: 2017 end-page: 1098 ident: bib19 article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits publication-title: Nat. Genet. – volume: 214 start-page: 813 year: 2002 end-page: 820 ident: bib24 article-title: The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation publication-title: Planta – volume: 51 start-page: 896 year: 2019 end-page: 904 ident: bib27 article-title: Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome publication-title: Nat. Genet. – volume: 16 start-page: 280 year: 2018 end-page: 291 ident: bib83 article-title: Uncovering the dispersion history, adaptive evolution and selection of wheat in China publication-title: Plant Biotechnol. J. – volume: 426 start-page: 107 year: 2016 end-page: 119 ident: bib43 article-title: The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats publication-title: Quaternary Int. – volume: 90 start-page: 1007 year: 2017 end-page: 1013 ident: bib53 article-title: The pangenome of hexaploid bread wheat publication-title: Plant J. – volume: 13 start-page: 648 year: 2015 end-page: 663 ident: bib47 article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding publication-title: Plant Biotechnol. J. – volume: 368 start-page: eaba5435 year: 2020 ident: bib77 article-title: Horizontal gene transfer of publication-title: Science – volume: 106 start-page: 112 year: 2002 end-page: 117 ident: bib80 article-title: An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production publication-title: Theor. Appl. Genet. – volume: 51 start-page: 885 year: 2019 end-page: 895 ident: bib48 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. – volume: 15 start-page: 1533 year: 2017 end-page: 1543 ident: bib29 article-title: ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding publication-title: Plant Biotechnol. J. – volume: 62 start-page: 47 year: 2003 end-page: 52 ident: bib33 article-title: Isolation and characterization of two fructokinase cDNA clones from rice publication-title: Phytochemistry – volume: 33 start-page: 408 year: 2015 end-page: 414 ident: bib82 article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean publication-title: Nat. Biotechnol. – volume: 100 start-page: 2489 year: 2003 end-page: 2494 ident: bib56 article-title: Domestication quantitative trait loci in publication-title: Proc. Natl. Acad. Sci. U S A – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bib51 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 95 start-page: 1133 year: 1997 end-page: 1137 ident: bib7 article-title: Comparative molecular mapping of GA insensitive publication-title: Theor. Appl. Genet. – volume: 177 start-page: 117 year: 2015 end-page: 124 ident: bib62 article-title: Wheat yield improvements in China: past trends and future directions publication-title: Field Crops Res. – volume: 6 start-page: 34 year: 2020 end-page: 45 ident: bib66 article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of publication-title: Nat. Plants – volume: 194 start-page: 459 year: 2013 end-page: 471 ident: bib10 article-title: Improving the accuracy and efficiency of identity-by-descent detection in population data publication-title: Genetics – volume: 10 start-page: 703 year: 2012 end-page: 708 ident: bib18 article-title: Bread matters: a national initiative to profile the genetic diversity of Australian wheat publication-title: Plant Biotechnol. J. – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: bib79 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. – volume: 19 start-page: 327 year: 2009 end-page: 335 ident: bib71 article-title: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates publication-title: Genome Res. – volume: 12 start-page: 787 year: 2014 end-page: 796 ident: bib74 article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array publication-title: Plant Biotechnol. J. – volume: 105 start-page: 699 year: 2002 end-page: 707 ident: bib30 article-title: Assessing genetic diversity of wheat ( publication-title: Theor. Appl. Genet. – volume: 20 start-page: 393 year: 2010 end-page: 402 ident: bib12 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res. – volume: 7 start-page: 41247 year: 2017 ident: bib26 article-title: The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat publication-title: Sci. Rep. – volume: 41 start-page: 402 year: 1998 end-page: 407 ident: bib68 article-title: More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA publication-title: Genome – volume: 32 start-page: 1895 year: 2016 end-page: 1897 ident: bib16 article-title: SWEEPFINDER2: increased sensitivity, robustness, and flexibility publication-title: Bioinformatics – volume: 17 start-page: e3000071 year: 2019 ident: bib21 article-title: A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders publication-title: PLoS Biol. – volume: 132 start-page: 2509 year: 2019 end-page: 2523 ident: bib44 article-title: Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding publication-title: Theor. Appl. Genet. – volume: 13 start-page: 97 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib39 article-title: Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12240 – volume: 23 start-page: 1386 year: 2006 ident: 10.1016/j.molp.2020.09.001_bib17 article-title: Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl004 – volume: 19 start-page: 1655 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib3 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. doi: 10.1101/gr.094052.109 – volume: 54 start-page: 1351 year: 2003 ident: 10.1016/j.molp.2020.09.001_bib15 article-title: Molecular and biochemical characterization of cytosolic phosphoglucomutase in wheat endosperm (Triticum aestivum L. cv. Axona) publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg151 – volume: 30 start-page: 2811 year: 2014 ident: 10.1016/j.molp.2020.09.001_bib25 article-title: circlize implements and enhances circular visualization in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu393 – volume: 177 start-page: 117 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib62 article-title: Wheat yield improvements in China: past trends and future directions publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.03.013 – volume: 49 start-page: 579 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib75 article-title: Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication publication-title: Nat. Genet. doi: 10.1038/ng.3807 – volume: 51 start-page: 885 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib48 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. doi: 10.1038/s41588-019-0381-3 – volume: 81 start-page: 1084 year: 2007 ident: 10.1016/j.molp.2020.09.001_bib9 article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering publication-title: Am. J. Hum. Genet. doi: 10.1086/521987 – year: 2020 ident: 10.1016/j.molp.2020.09.001_bib4 article-title: Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies publication-title: Genetics doi: 10.1534/genetics.120.303501 – volume: 10 start-page: 1154 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib45 article-title: Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement publication-title: Nat. Commun. doi: 10.1038/s41467-019-09134-9 – volume: 108 start-page: 6893 year: 2011 ident: 10.1016/j.molp.2020.09.001_bib58 article-title: Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1010894108 – volume: 106 start-page: 112 year: 2002 ident: 10.1016/j.molp.2020.09.001_bib80 article-title: An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-002-1016-z – volume: 5 start-page: 4392 year: 2014 ident: 10.1016/j.molp.2020.09.001_bib8 article-title: Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression publication-title: Nat. Commun. doi: 10.1038/ncomms5392 – volume: 214 start-page: 813 year: 2002 ident: 10.1016/j.molp.2020.09.001_bib24 article-title: The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation publication-title: Planta doi: 10.1007/s00425-001-0691-3 – volume: 11 start-page: 564 year: 2013 ident: 10.1016/j.molp.2020.09.001_bib6 article-title: Dispersion and domestication shaped the genome of bread wheat publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12044 – volume: 16 start-page: 48 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib35 article-title: A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes publication-title: Genome Biol. doi: 10.1186/s13059-015-0606-4 – volume: 37 start-page: 744 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib28 article-title: Breeding crops to feed 10 billion publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0152-9 – volume: 6 start-page: 1563 year: 2016 ident: 10.1016/j.molp.2020.09.001_bib22 article-title: New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era publication-title: G3 (Bethesda) doi: 10.1534/g3.116.028233 – volume: 95 start-page: 1133 year: 1997 ident: 10.1016/j.molp.2020.09.001_bib7 article-title: Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.) publication-title: Theor. Appl. Genet. doi: 10.1007/s001220050673 – volume: 44 start-page: 812 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib34 article-title: Genome-wide genetic changes during modern breeding of maize publication-title: Nat. Genet. doi: 10.1038/ng.2312 – volume: 21 start-page: 2791 year: 2005 ident: 10.1016/j.molp.2020.09.001_bib70 article-title: VariScan: analysis of evolutionary patterns from large-scale DNA sequence polymorphism data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti403 – volume: 360 start-page: eaar6343 year: 2018 ident: 10.1016/j.molp.2020.09.001_bib38 article-title: High-resolution comparative analysis of great ape genomes publication-title: Science doi: 10.1126/science.aar6343 – volume: 81 start-page: 559 year: 2007 ident: 10.1016/j.molp.2020.09.001_bib61 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 122 start-page: 255 year: 2000 ident: 10.1016/j.molp.2020.09.001_bib72 article-title: Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues publication-title: Plant Physiol. doi: 10.1104/pp.122.1.255 – volume: 20 start-page: 22 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib76 article-title: Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication publication-title: Genome Biol. doi: 10.1186/s13059-019-1631-5 – volume: 90 start-page: 1007 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib53 article-title: The pangenome of hexaploid bread wheat publication-title: Plant J. doi: 10.1111/tpj.13515 – volume: 88 start-page: 76 year: 2011 ident: 10.1016/j.molp.2020.09.001_bib79 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 28 start-page: 281 year: 2011 ident: 10.1016/j.molp.2020.09.001_bib57 article-title: Domestication evolution, genetics and genomics in wheat publication-title: Mol. Breed. doi: 10.1007/s11032-011-9608-4 – year: 2003 ident: 10.1016/j.molp.2020.09.001_bib84 – volume: 92 start-page: 1045 year: 2005 ident: 10.1016/j.molp.2020.09.001_bib50 article-title: The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae) publication-title: Am. J. Bot. doi: 10.3732/ajb.92.6.1045 – volume: 13 start-page: 648 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib47 article-title: A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12288 – volume: 52 start-page: 1218 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib23 article-title: Genome selection sweep and association analysis shed light on future breeding by design in wheat publication-title: Crop Sci. doi: 10.2135/cropsci2010.12.0680 – volume: 47 start-page: 217 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib1 article-title: Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing publication-title: Nat. Genet. doi: 10.1038/ng.3199 – volume: 27 start-page: 2156 year: 2011 ident: 10.1016/j.molp.2020.09.001_bib14 article-title: The variant call format and VCFtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – volume: 20 start-page: 410 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib65 article-title: Heterotic Haplotype Capture: precision breeding for hybrid performance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.04.013 – volume: 25 start-page: 148 year: 2020 ident: 10.1016/j.molp.2020.09.001_bib37 article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.10.012 – volume: 172 start-page: 547 year: 2006 ident: 10.1016/j.molp.2020.09.001_bib64 article-title: Molecular characterization of the major wheat domestication gene Q publication-title: Genetics doi: 10.1534/genetics.105.044727 – volume: 33 start-page: 408 year: 2015 ident: 10.1016/j.molp.2020.09.001_bib82 article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3096 – volume: 38 start-page: e164 year: 2010 ident: 10.1016/j.molp.2020.09.001_bib73 article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq603 – volume: 20 start-page: 393 year: 2010 ident: 10.1016/j.molp.2020.09.001_bib12 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res. doi: 10.1101/gr.100545.109 – volume: 51 start-page: 905 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib60 article-title: Tracing the ancestry of modern bread wheats publication-title: Nat. Genet. doi: 10.1038/s41588-019-0393-z – volume: 62 start-page: 47 year: 2003 ident: 10.1016/j.molp.2020.09.001_bib33 article-title: Isolation and characterization of two fructokinase cDNA clones from rice publication-title: Phytochemistry doi: 10.1016/S0031-9422(02)00428-4 – volume: 5 start-page: eaav0536 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib5 article-title: Worldwide phylogeography and history of wheat genetic diversity publication-title: Sci. Adv. doi: 10.1126/sciadv.aav0536 – volume: 8 start-page: 2115 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib36 article-title: Genetic diversity, population structure and ancestral origin of Australian wheat publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02115 – volume: 132 start-page: 2509 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib44 article-title: Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-019-03367-4 – volume: 49 start-page: 1089 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib19 article-title: Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits publication-title: Nat. Genet. doi: 10.1038/ng.3887 – volume: 8 start-page: 330 year: 2003 ident: 10.1016/j.molp.2020.09.001_bib55 article-title: Breeding by design publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(03)00134-1 – volume: 426 start-page: 107 year: 2016 ident: 10.1016/j.molp.2020.09.001_bib43 article-title: The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats publication-title: Quaternary Int. doi: 10.1016/j.quaint.2016.02.059 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib41 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 192 start-page: 763 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib20 article-title: Genome evolution due to allopolyploidization in wheat publication-title: Genetics doi: 10.1534/genetics.112.146316 – volume: 15 start-page: 1533 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib29 article-title: ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12735 – volume: 21 start-page: 3787 year: 2005 ident: 10.1016/j.molp.2020.09.001_bib49 article-title: Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti430 – volume: 50 start-page: 1289 year: 2018 ident: 10.1016/j.molp.2020.09.001_bib67 article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes publication-title: Nat. Genet. doi: 10.1038/s41588-018-0182-0 – volume: 10 start-page: 703 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib18 article-title: Bread matters: a national initiative to profile the genetic diversity of Australian wheat publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00717.x – volume: 7 start-page: 1225 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib54 article-title: Evolution of gene expression balance among homeologs of natural polyploids publication-title: G3 (Bethesda) doi: 10.1534/g3.116.038711 – volume: 6 start-page: 34 year: 2020 ident: 10.1016/j.molp.2020.09.001_bib66 article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus publication-title: Nat. Plants doi: 10.1038/s41477-019-0577-7 – volume: 490 start-page: 497 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib31 article-title: A map of rice genome variation reveals the origin of cultivated rice publication-title: Nature doi: 10.1038/nature11532 – volume: 12 start-page: 787 year: 2014 ident: 10.1016/j.molp.2020.09.001_bib74 article-title: Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12183 – volume: 105 start-page: 699 year: 2002 ident: 10.1016/j.molp.2020.09.001_bib30 article-title: Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-002-0959-4 – volume: 361 start-page: eaar7191 year: 2018 ident: 10.1016/j.molp.2020.09.001_bib32 article-title: Shifting the limits in wheat research and breeding using a fully annotated reference genome publication-title: Science doi: 10.1126/science.aar7191 – volume: 361 start-page: eaar6089 year: 2018 ident: 10.1016/j.molp.2020.09.001_bib63 article-title: The transcriptional landscape of polyploid wheat publication-title: Science doi: 10.1126/science.aar6089 – volume: 32 start-page: 1895 year: 2016 ident: 10.1016/j.molp.2020.09.001_bib16 article-title: SWEEPFINDER2: increased sensitivity, robustness, and flexibility publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw051 – volume: 167 start-page: 941 year: 2004 ident: 10.1016/j.molp.2020.09.001_bib11 article-title: Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor publication-title: Genetics doi: 10.1534/genetics.103.016303 – volume: 20 start-page: 265 year: 2010 ident: 10.1016/j.molp.2020.09.001_bib42 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res. doi: 10.1101/gr.097261.109 – volume: 165 start-page: 445 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib78 article-title: Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars publication-title: Euphytica doi: 10.1007/s10681-008-9745-y – volume: 44 start-page: 821 year: 2012 ident: 10.1016/j.molp.2020.09.001_bib81 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat. Genet. doi: 10.1038/ng.2310 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.molp.2020.09.001_bib51 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 20 start-page: 136 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib13 article-title: Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat publication-title: Genome Biol. doi: 10.1186/s13059-019-1744-x – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib40 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 41 start-page: 402 year: 1998 ident: 10.1016/j.molp.2020.09.001_bib68 article-title: More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA publication-title: Genome doi: 10.1139/g98-037 – volume: 76 start-page: 1030 year: 2013 ident: 10.1016/j.molp.2020.09.001_bib59 article-title: Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes publication-title: Plant J. doi: 10.1111/tpj.12366 – volume: 73 start-page: 190 year: 2013 ident: 10.1016/j.molp.2020.09.001_bib46 article-title: OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice publication-title: Plant J. doi: 10.1111/j.1365-313x.2012.05122.x – volume: 11 start-page: 702 year: 2010 ident: 10.1016/j.molp.2020.09.001_bib2 article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes publication-title: BMC Genomics doi: 10.1186/1471-2164-11-702 – volume: 51 start-page: 896 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib27 article-title: Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome publication-title: Nat. Genet. doi: 10.1038/s41588-019-0382-2 – volume: 194 start-page: 459 year: 2013 ident: 10.1016/j.molp.2020.09.001_bib10 article-title: Improving the accuracy and efficiency of identity-by-descent detection in population data publication-title: Genetics doi: 10.1534/genetics.113.150029 – volume: 7 start-page: 41247 year: 2017 ident: 10.1016/j.molp.2020.09.001_bib26 article-title: The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat publication-title: Sci. Rep. doi: 10.1038/srep41247 – volume: 368 start-page: eaba5435 year: 2020 ident: 10.1016/j.molp.2020.09.001_bib77 article-title: Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat publication-title: Science doi: 10.1126/science.aba5435 – volume: 17 start-page: e3000071 year: 2019 ident: 10.1016/j.molp.2020.09.001_bib21 article-title: A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000071 – volume: 277 start-page: 1063 year: 1997 ident: 10.1016/j.molp.2020.09.001_bib69 article-title: Seed banks and molecular maps: unlocking genetic potential from the wild publication-title: Science doi: 10.1126/science.277.5329.1063 – volume: 325 start-page: 737 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib52 article-title: Genetic properties of the maize nested association mapping population publication-title: Science doi: 10.1126/science.1174320 – volume: 19 start-page: 327 year: 2009 ident: 10.1016/j.molp.2020.09.001_bib71 article-title: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates publication-title: Genome Res. doi: 10.1101/gr.073585.107 – volume: 16 start-page: 280 year: 2018 ident: 10.1016/j.molp.2020.09.001_bib83 article-title: Uncovering the dispersion history, adaptive evolution and selection of wheat in China publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12770 – volume: 100 start-page: 2489 year: 2003 ident: 10.1016/j.molp.2020.09.001_bib56 article-title: Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.252763199 |
SSID | ssj0060863 |
Score | 2.6136346 |
Snippet | Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1733 |
SubjectTerms | asymmetric selection breeding programs breeding value China chromosomes crops cultivars depth founder genotype frequency genes genomics germplasm grain yield haplotype block haplotypes linkage disequilibrium pedigree phenotype plant breeding spring wheat wheat breeding |
Title | Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China |
URI | https://dx.doi.org/10.1016/j.molp.2020.09.001 https://www.ncbi.nlm.nih.gov/pubmed/32896642 https://www.proquest.com/docview/2440899903 https://www.proquest.com/docview/2498275070 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF71wYEL4k14RIPEDZnsw4_sMYkoKZQKNVTKzdpdr6tAbVdJWqk_gv_MzNquxKE5cLQ1I612xvNYf_sNYx-sEVKUPol8ppMoTjIbaWKglcaUyrk4Kx2dQ34_Tefn8ddlstxjs_4uDMEqu9jfxvQQrbs3o243R1er1WhB-HnJsX5AP5XoR_vsUCqdomsfTo6_zU_7gJxi1R5w9igfkUJ3d6aFeVXNJdFWSv6pZa68Lz_dV3-GPHT0mD3qCkiYtGt8wvZ8_ZQ9mDZY5N0-Y38ISRfA0ZiSoClBxAmcmLqozPo3EH_m6gZbWTjzN1ghbmCyua0qGqrlAENIRIytlYdFGI6DFgPUhAWdll9AGMDk1_AFZejgFlri4w2gWAjpMF23qRBWNYS53M_Z-dHnn7N51E1ciBx2PtvIx46XxhrnbMmlKYV2wo1VwT22FZjYnSysiAub2dTZAjuT1LoCwyV30mtbevWCHdRN7V8xEIXgpUqEVVLHQvuxiXWRCKexxFAySwZM9Pucu46OnKZiXOY97uxXTrbJyTY51wS-G7CPdzpXLRnHTumkN1_-j0vlmC126r3vbZ3jt0Y_UEztm-tNLmk8N7oyV7tk9Jg48zM-YC9bR7lbq8LuNsWG7_V_ruwNe0hPAU2TvWUH2_W1f4c10dYO0ednZyc_hp3vD9n-8XL6F-t-DVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKi0QviPLVBQqDxA2FtZ2v9bFbUbaw7YFtpb1ZtuOghSapdreV-iP4z8w4SSUO3UOvyViyMpOZN87LG8Y-WSOkKH0a-VylUZLmNlKkQCuNKWPnkrx0dA55epZNLpLv83S-xY76f2GIVtnl_janh2zdXRl2T3N4tVgMZ8SflxzxA8apxDh6xHYQDeQ0v-FkPu7TcYaYPbDs0Toi8-7PmZbkVTWXJFop-ZdWt_K-6nQf-gxV6PgZe9rBRzhsd7jHtnz9nD0eNwjxbl-wv8SjC9RoLEjQlCCSFKamLiqz_AOknrm4wUYWfvobxIcrOFzdVhWN1HKACSQivdbKwyyMxkF_Aa6EGZ2V_4Iwfskv4Rva0LEttLLHK0CzkNBhvGwLISxqCFO5X7KL46_nR5Oom7cQOex71pFPHC-NNc7ZkktTCuWEG8UF99hUYFl3srAiKWxuM2cL7Esy6wpMltxJr2zp41dsu25qv89AFIKXcSpsLFUilB-ZRBWpcAoBRizzdMBE_5y168TIaSbGpe5ZZ781-UaTbzRXRL0bsM93a65aKY6N1mnvPv1fQGmsFRvXfex9rfFNo88npvbN9UpLGs6NgczjTTZqRIr5OR-w122g3O01xt42w3bvzQN39oE9mZyfTvX05OzHW7ZLdwKvJn_HttfLa3-A6Ght34fo_wfMDAyS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resequencing+of+145+Landmark+Cultivars+Reveals+Asymmetric+Sub-genome+Selection+and+Strong+Founder+Genotype+Effects+on+Wheat+Breeding+in+China&rft.jtitle=Molecular+plant&rft.au=Hao%2C+Chenyang&rft.au=Jiao%2C+Chengzhi&rft.au=Hou%2C+Jian&rft.au=Li%2C+Tian&rft.date=2020-12-07&rft.issn=1674-2052&rft.volume=13&rft.issue=12+p.1733-1751&rft.spage=1733&rft.epage=1751&rft_id=info:doi/10.1016%2Fj.molp.2020.09.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |