Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis a...
Saved in:
Published in | Diagnostics (Basel) Vol. 12; no. 5; p. 1278 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics12051278 |
Cover
Loading…
Abstract | Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets. |
---|---|
AbstractList | Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets. Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets. |
Author | Renna, Francesco Neto, Alexandre Coimbra, Miguel Dinis-Ribeiro, Mário Cunha, António Libânio, Diogo Martins, Miguel |
AuthorAffiliation | 2 Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 4 Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; diogo.monteiro@ipoporto.min-saude.pt (D.L.); mario.ribeiro@ipoporto.min-saude.pt (M.D.-R.) 1 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; miguel.l.martins@inesctec.pt (M.M.); alexandre.h.neto@inesctec.pt (A.N.); acunha@utad.pt (A.C.); mcoimbra@fc.up.pt (M.C.) 3 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal |
AuthorAffiliation_xml | – name: 1 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; miguel.l.martins@inesctec.pt (M.M.); alexandre.h.neto@inesctec.pt (A.N.); acunha@utad.pt (A.C.); mcoimbra@fc.up.pt (M.C.) – name: 2 Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal – name: 3 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal – name: 4 Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; diogo.monteiro@ipoporto.min-saude.pt (D.L.); mario.ribeiro@ipoporto.min-saude.pt (M.D.-R.) |
Author_xml | – sequence: 1 givenname: Francesco surname: Renna fullname: Renna, Francesco – sequence: 2 givenname: Miguel surname: Martins fullname: Martins, Miguel – sequence: 3 givenname: Alexandre surname: Neto fullname: Neto, Alexandre – sequence: 4 givenname: António orcidid: 0000-0002-3458-7693 surname: Cunha fullname: Cunha, António – sequence: 5 givenname: Diogo surname: Libânio fullname: Libânio, Diogo – sequence: 6 givenname: Mário surname: Dinis-Ribeiro fullname: Dinis-Ribeiro, Mário – sequence: 7 givenname: Miguel orcidid: 0000-0001-7501-6523 surname: Coimbra fullname: Coimbra, Miguel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35626433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rHCEUlZLSJNv8gkIR-pKXbf2YcbQPhWWbpguBlpI8i6t3Ji4zOtXZ0P33MdmkJKHUF8V7zvF47j1GByEGQOgdJR85V-ST86YLMU_eZspITVkjX6EjRpp6XlVUHjw5H6KTnDekLEW5ZPUbdMhrwUTF-RH6s0iTb731pserMEHf-w6CBdzGhK_GERI-N3lK0ZdieS4U3FlwMds47j7jBf4VjRvMiNsUB3wJ9jrEPnY7_BVuoI_jAGHCU8TL3gdvC_lnMra4hrfodWv6DCcP-wxdfTu7XH6fX_w4Xy0XF3NbKTXNgSpTOSXs2lkgzIFqLchqbUhtuJGCgRSlYKVq11wJZRrCpRNWkEaK8ns-Q6u9rotmo8fkB5N2Ohqv7y9i6rQpEdgeNHdCNoS6ytZQUUqKcq1owylrnbS0LVpf9lrjdj1AMRSmZPpnos8rwV_rLt5oRYsT2RSB0weBFH9vS5568NmW0E2AuM2aiYYyoZrSmxn68AK6idtU4r9HEcpYRXhBvX_q6K-VxwYXgNoDbIo5J2i19ZOZfLwz6HtNib6bJ_2PeSpc_oL7KP8_1i2xC9O3 |
CitedBy_id | crossref_primary_10_1038_s41597_025_04401_5 crossref_primary_10_1186_s42492_023_00140_9 crossref_primary_10_1016_j_dld_2024_04_019 crossref_primary_10_3390_diagnostics14161746 crossref_primary_10_23736_S2724_5691_22_09810_0 crossref_primary_10_22516_25007440_1163 crossref_primary_10_3390_diagnostics13040720 crossref_primary_10_3390_diagnostics13182862 crossref_primary_10_3390_cancers14236000 crossref_primary_10_1016_j_procs_2025_02_216 crossref_primary_10_1016_j_procs_2024_06_163 crossref_primary_10_5230_jgc_2024_24_e28 crossref_primary_10_1109_ACCESS_2024_3381517 |
Cites_doi | 10.1109/JBHI.2020.2995193 10.1007/s10120-018-0793-2 10.1155/2013/681439 10.1109/ICCV48922.2021.00073 10.1055/a-0855-3532 10.1016/j.gie.2020.06.034 10.1016/j.gie.2019.09.016 10.1016/j.gie.2019.12.049 10.1016/S0140-6736(16)30354-3 10.1016/j.compbiomed.2019.103351 10.1055/s-2001-42537 10.1016/j.dld.2019.12.146 10.1109/JTEHM.2019.2946802 10.21037/atm.2020.03.24 10.1016/j.gie.2021.03.013 10.1136/gutjnl-2018-317366 10.1055/a-1350-5583 10.1109/CVPR46437.2021.00455 10.1016/S0140-6736(17)32154-2 10.1109/CVPR42600.2020.00813 10.1111/den.13530 10.1038/s41598-021-87405-6 10.7704/kjhugr.2020.0013 10.1007/s00464-021-08698-2 10.1007/s00464-020-08236-6 10.1145/3083187.3083212 10.1016/j.gie.2018.11.011 10.1055/a-1104-5245 10.1111/j.1751-2980.2011.00550.x 10.1053/j.gastro.2008.01.071 10.1016/j.bspc.2021.103167 10.1016/j.gie.2014.07.052 10.1007/s11548-020-02148-5 10.1016/j.dld.2020.11.017 10.1053/j.gastro.2019.11.030 10.1097/MCG.0000000000001629 10.1016/j.compbiomed.2020.103950 10.1016/j.gie.2021.12.019 10.1049/htl.2019.0066 10.1016/j.media.2020.101838 10.3390/diagnostics11091575 10.1016/j.gie.2019.08.018 10.1145/2980179.2980251 10.1007/s10388-020-00716-x 10.1109/TNNLS.2020.3027314 10.1055/s-0035-1569580 10.1109/CVPR.2009.5206848 10.1007/978-3-030-89134-3_11 10.1016/j.compbiomed.2020.104026 10.1145/3505244 10.1007/978-3-030-58452-8_24 10.5946/ce.2014.47.6.490 10.1016/j.gie.2011.03.878 10.1016/j.gie.2020.06.047 10.1055/a-1312-6389 10.1136/bmj.m689 10.1007/s10120-016-0680-7 10.1016/j.gie.2021.06.033 10.1136/gutjnl-2020-321922 10.1053/j.gastro.2021.11.040 10.1038/s41598-018-25842-6 10.1111/den.13306 10.1055/a-1500-3730 10.1136/gutjnl-2017-314109 10.1109/BIBE52308.2021.9635273 10.3390/jcm8091310 10.1055/s-0042-113128 10.1097/MEG.0000000000000657 10.1016/j.bpg.2020.101710 10.1109/EMBC44109.2020.9176016 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics12051278 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library (Proquest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_3d68701d4c5e411086c5917312fd8c1f PMC9141387 35626433 10_3390_diagnostics12051278 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fundação para a Ciência e Tecnologia grantid: PTDC/EEI-EEE/5557/202 – fundername: Fundação para a Ciência e Tecnologia grantid: PG08884 – fundername: FCT—Fundação para a Ciência e a Tecnologia grantid: PTDC/EEI-EEE/5557/2020 |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c499t-e19a4d96cbdce02de9fce84ba05a3a862e86ce0c89fb3969a7038d6c607864413 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:28:57 EDT 2025 Thu Aug 21 13:54:54 EDT 2025 Fri Sep 05 09:03:33 EDT 2025 Sun Jun 29 12:39:49 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Tue Jul 01 02:36:01 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning convolutional neural networks upper GI endoscopy (UGIE) artificial intelligence computer vision |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-e19a4d96cbdce02de9fce84ba05a3a862e86ce0c89fb3969a7038d6c607864413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3458-7693 0000-0001-7501-6523 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics12051278 |
PMID | 35626433 |
PQID | 2670122403 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d68701d4c5e411086c5917312fd8c1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141387 proquest_miscellaneous_2671269764 proquest_journals_2670122403 pubmed_primary_35626433 crossref_citationtrail_10_3390_diagnostics12051278 crossref_primary_10_3390_diagnostics12051278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220521 |
PublicationDateYYYYMMDD | 2022-05-21 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220521 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Xu (ref_41) 2019; 6 Sagaert (ref_59) 2016; 388 Sharma (ref_10) 2021; 162 Anta (ref_13) 2021; 52 Visaggi (ref_11) 2022; 56 ref_12 ref_56 Arribas (ref_7) 2021; 70 Yao (ref_25) 2017; 20 Rutter (ref_5) 2015; 48 Zhang (ref_55) 2020; 52 Wu (ref_19) 2021; 67 Hirasawa (ref_53) 2018; 21 (ref_4) 2016; 28 He (ref_42) 2020; 15 Tjoa (ref_69) 2021; 32 Igarashi (ref_43) 2020; 124 Vos (ref_1) 2017; 390 Emura (ref_36) 2020; 32 ref_68 ref_67 Chen (ref_47) 2020; 91 ref_66 Li (ref_54) 2021; 95 Ghatwary (ref_20) 2021; 25 Tokai (ref_23) 2020; 17 Hassan (ref_3) 2020; 52 Beg (ref_31) 2017; 66 Hashimoto (ref_16) 2020; 91 Choi (ref_51) 2014; 47 Chang (ref_27) 2021; 36 Cogan (ref_14) 2019; 111 Wu (ref_40) 2019; 51 Teh (ref_33) 2011; 73 ref_72 ref_71 Bisschops (ref_28) 2016; 48 Choi (ref_26) 2022; 36 Ishioka (ref_52) 2019; 31 ref_78 Guo (ref_21) 2020; 91 ref_77 ref_76 Widya (ref_70) 2019; 7 ref_75 ref_74 Frazzoni (ref_6) 2022; 54 Lee (ref_35) 2020; 20 Takiyama (ref_39) 2018; 8 ref_38 ref_37 Wu (ref_58) 2022; 95 Liu (ref_17) 2020; 8 Cohen (ref_30) 2015; 81 Shiroma (ref_18) 2021; 11 Wu (ref_45) 2019; 68 Li (ref_49) 2021; 53 Yan (ref_57) 2020; 126 Struyvenberg (ref_22) 2020; 158 Bisschops (ref_29) 2021; 53 Correa (ref_60) 2012; 13 Nagao (ref_63) 2020; 92 Nagendran (ref_9) 2020; 368 Sun (ref_44) 2022; 71 Looman (ref_62) 2008; 134 Chung (ref_61) 2013; 2013 Yao (ref_24) 2013; 26 Rey (ref_32) 2001; 33 Zhu (ref_64) 2019; 89 ref_2 Gastroscopy (ref_34) 2010; 1 Kalantari (ref_73) 2016; 35 ref_48 Xu (ref_65) 2021; 94 Lui (ref_8) 2020; 92 Wu (ref_46) 2021; 53 Park (ref_15) 2021; 26 |
References_xml | – volume: 25 start-page: 131 year: 2021 ident: ref_20 article-title: Learning Spatiotemporal Features for Esophageal Abnormality Detection From Endoscopic Videos publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2995193 – volume: 21 start-page: 653 year: 2018 ident: ref_53 article-title: Application of Artificial Intelligence Using a Convolutional Neural Network for Detecting Gastric Cancer in Endoscopic Images publication-title: Gastric Cancer doi: 10.1007/s10120-018-0793-2 – volume: 2013 start-page: 1 year: 2013 ident: ref_61 article-title: Screening for Precancerous Lesions of Upper Gastrointestinal Tract: From the Endoscopists’ Viewpoint publication-title: Gastroenterol. Res. Pract. doi: 10.1155/2013/681439 – volume: 1 start-page: 1 year: 2010 ident: ref_34 article-title: committee for standardizing screening Gastric Cancer Screening Techniques publication-title: JSGCS Cho Handb. – ident: ref_77 doi: 10.1109/ICCV48922.2021.00073 – volume: 51 start-page: 522 year: 2019 ident: ref_40 article-title: A Deep Neural Network Improves Endoscopic Detection of Early Gastric Cancer without Blind Spots publication-title: Endoscopy doi: 10.1055/a-0855-3532 – volume: 92 start-page: 821 year: 2020 ident: ref_8 article-title: Accuracy of Artificial Intelligence–Assisted Detection of Upper GI Lesions: A Systematic Review and Meta-Analysis publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.06.034 – volume: 91 start-page: 332 year: 2020 ident: ref_47 article-title: Comparing Blind Spots of Unsedated Ultrafine, Sedated, and Unsedated Conventional Gastroscopy with and without Artificial Intelligence: A Prospective, Single-Blind, 3-Parallel-Group, Randomized, Single-Center Trial publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2019.09.016 – ident: ref_68 – volume: 91 start-page: 1264 year: 2020 ident: ref_16 article-title: Artificial Intelligence Using Convolutional Neural Networks for Real-Time Detection of Early Esophageal Neoplasia in Barrett’s Esophagus (with Video) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2019.12.049 – volume: 388 start-page: 2654 year: 2016 ident: ref_59 article-title: Gastric Cancer publication-title: Lancet doi: 10.1016/S0140-6736(16)30354-3 – volume: 111 start-page: 103351 year: 2019 ident: ref_14 article-title: MAPGI: Accurate Identification of Anatomical Landmarks and Diseased Tissue in Gastrointestinal Tract Using Deep Learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103351 – volume: 33 start-page: 901 year: 2001 ident: ref_32 article-title: ESGE Recommendations for Quality Control in Gastrointestinal Endoscopy: Guidelines for Image Documentation in Upper and Lower GI Endoscopy publication-title: Endoscopy doi: 10.1055/s-2001-42537 – volume: 52 start-page: 566 year: 2020 ident: ref_55 article-title: Diagnosing Chronic Atrophic Gastritis by Gastroscopy Using Artificial Intelligence publication-title: Dig. Liver Dis. doi: 10.1016/j.dld.2019.12.146 – volume: 7 start-page: 1 year: 2019 ident: ref_70 article-title: Whole Stomach 3D Reconstruction and Frame Localization from Monocular Endoscope Video publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2019.2946802 – volume: 8 start-page: 486 year: 2020 ident: ref_17 article-title: Automatic Classification of Esophageal Lesions in Endoscopic Images Using a Convolutional Neural Network publication-title: Ann. Transl. Med. doi: 10.21037/atm.2020.03.24 – volume: 94 start-page: 540 year: 2021 ident: ref_65 article-title: Artificial Intelligence in the Diagnosis of Gastric Precancerous Conditions by Image-Enhanced Endoscopy: A Multicenter, Diagnostic Study (with Video) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2021.03.013 – volume: 68 start-page: 2161 year: 2019 ident: ref_45 article-title: Randomised Controlled Trial of WISENSE, a Real-Time Quality Improving System for Monitoring Blind Spots during Esophagogastroduodenoscopy publication-title: Gut doi: 10.1136/gutjnl-2018-317366 – volume: 53 start-page: 1199 year: 2021 ident: ref_46 article-title: Evaluation of the Effects of an Artificial Intelligence System on Endoscopy Quality and Preliminary Testing of Its Performance in Detecting Early Gastric Cancer: A Randomized Controlled Trial publication-title: Endoscopy doi: 10.1055/a-1350-5583 – ident: ref_74 doi: 10.1109/CVPR46437.2021.00455 – volume: 390 start-page: 1211 year: 2017 ident: ref_1 article-title: Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016 publication-title: Lancet doi: 10.1016/S0140-6736(17)32154-2 – ident: ref_78 doi: 10.1109/CVPR42600.2020.00813 – volume: 32 start-page: 168 year: 2020 ident: ref_36 article-title: Principles and Practice to Facilitate Complete Photodocumentation of the Upper Gastrointestinal Tract: World Endoscopy Organization Position Statement publication-title: Dig. Endosc. doi: 10.1111/den.13530 – volume: 11 start-page: 7759 year: 2021 ident: ref_18 article-title: Ability of Artificial Intelligence to Detect T1 Esophageal Squamous Cell Carcinoma from Endoscopic Videos and the Effects of Real-Time Assistance publication-title: Sci. Rep. doi: 10.1038/s41598-021-87405-6 – volume: 20 start-page: 225 year: 2020 ident: ref_35 article-title: Taking More Gastroscopy Images Increases the Detection Rate of Clinically Significant Gastric Lesions: Validation of a Systematic Screening Protocol for the Stomach publication-title: Korean J. Helicobacter Up. Gastrointest. Res. doi: 10.7704/kjhugr.2020.0013 – volume: 36 start-page: 3811 year: 2021 ident: ref_27 article-title: Deep Learning-Based Endoscopic Anatomy Classification: An Accelerated Approach for Data Preparation and Model Validation publication-title: Surg. Endosc. doi: 10.1007/s00464-021-08698-2 – volume: 36 start-page: 57 year: 2022 ident: ref_26 article-title: Development of Artificial Intelligence System for Quality Control of Photo Documentation in Esophagogastroduodenoscopy publication-title: Surg. Endosc. doi: 10.1007/s00464-020-08236-6 – ident: ref_38 doi: 10.1145/3083187.3083212 – volume: 89 start-page: 806 year: 2019 ident: ref_64 article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2018.11.011 – volume: 52 start-page: 293 year: 2020 ident: ref_3 article-title: Role of Gastrointestinal Endoscopy in the Screening of Digestive Tract Cancers in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement publication-title: Endoscopy doi: 10.1055/a-1104-5245 – volume: 13 start-page: 2 year: 2012 ident: ref_60 article-title: The Gastric Precancerous Cascade: The Gastric Precancerous Cascade publication-title: J. Dig. Dis. doi: 10.1111/j.1751-2980.2011.00550.x – volume: 134 start-page: 945 year: 2008 ident: ref_62 article-title: Gastric Cancer Risk in Patients With Premalignant Gastric Lesions: A Nationwide Cohort Study in the Netherlands publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.01.071 – volume: 71 start-page: 103167 year: 2022 ident: ref_44 article-title: Channel Separation-Based Network for the Automatic Anatomical Site Recognition Using Endoscopic Images publication-title: Biomed. Signal Processing Control. doi: 10.1016/j.bspc.2021.103167 – volume: 81 start-page: 1 year: 2015 ident: ref_30 article-title: Defining and Measuring Quality in Endoscopy publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2014.07.052 – volume: 15 start-page: 1085 year: 2020 ident: ref_42 article-title: Deep Learning-Based Anatomical Site Classification for Upper Gastrointestinal Endoscopy publication-title: Int. J. CARS doi: 10.1007/s11548-020-02148-5 – volume: 53 start-page: 216 year: 2021 ident: ref_49 article-title: Intelligent Detection Endoscopic Assistant: An Artificial Intelligence-Based System for Monitoring Blind Spots during Esophagogastroduodenoscopy in Real-Time publication-title: Dig. Liver Dis. doi: 10.1016/j.dld.2020.11.017 – volume: 158 start-page: 915 year: 2020 ident: ref_22 article-title: Deep-Learning System Detects Neoplasia in Patients With Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.030 – volume: 56 start-page: 23 year: 2022 ident: ref_11 article-title: Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases publication-title: J. Clin. Gastroenterol. doi: 10.1097/MCG.0000000000001629 – volume: 124 start-page: 103950 year: 2020 ident: ref_43 article-title: Anatomical Classification of Upper Gastrointestinal Organs under Various Image Capture Conditions Using AlexNet publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103950 – volume: 95 start-page: 1138 year: 2021 ident: ref_54 article-title: Correlation of the Detection Rate of Upper GI Cancer with Artificial Intelligence Score: Results from a Multicenter Trial (with Video) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2021.12.019 – volume: 6 start-page: 176 year: 2019 ident: ref_41 article-title: Upper Gastrointestinal Anatomy Detection with Multi-task Convolutional Neural Networks publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2019.0066 – volume: 26 start-page: 11 year: 2013 ident: ref_24 article-title: The Endoscopic Diagnosis of Early Gastric Cancer publication-title: Ann. Gastroenterol. – volume: 67 start-page: 101838 year: 2021 ident: ref_19 article-title: ELNet:Automatic Classification and Segmentation for Esophageal Lesions Using Convolutional Neural Network publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101838 – volume: 26 start-page: 19 year: 2021 ident: ref_15 article-title: Automatic Anatomical Classification Model of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks for Guiding Endoscopic Photodocumentation publication-title: J. Korea Soc. Comput. Inf. – ident: ref_12 doi: 10.3390/diagnostics11091575 – volume: 91 start-page: 41 year: 2020 ident: ref_21 article-title: Real-Time Automated Diagnosis of Precancerous Lesions and Early Esophageal Squamous Cell Carcinoma Using a Deep Learning Model (with Videos) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2019.08.018 – volume: 35 start-page: 1 year: 2016 ident: ref_73 article-title: Learning-Based View Synthesis for Light Field Cameras publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2980179.2980251 – volume: 17 start-page: 250 year: 2020 ident: ref_23 article-title: Application of Artificial Intelligence Using Convolutional Neural Networks in Determining the Invasion Depth of Esophageal Squamous Cell Carcinoma publication-title: Esophagus doi: 10.1007/s10388-020-00716-x – ident: ref_37 – volume: 32 start-page: 4793 year: 2021 ident: ref_69 article-title: A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3027314 – volume: 48 start-page: 81 year: 2015 ident: ref_5 article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing Performance Measures publication-title: Endoscopy doi: 10.1055/s-0035-1569580 – ident: ref_66 doi: 10.1109/CVPR.2009.5206848 – ident: ref_72 doi: 10.1007/978-3-030-89134-3_11 – ident: ref_75 – ident: ref_50 – volume: 126 start-page: 104026 year: 2020 ident: ref_57 article-title: Intelligent Diagnosis of Gastric Intestinal Metaplasia Based on Convolutional Neural Network and Limited Number of Endoscopic Images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104026 – ident: ref_2 – ident: ref_67 doi: 10.1145/3505244 – ident: ref_76 doi: 10.1007/978-3-030-58452-8_24 – volume: 47 start-page: 490 year: 2014 ident: ref_51 article-title: Screening for Gastric Cancer: The Usefulness of Endoscopy publication-title: Clin. Endosc. doi: 10.5946/ce.2014.47.6.490 – volume: 73 start-page: AB393 year: 2011 ident: ref_33 article-title: Mo1579 Duration of Endoscopic Examination Significantly Impacts Detection Rates of Neoplastic Lesions During Diagnostic Upper Endoscopy publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2011.03.878 – volume: 92 start-page: 866 year: 2020 ident: ref_63 article-title: Highly Accurate Artificial Intelligence Systems to Predict the Invasion Depth of Gastric Cancer: Efficacy of Conventional White-Light Imaging, Nonmagnifying Narrow-Band Imaging, and Indigo-Carmine Dye Contrast Imaging publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.06.047 – volume: 53 start-page: 196 year: 2021 ident: ref_29 article-title: Overcoming the Barriers to Dissemination and Implementation of Quality Measures for Gastrointestinal Endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and United European Gastroenterology (UEG) Position Statement publication-title: Endoscopy doi: 10.1055/a-1312-6389 – volume: 368 start-page: m689 year: 2020 ident: ref_9 article-title: Artificial Intelligence versus Clinicians: Systematic Review of Design, Reporting Standards, and Claims of Deep Learning Studies publication-title: BMJ doi: 10.1136/bmj.m689 – volume: 20 start-page: 28 year: 2017 ident: ref_25 article-title: Development of an E-Learning System for Teaching Endoscopists How to Diagnose Early Gastric Cancer: Basic Principles for Improving Early Detection publication-title: Gastric Cancer doi: 10.1007/s10120-016-0680-7 – volume: 95 start-page: 92 year: 2022 ident: ref_58 article-title: Deep Learning System Compared with Expert Endoscopists in Predicting Early Gastric Cancer and Its Invasion Depth and Differentiation Status (with Videos) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2021.06.033 – volume: 70 start-page: 1458 year: 2021 ident: ref_7 article-title: Standalone Performance of Artificial Intelligence for Upper GI Neoplasia: A Meta-Analysis publication-title: Gut doi: 10.1136/gutjnl-2020-321922 – volume: 162 start-page: 1056 year: 2021 ident: ref_10 article-title: Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.11.040 – volume: 8 start-page: 7497 year: 2018 ident: ref_39 article-title: Automatic Anatomical Classification of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks publication-title: Sci. Rep. doi: 10.1038/s41598-018-25842-6 – volume: 31 start-page: e34 year: 2019 ident: ref_52 article-title: Detecting gastric cancer from video images using convolutional neural networks publication-title: Dig. Endosc. doi: 10.1111/den.13306 – volume: 54 start-page: 403 year: 2022 ident: ref_6 article-title: Endoscopists’ Diagnostic Accuracy in Detecting Upper Gastrointestinal Neoplasia in the Framework of Artificial Intelligence Studies publication-title: Endoscopy doi: 10.1055/a-1500-3730 – volume: 66 start-page: 1886 year: 2017 ident: ref_31 article-title: Quality Standards in Upper Gastrointestinal Endoscopy: A Position Statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS) publication-title: Gut doi: 10.1136/gutjnl-2017-314109 – ident: ref_48 doi: 10.1109/BIBE52308.2021.9635273 – ident: ref_56 doi: 10.3390/jcm8091310 – volume: 48 start-page: 843 year: 2016 ident: ref_28 article-title: Performance Measures for Upper Gastrointestinal Endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative publication-title: Endoscopy doi: 10.1055/s-0042-113128 – volume: 28 start-page: 1041 year: 2016 ident: ref_4 article-title: Missing Rate for Gastric Cancer during Upper Gastrointestinal Endoscopy: A Systematic Review and Meta-Analysis publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/MEG.0000000000000657 – volume: 52 start-page: 101710 year: 2021 ident: ref_13 article-title: Early Gastric Cancer and Artificial Intelligence: Is It Time for Population Screening? publication-title: Best Pract. Res. Clin. Gastroenterol. doi: 10.1016/j.bpg.2020.101710 – ident: ref_71 doi: 10.1109/EMBC44109.2020.9176016 |
SSID | ssj0000913825 |
Score | 2.317597 |
SecondaryResourceType | review_article |
Snippet | Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1278 |
SubjectTerms | Algorithms Artificial intelligence Clinical medicine computer vision convolutional neural networks Datasets Deep learning Design of experiments Endoscopy Gastric cancer Machine learning Medical screening Multimedia Review upper GI endoscopy (UGIE) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQh4pLRcujAVoZiSMRduw4cW-04imBEGIlbpFjT1QkSFZLkNp_35kkbLMI0QvX2I4m47Hnm3jmM2N7XqcW_YaJM-UwQKlcFlswZYzIATRYQJ_XZVtcmtOJPr9Nb0dXfVFOWE8P3CvuQAWDJiWD9iloylk3PsUQQ8mkCrmXFe2-wopRMNXtwZa49dKeZkhhXH8Q-sw14j6WCVpiQherjVxRx9j_Gsx8mS05cj_Hq-zjgBv5YS_vJ7YE9Wf24WI4GV9jv6mlZ4PgZyOaTY6glE-mU5jxE_fYzhrih0D56GVHdWioKuXPd37IrxsXHtyUU70J__fDnY-yinjb8IFH9J5fDeVV62xyfHTz8zQeblWIPUY3bQzSOh2s8SV-kUgC2MpDrksnUqccBjiAKgbhc1uVyhrrcE_Ig_EGwQSBJ7XBluumhi-MS2lDiU5eUhTnDeQiDc5o6pYFCSJiybOCCz9QjtPNF_cFhh40K8UrsxKx_fmgac-48Xb3HzRz865El909QCMqBiMq_mdEEdt5nvdiWMOPRWKy7txRqIjtzptx9dGRiquheer6oKEjpNMR2-zNZC6JQmiJeA9HZwsGtCDqYkt996tj-LYS9ZxnW-_xbdtsJaGSDZHGidxhy-3sCb4ikGrLb92a-QtVKB26 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9wwDBZbC2MvY7-XrS0e7HGhcew48V5GW67tBiul7KBvwbGdbtAl2V0K238_KfGld6P09ewEXyRLn2zpE8AHKzONfkPFuTAYoNQmj7VXVYzIwUuvPfq8IdviTJ3O5dfL7DIcuC1DWuXKJg6G2rWWzsj3U5UPt0CJ-Nz9jqlrFN2uhhYaD2EbTXCBer59ODs7v5hOWYj1EmOgkW5IYHy_78YMNuJA5ilqZEoN1tZc0sDcfxfc_D9rcs0NHT-FJwE_soNR4M_ggW-ew6Nv4Yb8BfyhkZEVgn1Zo9tkCE7ZvOv8gp2YZb9oiScC10cvmzWupeqUv5_YAbtojftlOkZ1J-z24J2tZRexvmWBT_SanYcyq5cwP559PzqNQ3eF2GKU08eeayOdVrbCf5Skzuva-kJWJsmMMBjo-ELhgC10XQmttEHbUDhlFYIKAlHiFWw1bePfAONcuwqdPadozipfJJkzStK03HGfRJCuPnBpA_U4dcC4LjEEIamUd0glgo_TQ93IvHH_9EOS3DSVaLOHH9rFVRl2YSmcQvvEnbSZl1QAoWyG8argae0Ky-sIdlZyL8NeXpa3mhfB-2kYdyFdrZjGtzfDHFR4hHYygtejmkwrEQgxEffh0_mGAm0sdXOk-fljYPrWHL9zkb-9f1nv4HFKRRlJFqd8B7b6xY3fRajUV3thP_wDI-UXiA priority: 102 providerName: ProQuest |
Title | Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35626433 https://www.proquest.com/docview/2670122403 https://www.proquest.com/docview/2671269764 https://pubmed.ncbi.nlm.nih.gov/PMC9141387 https://doaj.org/article/3d68701d4c5e411086c5917312fd8c1f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MDcZexN9W5yWCj1abpk0bQWSTO6ewMYYX9lbSJJ3Ctb12HWz_vee06fVeufrga5OUNDkn5_uanC8Ar0ySKowbMsyERoJS6SxUTpYhIgeXOOUw5vWnLU7l8Sz5cpFebMF4K6ofwKuN1I7uk5q18zc3P28_oMO_J8aJlP2tHQ6lkawxj9HI4iy_AzsYmiSxsROP9_ulWZHkXjqoD_2t7R7sCkQFGKrFWrDqNf03AdE_z1OuBKije3DXI0t2MJjCfdhy9QPYPfF75w_hhkoGvQj2eUWIkyFsZbPFwrXsk77q2oYUJLCr9LJpbRvKW7l9xw7YeaPtD71glJHCfv-SZyvnjljXMK80OmdnPgHrEcyOpl8_Hof-3oXQIP_pQseVTqySpsQvimLrVGVcnpQ6SrXQSIFcLrHA5KoqhZJK46qRW2kkwg2CV-IxbNdN7Z4C41zZEmEAJ55npMuj1GqZULXMchcFEI8DXBgvSk53Y8wLJCc0QcWGCQrg9bLRYtDk-Hf1Q5q5ZVUS1O4fNO1l4f2zEFbiysVtYlKXUGqENCkyWcHjyuaGVwHsj_NejEZaxDLrdyYjEcDLZTH6J2266No1130ddAUEfUkATwYzWfZkNLMAsjUDWuvqekn9_VuvAa44jnOePfvvls9hL6ZMjigNY74P21177V4gvurKCewcTk_Pzif9_4lJ70G_AFweK8E |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEN6LGeTgxEkItbNml7aqqulJvwbGdFqkkYTcV9E_xG5nJY7uLqt56je3I8szY39gz3wC81WEk8dwQbhwodFByFbvSisxF5GBDKy2eeU20xUSMpuG34-h4Df72uTAUVtnvic1GbUpNd-SbvoibVyAv-FT9cqlqFL2u9iU0WrXYtRe_0WWbfxx_Qfm-8_2d4dHnkdtVFXA1ovvatVyq0EihM6Ot5xsrc22TMFNepAKFAN8mAht0IvMskEIqtInECC3wMCXwEOB_b8F6SBmtA1jfHk4ODhe3OsSyiT5XS28UBNLbNG3EHHEucx8twKeCbktHYFMp4Cp4-3-U5tKxt3Mf7nV4lW21CvYA1mzxEG7vdy_yj-APtbQsFGy8RO_JEAyzaVXZGfuq5vWsJF4KnB_9bFiYkrJhLj6wLXZYKvNTVYzyXNjlRT9bimZidck6_tIzdtCldT2G6Y2s-xMYFGVhnwHjXJoMwQUn71ELm3iRUSKkbrHh1nPA7xc41R3VOVXcOEvR5SGppFdIxYH3i0FVy_RxffdtktyiK9F0Nx_K2UnaWX0aGIH7ITehjmxICRdCR-gfB9zPTaJ57sBGL_e02zvm6aWmO_Bm0YxWT085qrDledMHDQyhZOjA01ZNFjMJENIizsTR8YoCrUx1taX4cdowi0uO65zEz6-f1mu4Mzra30v3xpPdF3DXp4QQL3J9vgGDenZuXyJMq7NXnW0w-H7T5vgPK6ZVNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QXwTGGAkeCNqnA8nRkJoYy0rg6qaqLS34NgOII0ktJlg_xp_HXf56Fo07W2vsR1Ztu_ud_bd7wBe6jCSaDeEGwcKHZRcxa60InMROdjQSos2r4m2mIrDefjxJDrZgr99LgyFVfY6sVHUptR0Rz70Rdy8AnnBMO_CImYH43fVL5cqSNFLa19Ooz0iR_b8N7pvy7eTA9zrV74_Hn15f-h2FQZcjUi_di2XKjRS6Mxo6_nGylzbJMyUF6lAIdi3icAGncg8C6SQCuUjMUILNKwEJAL87w3YjtEqhgPY3h9NZ8erGx5i3ET_q6U6CgLpDU0bPUf8y9xHafCpuNuaOWyqBlwGdf-P2FwzgePbcKvDrmyvPWx3YMsWd2Hnc_c6fw_-UEvLSMEma1SfDIExm1eVXbAPalkvSuKowPnRz0aFKSkz5vwN22PHpTI_VcUo54VdXPqztcgmVpes4zI9ZbMuxes-zK9l3R_AoCgL-wgY59JkCDQ4eZJa2MSLjBIhdYsNt54Dfr_Aqe5oz6n6xmmK7g_tSnrJrjjwejWoalk_ru6-Tzu36kqU3c2HcvEt7TRAGhiBupGbUEc2pOQLoSP0lQPu5ybRPHdgt9_3tNMjy_Ti1DvwYtWMGoCedVRhy7OmDwobwsrQgYftMVnNJEB4i5gTR8cbB2hjqpstxY_vDcu45LjOSfz46mk9hx0Uw_TTZHr0BG76lBviRa7Pd2FQL87sU0RsdfasEw0GX69bGv8BoAlZYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Upper+Gastrointestinal+Endoscopy%3A+A+Roadmap+from+Technology+Development+to+Clinical+Practice&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Renna%2C+Francesco&rft.au=Martins%2C+Miguel&rft.au=Neto%2C+Alexandre&rft.au=Cunha%2C+Ant%C3%B3nio&rft.date=2022-05-21&rft.pub=MDPI&rft.eissn=2075-4418&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fdiagnostics12051278&rft_id=info%3Apmid%2F35626433&rft.externalDocID=PMC9141387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |