Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium
► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydroge...
Saved in:
Published in | Fuel (Guildford) Vol. 109; pp. 68 - 75 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydrogen capacity of the composites.
This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH2 of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH2 after 3h of milling under 1MPa H2. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH2 yielded, and the endothermic peak of γ-MgH2 separated from that of β-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al. |
---|---|
AbstractList | This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30 wt.% of crystallitic carbon, the Mg easily hydrided into I2-MgH2 of particle size 20a60 nm and crystal grain size 29.7 nm and a small amount of I3-MgH2 after 3 h of milling under 1 MPa H2. The hydrogen content of the composites is up to 5.81 wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2 degree C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7 kJ/mol and 80.7 J/mol K, respectively, calculated by the vanat Hoff equation from the paCaT data in 300a380 degree C. With the extension of milling time, more I3-MgH2 yielded, and the endothermic peak of I3-MgH2 separated from that of I2-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al. This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH₂ of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH₂ after 3h of milling under 1MPa H₂. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH₂ yielded, and the endothermic peak of γ-MgH₂ separated from that of β-MgH₂. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al. ► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydrogen capacity of the composites. This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH2 of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH2 after 3h of milling under 1MPa H2. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH2 yielded, and the endothermic peak of γ-MgH2 separated from that of β-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al. This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30 wt.% of crystallitic carbon, the Mg easily hydrided into [beta]-MgH sub(2) of particle size 20-60 nm and crystal grain size 29.7 nm and a small amount of [gamma]-MgH sub(2) after 3 h of milling under 1 MPa H sub(2). The hydrogen content of the composites is up to 5.81 wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2 [degrees]C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7 kJ/mol and 80.7 J/mol K, respectively, calculated by the van't Hoff equation from the p-C-T data in 300-380 [degrees]C. With the extension of milling time, more [gamma]-MgH sub(2) yielded, and the endothermic peak of [gamma]-MgH sub(2) separated from that of [beta]-MgH sub(2). The C-H dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al. |
Author | Wang, Naifei Niu, Haili Zhang, Qianqian Yu, Hongguan Chen, Haipeng Liu, Di Ding, Chao Han, Shuna Zhou, Shixue Zhang, Tonghuan |
Author_xml | – sequence: 1 givenname: Shixue surname: Zhou fullname: Zhou, Shixue email: zhoushixue66@163.com – sequence: 2 givenname: Haipeng surname: Chen fullname: Chen, Haipeng – sequence: 3 givenname: Chao surname: Ding fullname: Ding, Chao – sequence: 4 givenname: Haili surname: Niu fullname: Niu, Haili – sequence: 5 givenname: Tonghuan surname: Zhang fullname: Zhang, Tonghuan – sequence: 6 givenname: Naifei surname: Wang fullname: Wang, Naifei – sequence: 7 givenname: Qianqian surname: Zhang fullname: Zhang, Qianqian – sequence: 8 givenname: Di surname: Liu fullname: Liu, Di – sequence: 9 givenname: Shuna surname: Han fullname: Han, Shuna – sequence: 10 givenname: Hongguan surname: Yu fullname: Yu, Hongguan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27434054$$DView record in Pascal Francis |
BookMark | eNqNkk1vFCEYgImpidvqH_DExcTLTPkYhiHxYpqqTZp40TN5l4EtGwYqMDX772Xd6sFD64kDz_PyJjzn6CymaBF6S0lPCR0v971bbegZoawnqieEvUAbOkneSSr4GdqQRnWMj_QVOi9lTwiRkxg2qF47Z031DzbaUnBy2ORDqRCCr95gA3mbInY5LdgkCBgKXny7jDsMfsYQZ-xSxneHOaedjbjUlGFn8bzmI_OH_enrHV5g1x7x6_IavXQQin3zeF6g75-uv1196W6_fr65-njbmUGp2s1mBEFhhO3otoMSYLgamDBSCgA2Tk4RrhzlTogtU7McuWEOuJJkEtSSmV-g96e59zn9WG2pevHF2BAg2rQWTSXngslBDM-jo5SKN2F8HhV8mJig5D-mCtJgKenU0HePKBQDwWWIxhd9n_0C-aDblnwgvxdlJ87kVEq27i9CiT62oPf62II-tqCJ0q2FJk3_SMZXqD7FmsGHp9UPJ9W2j3rwNutivI3Gzj63cPSc_FP6Lzrk0WI |
CitedBy_id | crossref_primary_10_1007_s11595_024_2951_1 crossref_primary_10_1016_j_jallcom_2013_07_091 crossref_primary_10_1021_acsami_9b11285 crossref_primary_10_1007_s11665_020_04602_6 crossref_primary_10_3390_min8120585 crossref_primary_10_1021_acs_iecr_0c04387 crossref_primary_10_1021_jp412826u crossref_primary_10_1016_j_apsusc_2016_10_101 crossref_primary_10_1016_j_solidstatesciences_2023_107385 crossref_primary_10_1016_j_jma_2021_08_019 crossref_primary_10_1142_S1793604714500349 crossref_primary_10_1016_j_ijhydene_2019_03_258 crossref_primary_10_3390_ma17112510 crossref_primary_10_1039_C7TA09289J crossref_primary_10_1016_j_apsusc_2020_146038 crossref_primary_10_3390_min8120594 crossref_primary_10_1016_j_ijhydene_2017_11_135 crossref_primary_10_1016_j_jpowsour_2016_05_031 crossref_primary_10_1007_s10853_017_1097_3 crossref_primary_10_1016_j_ijhydene_2015_03_095 crossref_primary_10_1016_j_jcat_2020_10_026 crossref_primary_10_1007_s11998_021_00468_y crossref_primary_10_1016_j_ijhydene_2020_11_134 crossref_primary_10_1002_ente_201402006 crossref_primary_10_1016_j_jallcom_2014_12_101 crossref_primary_10_3390_ma13030625 crossref_primary_10_1016_j_jallcom_2013_12_246 crossref_primary_10_1007_s11595_017_1596_8 crossref_primary_10_1016_j_ijhydene_2015_02_059 crossref_primary_10_1016_j_ijhydene_2020_02_093 crossref_primary_10_1016_j_jcat_2019_09_022 crossref_primary_10_1007_s11595_016_1444_2 crossref_primary_10_1016_j_matdes_2017_11_073 crossref_primary_10_1007_s40145_015_0147_z crossref_primary_10_1016_j_ijhydene_2016_10_115 crossref_primary_10_1016_j_ijhydene_2015_06_110 |
Cites_doi | 10.1016/j.ijhydene.2010.05.080 10.1016/j.ijhydene.2007.12.032 10.1016/j.jssc.2004.05.003 10.1016/j.scriptamat.2004.09.001 10.1016/j.fuel.2011.06.051 10.1016/j.ijhydene.2008.05.053 10.1016/S0925-8388(03)00544-9 10.1021/cm702205v 10.1016/S0925-8388(03)00746-1 10.1016/j.scriptamat.2007.01.003 10.1016/j.ijhydene.2006.01.020 10.1016/j.ijhydene.2010.06.089 10.1021/ja054569h 10.1016/S0925-8388(98)00829-9 10.1016/j.jallcom.2004.04.145 10.1016/j.ijhydene.2008.12.015 10.1016/j.fuel.2011.08.015 10.1016/j.actamat.2007.04.020 10.1016/S0925-8388(02)00120-2 10.1016/j.jallcom.2004.12.036 10.1016/S0925-8388(03)00121-X 10.1016/j.ijhydene.2010.12.052 10.1016/j.scriptamat.2004.12.020 10.1016/S0925-8388(03)00747-3 10.1021/cm702897f 10.1016/j.jpowsour.2003.11.013 10.1016/S0925-8388(01)01506-7 10.1016/j.carbon.2006.11.017 10.1016/j.ijhydene.2008.05.097 10.1016/j.jallcom.2006.03.069 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST C1K SOI 7QF 7TB 8FD F28 FR3 H8D JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.fuel.2012.09.002 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Aluminium Industry Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Aerospace Database Aluminium Industry Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts AGRICOLA Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7153 |
EndPage | 75 |
ExternalDocumentID | 27434054 10_1016_j_fuel_2012_09_002 S0016236112007144 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACIWK ACNCT ACNNM ACPRK ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ VH1 WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7ST C1K SOI EFKBS 7QF 7TB 8FD F28 FR3 H8D JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-dc6a51a6ab6fb495ac39425c775aa268f9039f13f55b29d763c2fa3970851e0d3 |
IEDL.DBID | .~1 |
ISSN | 0016-2361 |
IngestDate | Fri Jul 11 02:00:33 EDT 2025 Thu Jul 10 20:14:52 EDT 2025 Sun Aug 24 04:12:13 EDT 2025 Fri Jul 11 16:44:50 EDT 2025 Wed Apr 02 07:26:13 EDT 2025 Tue Jul 01 00:43:30 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Fri Feb 23 02:33:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystallitic carbon Hydrogen storage material Magnesium Reactive milling Differential scanning calorimetry Particle size Demineralization Hydrogen Enthalpy Aluminium Desorption Iron Anthracite Carbonization Transmission electron microscopy Storage Dehydrogenation Coal Nickel X ray diffractometry Nanostructured materials |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-dc6a51a6ab6fb495ac39425c775aa268f9039f13f55b29d763c2fa3970851e0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1505347718 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1733527454 proquest_miscellaneous_1677931736 proquest_miscellaneous_1534825104 proquest_miscellaneous_1505347718 pascalfrancis_primary_27434054 crossref_primary_10_1016_j_fuel_2012_09_002 crossref_citationtrail_10_1016_j_fuel_2012_09_002 elsevier_sciencedirect_doi_10_1016_j_fuel_2012_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fernández, Sánchez (b0010) 2002; 340 Aguey-Zinsou, Ares-Fernandez (b0030) 2008; 20 Kwon, Bobet, Bae, Song (b0125) 2005; 396 Hong, Kwon, Bae, Song (b0135) 2009; 34 Narayanan, Lueking (b0085) 2007; 45 Wagemans, van Lenthe, de Jongh, van Dillen, de Jong (b0020) 2005; 127 Bogdanović, Bohmhammel, Christ, Reiser, Schlichte, Vehlen (b0015) 1999; 282 Ranjbar, Ismail, Guo, Yu, Liu (b0065) 2010; 35 Majer, Stanik, Orimo (b0150) 2003; 356–357 Montone, Grbović, Bassetti, Mirenghi, Rotolo, Bonetti (b0045) 2006; 31 Xie, Liu, Wang, Zheng, Li (b0140) 2007; 55 Rud, Lakhnik, Ivanchenko, Uvarov, Shkola, Dekhtyarenko (b0075) 2008; 33 Bobet, Castro, Chevalier (b0120) 2005; 52 Gasiorowski, Iwasieczko, Skoryna, Drulis, Jurczyk (b0115) 2004; 364 Acevedo, Camacho, Moncada, Puentes (b0145) 2012; 92 de Jongh, Wagemans, Eggenhuisen, Dauvillier, Radstake, Meeldijk (b0035) 2007; 19 Dornheim, Doppiu, Barkhordarian, Boesenberg, Klassen, Gutfleisch (b0005) 2007; 56 Shao, Xu, Wang, Li (b0100) 2004; 177 Shang, Guo (b0055) 2004; 129 Zhang, Yang, Yang, Zhao, Zheng, Tian (b0025) 2011; 36 Oriňáková, Oriňák (b0070) 2011; 90 Imamura, Masanari, Kusuhara, Katsumoto, Sumi, Sakata (b0040) 2005; 386 Bobet, Grigorova, Khrussanova, Khristov, Stefanov, Peshev (b0060) 2004; 366 Huang, Guo, Calka, Wexler, Liu (b0080) 2007; 427 Castro, Bobet (b0130) 2004; 366 Kwon, Baek, Mumm, Hong, Song (b0110) 2008; 33 Imamura, Tabata, Shigetomi, Takesue, Sakata (b0050) 2002; 330–332 Wronski, Carpenter, Czujko, Varin (b0090) 2011; 36 Milanese, Girella, Bruni, Cofrancesco, Berbenni, Villa (b0095) 2008; 33 Yavari, LeMoulec, de Castro, Deledda, Friedrichs, Botta (b0105) 2005; 52 Acevedo (10.1016/j.fuel.2012.09.002_b0145) 2012; 92 de Jongh (10.1016/j.fuel.2012.09.002_b0035) 2007; 19 Narayanan (10.1016/j.fuel.2012.09.002_b0085) 2007; 45 Ranjbar (10.1016/j.fuel.2012.09.002_b0065) 2010; 35 Dornheim (10.1016/j.fuel.2012.09.002_b0005) 2007; 56 Milanese (10.1016/j.fuel.2012.09.002_b0095) 2008; 33 Montone (10.1016/j.fuel.2012.09.002_b0045) 2006; 31 Bobet (10.1016/j.fuel.2012.09.002_b0120) 2005; 52 Wagemans (10.1016/j.fuel.2012.09.002_b0020) 2005; 127 Bobet (10.1016/j.fuel.2012.09.002_b0060) 2004; 366 Gasiorowski (10.1016/j.fuel.2012.09.002_b0115) 2004; 364 Bogdanović (10.1016/j.fuel.2012.09.002_b0015) 1999; 282 Xie (10.1016/j.fuel.2012.09.002_b0140) 2007; 55 Huang (10.1016/j.fuel.2012.09.002_b0080) 2007; 427 Shao (10.1016/j.fuel.2012.09.002_b0100) 2004; 177 Rud (10.1016/j.fuel.2012.09.002_b0075) 2008; 33 Hong (10.1016/j.fuel.2012.09.002_b0135) 2009; 34 Majer (10.1016/j.fuel.2012.09.002_b0150) 2003; 356–357 Zhang (10.1016/j.fuel.2012.09.002_b0025) 2011; 36 Castro (10.1016/j.fuel.2012.09.002_b0130) 2004; 366 Fernández (10.1016/j.fuel.2012.09.002_b0010) 2002; 340 Aguey-Zinsou (10.1016/j.fuel.2012.09.002_b0030) 2008; 20 Wronski (10.1016/j.fuel.2012.09.002_b0090) 2011; 36 Kwon (10.1016/j.fuel.2012.09.002_b0125) 2005; 396 Imamura (10.1016/j.fuel.2012.09.002_b0040) 2005; 386 Yavari (10.1016/j.fuel.2012.09.002_b0105) 2005; 52 Kwon (10.1016/j.fuel.2012.09.002_b0110) 2008; 33 Oriňáková (10.1016/j.fuel.2012.09.002_b0070) 2011; 90 Imamura (10.1016/j.fuel.2012.09.002_b0050) 2002; 330–332 Shang (10.1016/j.fuel.2012.09.002_b0055) 2004; 129 |
References_xml | – volume: 33 start-page: 1310 year: 2008 end-page: 1316 ident: b0075 article-title: Hydrogen storage of the Mg–C composites publication-title: Int J Hydrogen Energy – volume: 330–332 start-page: 579 year: 2002 end-page: 583 ident: b0050 article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium publication-title: J Alloys Compd – volume: 129 start-page: 73 year: 2004 end-page: 80 ident: b0055 article-title: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH publication-title: J Power Sources – volume: 33 start-page: 4586 year: 2008 end-page: 4592 ident: b0110 article-title: Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti publication-title: Int J Hydrogen Energy – volume: 36 start-page: 1159 year: 2011 end-page: 1166 ident: b0090 article-title: A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides publication-title: Int J Hydrogen Energy – volume: 31 start-page: 2088 year: 2006 end-page: 2096 ident: b0045 article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene publication-title: Int J Hydrogen Energy – volume: 356–357 start-page: 617 year: 2003 end-page: 621 ident: b0150 article-title: NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems publication-title: J Alloys Compd – volume: 366 start-page: 298 year: 2004 end-page: 302 ident: b0060 article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling publication-title: J Alloys Compd – volume: 35 start-page: 7821 year: 2010 end-page: 7826 ident: b0065 article-title: Effects of CNTs on the hydrogen storage properties of MgH publication-title: Int J Hydrogen Energy – volume: 52 start-page: 33 year: 2005 end-page: 37 ident: b0120 article-title: Effects of RMG conditions on the hydrogen sorption properties of Mg publication-title: Scripta Mater – volume: 364 start-page: 283 year: 2004 end-page: 288 ident: b0115 article-title: Hydriding properties of nanocrystalline Mg publication-title: J Alloys Compd – volume: 127 start-page: 16675 year: 2005 end-page: 16680 ident: b0020 article-title: Hydrogen storage in magnesium clusters: quantum chemical study publication-title: J Am Chem Soc – volume: 19 start-page: 6052 year: 2007 end-page: 6057 ident: b0035 article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration publication-title: Chem Mater – volume: 282 start-page: 84 year: 1999 end-page: 92 ident: b0015 article-title: Thermodynamic investigation of the magnesium–hydrogen system publication-title: J Alloys Compd – volume: 56 start-page: 841 year: 2007 end-page: 846 ident: b0005 article-title: Hydrogen storage in magnesium-based hydrides and hydride composites publication-title: Scripta Mater – volume: 34 start-page: 1944 year: 2009 end-page: 1950 ident: b0135 article-title: Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb publication-title: Int J Hydrogen Energy – volume: 92 start-page: 264 year: 2012 end-page: 270 ident: b0145 article-title: Electrochemically assisted demetallisation of model metalloporphyrins and crude oil porphyrinic extracts in emulsified media, by using active permeated atomic hydrogen publication-title: Fuel – volume: 33 start-page: 4593 year: 2008 end-page: 4606 ident: b0095 article-title: Reactivity and hydrogen storage performances of magnesium–nickel–copper ternary mixtures prepared by reactive mechanical grinding publication-title: Int J Hydrogen Energy – volume: 52 start-page: 719 year: 2005 end-page: 724 ident: b0105 article-title: Improvement in H-sorption kinetics of MgH publication-title: Scripta Mater – volume: 177 start-page: 3626 year: 2004 end-page: 3632 ident: b0100 article-title: Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale publication-title: J Solid State Chem – volume: 427 start-page: 94 year: 2007 end-page: 100 ident: b0080 article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium publication-title: J Alloys Compd – volume: 55 start-page: 4585 year: 2007 end-page: 4591 ident: b0140 article-title: Superior hydrogen storage kinetics of MgH publication-title: Acta Mater – volume: 45 start-page: 805 year: 2007 end-page: 820 ident: b0085 article-title: Mechanically milled coal and magnesium composites for hydrogen storage publication-title: Carbon – volume: 20 start-page: 376 year: 2008 end-page: 378 ident: b0030 article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen publication-title: Chem Mater – volume: 386 start-page: 211 year: 2005 end-page: 216 ident: b0040 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J Alloys Compd – volume: 396 start-page: 264 year: 2005 end-page: 268 ident: b0125 article-title: Improvement of hydrogen-storage properties of Mg by reactive mechanical grinding with Fe publication-title: J Alloys Compd – volume: 36 start-page: 4967 year: 2011 end-page: 4975 ident: b0025 article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction publication-title: Int J Hydrogen Energy – volume: 340 start-page: 189 year: 2002 end-page: 198 ident: b0010 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J Alloys Compd – volume: 90 start-page: 3123 year: 2011 end-page: 3140 ident: b0070 article-title: Recent applications of carbon nanotubes in hydrogen production and storage publication-title: Fuel – volume: 366 start-page: 303 year: 2004 end-page: 308 ident: b0130 article-title: Hydrogen sorption properties of Mg publication-title: J Alloys Compd – volume: 35 start-page: 7821 year: 2010 ident: 10.1016/j.fuel.2012.09.002_b0065 article-title: Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.080 – volume: 33 start-page: 1310 year: 2008 ident: 10.1016/j.fuel.2012.09.002_b0075 article-title: Hydrogen storage of the Mg–C composites publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.12.032 – volume: 177 start-page: 3626 year: 2004 ident: 10.1016/j.fuel.2012.09.002_b0100 article-title: Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale publication-title: J Solid State Chem doi: 10.1016/j.jssc.2004.05.003 – volume: 52 start-page: 33 year: 2005 ident: 10.1016/j.fuel.2012.09.002_b0120 article-title: Effects of RMG conditions on the hydrogen sorption properties of Mg+Cr2O3 mixtures publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2004.09.001 – volume: 90 start-page: 3123 year: 2011 ident: 10.1016/j.fuel.2012.09.002_b0070 article-title: Recent applications of carbon nanotubes in hydrogen production and storage publication-title: Fuel doi: 10.1016/j.fuel.2011.06.051 – volume: 33 start-page: 4593 year: 2008 ident: 10.1016/j.fuel.2012.09.002_b0095 article-title: Reactivity and hydrogen storage performances of magnesium–nickel–copper ternary mixtures prepared by reactive mechanical grinding publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.053 – volume: 364 start-page: 283 year: 2004 ident: 10.1016/j.fuel.2012.09.002_b0115 article-title: Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al) publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00544-9 – volume: 19 start-page: 6052 year: 2007 ident: 10.1016/j.fuel.2012.09.002_b0035 article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration publication-title: Chem Mater doi: 10.1021/cm702205v – volume: 366 start-page: 298 year: 2004 ident: 10.1016/j.fuel.2012.09.002_b0060 article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00746-1 – volume: 56 start-page: 841 year: 2007 ident: 10.1016/j.fuel.2012.09.002_b0005 article-title: Hydrogen storage in magnesium-based hydrides and hydride composites publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2007.01.003 – volume: 31 start-page: 2088 year: 2006 ident: 10.1016/j.fuel.2012.09.002_b0045 article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.01.020 – volume: 36 start-page: 1159 year: 2011 ident: 10.1016/j.fuel.2012.09.002_b0090 article-title: A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.06.089 – volume: 127 start-page: 16675 year: 2005 ident: 10.1016/j.fuel.2012.09.002_b0020 article-title: Hydrogen storage in magnesium clusters: quantum chemical study publication-title: J Am Chem Soc doi: 10.1021/ja054569h – volume: 282 start-page: 84 year: 1999 ident: 10.1016/j.fuel.2012.09.002_b0015 article-title: Thermodynamic investigation of the magnesium–hydrogen system publication-title: J Alloys Compd doi: 10.1016/S0925-8388(98)00829-9 – volume: 386 start-page: 211 year: 2005 ident: 10.1016/j.fuel.2012.09.002_b0040 article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2004.04.145 – volume: 34 start-page: 1944 year: 2009 ident: 10.1016/j.fuel.2012.09.002_b0135 article-title: Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb2O5 alloys publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.12.015 – volume: 92 start-page: 264 year: 2012 ident: 10.1016/j.fuel.2012.09.002_b0145 article-title: Electrochemically assisted demetallisation of model metalloporphyrins and crude oil porphyrinic extracts in emulsified media, by using active permeated atomic hydrogen publication-title: Fuel doi: 10.1016/j.fuel.2011.08.015 – volume: 55 start-page: 4585 year: 2007 ident: 10.1016/j.fuel.2012.09.002_b0140 article-title: Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.04.020 – volume: 340 start-page: 189 year: 2002 ident: 10.1016/j.fuel.2012.09.002_b0010 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J Alloys Compd doi: 10.1016/S0925-8388(02)00120-2 – volume: 396 start-page: 264 year: 2005 ident: 10.1016/j.fuel.2012.09.002_b0125 article-title: Improvement of hydrogen-storage properties of Mg by reactive mechanical grinding with Fe2O3 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2004.12.036 – volume: 356–357 start-page: 617 year: 2003 ident: 10.1016/j.fuel.2012.09.002_b0150 article-title: NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00121-X – volume: 36 start-page: 4967 year: 2011 ident: 10.1016/j.fuel.2012.09.002_b0025 article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.052 – volume: 52 start-page: 719 year: 2005 ident: 10.1016/j.fuel.2012.09.002_b0105 article-title: Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2004.12.020 – volume: 366 start-page: 303 year: 2004 ident: 10.1016/j.fuel.2012.09.002_b0130 article-title: Hydrogen sorption properties of Mg+WO3 mixture made by reactive mechanical alloying publication-title: J Alloys Compd doi: 10.1016/S0925-8388(03)00747-3 – volume: 20 start-page: 376 year: 2008 ident: 10.1016/j.fuel.2012.09.002_b0030 article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen publication-title: Chem Mater doi: 10.1021/cm702897f – volume: 129 start-page: 73 year: 2004 ident: 10.1016/j.fuel.2012.09.002_b0055 article-title: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.11.013 – volume: 330–332 start-page: 579 year: 2002 ident: 10.1016/j.fuel.2012.09.002_b0050 article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium publication-title: J Alloys Compd doi: 10.1016/S0925-8388(01)01506-7 – volume: 45 start-page: 805 year: 2007 ident: 10.1016/j.fuel.2012.09.002_b0085 article-title: Mechanically milled coal and magnesium composites for hydrogen storage publication-title: Carbon doi: 10.1016/j.carbon.2006.11.017 – volume: 33 start-page: 4586 year: 2008 ident: 10.1016/j.fuel.2012.09.002_b0110 article-title: Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.097 – volume: 427 start-page: 94 year: 2007 ident: 10.1016/j.fuel.2012.09.002_b0080 article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.03.069 |
SSID | ssj0007854 |
Score | 2.3133218 |
Snippet | ► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under... This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 68 |
SubjectTerms | Aluminum Applied sciences Carbon carbonization Coal cobalt Crystallitic carbon Dehydrogenation desorption Energy Energy. Thermal use of fuels enthalpy Entropy equations Exact sciences and technology Fourier transform infrared spectroscopy Fuels hydrogen Hydrogen storage Hydrogen storage material iron Magnesium Mathematical analysis milling nanocomposites nickel particle size Reactive milling temperature transmission electron microscopy X-ray diffraction |
Title | Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium |
URI | https://dx.doi.org/10.1016/j.fuel.2012.09.002 https://www.proquest.com/docview/1505347718 https://www.proquest.com/docview/1534825104 https://www.proquest.com/docview/1677931736 https://www.proquest.com/docview/1733527454 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADB5V5QJCiKfYFlaDxA2FJplXcqwqqgWknqjU28jzgkVtstrHoRd-e-08FipQDlwjTx7jmc_25LPN2HsQlXJFJJZ4lTKKELJKhjIL2oQoAsTcd2yLC724lF-u1NUBOxtzYYhWOWB_j-kdWg9XTobZPFktl5TjW2gqHVLQcRvGBZTBLg2t8o-_ftM8TKX6SsyFzkh6SJzpOV5pF-n3A50H1vujlX8Yp8cr2OCUpb7XxV-w3dmi86fsyeBE8tP-PZ-xg9g8Z4_-KC34gm37ssQDlvE2cb--RU_wuqO7cQ9r1zackku4b_FesOHUgAjHclgGDk3g6M7yH7dh3eIa40SiROjhfVrjXpaOcfkNfMeHLHc3L9nl-advZ4ts6LCQeYx0tlnwGlQBGpxODkMl8KLGTeyNUQClrlKdizoVIinlyjogFvkyAbow5KjFPIhX7LBpm_ia8eBLozHYrHIvZQDnHBr-GFyegvcmlDNWjFNr_VB-nLpgXNuRZ_bTkjosqcPmtUV1zNiH_ZhVX3xjUlqNGrP3lpBF6zA5bn5PvftHYcAu0J-VM_Zu1LfFzUd_VKCJ7W5j0ZtWQhq071MyVD8IoW_qPtogThZG6AkZQ-lxRip59J8feswell0zDyIbv2GH2_UuvkWXauvm3Z6Zswenn78uLu4ANLcieA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELYoHNqqqqCL-tpCjcStSkniLTlWqOixlBNI3Cyv5VWQPL3lwIXfzkyWR1FRDlyjcRZP_M2M_c0MIXuGFcJmAVniRUwwQkgK7vPES-UD8yakrmFbnMnxBT--FJdr5KDPhUFaZYf9LaY3aN1d2e9mc386mWCObyaxdEiG220QF7wgGxyWL7Yx-HH3wPNQhWhLMWcyQfEuc6YlecVlwPMH3BAsV3srT1inN1MzhzmLbbOL_3C7MUaHm-Rt50XSn-2LbpG1UL0jr_-pLfieLNq6xB2Y0TpSN7sFV_C64btRZ2a2rihml1BXw73MnGIHIhhLzcRTU3kK_iy9uvWzGn4yiixKwB7a5jWuZHEfl96YP_CQyfLmA7k4_HV-ME66FguJg1BnkXgnjciMNFZGC7GScayEVeyUEsbksohlysqYsSiEzUsPYOTyaMCHQU8tpJ59JOtVXYVPhHqXKwnRZpE6zr2x1oLlD96m0TunfD4iWT-12nX1x7ENxrXuiWZ_NapDozp0WmpQx4h8X42ZttU3BqVFrzH96B_SYB4Gx-08Uu_qURCxM3Bo-Yjs9vrWsPrwSMVUoV7ONbjTgnEFBn5IBgsIAfYN3UcqAMpMMTkgozA_TnHBPz_zQ7-Rl-Pz36f69Ojs5At5lTedPZB5_JWsL2bLsA3-1cLuNOvnHpveJAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+crystallitic+carbon+from+coal+as+milling+aid+and+for+hydrogen+storage+during+milling+with+magnesium&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zhou%2C+Shixue&rft.au=Chen%2C+Haipeng&rft.au=Ding%2C+Chao&rft.au=Niu%2C+Haili&rft.date=2013-07-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=109&rft.spage=68&rft.epage=75&rft_id=info:doi/10.1016%2Fj.fuel.2012.09.002&rft.externalDocID=S0016236112007144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |