Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium

► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydroge...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 109; pp. 68 - 75
Main Authors Zhou, Shixue, Chen, Haipeng, Ding, Chao, Niu, Haili, Zhang, Tonghuan, Wang, Naifei, Zhang, Qianqian, Liu, Di, Han, Shuna, Yu, Hongguan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydrogen capacity of the composites. This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH2 of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH2 after 3h of milling under 1MPa H2. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH2 yielded, and the endothermic peak of γ-MgH2 separated from that of β-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al.
AbstractList This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30 wt.% of crystallitic carbon, the Mg easily hydrided into I2-MgH2 of particle size 20a60 nm and crystal grain size 29.7 nm and a small amount of I3-MgH2 after 3 h of milling under 1 MPa H2. The hydrogen content of the composites is up to 5.81 wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2 degree C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7 kJ/mol and 80.7 J/mol K, respectively, calculated by the vanat Hoff equation from the paCaT data in 300a380 degree C. With the extension of milling time, more I3-MgH2 yielded, and the endothermic peak of I3-MgH2 separated from that of I2-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al.
This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH₂ of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH₂ after 3h of milling under 1MPa H₂. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH₂ yielded, and the endothermic peak of γ-MgH₂ separated from that of β-MgH₂. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al.
► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under hydrogen. ► Nanocomposites with hydrogen capacity of 6.67wt.% were prepared by 3h of milling. ► CH dangling bonds made some contribution to hydrogen capacity of the composites. This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30wt.% of crystallitic carbon, the Mg easily hydrided into β-MgH2 of particle size 20–60nm and crystal grain size 29.7nm and a small amount of γ-MgH2 after 3h of milling under 1MPa H2. The hydrogen content of the composites is up to 5.81wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2°C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7kJ/mol and 80.7J/molK, respectively, calculated by the van’t Hoff equation from the p–C–T data in 300–380°C. With the extension of milling time, more γ-MgH2 yielded, and the endothermic peak of γ-MgH2 separated from that of β-MgH2. The CH dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al.
This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based nanocomposites for hydrogen storage by reactive milling under hydrogen atmosphere. The TEM and XRD analysis show that in the presence of 30 wt.% of crystallitic carbon, the Mg easily hydrided into [beta]-MgH sub(2) of particle size 20-60 nm and crystal grain size 29.7 nm and a small amount of [gamma]-MgH sub(2) after 3 h of milling under 1 MPa H sub(2). The hydrogen content of the composites is up to 5.81 wt.% determined by water displacement method, and its dehydrogenation peak temperature is 344.2 [degrees]C by DSC analysis. The enthalpy and entropy changes of the hydrogen desorption reaction are 42.7 kJ/mol and 80.7 J/mol K, respectively, calculated by the van't Hoff equation from the p-C-T data in 300-380 [degrees]C. With the extension of milling time, more [gamma]-MgH sub(2) yielded, and the endothermic peak of [gamma]-MgH sub(2) separated from that of [beta]-MgH sub(2). The C-H dangling bonds in the hydrogenated carbon were determined by FT-IR analysis. The dehydrogenation temperature of the materials decreased with the addition of Co, Ni, Fe and Al.
Author Wang, Naifei
Niu, Haili
Zhang, Qianqian
Yu, Hongguan
Chen, Haipeng
Liu, Di
Ding, Chao
Han, Shuna
Zhou, Shixue
Zhang, Tonghuan
Author_xml – sequence: 1
  givenname: Shixue
  surname: Zhou
  fullname: Zhou, Shixue
  email: zhoushixue66@163.com
– sequence: 2
  givenname: Haipeng
  surname: Chen
  fullname: Chen, Haipeng
– sequence: 3
  givenname: Chao
  surname: Ding
  fullname: Ding, Chao
– sequence: 4
  givenname: Haili
  surname: Niu
  fullname: Niu, Haili
– sequence: 5
  givenname: Tonghuan
  surname: Zhang
  fullname: Zhang, Tonghuan
– sequence: 6
  givenname: Naifei
  surname: Wang
  fullname: Wang, Naifei
– sequence: 7
  givenname: Qianqian
  surname: Zhang
  fullname: Zhang, Qianqian
– sequence: 8
  givenname: Di
  surname: Liu
  fullname: Liu, Di
– sequence: 9
  givenname: Shuna
  surname: Han
  fullname: Han, Shuna
– sequence: 10
  givenname: Hongguan
  surname: Yu
  fullname: Yu, Hongguan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27434054$$DView record in Pascal Francis
BookMark eNqNkk1vFCEYgImpidvqH_DExcTLTPkYhiHxYpqqTZp40TN5l4EtGwYqMDX772Xd6sFD64kDz_PyJjzn6CymaBF6S0lPCR0v971bbegZoawnqieEvUAbOkneSSr4GdqQRnWMj_QVOi9lTwiRkxg2qF47Z031DzbaUnBy2ORDqRCCr95gA3mbInY5LdgkCBgKXny7jDsMfsYQZ-xSxneHOaedjbjUlGFn8bzmI_OH_enrHV5g1x7x6_IavXQQin3zeF6g75-uv1196W6_fr65-njbmUGp2s1mBEFhhO3otoMSYLgamDBSCgA2Tk4RrhzlTogtU7McuWEOuJJkEtSSmV-g96e59zn9WG2pevHF2BAg2rQWTSXngslBDM-jo5SKN2F8HhV8mJig5D-mCtJgKenU0HePKBQDwWWIxhd9n_0C-aDblnwgvxdlJ87kVEq27i9CiT62oPf62II-tqCJ0q2FJk3_SMZXqD7FmsGHp9UPJ9W2j3rwNutivI3Gzj63cPSc_FP6Lzrk0WI
CitedBy_id crossref_primary_10_1007_s11595_024_2951_1
crossref_primary_10_1016_j_jallcom_2013_07_091
crossref_primary_10_1021_acsami_9b11285
crossref_primary_10_1007_s11665_020_04602_6
crossref_primary_10_3390_min8120585
crossref_primary_10_1021_acs_iecr_0c04387
crossref_primary_10_1021_jp412826u
crossref_primary_10_1016_j_apsusc_2016_10_101
crossref_primary_10_1016_j_solidstatesciences_2023_107385
crossref_primary_10_1016_j_jma_2021_08_019
crossref_primary_10_1142_S1793604714500349
crossref_primary_10_1016_j_ijhydene_2019_03_258
crossref_primary_10_3390_ma17112510
crossref_primary_10_1039_C7TA09289J
crossref_primary_10_1016_j_apsusc_2020_146038
crossref_primary_10_3390_min8120594
crossref_primary_10_1016_j_ijhydene_2017_11_135
crossref_primary_10_1016_j_jpowsour_2016_05_031
crossref_primary_10_1007_s10853_017_1097_3
crossref_primary_10_1016_j_ijhydene_2015_03_095
crossref_primary_10_1016_j_jcat_2020_10_026
crossref_primary_10_1007_s11998_021_00468_y
crossref_primary_10_1016_j_ijhydene_2020_11_134
crossref_primary_10_1002_ente_201402006
crossref_primary_10_1016_j_jallcom_2014_12_101
crossref_primary_10_3390_ma13030625
crossref_primary_10_1016_j_jallcom_2013_12_246
crossref_primary_10_1007_s11595_017_1596_8
crossref_primary_10_1016_j_ijhydene_2015_02_059
crossref_primary_10_1016_j_ijhydene_2020_02_093
crossref_primary_10_1016_j_jcat_2019_09_022
crossref_primary_10_1007_s11595_016_1444_2
crossref_primary_10_1016_j_matdes_2017_11_073
crossref_primary_10_1007_s40145_015_0147_z
crossref_primary_10_1016_j_ijhydene_2016_10_115
crossref_primary_10_1016_j_ijhydene_2015_06_110
Cites_doi 10.1016/j.ijhydene.2010.05.080
10.1016/j.ijhydene.2007.12.032
10.1016/j.jssc.2004.05.003
10.1016/j.scriptamat.2004.09.001
10.1016/j.fuel.2011.06.051
10.1016/j.ijhydene.2008.05.053
10.1016/S0925-8388(03)00544-9
10.1021/cm702205v
10.1016/S0925-8388(03)00746-1
10.1016/j.scriptamat.2007.01.003
10.1016/j.ijhydene.2006.01.020
10.1016/j.ijhydene.2010.06.089
10.1021/ja054569h
10.1016/S0925-8388(98)00829-9
10.1016/j.jallcom.2004.04.145
10.1016/j.ijhydene.2008.12.015
10.1016/j.fuel.2011.08.015
10.1016/j.actamat.2007.04.020
10.1016/S0925-8388(02)00120-2
10.1016/j.jallcom.2004.12.036
10.1016/S0925-8388(03)00121-X
10.1016/j.ijhydene.2010.12.052
10.1016/j.scriptamat.2004.12.020
10.1016/S0925-8388(03)00747-3
10.1021/cm702897f
10.1016/j.jpowsour.2003.11.013
10.1016/S0925-8388(01)01506-7
10.1016/j.carbon.2006.11.017
10.1016/j.ijhydene.2008.05.097
10.1016/j.jallcom.2006.03.069
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7QF
7TB
8FD
F28
FR3
H8D
JG9
L7M
7S9
L.6
DOI 10.1016/j.fuel.2012.09.002
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Aluminium Industry Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Aerospace Database
Aluminium Industry Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
AGRICOLA

Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7153
EndPage 75
ExternalDocumentID 27434054
10_1016_j_fuel_2012_09_002
S0016236112007144
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACIWK
ACNCT
ACNNM
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
VH1
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7ST
C1K
SOI
EFKBS
7QF
7TB
8FD
F28
FR3
H8D
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c499t-dc6a51a6ab6fb495ac39425c775aa268f9039f13f55b29d763c2fa3970851e0d3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Fri Jul 11 02:00:33 EDT 2025
Thu Jul 10 20:14:52 EDT 2025
Sun Aug 24 04:12:13 EDT 2025
Fri Jul 11 16:44:50 EDT 2025
Wed Apr 02 07:26:13 EDT 2025
Tue Jul 01 00:43:30 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Fri Feb 23 02:33:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crystallitic carbon
Hydrogen storage material
Magnesium
Reactive milling
Differential scanning calorimetry
Particle size
Demineralization
Hydrogen
Enthalpy
Aluminium
Desorption
Iron
Anthracite
Carbonization
Transmission electron microscopy
Storage
Dehydrogenation
Coal
Nickel
X ray diffractometry
Nanostructured materials
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-dc6a51a6ab6fb495ac39425c775aa268f9039f13f55b29d763c2fa3970851e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1505347718
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1733527454
proquest_miscellaneous_1677931736
proquest_miscellaneous_1534825104
proquest_miscellaneous_1505347718
pascalfrancis_primary_27434054
crossref_primary_10_1016_j_fuel_2012_09_002
crossref_citationtrail_10_1016_j_fuel_2012_09_002
elsevier_sciencedirect_doi_10_1016_j_fuel_2012_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fernández, Sánchez (b0010) 2002; 340
Aguey-Zinsou, Ares-Fernandez (b0030) 2008; 20
Kwon, Bobet, Bae, Song (b0125) 2005; 396
Hong, Kwon, Bae, Song (b0135) 2009; 34
Narayanan, Lueking (b0085) 2007; 45
Wagemans, van Lenthe, de Jongh, van Dillen, de Jong (b0020) 2005; 127
Bogdanović, Bohmhammel, Christ, Reiser, Schlichte, Vehlen (b0015) 1999; 282
Ranjbar, Ismail, Guo, Yu, Liu (b0065) 2010; 35
Majer, Stanik, Orimo (b0150) 2003; 356–357
Montone, Grbović, Bassetti, Mirenghi, Rotolo, Bonetti (b0045) 2006; 31
Xie, Liu, Wang, Zheng, Li (b0140) 2007; 55
Rud, Lakhnik, Ivanchenko, Uvarov, Shkola, Dekhtyarenko (b0075) 2008; 33
Bobet, Castro, Chevalier (b0120) 2005; 52
Gasiorowski, Iwasieczko, Skoryna, Drulis, Jurczyk (b0115) 2004; 364
Acevedo, Camacho, Moncada, Puentes (b0145) 2012; 92
de Jongh, Wagemans, Eggenhuisen, Dauvillier, Radstake, Meeldijk (b0035) 2007; 19
Dornheim, Doppiu, Barkhordarian, Boesenberg, Klassen, Gutfleisch (b0005) 2007; 56
Shao, Xu, Wang, Li (b0100) 2004; 177
Shang, Guo (b0055) 2004; 129
Zhang, Yang, Yang, Zhao, Zheng, Tian (b0025) 2011; 36
Oriňáková, Oriňák (b0070) 2011; 90
Imamura, Masanari, Kusuhara, Katsumoto, Sumi, Sakata (b0040) 2005; 386
Bobet, Grigorova, Khrussanova, Khristov, Stefanov, Peshev (b0060) 2004; 366
Huang, Guo, Calka, Wexler, Liu (b0080) 2007; 427
Castro, Bobet (b0130) 2004; 366
Kwon, Baek, Mumm, Hong, Song (b0110) 2008; 33
Imamura, Tabata, Shigetomi, Takesue, Sakata (b0050) 2002; 330–332
Wronski, Carpenter, Czujko, Varin (b0090) 2011; 36
Milanese, Girella, Bruni, Cofrancesco, Berbenni, Villa (b0095) 2008; 33
Yavari, LeMoulec, de Castro, Deledda, Friedrichs, Botta (b0105) 2005; 52
Acevedo (10.1016/j.fuel.2012.09.002_b0145) 2012; 92
de Jongh (10.1016/j.fuel.2012.09.002_b0035) 2007; 19
Narayanan (10.1016/j.fuel.2012.09.002_b0085) 2007; 45
Ranjbar (10.1016/j.fuel.2012.09.002_b0065) 2010; 35
Dornheim (10.1016/j.fuel.2012.09.002_b0005) 2007; 56
Milanese (10.1016/j.fuel.2012.09.002_b0095) 2008; 33
Montone (10.1016/j.fuel.2012.09.002_b0045) 2006; 31
Bobet (10.1016/j.fuel.2012.09.002_b0120) 2005; 52
Wagemans (10.1016/j.fuel.2012.09.002_b0020) 2005; 127
Bobet (10.1016/j.fuel.2012.09.002_b0060) 2004; 366
Gasiorowski (10.1016/j.fuel.2012.09.002_b0115) 2004; 364
Bogdanović (10.1016/j.fuel.2012.09.002_b0015) 1999; 282
Xie (10.1016/j.fuel.2012.09.002_b0140) 2007; 55
Huang (10.1016/j.fuel.2012.09.002_b0080) 2007; 427
Shao (10.1016/j.fuel.2012.09.002_b0100) 2004; 177
Rud (10.1016/j.fuel.2012.09.002_b0075) 2008; 33
Hong (10.1016/j.fuel.2012.09.002_b0135) 2009; 34
Majer (10.1016/j.fuel.2012.09.002_b0150) 2003; 356–357
Zhang (10.1016/j.fuel.2012.09.002_b0025) 2011; 36
Castro (10.1016/j.fuel.2012.09.002_b0130) 2004; 366
Fernández (10.1016/j.fuel.2012.09.002_b0010) 2002; 340
Aguey-Zinsou (10.1016/j.fuel.2012.09.002_b0030) 2008; 20
Wronski (10.1016/j.fuel.2012.09.002_b0090) 2011; 36
Kwon (10.1016/j.fuel.2012.09.002_b0125) 2005; 396
Imamura (10.1016/j.fuel.2012.09.002_b0040) 2005; 386
Yavari (10.1016/j.fuel.2012.09.002_b0105) 2005; 52
Kwon (10.1016/j.fuel.2012.09.002_b0110) 2008; 33
Oriňáková (10.1016/j.fuel.2012.09.002_b0070) 2011; 90
Imamura (10.1016/j.fuel.2012.09.002_b0050) 2002; 330–332
Shang (10.1016/j.fuel.2012.09.002_b0055) 2004; 129
References_xml – volume: 33
  start-page: 1310
  year: 2008
  end-page: 1316
  ident: b0075
  article-title: Hydrogen storage of the Mg–C composites
  publication-title: Int J Hydrogen Energy
– volume: 330–332
  start-page: 579
  year: 2002
  end-page: 583
  ident: b0050
  article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium
  publication-title: J Alloys Compd
– volume: 129
  start-page: 73
  year: 2004
  end-page: 80
  ident: b0055
  article-title: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH
  publication-title: J Power Sources
– volume: 33
  start-page: 4586
  year: 2008
  end-page: 4592
  ident: b0110
  article-title: Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti
  publication-title: Int J Hydrogen Energy
– volume: 36
  start-page: 1159
  year: 2011
  end-page: 1166
  ident: b0090
  article-title: A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 2088
  year: 2006
  end-page: 2096
  ident: b0045
  article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene
  publication-title: Int J Hydrogen Energy
– volume: 356–357
  start-page: 617
  year: 2003
  end-page: 621
  ident: b0150
  article-title: NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems
  publication-title: J Alloys Compd
– volume: 366
  start-page: 298
  year: 2004
  end-page: 302
  ident: b0060
  article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling
  publication-title: J Alloys Compd
– volume: 35
  start-page: 7821
  year: 2010
  end-page: 7826
  ident: b0065
  article-title: Effects of CNTs on the hydrogen storage properties of MgH
  publication-title: Int J Hydrogen Energy
– volume: 52
  start-page: 33
  year: 2005
  end-page: 37
  ident: b0120
  article-title: Effects of RMG conditions on the hydrogen sorption properties of Mg
  publication-title: Scripta Mater
– volume: 364
  start-page: 283
  year: 2004
  end-page: 288
  ident: b0115
  article-title: Hydriding properties of nanocrystalline Mg
  publication-title: J Alloys Compd
– volume: 127
  start-page: 16675
  year: 2005
  end-page: 16680
  ident: b0020
  article-title: Hydrogen storage in magnesium clusters: quantum chemical study
  publication-title: J Am Chem Soc
– volume: 19
  start-page: 6052
  year: 2007
  end-page: 6057
  ident: b0035
  article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration
  publication-title: Chem Mater
– volume: 282
  start-page: 84
  year: 1999
  end-page: 92
  ident: b0015
  article-title: Thermodynamic investigation of the magnesium–hydrogen system
  publication-title: J Alloys Compd
– volume: 56
  start-page: 841
  year: 2007
  end-page: 846
  ident: b0005
  article-title: Hydrogen storage in magnesium-based hydrides and hydride composites
  publication-title: Scripta Mater
– volume: 34
  start-page: 1944
  year: 2009
  end-page: 1950
  ident: b0135
  article-title: Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb
  publication-title: Int J Hydrogen Energy
– volume: 92
  start-page: 264
  year: 2012
  end-page: 270
  ident: b0145
  article-title: Electrochemically assisted demetallisation of model metalloporphyrins and crude oil porphyrinic extracts in emulsified media, by using active permeated atomic hydrogen
  publication-title: Fuel
– volume: 33
  start-page: 4593
  year: 2008
  end-page: 4606
  ident: b0095
  article-title: Reactivity and hydrogen storage performances of magnesium–nickel–copper ternary mixtures prepared by reactive mechanical grinding
  publication-title: Int J Hydrogen Energy
– volume: 52
  start-page: 719
  year: 2005
  end-page: 724
  ident: b0105
  article-title: Improvement in H-sorption kinetics of MgH
  publication-title: Scripta Mater
– volume: 177
  start-page: 3626
  year: 2004
  end-page: 3632
  ident: b0100
  article-title: Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale
  publication-title: J Solid State Chem
– volume: 427
  start-page: 94
  year: 2007
  end-page: 100
  ident: b0080
  article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium
  publication-title: J Alloys Compd
– volume: 55
  start-page: 4585
  year: 2007
  end-page: 4591
  ident: b0140
  article-title: Superior hydrogen storage kinetics of MgH
  publication-title: Acta Mater
– volume: 45
  start-page: 805
  year: 2007
  end-page: 820
  ident: b0085
  article-title: Mechanically milled coal and magnesium composites for hydrogen storage
  publication-title: Carbon
– volume: 20
  start-page: 376
  year: 2008
  end-page: 378
  ident: b0030
  article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen
  publication-title: Chem Mater
– volume: 386
  start-page: 211
  year: 2005
  end-page: 216
  ident: b0040
  article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling
  publication-title: J Alloys Compd
– volume: 396
  start-page: 264
  year: 2005
  end-page: 268
  ident: b0125
  article-title: Improvement of hydrogen-storage properties of Mg by reactive mechanical grinding with Fe
  publication-title: J Alloys Compd
– volume: 36
  start-page: 4967
  year: 2011
  end-page: 4975
  ident: b0025
  article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction
  publication-title: Int J Hydrogen Energy
– volume: 340
  start-page: 189
  year: 2002
  end-page: 198
  ident: b0010
  article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium
  publication-title: J Alloys Compd
– volume: 90
  start-page: 3123
  year: 2011
  end-page: 3140
  ident: b0070
  article-title: Recent applications of carbon nanotubes in hydrogen production and storage
  publication-title: Fuel
– volume: 366
  start-page: 303
  year: 2004
  end-page: 308
  ident: b0130
  article-title: Hydrogen sorption properties of Mg
  publication-title: J Alloys Compd
– volume: 35
  start-page: 7821
  year: 2010
  ident: 10.1016/j.fuel.2012.09.002_b0065
  article-title: Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.080
– volume: 33
  start-page: 1310
  year: 2008
  ident: 10.1016/j.fuel.2012.09.002_b0075
  article-title: Hydrogen storage of the Mg–C composites
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.12.032
– volume: 177
  start-page: 3626
  year: 2004
  ident: 10.1016/j.fuel.2012.09.002_b0100
  article-title: Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2004.05.003
– volume: 52
  start-page: 33
  year: 2005
  ident: 10.1016/j.fuel.2012.09.002_b0120
  article-title: Effects of RMG conditions on the hydrogen sorption properties of Mg+Cr2O3 mixtures
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2004.09.001
– volume: 90
  start-page: 3123
  year: 2011
  ident: 10.1016/j.fuel.2012.09.002_b0070
  article-title: Recent applications of carbon nanotubes in hydrogen production and storage
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.06.051
– volume: 33
  start-page: 4593
  year: 2008
  ident: 10.1016/j.fuel.2012.09.002_b0095
  article-title: Reactivity and hydrogen storage performances of magnesium–nickel–copper ternary mixtures prepared by reactive mechanical grinding
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.053
– volume: 364
  start-page: 283
  year: 2004
  ident: 10.1016/j.fuel.2012.09.002_b0115
  article-title: Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al)
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(03)00544-9
– volume: 19
  start-page: 6052
  year: 2007
  ident: 10.1016/j.fuel.2012.09.002_b0035
  article-title: The preparation of carbon-supported magnesium nanoparticles using melt infiltration
  publication-title: Chem Mater
  doi: 10.1021/cm702205v
– volume: 366
  start-page: 298
  year: 2004
  ident: 10.1016/j.fuel.2012.09.002_b0060
  article-title: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(03)00746-1
– volume: 56
  start-page: 841
  year: 2007
  ident: 10.1016/j.fuel.2012.09.002_b0005
  article-title: Hydrogen storage in magnesium-based hydrides and hydride composites
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2007.01.003
– volume: 31
  start-page: 2088
  year: 2006
  ident: 10.1016/j.fuel.2012.09.002_b0045
  article-title: Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.01.020
– volume: 36
  start-page: 1159
  year: 2011
  ident: 10.1016/j.fuel.2012.09.002_b0090
  article-title: A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.089
– volume: 127
  start-page: 16675
  year: 2005
  ident: 10.1016/j.fuel.2012.09.002_b0020
  article-title: Hydrogen storage in magnesium clusters: quantum chemical study
  publication-title: J Am Chem Soc
  doi: 10.1021/ja054569h
– volume: 282
  start-page: 84
  year: 1999
  ident: 10.1016/j.fuel.2012.09.002_b0015
  article-title: Thermodynamic investigation of the magnesium–hydrogen system
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(98)00829-9
– volume: 386
  start-page: 211
  year: 2005
  ident: 10.1016/j.fuel.2012.09.002_b0040
  article-title: High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2004.04.145
– volume: 34
  start-page: 1944
  year: 2009
  ident: 10.1016/j.fuel.2012.09.002_b0135
  article-title: Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb2O5 alloys
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.12.015
– volume: 92
  start-page: 264
  year: 2012
  ident: 10.1016/j.fuel.2012.09.002_b0145
  article-title: Electrochemically assisted demetallisation of model metalloporphyrins and crude oil porphyrinic extracts in emulsified media, by using active permeated atomic hydrogen
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.08.015
– volume: 55
  start-page: 4585
  year: 2007
  ident: 10.1016/j.fuel.2012.09.002_b0140
  article-title: Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.04.020
– volume: 340
  start-page: 189
  year: 2002
  ident: 10.1016/j.fuel.2012.09.002_b0010
  article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(02)00120-2
– volume: 396
  start-page: 264
  year: 2005
  ident: 10.1016/j.fuel.2012.09.002_b0125
  article-title: Improvement of hydrogen-storage properties of Mg by reactive mechanical grinding with Fe2O3
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2004.12.036
– volume: 356–357
  start-page: 617
  year: 2003
  ident: 10.1016/j.fuel.2012.09.002_b0150
  article-title: NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(03)00121-X
– volume: 36
  start-page: 4967
  year: 2011
  ident: 10.1016/j.fuel.2012.09.002_b0025
  article-title: Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.052
– volume: 52
  start-page: 719
  year: 2005
  ident: 10.1016/j.fuel.2012.09.002_b0105
  article-title: Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2004.12.020
– volume: 366
  start-page: 303
  year: 2004
  ident: 10.1016/j.fuel.2012.09.002_b0130
  article-title: Hydrogen sorption properties of Mg+WO3 mixture made by reactive mechanical alloying
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(03)00747-3
– volume: 20
  start-page: 376
  year: 2008
  ident: 10.1016/j.fuel.2012.09.002_b0030
  article-title: Synthesis of colloidal magnesium: a near room temperature store for hydrogen
  publication-title: Chem Mater
  doi: 10.1021/cm702897f
– volume: 129
  start-page: 73
  year: 2004
  ident: 10.1016/j.fuel.2012.09.002_b0055
  article-title: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.11.013
– volume: 330–332
  start-page: 579
  year: 2002
  ident: 10.1016/j.fuel.2012.09.002_b0050
  article-title: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(01)01506-7
– volume: 45
  start-page: 805
  year: 2007
  ident: 10.1016/j.fuel.2012.09.002_b0085
  article-title: Mechanically milled coal and magnesium composites for hydrogen storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.11.017
– volume: 33
  start-page: 4586
  year: 2008
  ident: 10.1016/j.fuel.2012.09.002_b0110
  article-title: Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.097
– volume: 427
  start-page: 94
  year: 2007
  ident: 10.1016/j.fuel.2012.09.002_b0080
  article-title: Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2006.03.069
SSID ssj0007854
Score 2.3133218
Snippet ► Carbon from coal acted as dispersant, lubricant and milling media for Mg milling. ► The Mg easily hydrided into β-MgH2 and γ-MgH2 during milling under...
This paper is concerned with the functions of crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, for making Mg-based...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Aluminum
Applied sciences
Carbon
carbonization
Coal
cobalt
Crystallitic carbon
Dehydrogenation
desorption
Energy
Energy. Thermal use of fuels
enthalpy
Entropy
equations
Exact sciences and technology
Fourier transform infrared spectroscopy
Fuels
hydrogen
Hydrogen storage
Hydrogen storage material
iron
Magnesium
Mathematical analysis
milling
nanocomposites
nickel
particle size
Reactive milling
temperature
transmission electron microscopy
X-ray diffraction
Title Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium
URI https://dx.doi.org/10.1016/j.fuel.2012.09.002
https://www.proquest.com/docview/1505347718
https://www.proquest.com/docview/1534825104
https://www.proquest.com/docview/1677931736
https://www.proquest.com/docview/1733527454
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADB5V5QJCiKfYFlaDxA2FJplXcqwqqgWknqjU28jzgkVtstrHoRd-e-08FipQDlwjTx7jmc_25LPN2HsQlXJFJJZ4lTKKELJKhjIL2oQoAsTcd2yLC724lF-u1NUBOxtzYYhWOWB_j-kdWg9XTobZPFktl5TjW2gqHVLQcRvGBZTBLg2t8o-_ftM8TKX6SsyFzkh6SJzpOV5pF-n3A50H1vujlX8Yp8cr2OCUpb7XxV-w3dmi86fsyeBE8tP-PZ-xg9g8Z4_-KC34gm37ssQDlvE2cb--RU_wuqO7cQ9r1zackku4b_FesOHUgAjHclgGDk3g6M7yH7dh3eIa40SiROjhfVrjXpaOcfkNfMeHLHc3L9nl-advZ4ts6LCQeYx0tlnwGlQBGpxODkMl8KLGTeyNUQClrlKdizoVIinlyjogFvkyAbow5KjFPIhX7LBpm_ia8eBLozHYrHIvZQDnHBr-GFyegvcmlDNWjFNr_VB-nLpgXNuRZ_bTkjosqcPmtUV1zNiH_ZhVX3xjUlqNGrP3lpBF6zA5bn5PvftHYcAu0J-VM_Zu1LfFzUd_VKCJ7W5j0ZtWQhq071MyVD8IoW_qPtogThZG6AkZQ-lxRip59J8feswell0zDyIbv2GH2_UuvkWXauvm3Z6Zswenn78uLu4ANLcieA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELYoHNqqqqCL-tpCjcStSkniLTlWqOixlBNI3Cyv5VWQPL3lwIXfzkyWR1FRDlyjcRZP_M2M_c0MIXuGFcJmAVniRUwwQkgK7vPES-UD8yakrmFbnMnxBT--FJdr5KDPhUFaZYf9LaY3aN1d2e9mc386mWCObyaxdEiG220QF7wgGxyWL7Yx-HH3wPNQhWhLMWcyQfEuc6YlecVlwPMH3BAsV3srT1inN1MzhzmLbbOL_3C7MUaHm-Rt50XSn-2LbpG1UL0jr_-pLfieLNq6xB2Y0TpSN7sFV_C64btRZ2a2rihml1BXw73MnGIHIhhLzcRTU3kK_iy9uvWzGn4yiixKwB7a5jWuZHEfl96YP_CQyfLmA7k4_HV-ME66FguJg1BnkXgnjciMNFZGC7GScayEVeyUEsbksohlysqYsSiEzUsPYOTyaMCHQU8tpJ59JOtVXYVPhHqXKwnRZpE6zr2x1oLlD96m0TunfD4iWT-12nX1x7ENxrXuiWZ_NapDozp0WmpQx4h8X42ZttU3BqVFrzH96B_SYB4Gx-08Uu_qURCxM3Bo-Yjs9vrWsPrwSMVUoV7ONbjTgnEFBn5IBgsIAfYN3UcqAMpMMTkgozA_TnHBPz_zQ7-Rl-Pz36f69Ojs5At5lTedPZB5_JWsL2bLsA3-1cLuNOvnHpveJAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+crystallitic+carbon+from+coal+as+milling+aid+and+for+hydrogen+storage+during+milling+with+magnesium&rft.jtitle=Fuel+%28Guildford%29&rft.au=Zhou%2C+Shixue&rft.au=Chen%2C+Haipeng&rft.au=Ding%2C+Chao&rft.au=Niu%2C+Haili&rft.date=2013-07-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=109&rft.spage=68&rft.epage=75&rft_id=info:doi/10.1016%2Fj.fuel.2012.09.002&rft.externalDocID=S0016236112007144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon