Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons – A subject-specific finite element analysis
Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relat...
Saved in:
Published in | Journal of biomechanics Vol. 82; pp. 142 - 148 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
03.01.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young’s modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young’s modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young’s modulus, thereby protecting pathological tendon against excessive stress. |
---|---|
AbstractList | Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young's modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young's modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young's modulus, thereby protecting pathological tendon against excessive stress.Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young's modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young's modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young's modulus, thereby protecting pathological tendon against excessive stress. Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n = 8) and healthy tendons (n = 8) were imaged at rest and during a sub-maximal voluntary isometric contraction using three-dimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young's modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young's modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young's modulus, thereby protecting pathological tendon against excessive stress. |
Author | Shim, Vickie B. Newsham-West, Richard Hansen, Wencke Pizzolato, Claudio Barrett, Rod S. Nuri, Leila Obst, Steven Lloyd, David G. |
Author_xml | – sequence: 1 givenname: Vickie B. orcidid: 0000-0002-1680-4287 surname: Shim fullname: Shim, Vickie B. email: v.shim@auckland.ac.nz organization: Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand – sequence: 2 givenname: Wencke surname: Hansen fullname: Hansen, Wencke organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 3 givenname: Richard surname: Newsham-West fullname: Newsham-West, Richard organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 4 givenname: Leila surname: Nuri fullname: Nuri, Leila organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 5 givenname: Steven surname: Obst fullname: Obst, Steven organization: School of Health, Medical and Applied Sciences, Central Queensland University, Australia – sequence: 6 givenname: Claudio orcidid: 0000-0002-0292-2776 surname: Pizzolato fullname: Pizzolato, Claudio organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 7 givenname: David G. orcidid: 0000-0002-0824-9682 surname: Lloyd fullname: Lloyd, David G. organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 8 givenname: Rod S. surname: Barrett fullname: Barrett, Rod S. organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30424837$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktuFDEURUsoiHQCW4gsMWFSjX-0qySEiCI-kSIxgbHlzyvahctubFeknrEHFsKeWAkudXrSkzCydX3e9fO7vmjOQgzQNFcErwkmm9fjetQuTmC2a4pJV8U1puJJsyKdYC1lHT5rVhhT0va0x-fNRc4jxlhw0T9rzhnmlHdMrJo_t2HwMwQDKA5I-QIJLPoO1bqkPVLBoklV0SmPdinuIBUHGcWAist5BpRLgpyRdXXj9FxcPZqDhYR8VBa5CkKwLsSdKltn0LXZOu-rxSLHkNHfX7_RNcqzHsGUNu_AuKFygwuuAAIPE4RSG1F-n11-3jwdlM_w4mG9bL59_PD15nN79-XT7c31XWt435cWKH4DvFM9Fx3jm04ITTWjWDDDhdaCDXVOQlhiOq0x9ERjQqnRA-MWBMbssnl18K2P_jlDLnJy2YD3KkCcs6SEMc4Y2SzoyxN0jHOq_S7UBhPGOe0qdfVAzXoCK3fJTSrt5TGKCrw9ACbFnBMM0riilnmWpJyXBMsleTnKY_JySX7Ra_K1fHNSfrzh0cL3h0Ko47x3kGQ2bvkQ1qWaiLTRPW7x7sTC-BqfUf4H7P_H4B_-XuUs |
CitedBy_id | crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_1016_j_apm_2022_08_014 crossref_primary_10_1016_j_kine_2022_09_003 crossref_primary_10_3389_fbioe_2020_00878 crossref_primary_10_1016_j_finel_2022_103863 crossref_primary_10_3389_fnbot_2019_00097 crossref_primary_10_3389_fbioe_2022_914137 crossref_primary_10_1080_14763141_2021_1959947 crossref_primary_10_1002_jor_25408 crossref_primary_10_1002_jor_25827 crossref_primary_10_1038_s41598_024_84202_9 crossref_primary_10_1080_00913847_2023_2246179 crossref_primary_10_1016_j_jsams_2023_04_001 crossref_primary_10_1016_j_ultrasmedbio_2019_07_679 crossref_primary_10_1002_jeo2_70036 crossref_primary_10_1080_10255842_2021_1975683 crossref_primary_10_21303_2504_5679_2020_001444 crossref_primary_10_3389_fbioe_2024_1399611 crossref_primary_10_3389_fspor_2022_1012471 |
Cites_doi | 10.1097/00003086-199507000-00021 10.1016/j.clinbiomech.2011.02.011 10.1016/S1361-8415(99)80004-8 10.1177/0141076809701004 10.1242/jeb.159764 10.1111/sms.12835 10.1002/jcu.20388 10.1136/bjsports-2013-092275 10.1016/j.jbiomech.2016.06.006 10.1007/s40279-018-0956-7 10.1016/j.jbiomech.2016.02.057 10.1111/sms.12491 10.1111/sms.12742 10.1123/jab.2016-0261 10.3389/fncom.2017.00096 10.1016/j.jbiomech.2014.10.001 10.1016/0045-7825(96)01035-3 10.1109/TNSRE.2017.2683488 10.3389/fphys.2017.00091 10.1016/j.jbiomech.2017.02.031 10.1016/j.ultrasmedbio.2006.02.1427 10.1016/S0065-2156(08)70244-8 10.1016/j.jbiomech.2009.03.005 10.1016/j.clinbiomech.2012.07.001 10.1177/107110079701800906 10.1016/j.jbiomech.2015.09.021 10.2165/00007256-199927060-00004 10.1016/S0301-5629(02)00735-4 10.1113/EP086673 10.1152/japplphysiol.00259.2009 10.1016/j.fas.2016.05.024 10.1111/sms.12466 10.1080/10255842.2016.1240789 10.1152/japplphysiol.00384.2005 10.1007/s10237-017-0890-x 10.1007/s10237-015-0668-y 10.1016/j.ultrasmedbio.2013.08.009 10.1016/S0278-5919(03)00010-3 10.1038/s41598-018-31587-z 10.1152/japplphysiol.01249.2013 10.1136/bjsm.35.5.335 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. Copyright Elsevier Limited Jan 3, 2019 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Jan 3, 2019 |
DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2018.10.027 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 148 |
ExternalDocumentID | 30424837 10_1016_j_jbiomech_2018_10_027 S0021929018308042 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c499t-e205e48a9478346877b2b32073c47bb73f18777d1c8bb0e91b0122cbf34de7003 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 11:33:46 EDT 2025 Wed Aug 13 06:52:16 EDT 2025 Mon Jul 21 05:55:19 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Tue Jul 01 00:44:12 EDT 2025 Fri Feb 23 02:28:48 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Young’s modulus Tendinopathy Cross-sectional area Ultrasound von Mises Strain |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-e205e48a9478346877b2b32073c47bb73f18777d1c8bb0e91b0122cbf34de7003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0824-9682 0000-0002-1680-4287 0000-0002-0292-2776 |
OpenAccessLink | http://hdl.cqu.edu.au/10018/1263027 |
PMID | 30424837 |
PQID | 2160134428 |
PQPubID | 1226346 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2133433160 proquest_journals_2160134428 pubmed_primary_30424837 crossref_citationtrail_10_1016_j_jbiomech_2018_10_027 crossref_primary_10_1016_j_jbiomech_2018_10_027 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_10_027 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_10_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-03 |
PublicationDateYYYYMMDD | 2019-01-03 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Nuri, Obst, Newsham-West, Barrett (b0105) 2017; 27 Pizzolato, Reggiani, Saxby, Ceseracciu, Modenese, Lloyd (b0165) 2017; 25 Barber, Barrett, Lichtwark (b0020) 2009; 42 Chatzistergos, Maganaris, Chockalingam (b0030) 2016; 22 Choi, Smith, Martin, Clarke, Dart, Little, Clarke (b0035) 2016; 49 Hsu, Prager, Gee, Treece (b0060) 2006; 32 Alfredson (b0005) 2003; 22 Nuri, Obst, Newsham-West, Barrett (b0110) 2017; 220 Treece, Gee, Prager, Cash, Berman (b0190) 2003; 29 Maganaris, Chatzistergos, Reeves, Narici (b0095) 2017; 8 Shim, Handsfield, Fernandez, Lloyd, Besier (b0185) 2018; 8 Khan, Cook, Bonar, Harcourt, Astrom (b0065) 1999; 27 Lersch, Grotsch, Segesser, Koebke, Bruggemann, Potthast (b0080) 2012; 27 Nuri, Obst, Newsham-West, Barrett (b0115) 2018; 103 Obst, Newsham-West, Barrett (b0135) 2016; 26 Obst, Renault, Newsham-West, Barrett (b0140) 2014; 1985 Maffulli, Sharma, Luscombe (b0090) 2004; 97 Pekala, Henry, Ochala, Kopacz, Taton, Mlyniec, Walocha, Tomaszewski (b0145) 2017; 27 Weiss, Maker, Govindjee (b0200) 1996; 135 Bogaerts, Desmet, Slagmolen, Peers (b0025) 2016; 49 Leung, Griffith (b0085) 2008; 36 Obst, Barber, Miller, Barrett (b0120) 2017; 33 Horgan, Knowles (b0055) 1983 Shim, Besier, Lloyd, Mithraratne, Fernandez (b9000) 2016; 15 Treece, Prager, Gee, Berman (b0195) 1999; 3 Pizzolato, Lloyd, Barrett, Cook, Zheng, Besier, Saxby (b0150) 2017; 11 Hansen, Shim, Obst, Lloyd, Newsham-West, Barrett (b0045) 2017; 56 Rolf, Movin (b0175) 1997; 18 Mehdizadeh, Gardiner, Lavagnino, Smith (b0100) 2017; 16 Obst, Newsham-West, Barrett (b0130) 2014; 40 Kongsgaard, Aagaard, Kjaer, Magnusson (b0070) 2005; 1985 Pizzolato, Reggiani, Modenese, Lloyd (b0160) 2017; 20 Astrom, Rausing (b0015) 1995 Obst, Heales, Schrader, Davis, Dodd, Holzberger, Beavis, Barrett (b0125) 2018; 48 Kongsgaard, Nielsen, Hegnsvad, Aagaard, Magnusson (b0075) 2011; 26 Docking, Cook (b0040) 2016; 26 Helland, Bojsen-Moller, Raastad, Seynnes, Moltubakk, Jakobsen, Visnes, Bahr (b0050) 2013; 47 Pizzolato, Lloyd, Sartori, Ceseracciu, Besier, Fregly, Reggiani (b0155) 2015; 48 Shim, Fernandez, Gamage, Regnery, Smith, Gardiner, Lloyd, Besier (b0180) 2014; 47 Robinson, Cook, Purdam, Visentini, Ross, Maffulli, Taunton, Khan, Victorian Institute Of Sport Tendon Study (b0170) 2001; 35 Arya, Kulig (b0010) 2010; 1985 Nuri (10.1016/j.jbiomech.2018.10.027_b0115) 2018; 103 Mehdizadeh (10.1016/j.jbiomech.2018.10.027_b0100) 2017; 16 Obst (10.1016/j.jbiomech.2018.10.027_b0130) 2014; 40 Leung (10.1016/j.jbiomech.2018.10.027_b0085) 2008; 36 Khan (10.1016/j.jbiomech.2018.10.027_b0065) 1999; 27 Hansen (10.1016/j.jbiomech.2018.10.027_b0045) 2017; 56 Barber (10.1016/j.jbiomech.2018.10.027_b0020) 2009; 42 Helland (10.1016/j.jbiomech.2018.10.027_b0050) 2013; 47 Obst (10.1016/j.jbiomech.2018.10.027_b0120) 2017; 33 Obst (10.1016/j.jbiomech.2018.10.027_b0135) 2016; 26 Kongsgaard (10.1016/j.jbiomech.2018.10.027_b0070) 2005; 1985 Docking (10.1016/j.jbiomech.2018.10.027_b0040) 2016; 26 Treece (10.1016/j.jbiomech.2018.10.027_b0195) 1999; 3 Lersch (10.1016/j.jbiomech.2018.10.027_b0080) 2012; 27 Obst (10.1016/j.jbiomech.2018.10.027_b0140) 2014; 1985 Weiss (10.1016/j.jbiomech.2018.10.027_b0200) 1996; 135 Kongsgaard (10.1016/j.jbiomech.2018.10.027_b0075) 2011; 26 Pizzolato (10.1016/j.jbiomech.2018.10.027_b0160) 2017; 20 Obst (10.1016/j.jbiomech.2018.10.027_b0125) 2018; 48 Shim (10.1016/j.jbiomech.2018.10.027_b9000) 2016; 15 Nuri (10.1016/j.jbiomech.2018.10.027_b0110) 2017; 220 Arya (10.1016/j.jbiomech.2018.10.027_b0010) 2010; 1985 Nuri (10.1016/j.jbiomech.2018.10.027_b0105) 2017; 27 Choi (10.1016/j.jbiomech.2018.10.027_b0035) 2016; 49 Pizzolato (10.1016/j.jbiomech.2018.10.027_b0165) 2017; 25 Robinson (10.1016/j.jbiomech.2018.10.027_b0170) 2001; 35 Bogaerts (10.1016/j.jbiomech.2018.10.027_b0025) 2016; 49 Astrom (10.1016/j.jbiomech.2018.10.027_b0015) 1995 Hsu (10.1016/j.jbiomech.2018.10.027_b0060) 2006; 32 Rolf (10.1016/j.jbiomech.2018.10.027_b0175) 1997; 18 Shim (10.1016/j.jbiomech.2018.10.027_b0180) 2014; 47 Pizzolato (10.1016/j.jbiomech.2018.10.027_b0150) 2017; 11 Pizzolato (10.1016/j.jbiomech.2018.10.027_b0155) 2015; 48 Alfredson (10.1016/j.jbiomech.2018.10.027_b0005) 2003; 22 Chatzistergos (10.1016/j.jbiomech.2018.10.027_b0030) 2016; 22 Maffulli (10.1016/j.jbiomech.2018.10.027_b0090) 2004; 97 Pekala (10.1016/j.jbiomech.2018.10.027_b0145) 2017; 27 Treece (10.1016/j.jbiomech.2018.10.027_b0190) 2003; 29 Maganaris (10.1016/j.jbiomech.2018.10.027_b0095) 2017; 8 Horgan (10.1016/j.jbiomech.2018.10.027_b0055) 1983 Shim (10.1016/j.jbiomech.2018.10.027_b0185) 2018; 8 |
References_xml | – volume: 48 start-page: 3929 year: 2015 end-page: 3936 ident: b0155 article-title: CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks publication-title: J. Biomech. – volume: 3 start-page: 141 year: 1999 end-page: 173 ident: b0195 article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound publication-title: Med. Image Anal. – volume: 32 start-page: 823 year: 2006 end-page: 835 ident: b0060 article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound publication-title: Ultrasound. Med. Biol. – volume: 33 start-page: 300 year: 2017 end-page: 304 ident: b0120 article-title: Reliability of achilles tendon moment arm measured in vivo using freehand three-dimensional ultrasound publication-title: J. Appl. Biomech. – volume: 47 start-page: 3598 year: 2014 end-page: 3604 ident: b0180 article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture publication-title: J. Biomech. – volume: 1985 start-page: 670 year: 2010 end-page: 675 ident: b0010 article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon publication-title: J. Appl. Physiol. – start-page: 179 year: 1983 end-page: 269 ident: b0055 article-title: Recent developments concerning Saint-Venant's Principle publication-title: Advances in Applied Mechanics – volume: 49 start-page: 2694 year: 2016 end-page: 2701 ident: b0035 article-title: Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury publication-title: J. Biomech. – volume: 49 start-page: 1411 year: 2016 end-page: 1419 ident: b0025 article-title: Strain mapping in the Achilles tendon – a systematic review publication-title: J. Biomech. – volume: 20 start-page: 436 year: 2017 end-page: 445 ident: b0160 article-title: Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 29 start-page: 529 year: 2003 end-page: 546 ident: b0190 article-title: High-definition freehand 3-D ultrasound publication-title: Ultrasound. Med. Biol. – volume: 8 start-page: 91 year: 2017 ident: b0095 article-title: Quantification of internal stress-strain fields in human tendon: unraveling the mechanisms that underlie regional tendon adaptations and mal-adaptations to mechanical loading and the effectiveness of therapeutic eccentric exercise publication-title: Front. Physiol. – volume: 26 start-page: 675 year: 2016 end-page: 683 ident: b0040 article-title: Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC) publication-title: Scand. J. Med. Sci. Sports – volume: 26 start-page: 421 year: 2016 end-page: 431 ident: b0135 article-title: Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon publication-title: Scand. J. Med. Sci. Sports – volume: 22 start-page: 727 year: 2003 end-page: 741 ident: b0005 article-title: Chronic midportion Achilles tendinopathy: an update on research and treatment publication-title: Clin. Sports Med. – start-page: 151 year: 1995 end-page: 164 ident: b0015 article-title: Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings publication-title: Clin. Orthop. Relat. Res. – volume: 8 start-page: 13856 year: 2018 ident: b0185 article-title: Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon publication-title: Sci. Rep. – volume: 220 start-page: 3053 year: 2017 end-page: 3061 ident: b0110 article-title: The tendinopathic Achilles tendon does not remain iso-volumetric upon repeated loading: insights from 3D ultrasound publication-title: J. Exp. Biol. – volume: 42 start-page: 1313 year: 2009 end-page: 1319 ident: b0020 article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle publication-title: J. Biomech. – volume: 16 start-page: 1329 year: 2017 end-page: 1348 ident: b0100 article-title: Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage publication-title: Biomech. Model. Mechanobiol. – volume: 27 start-page: 393 year: 1999 end-page: 408 ident: b0065 article-title: Histopathology of common tendinopathies. Update and implications for clinical management publication-title: Sports Med. – volume: 135 start-page: 107 year: 1996 end-page: 128 ident: b0200 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Eng. – volume: 15 start-page: 195 year: 2016 end-page: 204 ident: b9000 article-title: The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait publication-title: Biomech. Model. Mechanobiol. – volume: 47 start-page: 862 year: 2013 end-page: 868 ident: b0050 article-title: Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy publication-title: Br. J. Sports Med. – volume: 27 start-page: 955 year: 2012 end-page: 961 ident: b0080 article-title: Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon publication-title: Clin. Biomech. (Bristol, Avon) – volume: 25 start-page: 1612 year: 2017 end-page: 1621 ident: b0165 article-title: Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. – volume: 56 start-page: 26 year: 2017 end-page: 31 ident: b0045 article-title: Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: a finite element analysis publication-title: J. Biomech. – volume: 40 start-page: 62 year: 2014 end-page: 70 ident: b0130 article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound publication-title: Ultrasound. Med. Biol. – volume: 11 start-page: 96 year: 2017 ident: b0150 article-title: Bioinspired technologies to connect Musculoskeletal Mechanobiology to the person for training and rehabilitation publication-title: Front. Comput. Neurosci. – volume: 1985 start-page: 1965 year: 2005 end-page: 1971 ident: b0070 article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients publication-title: J. Appl. Physiol. – volume: 36 start-page: 27 year: 2008 end-page: 32 ident: b0085 article-title: Sonography of chronic Achilles tendinopathy: a case-control study publication-title: J. Clin. Ultrasound. – volume: 97 start-page: 472 year: 2004 end-page: 476 ident: b0090 article-title: Achilles tendinopathy: aetiology and management publication-title: J. R. Soc. Med. – volume: 27 start-page: 1263 year: 2017 end-page: 1272 ident: b0105 article-title: Regional three-dimensional deformation of human Achilles tendon during conditioning publication-title: Scand. J. Med. Sci. Sports – volume: 26 start-page: 772 year: 2011 end-page: 777 ident: b0075 article-title: Mechanical properties of the human Achilles tendon, in vivo publication-title: Clin. Biomech. (Bristol, Avon) – volume: 1985 start-page: 376 year: 2014 end-page: 384 ident: b0140 article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction publication-title: J. Appl. Physiol. – volume: 103 start-page: 358 year: 2018 end-page: 369 ident: b0115 article-title: Three-dimensional morphology and volume of the free Achilles tendon at rest and under load in people with unilateral mid-portion Achilles tendinopathy publication-title: Exp. Physiol. – volume: 48 start-page: 2179 year: 2018 end-page: 2198 ident: b0125 article-title: Are the mechanical or material properties of the achilles and patellar tendons altered in tendinopathy? A systematic review with meta-ANALYSIS publication-title: Sports Med. – volume: 27 start-page: 1705 year: 2017 end-page: 1715 ident: b0145 article-title: The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation publication-title: Scand. J. Med. Sci. Sports – volume: 18 start-page: 565 year: 1997 end-page: 569 ident: b0175 article-title: Etiology, histopathology, and outcome of surgery in achillodynia publication-title: Foot Ankle Int. – volume: 22 start-page: 15 year: 2016 ident: b0030 article-title: Sensitivity of a numerical model to detect regional differences in mechanical properties of tendons publication-title: J. Foot Ankle Surg. – volume: 35 start-page: 335 year: 2001 end-page: 341 ident: b0170 article-title: The VISA-A questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopathy publication-title: Br. J. Sports Med. – start-page: 151 year: 1995 ident: 10.1016/j.jbiomech.2018.10.027_b0015 article-title: Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199507000-00021 – volume: 26 start-page: 772 year: 2011 ident: 10.1016/j.jbiomech.2018.10.027_b0075 article-title: Mechanical properties of the human Achilles tendon, in vivo publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2011.02.011 – volume: 3 start-page: 141 year: 1999 ident: 10.1016/j.jbiomech.2018.10.027_b0195 article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(99)80004-8 – volume: 97 start-page: 472 year: 2004 ident: 10.1016/j.jbiomech.2018.10.027_b0090 article-title: Achilles tendinopathy: aetiology and management publication-title: J. R. Soc. Med. doi: 10.1177/0141076809701004 – volume: 220 start-page: 3053 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0110 article-title: The tendinopathic Achilles tendon does not remain iso-volumetric upon repeated loading: insights from 3D ultrasound publication-title: J. Exp. Biol. doi: 10.1242/jeb.159764 – volume: 27 start-page: 1705 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0145 article-title: The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12835 – volume: 36 start-page: 27 year: 2008 ident: 10.1016/j.jbiomech.2018.10.027_b0085 article-title: Sonography of chronic Achilles tendinopathy: a case-control study publication-title: J. Clin. Ultrasound. doi: 10.1002/jcu.20388 – volume: 47 start-page: 862 year: 2013 ident: 10.1016/j.jbiomech.2018.10.027_b0050 article-title: Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2013-092275 – volume: 49 start-page: 2694 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b0035 article-title: Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.06.006 – volume: 48 start-page: 2179 year: 2018 ident: 10.1016/j.jbiomech.2018.10.027_b0125 article-title: Are the mechanical or material properties of the achilles and patellar tendons altered in tendinopathy? A systematic review with meta-ANALYSIS publication-title: Sports Med. doi: 10.1007/s40279-018-0956-7 – volume: 49 start-page: 1411 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b0025 article-title: Strain mapping in the Achilles tendon – a systematic review publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.02.057 – volume: 26 start-page: 675 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b0040 article-title: Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC) publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12491 – volume: 27 start-page: 1263 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0105 article-title: Regional three-dimensional deformation of human Achilles tendon during conditioning publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12742 – volume: 33 start-page: 300 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0120 article-title: Reliability of achilles tendon moment arm measured in vivo using freehand three-dimensional ultrasound publication-title: J. Appl. Biomech. doi: 10.1123/jab.2016-0261 – volume: 11 start-page: 96 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0150 article-title: Bioinspired technologies to connect Musculoskeletal Mechanobiology to the person for training and rehabilitation publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00096 – volume: 47 start-page: 3598 year: 2014 ident: 10.1016/j.jbiomech.2018.10.027_b0180 article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.10.001 – volume: 135 start-page: 107 year: 1996 ident: 10.1016/j.jbiomech.2018.10.027_b0200 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(96)01035-3 – volume: 25 start-page: 1612 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0165 article-title: Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2683488 – volume: 8 start-page: 91 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0095 article-title: Quantification of internal stress-strain fields in human tendon: unraveling the mechanisms that underlie regional tendon adaptations and mal-adaptations to mechanical loading and the effectiveness of therapeutic eccentric exercise publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00091 – volume: 56 start-page: 26 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0045 article-title: Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: a finite element analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.02.031 – volume: 32 start-page: 823 year: 2006 ident: 10.1016/j.jbiomech.2018.10.027_b0060 article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound publication-title: Ultrasound. Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.02.1427 – start-page: 179 year: 1983 ident: 10.1016/j.jbiomech.2018.10.027_b0055 article-title: Recent developments concerning Saint-Venant's Principle doi: 10.1016/S0065-2156(08)70244-8 – volume: 42 start-page: 1313 year: 2009 ident: 10.1016/j.jbiomech.2018.10.027_b0020 article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.005 – volume: 27 start-page: 955 year: 2012 ident: 10.1016/j.jbiomech.2018.10.027_b0080 article-title: Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2012.07.001 – volume: 18 start-page: 565 year: 1997 ident: 10.1016/j.jbiomech.2018.10.027_b0175 article-title: Etiology, histopathology, and outcome of surgery in achillodynia publication-title: Foot Ankle Int. doi: 10.1177/107110079701800906 – volume: 48 start-page: 3929 year: 2015 ident: 10.1016/j.jbiomech.2018.10.027_b0155 article-title: CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.021 – volume: 27 start-page: 393 year: 1999 ident: 10.1016/j.jbiomech.2018.10.027_b0065 article-title: Histopathology of common tendinopathies. Update and implications for clinical management publication-title: Sports Med. doi: 10.2165/00007256-199927060-00004 – volume: 29 start-page: 529 year: 2003 ident: 10.1016/j.jbiomech.2018.10.027_b0190 article-title: High-definition freehand 3-D ultrasound publication-title: Ultrasound. Med. Biol. doi: 10.1016/S0301-5629(02)00735-4 – volume: 103 start-page: 358 year: 2018 ident: 10.1016/j.jbiomech.2018.10.027_b0115 article-title: Three-dimensional morphology and volume of the free Achilles tendon at rest and under load in people with unilateral mid-portion Achilles tendinopathy publication-title: Exp. Physiol. doi: 10.1113/EP086673 – volume: 1985 start-page: 670 issue: 108 year: 2010 ident: 10.1016/j.jbiomech.2018.10.027_b0010 article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00259.2009 – volume: 22 start-page: 15 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b0030 article-title: Sensitivity of a numerical model to detect regional differences in mechanical properties of tendons publication-title: J. Foot Ankle Surg. doi: 10.1016/j.fas.2016.05.024 – volume: 26 start-page: 421 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b0135 article-title: Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12466 – volume: 20 start-page: 436 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0160 article-title: Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1240789 – volume: 1985 start-page: 1965 issue: 99 year: 2005 ident: 10.1016/j.jbiomech.2018.10.027_b0070 article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00384.2005 – volume: 16 start-page: 1329 year: 2017 ident: 10.1016/j.jbiomech.2018.10.027_b0100 article-title: Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0890-x – volume: 15 start-page: 195 year: 2016 ident: 10.1016/j.jbiomech.2018.10.027_b9000 article-title: The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0668-y – volume: 40 start-page: 62 year: 2014 ident: 10.1016/j.jbiomech.2018.10.027_b0130 article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound publication-title: Ultrasound. Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.08.009 – volume: 22 start-page: 727 year: 2003 ident: 10.1016/j.jbiomech.2018.10.027_b0005 article-title: Chronic midportion Achilles tendinopathy: an update on research and treatment publication-title: Clin. Sports Med. doi: 10.1016/S0278-5919(03)00010-3 – volume: 8 start-page: 13856 year: 2018 ident: 10.1016/j.jbiomech.2018.10.027_b0185 article-title: Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon publication-title: Sci. Rep. doi: 10.1038/s41598-018-31587-z – volume: 1985 start-page: 376 issue: 116 year: 2014 ident: 10.1016/j.jbiomech.2018.10.027_b0140 article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01249.2013 – volume: 35 start-page: 335 year: 2001 ident: 10.1016/j.jbiomech.2018.10.027_b0170 article-title: The VISA-A questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopathy publication-title: Br. J. Sports Med. doi: 10.1136/bjsm.35.5.335 |
SSID | ssj0007479 |
Score | 2.3922281 |
Snippet | Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | Achilles tendon Ankle Contraction Cross-sectional area Finite element method Geometry Isometric Load distribution (forces) Material properties Mathematical models Mechanical properties Modulus of elasticity Muscle contraction Strain Stress concentration Stress distribution Studies Tendinopathy Tendons Ultrasonic imaging Ultrasound von Mises Young’s modulus |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5VPSA4IEj5CRQ0SIibE9u79nqPUUVVkMqJSr1ZXu8aJQp2lDqHXhDvwIPwTjwJM-t1KBKoSByz2YnWmfHs_H0zAK8zG6c603mk4yqPSCgsj3mRkY2bvKEL2SaWA_rnH_KzC_n-Mrs8gJMRC8NllUH3Dzrda-uwMg__5nyzXDLGl942TgMWgsweyXpYSsVSPvvyq8yDzOVQ5pFEvPsGSng1W3mMu09KJMWMq7x4usyfL6i_GaD-Ijp9APeDBYmL4ZAP4cC1EzhatOQ9f77GN-hrOn2wfAL3brQbnMCd85BIP4Lv78bhJNg16FPmzuInR-fst9dYtRbJlPXSiRuO12-58Sp2LfaeUzhgTNBy390wMgsZj7bFdVdZXNJGx4CZzo88rnHBqPE1_QQvk6Tjj6_fcIFXO8OBoIgBn1y0hM2SjWB0Q1U7HWTomfIILk7ffjw5i8LshqgmH6qPXBpnThaVljzJIy-UMqkRKSmUWipjlGgS7kRok7owJnY6MZzjq00jpHWKVM1jOGy71j0FrOI8ta7RjpvPNVJVij16U7iqEWRw6ClkI8PKOjQ25_ka63KsYFuVI6NLZjSvE6OnMN_TbYbWHrdSqFEeyhG4Sqq2pNvnVkq9p_xNvP-J9ngUvTIomKsyTciTFpKcxym82n9NqoHzPVXruh3vEYIBcXk8hSeDyO4flKNYPEzg2X8c7DncpU_aB6TEMRz22517QSZab176d_AnxdQ9Aw priority: 102 providerName: Elsevier |
Title | Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons – A subject-specific finite element analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018308042 https://dx.doi.org/10.1016/j.jbiomech.2018.10.027 https://www.ncbi.nlm.nih.gov/pubmed/30424837 https://www.proquest.com/docview/2160134428 https://www.proquest.com/docview/2133433160 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RVkJwQCXlEVqiQULcnPr9OFWmapWCGiFEpdwsr3ddNQp2mjiHXir-Az-E_8QvYWa9Nj0A5RTJ8VhrzXj223l9AG8DabtJkIRWYuehRUYhmebFt6RdhiVtyNKRHNA_n4aTC__DLJiZgNvalFV2PlE7alkXHCM_dB06Ong-oeWj5bXFrFGcXTUUGluww6PLuKQrmvUHLp4Nb0o8HItggH2nQ3g-nuv-dp2QcOIxV3gxs8yfN6e_gU-9CZ3uwhODHjFt1f0UHqhqAHtpRSfnrzf4DnU9pw6UD-DxnVGDA3h4bpLoe_DjrCMmwbpEnS5XEi8VrbNZ3WBeSSQYqy0TlxyrX_HQVawrbLSWsO0vQckzdw1dFnIv2goXdS7xim5U3CxTa7rjAlPuGF_QI_gyWTn-_PYdU1xvBAeBLG725IIlLK8YAKNqK9ppIe28lGdwcXry5XhiGd4Gq6DzU2Mp1w6UH-eJzyweYRxFwhWeS86k8CMhIq90eAqhdIpYCFsljuD8XiFKz5cqIjfzHLarulIvAXM7dKUqE8WD50o_yiM-zYtY5aVHYCMZQtApLCvMUHPm1lhkXfXaPOsUnbGi-TopegiHvdyyHetxr0TU2UPWNa2Sm81o57lXMuklDaxp4cp_yR50ppcZ57LOfn8KQ3jT_01ugXM9eaXqDd_jedwMF9pDeNGabP-iHMFiIoFX_374PjyilSQ63uQdwHaz2qjXhMAaMYKt8a0z0h_bCHbSs4-TKf2-P5l--vwLL2s2pg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqcRyQJCyBAo8JODm1vtyQChAq4Q2EUKt1Jvr8YxRo2CHLEK58R_4H_Cf-CW8N_aYHoBy6dXxjCZ6y3x-2wfwLJC2mwRJaCV2FlqkFJJpXnxL2kVY0IUsHckB_dE4HBz7706Ckw34bnphuKzS-ETtqGWVc4x813Xo08HzCS2_mn22mDWKs6uGQqNWiwO1_kKfbIuXw7ck3-euu7939GZgNawCVk7ofmkp1w6UH2eJzxwTYRxFwhWeS6qe-5EQkVc4PCNPOnkshK0SR3D2KReF50sVkRHQvldg0_foPB3YfL03fv-h9f0EzpuiEsci4GGf60me7Ex0R71OgTjxDteUMZfNn6_Dv8Fdfe3t34KbDV7Ffq1gt2FDlV3Y6pf0rf5pjS9QV5Dq0HwXbpwbbtiFq6Mmbb8FP4aGCgWrAnWCXkn8qOicy_kas1IiAWdtCzjj7MCcx7xiVeJS6wXWHS0oecpvQ9CF3P02x2mVSTyjFxW351SaYDnHPveoT2kLfkx2hT-_fsM-LlaCw04Wt5dyiRQWZwy5UdU19HSQekLLHTi-FJnehU5Zleo-YGaHrlRFonjUXeFHWcTxAxGrrPAI3iQ9CIzA0rwZo85sHtPU1MtNUiPolAXNz0nQPdht183qQSIXroiMPqSmTZYce0p33YUrk3ZlA6RqgPRfa7eN6qWNO1ukv42vB0_bn8kRcXYpK1W14nc8j9vvQrsH92qVbf8ox8yYuuDBvzd_AtcGR6PD9HA4PngI1-lUiY52edvQWc5X6hHhv6V43Bgdwull2_kvhSxvCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJDyCBQYJODmxu-NDwhFlKihtOJApdyM17uLGgU7JI5QbvwHfgh3fg6_hJn1gx6AcunV9q7Wmpndb-f1ATyNlOsnURI7iZvFDimFYpqX0FGuiQ0dyMpT7NA_PokPT8M302i6BT_aWhhOq2z3RLtRqzJnH_nA9-jqEISElgemSYt4dzB-ufjsMIMUR1pbOo1aRY705gtd31YvJgck62e-P379_tWh0zAMODkh_crRvhvpcJglIfNNxEMhpC8Dn9Q-D4WUIjAe98tTXj6U0tWJJzkSlUsThEoLMgia9wpcFUHksY2JaXfZ4770TXqJ5xAEcc9VJ8_2Z7a23gZDvOE-Z5cxq82fD8a_AV97AI5vwo0GueKoVrVbsKWLHuyOCrq1f9rgc7S5pNZJ34Pr59oc9mDnuAng78L3SUuKgqVBG6rXCj9qWme13GBWKCQIba0CFxwnWHLDVywLrKyGYF3bgor7_TZUXch1cEucl5nCM_pQc6FOaamWcxxxtfqcpuDHZGH48-s3HOFqLdkB5XChKSdLoTlj8I26zqanhdS9Wm7D6aVI9A5sF2Wh7wFmbuwrbRLNTe9MKDLBngQ51JkJCOgkfYhagaV501CdeT3maZs5N0tbQacsaH5Ogu7DoBu3qFuKXDhCtPqQtgWztMWndOpdODLpRjaQqoZK_zV2r1W9tNnYVulvM-zDk-41bUkcZ8oKXa75myDgQrzY7cPdWmW7H2XvGZMY3P_35I9hh6w7fTs5OXoA12hRiXV7BXuwXS3X-iEBwUo-shaH8OGyTfwXX01x2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+altered+geometry+and+material+properties+on+tissue+stress+distribution+under+load+in+tendinopathic+Achilles+tendons+%E2%80%93+A+subject-specific+finite+element+analysis&rft.jtitle=Journal+of+biomechanics&rft.au=Shim%2C+Vickie+B.&rft.au=Hansen%2C+Wencke&rft.au=Newsham-West%2C+Richard&rft.au=Nuri%2C+Leila&rft.date=2019-01-03&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=82&rft.spage=142&rft.epage=148&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.10.027&rft.externalDocID=S0021929018308042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |