Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice

Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis a...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 12; no. 5; p. 1278
Main Authors Renna, Francesco, Martins, Miguel, Neto, Alexandre, Cunha, António, Libânio, Diogo, Dinis-Ribeiro, Mário, Coimbra, Miguel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.05.2022
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics12051278

Cover

Loading…
Abstract Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.
AbstractList Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.
Author Renna, Francesco
Neto, Alexandre
Coimbra, Miguel
Dinis-Ribeiro, Mário
Cunha, António
Libânio, Diogo
Martins, Miguel
AuthorAffiliation 2 Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
4 Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; diogo.monteiro@ipoporto.min-saude.pt (D.L.); mario.ribeiro@ipoporto.min-saude.pt (M.D.-R.)
1 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; miguel.l.martins@inesctec.pt (M.M.); alexandre.h.neto@inesctec.pt (A.N.); acunha@utad.pt (A.C.); mcoimbra@fc.up.pt (M.C.)
3 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
AuthorAffiliation_xml – name: 1 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; miguel.l.martins@inesctec.pt (M.M.); alexandre.h.neto@inesctec.pt (A.N.); acunha@utad.pt (A.C.); mcoimbra@fc.up.pt (M.C.)
– name: 2 Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
– name: 3 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
– name: 4 Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; diogo.monteiro@ipoporto.min-saude.pt (D.L.); mario.ribeiro@ipoporto.min-saude.pt (M.D.-R.)
Author_xml – sequence: 1
  givenname: Francesco
  surname: Renna
  fullname: Renna, Francesco
– sequence: 2
  givenname: Miguel
  surname: Martins
  fullname: Martins, Miguel
– sequence: 3
  givenname: Alexandre
  surname: Neto
  fullname: Neto, Alexandre
– sequence: 4
  givenname: António
  orcidid: 0000-0002-3458-7693
  surname: Cunha
  fullname: Cunha, António
– sequence: 5
  givenname: Diogo
  surname: Libânio
  fullname: Libânio, Diogo
– sequence: 6
  givenname: Mário
  surname: Dinis-Ribeiro
  fullname: Dinis-Ribeiro, Mário
– sequence: 7
  givenname: Miguel
  orcidid: 0000-0001-7501-6523
  surname: Coimbra
  fullname: Coimbra, Miguel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35626433$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rHCEUlZLSJNv8gkIR-pKXbf2YcbQPhWWbpguBlpI8i6t3Ji4zOtXZ0P33MdmkJKHUF8V7zvF47j1GByEGQOgdJR85V-ST86YLMU_eZspITVkjX6EjRpp6XlVUHjw5H6KTnDekLEW5ZPUbdMhrwUTF-RH6s0iTb731pserMEHf-w6CBdzGhK_GERI-N3lK0ZdieS4U3FlwMds47j7jBf4VjRvMiNsUB3wJ9jrEPnY7_BVuoI_jAGHCU8TL3gdvC_lnMra4hrfodWv6DCcP-wxdfTu7XH6fX_w4Xy0XF3NbKTXNgSpTOSXs2lkgzIFqLchqbUhtuJGCgRSlYKVq11wJZRrCpRNWkEaK8ns-Q6u9rotmo8fkB5N2Ohqv7y9i6rQpEdgeNHdCNoS6ytZQUUqKcq1owylrnbS0LVpf9lrjdj1AMRSmZPpnos8rwV_rLt5oRYsT2RSB0weBFH9vS5568NmW0E2AuM2aiYYyoZrSmxn68AK6idtU4r9HEcpYRXhBvX_q6K-VxwYXgNoDbIo5J2i19ZOZfLwz6HtNib6bJ_2PeSpc_oL7KP8_1i2xC9O3
CitedBy_id crossref_primary_10_1038_s41597_025_04401_5
crossref_primary_10_1186_s42492_023_00140_9
crossref_primary_10_1016_j_dld_2024_04_019
crossref_primary_10_3390_diagnostics14161746
crossref_primary_10_23736_S2724_5691_22_09810_0
crossref_primary_10_22516_25007440_1163
crossref_primary_10_3390_diagnostics13040720
crossref_primary_10_3390_diagnostics13182862
crossref_primary_10_3390_cancers14236000
crossref_primary_10_1016_j_procs_2025_02_216
crossref_primary_10_1016_j_procs_2024_06_163
crossref_primary_10_5230_jgc_2024_24_e28
crossref_primary_10_1109_ACCESS_2024_3381517
Cites_doi 10.1109/JBHI.2020.2995193
10.1007/s10120-018-0793-2
10.1155/2013/681439
10.1109/ICCV48922.2021.00073
10.1055/a-0855-3532
10.1016/j.gie.2020.06.034
10.1016/j.gie.2019.09.016
10.1016/j.gie.2019.12.049
10.1016/S0140-6736(16)30354-3
10.1016/j.compbiomed.2019.103351
10.1055/s-2001-42537
10.1016/j.dld.2019.12.146
10.1109/JTEHM.2019.2946802
10.21037/atm.2020.03.24
10.1016/j.gie.2021.03.013
10.1136/gutjnl-2018-317366
10.1055/a-1350-5583
10.1109/CVPR46437.2021.00455
10.1016/S0140-6736(17)32154-2
10.1109/CVPR42600.2020.00813
10.1111/den.13530
10.1038/s41598-021-87405-6
10.7704/kjhugr.2020.0013
10.1007/s00464-021-08698-2
10.1007/s00464-020-08236-6
10.1145/3083187.3083212
10.1016/j.gie.2018.11.011
10.1055/a-1104-5245
10.1111/j.1751-2980.2011.00550.x
10.1053/j.gastro.2008.01.071
10.1016/j.bspc.2021.103167
10.1016/j.gie.2014.07.052
10.1007/s11548-020-02148-5
10.1016/j.dld.2020.11.017
10.1053/j.gastro.2019.11.030
10.1097/MCG.0000000000001629
10.1016/j.compbiomed.2020.103950
10.1016/j.gie.2021.12.019
10.1049/htl.2019.0066
10.1016/j.media.2020.101838
10.3390/diagnostics11091575
10.1016/j.gie.2019.08.018
10.1145/2980179.2980251
10.1007/s10388-020-00716-x
10.1109/TNNLS.2020.3027314
10.1055/s-0035-1569580
10.1109/CVPR.2009.5206848
10.1007/978-3-030-89134-3_11
10.1016/j.compbiomed.2020.104026
10.1145/3505244
10.1007/978-3-030-58452-8_24
10.5946/ce.2014.47.6.490
10.1016/j.gie.2011.03.878
10.1016/j.gie.2020.06.047
10.1055/a-1312-6389
10.1136/bmj.m689
10.1007/s10120-016-0680-7
10.1016/j.gie.2021.06.033
10.1136/gutjnl-2020-321922
10.1053/j.gastro.2021.11.040
10.1038/s41598-018-25842-6
10.1111/den.13306
10.1055/a-1500-3730
10.1136/gutjnl-2017-314109
10.1109/BIBE52308.2021.9635273
10.3390/jcm8091310
10.1055/s-0042-113128
10.1097/MEG.0000000000000657
10.1016/j.bpg.2020.101710
10.1109/EMBC44109.2020.9176016
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics12051278
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Research Library (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_3d68701d4c5e411086c5917312fd8c1f
PMC9141387
35626433
10_3390_diagnostics12051278
Genre Journal Article
Review
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  grantid: PTDC/EEI-EEE/5557/202
– fundername: Fundação para a Ciência e Tecnologia
  grantid: PG08884
– fundername: FCT—Fundação para a Ciência e a Tecnologia
  grantid: PTDC/EEI-EEE/5557/2020
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c499t-e19a4d96cbdce02de9fce84ba05a3a862e86ce0c89fb3969a7038d6c607864413
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:28:57 EDT 2025
Thu Aug 21 13:54:54 EDT 2025
Fri Sep 05 09:03:33 EDT 2025
Sun Jun 29 12:39:49 EDT 2025
Mon Jul 21 06:02:41 EDT 2025
Tue Jul 01 02:36:01 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
convolutional neural networks
upper GI endoscopy (UGIE)
artificial intelligence
computer vision
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-e19a4d96cbdce02de9fce84ba05a3a862e86ce0c89fb3969a7038d6c607864413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3458-7693
0000-0001-7501-6523
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics12051278
PMID 35626433
PQID 2670122403
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_3d68701d4c5e411086c5917312fd8c1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141387
proquest_miscellaneous_2671269764
proquest_journals_2670122403
pubmed_primary_35626433
crossref_citationtrail_10_3390_diagnostics12051278
crossref_primary_10_3390_diagnostics12051278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220521
PublicationDateYYYYMMDD 2022-05-21
PublicationDate_xml – month: 5
  year: 2022
  text: 20220521
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Xu (ref_41) 2019; 6
Sagaert (ref_59) 2016; 388
Sharma (ref_10) 2021; 162
Anta (ref_13) 2021; 52
Visaggi (ref_11) 2022; 56
ref_12
ref_56
Arribas (ref_7) 2021; 70
Yao (ref_25) 2017; 20
Rutter (ref_5) 2015; 48
Zhang (ref_55) 2020; 52
Wu (ref_19) 2021; 67
Hirasawa (ref_53) 2018; 21
(ref_4) 2016; 28
He (ref_42) 2020; 15
Tjoa (ref_69) 2021; 32
Igarashi (ref_43) 2020; 124
Vos (ref_1) 2017; 390
Emura (ref_36) 2020; 32
ref_68
ref_67
Chen (ref_47) 2020; 91
ref_66
Li (ref_54) 2021; 95
Ghatwary (ref_20) 2021; 25
Tokai (ref_23) 2020; 17
Hassan (ref_3) 2020; 52
Beg (ref_31) 2017; 66
Hashimoto (ref_16) 2020; 91
Choi (ref_51) 2014; 47
Chang (ref_27) 2021; 36
Cogan (ref_14) 2019; 111
Wu (ref_40) 2019; 51
Teh (ref_33) 2011; 73
ref_72
ref_71
Bisschops (ref_28) 2016; 48
Choi (ref_26) 2022; 36
Ishioka (ref_52) 2019; 31
ref_78
Guo (ref_21) 2020; 91
ref_77
ref_76
Widya (ref_70) 2019; 7
ref_75
ref_74
Frazzoni (ref_6) 2022; 54
Lee (ref_35) 2020; 20
Takiyama (ref_39) 2018; 8
ref_38
ref_37
Wu (ref_58) 2022; 95
Liu (ref_17) 2020; 8
Cohen (ref_30) 2015; 81
Shiroma (ref_18) 2021; 11
Wu (ref_45) 2019; 68
Li (ref_49) 2021; 53
Yan (ref_57) 2020; 126
Struyvenberg (ref_22) 2020; 158
Bisschops (ref_29) 2021; 53
Correa (ref_60) 2012; 13
Nagao (ref_63) 2020; 92
Nagendran (ref_9) 2020; 368
Sun (ref_44) 2022; 71
Looman (ref_62) 2008; 134
Chung (ref_61) 2013; 2013
Yao (ref_24) 2013; 26
Rey (ref_32) 2001; 33
Zhu (ref_64) 2019; 89
ref_2
Gastroscopy (ref_34) 2010; 1
Kalantari (ref_73) 2016; 35
ref_48
Xu (ref_65) 2021; 94
Lui (ref_8) 2020; 92
Wu (ref_46) 2021; 53
Park (ref_15) 2021; 26
References_xml – volume: 25
  start-page: 131
  year: 2021
  ident: ref_20
  article-title: Learning Spatiotemporal Features for Esophageal Abnormality Detection From Endoscopic Videos
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2995193
– volume: 21
  start-page: 653
  year: 2018
  ident: ref_53
  article-title: Application of Artificial Intelligence Using a Convolutional Neural Network for Detecting Gastric Cancer in Endoscopic Images
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_61
  article-title: Screening for Precancerous Lesions of Upper Gastrointestinal Tract: From the Endoscopists’ Viewpoint
  publication-title: Gastroenterol. Res. Pract.
  doi: 10.1155/2013/681439
– volume: 1
  start-page: 1
  year: 2010
  ident: ref_34
  article-title: committee for standardizing screening Gastric Cancer Screening Techniques
  publication-title: JSGCS Cho Handb.
– ident: ref_77
  doi: 10.1109/ICCV48922.2021.00073
– volume: 51
  start-page: 522
  year: 2019
  ident: ref_40
  article-title: A Deep Neural Network Improves Endoscopic Detection of Early Gastric Cancer without Blind Spots
  publication-title: Endoscopy
  doi: 10.1055/a-0855-3532
– volume: 92
  start-page: 821
  year: 2020
  ident: ref_8
  article-title: Accuracy of Artificial Intelligence–Assisted Detection of Upper GI Lesions: A Systematic Review and Meta-Analysis
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2020.06.034
– volume: 91
  start-page: 332
  year: 2020
  ident: ref_47
  article-title: Comparing Blind Spots of Unsedated Ultrafine, Sedated, and Unsedated Conventional Gastroscopy with and without Artificial Intelligence: A Prospective, Single-Blind, 3-Parallel-Group, Randomized, Single-Center Trial
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2019.09.016
– ident: ref_68
– volume: 91
  start-page: 1264
  year: 2020
  ident: ref_16
  article-title: Artificial Intelligence Using Convolutional Neural Networks for Real-Time Detection of Early Esophageal Neoplasia in Barrett’s Esophagus (with Video)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2019.12.049
– volume: 388
  start-page: 2654
  year: 2016
  ident: ref_59
  article-title: Gastric Cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30354-3
– volume: 111
  start-page: 103351
  year: 2019
  ident: ref_14
  article-title: MAPGI: Accurate Identification of Anatomical Landmarks and Diseased Tissue in Gastrointestinal Tract Using Deep Learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103351
– volume: 33
  start-page: 901
  year: 2001
  ident: ref_32
  article-title: ESGE Recommendations for Quality Control in Gastrointestinal Endoscopy: Guidelines for Image Documentation in Upper and Lower GI Endoscopy
  publication-title: Endoscopy
  doi: 10.1055/s-2001-42537
– volume: 52
  start-page: 566
  year: 2020
  ident: ref_55
  article-title: Diagnosing Chronic Atrophic Gastritis by Gastroscopy Using Artificial Intelligence
  publication-title: Dig. Liver Dis.
  doi: 10.1016/j.dld.2019.12.146
– volume: 7
  start-page: 1
  year: 2019
  ident: ref_70
  article-title: Whole Stomach 3D Reconstruction and Frame Localization from Monocular Endoscope Video
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2019.2946802
– volume: 8
  start-page: 486
  year: 2020
  ident: ref_17
  article-title: Automatic Classification of Esophageal Lesions in Endoscopic Images Using a Convolutional Neural Network
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.03.24
– volume: 94
  start-page: 540
  year: 2021
  ident: ref_65
  article-title: Artificial Intelligence in the Diagnosis of Gastric Precancerous Conditions by Image-Enhanced Endoscopy: A Multicenter, Diagnostic Study (with Video)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2021.03.013
– volume: 68
  start-page: 2161
  year: 2019
  ident: ref_45
  article-title: Randomised Controlled Trial of WISENSE, a Real-Time Quality Improving System for Monitoring Blind Spots during Esophagogastroduodenoscopy
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-317366
– volume: 53
  start-page: 1199
  year: 2021
  ident: ref_46
  article-title: Evaluation of the Effects of an Artificial Intelligence System on Endoscopy Quality and Preliminary Testing of Its Performance in Detecting Early Gastric Cancer: A Randomized Controlled Trial
  publication-title: Endoscopy
  doi: 10.1055/a-1350-5583
– ident: ref_74
  doi: 10.1109/CVPR46437.2021.00455
– volume: 390
  start-page: 1211
  year: 2017
  ident: ref_1
  article-title: Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32154-2
– ident: ref_78
  doi: 10.1109/CVPR42600.2020.00813
– volume: 32
  start-page: 168
  year: 2020
  ident: ref_36
  article-title: Principles and Practice to Facilitate Complete Photodocumentation of the Upper Gastrointestinal Tract: World Endoscopy Organization Position Statement
  publication-title: Dig. Endosc.
  doi: 10.1111/den.13530
– volume: 11
  start-page: 7759
  year: 2021
  ident: ref_18
  article-title: Ability of Artificial Intelligence to Detect T1 Esophageal Squamous Cell Carcinoma from Endoscopic Videos and the Effects of Real-Time Assistance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87405-6
– volume: 20
  start-page: 225
  year: 2020
  ident: ref_35
  article-title: Taking More Gastroscopy Images Increases the Detection Rate of Clinically Significant Gastric Lesions: Validation of a Systematic Screening Protocol for the Stomach
  publication-title: Korean J. Helicobacter Up. Gastrointest. Res.
  doi: 10.7704/kjhugr.2020.0013
– volume: 36
  start-page: 3811
  year: 2021
  ident: ref_27
  article-title: Deep Learning-Based Endoscopic Anatomy Classification: An Accelerated Approach for Data Preparation and Model Validation
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-021-08698-2
– volume: 36
  start-page: 57
  year: 2022
  ident: ref_26
  article-title: Development of Artificial Intelligence System for Quality Control of Photo Documentation in Esophagogastroduodenoscopy
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-020-08236-6
– ident: ref_38
  doi: 10.1145/3083187.3083212
– volume: 89
  start-page: 806
  year: 2019
  ident: ref_64
  article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2018.11.011
– volume: 52
  start-page: 293
  year: 2020
  ident: ref_3
  article-title: Role of Gastrointestinal Endoscopy in the Screening of Digestive Tract Cancers in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement
  publication-title: Endoscopy
  doi: 10.1055/a-1104-5245
– volume: 13
  start-page: 2
  year: 2012
  ident: ref_60
  article-title: The Gastric Precancerous Cascade: The Gastric Precancerous Cascade
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2011.00550.x
– volume: 134
  start-page: 945
  year: 2008
  ident: ref_62
  article-title: Gastric Cancer Risk in Patients With Premalignant Gastric Lesions: A Nationwide Cohort Study in the Netherlands
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.01.071
– volume: 71
  start-page: 103167
  year: 2022
  ident: ref_44
  article-title: Channel Separation-Based Network for the Automatic Anatomical Site Recognition Using Endoscopic Images
  publication-title: Biomed. Signal Processing Control.
  doi: 10.1016/j.bspc.2021.103167
– volume: 81
  start-page: 1
  year: 2015
  ident: ref_30
  article-title: Defining and Measuring Quality in Endoscopy
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2014.07.052
– volume: 15
  start-page: 1085
  year: 2020
  ident: ref_42
  article-title: Deep Learning-Based Anatomical Site Classification for Upper Gastrointestinal Endoscopy
  publication-title: Int. J. CARS
  doi: 10.1007/s11548-020-02148-5
– volume: 53
  start-page: 216
  year: 2021
  ident: ref_49
  article-title: Intelligent Detection Endoscopic Assistant: An Artificial Intelligence-Based System for Monitoring Blind Spots during Esophagogastroduodenoscopy in Real-Time
  publication-title: Dig. Liver Dis.
  doi: 10.1016/j.dld.2020.11.017
– volume: 158
  start-page: 915
  year: 2020
  ident: ref_22
  article-title: Deep-Learning System Detects Neoplasia in Patients With Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.030
– volume: 56
  start-page: 23
  year: 2022
  ident: ref_11
  article-title: Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases
  publication-title: J. Clin. Gastroenterol.
  doi: 10.1097/MCG.0000000000001629
– volume: 124
  start-page: 103950
  year: 2020
  ident: ref_43
  article-title: Anatomical Classification of Upper Gastrointestinal Organs under Various Image Capture Conditions Using AlexNet
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103950
– volume: 95
  start-page: 1138
  year: 2021
  ident: ref_54
  article-title: Correlation of the Detection Rate of Upper GI Cancer with Artificial Intelligence Score: Results from a Multicenter Trial (with Video)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2021.12.019
– volume: 6
  start-page: 176
  year: 2019
  ident: ref_41
  article-title: Upper Gastrointestinal Anatomy Detection with Multi-task Convolutional Neural Networks
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2019.0066
– volume: 26
  start-page: 11
  year: 2013
  ident: ref_24
  article-title: The Endoscopic Diagnosis of Early Gastric Cancer
  publication-title: Ann. Gastroenterol.
– volume: 67
  start-page: 101838
  year: 2021
  ident: ref_19
  article-title: ELNet:Automatic Classification and Segmentation for Esophageal Lesions Using Convolutional Neural Network
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101838
– volume: 26
  start-page: 19
  year: 2021
  ident: ref_15
  article-title: Automatic Anatomical Classification Model of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks for Guiding Endoscopic Photodocumentation
  publication-title: J. Korea Soc. Comput. Inf.
– ident: ref_12
  doi: 10.3390/diagnostics11091575
– volume: 91
  start-page: 41
  year: 2020
  ident: ref_21
  article-title: Real-Time Automated Diagnosis of Precancerous Lesions and Early Esophageal Squamous Cell Carcinoma Using a Deep Learning Model (with Videos)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2019.08.018
– volume: 35
  start-page: 1
  year: 2016
  ident: ref_73
  article-title: Learning-Based View Synthesis for Light Field Cameras
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2980179.2980251
– volume: 17
  start-page: 250
  year: 2020
  ident: ref_23
  article-title: Application of Artificial Intelligence Using Convolutional Neural Networks in Determining the Invasion Depth of Esophageal Squamous Cell Carcinoma
  publication-title: Esophagus
  doi: 10.1007/s10388-020-00716-x
– ident: ref_37
– volume: 32
  start-page: 4793
  year: 2021
  ident: ref_69
  article-title: A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027314
– volume: 48
  start-page: 81
  year: 2015
  ident: ref_5
  article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing Performance Measures
  publication-title: Endoscopy
  doi: 10.1055/s-0035-1569580
– ident: ref_66
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_72
  doi: 10.1007/978-3-030-89134-3_11
– ident: ref_75
– ident: ref_50
– volume: 126
  start-page: 104026
  year: 2020
  ident: ref_57
  article-title: Intelligent Diagnosis of Gastric Intestinal Metaplasia Based on Convolutional Neural Network and Limited Number of Endoscopic Images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104026
– ident: ref_2
– ident: ref_67
  doi: 10.1145/3505244
– ident: ref_76
  doi: 10.1007/978-3-030-58452-8_24
– volume: 47
  start-page: 490
  year: 2014
  ident: ref_51
  article-title: Screening for Gastric Cancer: The Usefulness of Endoscopy
  publication-title: Clin. Endosc.
  doi: 10.5946/ce.2014.47.6.490
– volume: 73
  start-page: AB393
  year: 2011
  ident: ref_33
  article-title: Mo1579 Duration of Endoscopic Examination Significantly Impacts Detection Rates of Neoplastic Lesions During Diagnostic Upper Endoscopy
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2011.03.878
– volume: 92
  start-page: 866
  year: 2020
  ident: ref_63
  article-title: Highly Accurate Artificial Intelligence Systems to Predict the Invasion Depth of Gastric Cancer: Efficacy of Conventional White-Light Imaging, Nonmagnifying Narrow-Band Imaging, and Indigo-Carmine Dye Contrast Imaging
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2020.06.047
– volume: 53
  start-page: 196
  year: 2021
  ident: ref_29
  article-title: Overcoming the Barriers to Dissemination and Implementation of Quality Measures for Gastrointestinal Endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and United European Gastroenterology (UEG) Position Statement
  publication-title: Endoscopy
  doi: 10.1055/a-1312-6389
– volume: 368
  start-page: m689
  year: 2020
  ident: ref_9
  article-title: Artificial Intelligence versus Clinicians: Systematic Review of Design, Reporting Standards, and Claims of Deep Learning Studies
  publication-title: BMJ
  doi: 10.1136/bmj.m689
– volume: 20
  start-page: 28
  year: 2017
  ident: ref_25
  article-title: Development of an E-Learning System for Teaching Endoscopists How to Diagnose Early Gastric Cancer: Basic Principles for Improving Early Detection
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-016-0680-7
– volume: 95
  start-page: 92
  year: 2022
  ident: ref_58
  article-title: Deep Learning System Compared with Expert Endoscopists in Predicting Early Gastric Cancer and Its Invasion Depth and Differentiation Status (with Videos)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2021.06.033
– volume: 70
  start-page: 1458
  year: 2021
  ident: ref_7
  article-title: Standalone Performance of Artificial Intelligence for Upper GI Neoplasia: A Meta-Analysis
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-321922
– volume: 162
  start-page: 1056
  year: 2021
  ident: ref_10
  article-title: Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2021.11.040
– volume: 8
  start-page: 7497
  year: 2018
  ident: ref_39
  article-title: Automatic Anatomical Classification of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25842-6
– volume: 31
  start-page: e34
  year: 2019
  ident: ref_52
  article-title: Detecting gastric cancer from video images using convolutional neural networks
  publication-title: Dig. Endosc.
  doi: 10.1111/den.13306
– volume: 54
  start-page: 403
  year: 2022
  ident: ref_6
  article-title: Endoscopists’ Diagnostic Accuracy in Detecting Upper Gastrointestinal Neoplasia in the Framework of Artificial Intelligence Studies
  publication-title: Endoscopy
  doi: 10.1055/a-1500-3730
– volume: 66
  start-page: 1886
  year: 2017
  ident: ref_31
  article-title: Quality Standards in Upper Gastrointestinal Endoscopy: A Position Statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS)
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314109
– ident: ref_48
  doi: 10.1109/BIBE52308.2021.9635273
– ident: ref_56
  doi: 10.3390/jcm8091310
– volume: 48
  start-page: 843
  year: 2016
  ident: ref_28
  article-title: Performance Measures for Upper Gastrointestinal Endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative
  publication-title: Endoscopy
  doi: 10.1055/s-0042-113128
– volume: 28
  start-page: 1041
  year: 2016
  ident: ref_4
  article-title: Missing Rate for Gastric Cancer during Upper Gastrointestinal Endoscopy: A Systematic Review and Meta-Analysis
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/MEG.0000000000000657
– volume: 52
  start-page: 101710
  year: 2021
  ident: ref_13
  article-title: Early Gastric Cancer and Artificial Intelligence: Is It Time for Population Screening?
  publication-title: Best Pract. Res. Clin. Gastroenterol.
  doi: 10.1016/j.bpg.2020.101710
– ident: ref_71
  doi: 10.1109/EMBC44109.2020.9176016
SSID ssj0000913825
Score 2.317597
SecondaryResourceType review_article
Snippet Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1278
SubjectTerms Algorithms
Artificial intelligence
Clinical medicine
computer vision
convolutional neural networks
Datasets
Deep learning
Design of experiments
Endoscopy
Gastric cancer
Machine learning
Medical screening
Multimedia
Review
upper GI endoscopy (UGIE)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQh4pLRcujAVoZiSMRduw4cW-04imBEGIlbpFjT1QkSFZLkNp_35kkbLMI0QvX2I4m47Hnm3jmM2N7XqcW_YaJM-UwQKlcFlswZYzIATRYQJ_XZVtcmtOJPr9Nb0dXfVFOWE8P3CvuQAWDJiWD9iloylk3PsUQQ8mkCrmXFe2-wopRMNXtwZa49dKeZkhhXH8Q-sw14j6WCVpiQherjVxRx9j_Gsx8mS05cj_Hq-zjgBv5YS_vJ7YE9Wf24WI4GV9jv6mlZ4PgZyOaTY6glE-mU5jxE_fYzhrih0D56GVHdWioKuXPd37IrxsXHtyUU70J__fDnY-yinjb8IFH9J5fDeVV62xyfHTz8zQeblWIPUY3bQzSOh2s8SV-kUgC2MpDrksnUqccBjiAKgbhc1uVyhrrcE_Ig_EGwQSBJ7XBluumhi-MS2lDiU5eUhTnDeQiDc5o6pYFCSJiybOCCz9QjtPNF_cFhh40K8UrsxKx_fmgac-48Xb3HzRz865El909QCMqBiMq_mdEEdt5nvdiWMOPRWKy7txRqIjtzptx9dGRiquheer6oKEjpNMR2-zNZC6JQmiJeA9HZwsGtCDqYkt996tj-LYS9ZxnW-_xbdtsJaGSDZHGidxhy-3sCb4ikGrLb92a-QtVKB26
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9wwDBZbC2MvY7-XrS0e7HGhcew48V5GW67tBiul7KBvwbGdbtAl2V0K238_KfGld6P09ewEXyRLn2zpE8AHKzONfkPFuTAYoNQmj7VXVYzIwUuvPfq8IdviTJ3O5dfL7DIcuC1DWuXKJg6G2rWWzsj3U5UPt0CJ-Nz9jqlrFN2uhhYaD2EbTXCBer59ODs7v5hOWYj1EmOgkW5IYHy_78YMNuJA5ilqZEoN1tZc0sDcfxfc_D9rcs0NHT-FJwE_soNR4M_ggW-ew6Nv4Yb8BfyhkZEVgn1Zo9tkCE7ZvOv8gp2YZb9oiScC10cvmzWupeqUv5_YAbtojftlOkZ1J-z24J2tZRexvmWBT_SanYcyq5cwP559PzqNQ3eF2GKU08eeayOdVrbCf5Skzuva-kJWJsmMMBjo-ELhgC10XQmttEHbUDhlFYIKAlHiFWw1bePfAONcuwqdPadozipfJJkzStK03HGfRJCuPnBpA_U4dcC4LjEEIamUd0glgo_TQ93IvHH_9EOS3DSVaLOHH9rFVRl2YSmcQvvEnbSZl1QAoWyG8argae0Ky-sIdlZyL8NeXpa3mhfB-2kYdyFdrZjGtzfDHFR4hHYygtejmkwrEQgxEffh0_mGAm0sdXOk-fljYPrWHL9zkb-9f1nv4HFKRRlJFqd8B7b6xY3fRajUV3thP_wDI-UXiA
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice
URI https://www.ncbi.nlm.nih.gov/pubmed/35626433
https://www.proquest.com/docview/2670122403
https://www.proquest.com/docview/2671269764
https://pubmed.ncbi.nlm.nih.gov/PMC9141387
https://doaj.org/article/3d68701d4c5e411086c5917312fd8c1f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MDcZexN9W5yWCj1abpk0bQWSTO6ewMYYX9lbSJJ3Ctb12HWz_vee06fVeufrga5OUNDkn5_uanC8Ar0ySKowbMsyERoJS6SxUTpYhIgeXOOUw5vWnLU7l8Sz5cpFebMF4K6ofwKuN1I7uk5q18zc3P28_oMO_J8aJlP2tHQ6lkawxj9HI4iy_AzsYmiSxsROP9_ulWZHkXjqoD_2t7R7sCkQFGKrFWrDqNf03AdE_z1OuBKije3DXI0t2MJjCfdhy9QPYPfF75w_hhkoGvQj2eUWIkyFsZbPFwrXsk77q2oYUJLCr9LJpbRvKW7l9xw7YeaPtD71glJHCfv-SZyvnjljXMK80OmdnPgHrEcyOpl8_Hof-3oXQIP_pQseVTqySpsQvimLrVGVcnpQ6SrXQSIFcLrHA5KoqhZJK46qRW2kkwg2CV-IxbNdN7Z4C41zZEmEAJ55npMuj1GqZULXMchcFEI8DXBgvSk53Y8wLJCc0QcWGCQrg9bLRYtDk-Hf1Q5q5ZVUS1O4fNO1l4f2zEFbiysVtYlKXUGqENCkyWcHjyuaGVwHsj_NejEZaxDLrdyYjEcDLZTH6J2266No1130ddAUEfUkATwYzWfZkNLMAsjUDWuvqekn9_VuvAa44jnOePfvvls9hL6ZMjigNY74P21177V4gvurKCewcTk_Pzif9_4lJ70G_AFweK8E
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEN6LGeTgxEkItbNml7aqqulJvwbGdFqkkYTcV9E_xG5nJY7uLqt56je3I8szY39gz3wC81WEk8dwQbhwodFByFbvSisxF5GBDKy2eeU20xUSMpuG34-h4Df72uTAUVtnvic1GbUpNd-SbvoibVyAv-FT9cqlqFL2u9iU0WrXYtRe_0WWbfxx_Qfm-8_2d4dHnkdtVFXA1ovvatVyq0EihM6Ot5xsrc22TMFNepAKFAN8mAht0IvMskEIqtInECC3wMCXwEOB_b8F6SBmtA1jfHk4ODhe3OsSyiT5XS28UBNLbNG3EHHEucx8twKeCbktHYFMp4Cp4-3-U5tKxt3Mf7nV4lW21CvYA1mzxEG7vdy_yj-APtbQsFGy8RO_JEAyzaVXZGfuq5vWsJF4KnB_9bFiYkrJhLj6wLXZYKvNTVYzyXNjlRT9bimZidck6_tIzdtCldT2G6Y2s-xMYFGVhnwHjXJoMwQUn71ELm3iRUSKkbrHh1nPA7xc41R3VOVXcOEvR5SGppFdIxYH3i0FVy_RxffdtktyiK9F0Nx_K2UnaWX0aGIH7ITehjmxICRdCR-gfB9zPTaJ57sBGL_e02zvm6aWmO_Bm0YxWT085qrDledMHDQyhZOjA01ZNFjMJENIizsTR8YoCrUx1taX4cdowi0uO65zEz6-f1mu4Mzra30v3xpPdF3DXp4QQL3J9vgGDenZuXyJMq7NXnW0w-H7T5vgPK6ZVNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXwTGGAkeCNqnA8nRkJoYy0rg6qaqLS34NgOII0ktJlg_xp_HXf56Fo07W2vsR1Ztu_ud_bd7wBe6jCSaDeEGwcKHZRcxa60InMROdjQSos2r4m2mIrDefjxJDrZgr99LgyFVfY6sVHUptR0Rz70Rdy8AnnBMO_CImYH43fVL5cqSNFLa19Ooz0iR_b8N7pvy7eTA9zrV74_Hn15f-h2FQZcjUi_di2XKjRS6Mxo6_nGylzbJMyUF6lAIdi3icAGncg8C6SQCuUjMUILNKwEJAL87w3YjtEqhgPY3h9NZ8erGx5i3ET_q6U6CgLpDU0bPUf8y9xHafCpuNuaOWyqBlwGdf-P2FwzgePbcKvDrmyvPWx3YMsWd2Hnc_c6fw_-UEvLSMEma1SfDIExm1eVXbAPalkvSuKowPnRz0aFKSkz5vwN22PHpTI_VcUo54VdXPqztcgmVpes4zI9ZbMuxes-zK9l3R_AoCgL-wgY59JkCDQ4eZJa2MSLjBIhdYsNt54Dfr_Aqe5oz6n6xmmK7g_tSnrJrjjwejWoalk_ru6-Tzu36kqU3c2HcvEt7TRAGhiBupGbUEc2pOQLoSP0lQPu5ybRPHdgt9_3tNMjy_Ti1DvwYtWMGoCedVRhy7OmDwobwsrQgYftMVnNJEB4i5gTR8cbB2hjqpstxY_vDcu45LjOSfz46mk9hx0Uw_TTZHr0BG76lBviRa7Pd2FQL87sU0RsdfasEw0GX69bGv8BoAlZYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Upper+Gastrointestinal+Endoscopy%3A+A+Roadmap+from+Technology+Development+to+Clinical+Practice&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Renna%2C+Francesco&rft.au=Martins%2C+Miguel&rft.au=Neto%2C+Alexandre&rft.au=Cunha%2C+Ant%C3%B3nio&rft.date=2022-05-21&rft.pub=MDPI&rft.eissn=2075-4418&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fdiagnostics12051278&rft_id=info%3Apmid%2F35626433&rft.externalDocID=PMC9141387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon