Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the Germination and Growth of Streptomyces coelicolor
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tight...
Saved in:
Published in | Journal of bacteriology Vol. 197; no. 5; pp. 848 - 860 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage. |
---|---|
AbstractList | Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage. Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage. Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage. |
Author | St-Onge, Renée J Haiser, Henry J Elliot, Marie A Gao, Chan Yousef, Mary R Sexton, Danielle L Brady, Lauren Leonard, Jacqueline |
Author_xml | – sequence: 1 fullname: Sexton, Danielle L – sequence: 2 fullname: St-Onge, Renée J – sequence: 3 fullname: Haiser, Henry J – sequence: 4 fullname: Yousef, Mary R – sequence: 5 fullname: Brady, Lauren – sequence: 6 fullname: Gao, Chan – sequence: 7 fullname: Leonard, Jacqueline – sequence: 8 fullname: Elliot, Marie A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25512314$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFrFDEUhYNU7Lb65LsGfBFkapJJZmdehHZp15YFpbX4GDKZO7spmWRNspb1H_ivze62RQtCn0KS7x7uufccoD3nHSD0mpIjSln98eLkiDBe8YLyZ2hESVMXQpRkD40IYbRoaFPuo4MYbwihnAv2Au0zISgrKR-h35cQV1GbpJLxrvga_OCTcXN8pnTyIeLjAHgC1uLvytpitk5G41P3az1AxLcmLfD5sPQhKZfwpbf50TicFoCnEAbjtqpYuQ5Pg7_NtO_xVQqwTH5Y60xrD9Zob314iZ73ykZ4dXceouuz02-Tz8Xsy_R8cjwrNG-aVHQt6zsQ2Qq0nLdUAfBaKTZWnajGVc0UgT5f2o7XWgvSsWx03PY1r0A0QMpD9Gmnu1y1A3QaXArKymUwgwpr6ZWR__44s5Bz_1PykgnSiCzw_k4g-B8riEkOJuo8IuXAr6KkVcMFKVnJn4BWnOUt1eUTUMG4qNi2gXeP0Bu_Ci4PbUMJSktGN9Sbv30-GLzffQY-7AAdfIwB-geEErlJlrw4kdtkyS1NH9H3oclDMvY_NW93Nb3yUs2DifL6ihEqchLrmlTj8g8On9sZ |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_3389_fmicb_2017_02205 crossref_primary_10_1080_10409238_2017_1337705 crossref_primary_10_1038_s42003_020_0918_0 crossref_primary_10_7717_peerj_18561 crossref_primary_10_1099_acmi_0_000647_v4 crossref_primary_10_1016_j_syapm_2021_126234 crossref_primary_10_1080_07391102_2016_1182947 crossref_primary_10_1080_15476286_2017_1338241 crossref_primary_10_1038_s42003_024_07164_8 crossref_primary_10_1038_s41598_019_40876_0 crossref_primary_10_3389_fmicb_2022_965843 crossref_primary_10_1080_01490451_2022_2097339 crossref_primary_10_3389_fmicb_2023_1089630 crossref_primary_10_1039_D3SC05819K crossref_primary_10_1074_jbc_RA120_013994 crossref_primary_10_1016_j_engmic_2022_100022 crossref_primary_10_3390_microorganisms11020485 crossref_primary_10_1186_s12934_024_02510_1 crossref_primary_10_3390_antibiotics7020041 crossref_primary_10_12688_f1000research_6709_1 crossref_primary_10_12688_f1000research_6709_2 crossref_primary_10_1111_mmi_12971 crossref_primary_10_3390_microorganisms12081528 crossref_primary_10_1038_s41598_017_00792_7 crossref_primary_10_1111_1462_2920_15008 crossref_primary_10_12688_f1000research_9534_1 |
Cites_doi | 10.1038/nmeth.2089 10.1128/jb.109.3.1266-1272.1972 10.1128/JB.00767-09 10.1128/IAI.72.1.515-526.2004 10.1016/j.chom.2013.05.012 10.1073/pnas.0337542100 10.1038/nprot.2007.13 10.1093/bioinformatics/bti206 10.1073/pnas.120163297 10.1186/1471-2180-3-3 10.1046/j.1365-2958.2002.03184.x 10.1128/IAI.74.5.2985-2995.2006 10.1073/pnas.1315860110 10.1128/JB.182.16.4491-4499.2000 10.1093/nar/gkt095 10.1046/j.1365-2958.1996.6191336.x 10.1128/jb.105.2.629-636.1971 10.1016/0378-1119(92)90603-M 10.1093/nar/gkm086 10.1371/journal.ppat.1000001 10.1128/IAI.01735-07 10.1186/1471-2164-14-558 10.1093/nar/gng073 10.1016/j.mib.2012.10.012 10.1046/j.1365-2958.2002.03183.x 10.1093/oso/9780195150667.001.0001 10.1128/IAI.73.5.3038-3043.2005 10.1038/nmeth.1701 10.1111/j.1365-2958.2007.05945.x 10.1186/1471-2164-6-39 10.1128/JB.00093-13 10.1016/0003-2697(76)90527-3 10.1016/j.mib.2011.10.003 10.1128/JB.181.1.204-211.1999 10.1038/nrmicro2677 10.1186/1471-2334-7-146 10.1007/s00018-006-6188-2 10.1371/journal.ppat.1001020 10.1086/378563 10.1111/j.1365-2958.2007.06078.x 10.1038/nsmb905 10.1073/pnas.95.15.8916 10.1038/nrmicro1968 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Mar 2015 Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Mar 2015 – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1128/JB.02464-14 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA CrossRef Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Rpfs of S. coelicolor |
EISSN | 1098-5530 |
EndPage | 860 |
ExternalDocumentID | PMC4325095 3590489351 25512314 10_1128_JB_02464_14 US201500188067 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP-93635 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-O P-S P2P PQQKQ QZG RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT VH1 W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c499t-db2fde5014eb44b1aee48aa27ad567682a0ef7adbd48cc50d22317bf846e59e03 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 18:32:20 EDT 2025 Fri Jul 11 02:52:23 EDT 2025 Fri Jul 11 10:19:05 EDT 2025 Fri Jul 11 11:23:01 EDT 2025 Mon Jun 30 08:39:12 EDT 2025 Mon Jul 21 06:03:51 EDT 2025 Tue Jul 01 03:26:28 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Thu Apr 03 09:44:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-db2fde5014eb44b1aee48aa27ad567682a0ef7adbd48cc50d22317bf846e59e03 |
Notes | http://dx.doi.org/10.1128/JB.02464-14 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Citation Sexton DL, St-Onge RJ, Haiser HJ, Yousef MR, Brady L, Gao C, Leonard J, Elliot MA. 2015. Resuscitation-promoting factors are cell wall-lytic enzymes with important roles in the germination and growth of Streptomyces coelicolor. J Bacteriol 197:848–860. doi:10.1128/JB.02464-14. |
OpenAccessLink | https://jb.asm.org/content/jb/197/5/848.full.pdf |
PMID | 25512314 |
PQID | 1655113215 |
PQPubID | 40724 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325095 proquest_miscellaneous_1694503234 proquest_miscellaneous_1664200283 proquest_miscellaneous_1652456295 proquest_journals_1655113215 pubmed_primary_25512314 crossref_primary_10_1128_JB_02464_14 crossref_citationtrail_10_1128_JB_02464_14 fao_agris_US201500188067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Hopwood DA (e_1_3_3_2_2) 2007 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Kieser T (e_1_3_3_22_2) 2000 Elliot MA (e_1_3_3_5_2) 2012 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 14688133 - Infect Immun. 2004 Jan;72(1):515-26 4110927 - J Bacteriol. 1972 Mar;109(3):1266-72 17401334 - Nat Protoc. 2007;2(1):31-4 20686708 - PLoS Pathog. 2010;6(7):e1001020 23427309 - Nucleic Acids Res. 2013 Apr;41(7):4171-84 10913082 - J Bacteriol. 2000 Aug;182(16):4491-9 18591237 - Infect Immun. 2008 Sep;76(9):4269-81 18463693 - PLoS Pathog. 2008 Feb 15;4(2):e1000001 8843436 - Mol Microbiol. 1996 Jul;21(1):77-96 9864331 - J Bacteriol. 1999 Jan;181(1):204-11 19717604 - J Bacteriol. 2009 Nov;191(21):6501-12 12410821 - Mol Microbiol. 2002 Nov;46(3):623-35 23153774 - Curr Opin Microbiol. 2012 Dec;15(6):737-43 1547955 - Gene. 1992 Feb 1;111(1):61-8 15598841 - Bioinformatics. 2005 Apr 15;21(8):1301-3 17013561 - Cell Mol Life Sci. 2006 Nov;63(22):2555-9 17919286 - Mol Microbiol. 2007 Nov;66(3):658-68 23768489 - Cell Host Microbe. 2013 Jun 12;13(6):643-51 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 22930834 - Nat Methods. 2012 Jul;9(7):671-5 23947565 - BMC Genomics. 2013;14:558 22203377 - Nat Rev Microbiol. 2012 Feb;10(2):123-36 12853650 - Nucleic Acids Res. 2003 Jul 15;31(14):e73 942051 - Anal Biochem. 1976 May 7;72:248-54 24191058 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19095-100 9671779 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8916-21 22055466 - Curr Opin Microbiol. 2011 Dec;14(6):698-703 4993341 - J Bacteriol. 1971 Feb;105(2):629-36 15845511 - Infect Immun. 2005 May;73(5):3038-43 12625841 - BMC Microbiol. 2003 Feb 6;3:3 16622237 - Infect Immun. 2006 May;74(5):2985-95 14593589 - J Infect Dis. 2003 Nov 1;188(9):1326-31 19079351 - Nat Rev Microbiol. 2009 Jan;7(1):36-49 12410820 - Mol Microbiol. 2002 Nov;46(3):611-21 12563033 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6 15774001 - BMC Genomics. 2005;6:39 18086300 - BMC Infect Dis. 2007;7:146 17337439 - Nucleic Acids Res. 2007;35(6):e46 18186793 - Mol Microbiol. 2008 Feb;67(3):672-84 23417486 - J Bacteriol. 2013 May;195(9):1875-82 15723078 - Nat Struct Mol Biol. 2005 Mar;12(3):270-3 21959131 - Nat Methods. 2011;8(10):785-6 |
References_xml | – ident: e_1_3_3_27_2 doi: 10.1038/nmeth.2089 – ident: e_1_3_3_36_2 doi: 10.1128/jb.109.3.1266-1272.1972 – ident: e_1_3_3_26_2 doi: 10.1128/JB.00767-09 – ident: e_1_3_3_14_2 doi: 10.1128/IAI.72.1.515-526.2004 – ident: e_1_3_3_6_2 doi: 10.1016/j.chom.2013.05.012 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.0337542100 – ident: e_1_3_3_31_2 doi: 10.1038/nprot.2007.13 – ident: e_1_3_3_32_2 doi: 10.1093/bioinformatics/bti206 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.120163297 – ident: e_1_3_3_37_2 doi: 10.1186/1471-2180-3-3 – volume-title: Streptomyces spores, encyclopedia of life sciences year: 2012 ident: e_1_3_3_5_2 – volume-title: Practical Streptomyces genetics year: 2000 ident: e_1_3_3_22_2 – ident: e_1_3_3_13_2 doi: 10.1046/j.1365-2958.2002.03184.x – ident: e_1_3_3_15_2 doi: 10.1128/IAI.74.5.2985-2995.2006 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1315860110 – ident: e_1_3_3_8_2 doi: 10.1128/JB.182.16.4491-4499.2000 – ident: e_1_3_3_30_2 doi: 10.1093/nar/gkt095 – ident: e_1_3_3_46_2 doi: 10.1046/j.1365-2958.1996.6191336.x – ident: e_1_3_3_35_2 doi: 10.1128/jb.105.2.629-636.1971 – ident: e_1_3_3_43_2 doi: 10.1016/0378-1119(92)90603-M – ident: e_1_3_3_33_2 doi: 10.1093/nar/gkm086 – ident: e_1_3_3_19_2 doi: 10.1371/journal.ppat.1000001 – ident: e_1_3_3_17_2 doi: 10.1128/IAI.01735-07 – ident: e_1_3_3_23_2 doi: 10.1186/1471-2164-14-558 – ident: e_1_3_3_24_2 doi: 10.1093/nar/gng073 – ident: e_1_3_3_4_2 doi: 10.1016/j.mib.2012.10.012 – ident: e_1_3_3_12_2 doi: 10.1046/j.1365-2958.2002.03183.x – volume-title: Streptomyces in nature and medicine: the antibiotic makers year: 2007 ident: e_1_3_3_2_2 doi: 10.1093/oso/9780195150667.001.0001 – ident: e_1_3_3_39_2 doi: 10.1128/IAI.73.5.3038-3043.2005 – ident: e_1_3_3_28_2 doi: 10.1038/nmeth.1701 – ident: e_1_3_3_18_2 doi: 10.1111/j.1365-2958.2007.05945.x – ident: e_1_3_3_21_2 doi: 10.1186/1471-2164-6-39 – ident: e_1_3_3_38_2 doi: 10.1128/JB.00093-13 – ident: e_1_3_3_29_2 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_3_3_42_2 doi: 10.1016/j.mib.2011.10.003 – ident: e_1_3_3_44_2 doi: 10.1128/JB.181.1.204-211.1999 – ident: e_1_3_3_34_2 doi: 10.1038/nrmicro2677 – ident: e_1_3_3_40_2 doi: 10.1186/1471-2334-7-146 – ident: e_1_3_3_10_2 doi: 10.1007/s00018-006-6188-2 – ident: e_1_3_3_41_2 doi: 10.1371/journal.ppat.1001020 – ident: e_1_3_3_9_2 doi: 10.1086/378563 – ident: e_1_3_3_16_2 doi: 10.1111/j.1365-2958.2007.06078.x – ident: e_1_3_3_20_2 doi: 10.1038/nsmb905 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.95.15.8916 – ident: e_1_3_3_3_2 doi: 10.1038/nrmicro1968 – reference: 15774001 - BMC Genomics. 2005;6:39 – reference: 9671779 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8916-21 – reference: 23153774 - Curr Opin Microbiol. 2012 Dec;15(6):737-43 – reference: 23947565 - BMC Genomics. 2013;14:558 – reference: 12410821 - Mol Microbiol. 2002 Nov;46(3):623-35 – reference: 18591237 - Infect Immun. 2008 Sep;76(9):4269-81 – reference: 24191058 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19095-100 – reference: 8843436 - Mol Microbiol. 1996 Jul;21(1):77-96 – reference: 14593589 - J Infect Dis. 2003 Nov 1;188(9):1326-31 – reference: 12563033 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6 – reference: 22203377 - Nat Rev Microbiol. 2012 Feb;10(2):123-36 – reference: 1547955 - Gene. 1992 Feb 1;111(1):61-8 – reference: 21959131 - Nat Methods. 2011;8(10):785-6 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 17919286 - Mol Microbiol. 2007 Nov;66(3):658-68 – reference: 14688133 - Infect Immun. 2004 Jan;72(1):515-26 – reference: 23417486 - J Bacteriol. 2013 May;195(9):1875-82 – reference: 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 – reference: 19079351 - Nat Rev Microbiol. 2009 Jan;7(1):36-49 – reference: 16622237 - Infect Immun. 2006 May;74(5):2985-95 – reference: 4110927 - J Bacteriol. 1972 Mar;109(3):1266-72 – reference: 18186793 - Mol Microbiol. 2008 Feb;67(3):672-84 – reference: 19717604 - J Bacteriol. 2009 Nov;191(21):6501-12 – reference: 18463693 - PLoS Pathog. 2008 Feb 15;4(2):e1000001 – reference: 10913082 - J Bacteriol. 2000 Aug;182(16):4491-9 – reference: 12853650 - Nucleic Acids Res. 2003 Jul 15;31(14):e73 – reference: 12410820 - Mol Microbiol. 2002 Nov;46(3):611-21 – reference: 17337439 - Nucleic Acids Res. 2007;35(6):e46 – reference: 18086300 - BMC Infect Dis. 2007;7:146 – reference: 17401334 - Nat Protoc. 2007;2(1):31-4 – reference: 15598841 - Bioinformatics. 2005 Apr 15;21(8):1301-3 – reference: 17013561 - Cell Mol Life Sci. 2006 Nov;63(22):2555-9 – reference: 22055466 - Curr Opin Microbiol. 2011 Dec;14(6):698-703 – reference: 15723078 - Nat Struct Mol Biol. 2005 Mar;12(3):270-3 – reference: 15845511 - Infect Immun. 2005 May;73(5):3038-43 – reference: 23768489 - Cell Host Microbe. 2013 Jun 12;13(6):643-51 – reference: 4993341 - J Bacteriol. 1971 Feb;105(2):629-36 – reference: 12625841 - BMC Microbiol. 2003 Feb 6;3:3 – reference: 9864331 - J Bacteriol. 1999 Jan;181(1):204-11 – reference: 23427309 - Nucleic Acids Res. 2013 Apr;41(7):4171-84 – reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5 – reference: 20686708 - PLoS Pathog. 2010;6(7):e1001020 |
SSID | ssj0014452 |
Score | 2.3104181 |
Snippet | Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves... Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves... |
SourceID | pubmedcentral proquest pubmed crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 848 |
SubjectTerms | Actinobacteria Amino Acid Sequence autoregulation bacteria Bacterial proteins Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Cell Wall - genetics Cell Wall - metabolism cell walls Cells Cytokines - chemistry Cytokines - genetics Cytokines - metabolism dormancy Environmental conditions environmental factors Enzymes Germination Gram-positive bacteria lysozyme Molecular Sequence Data Peptidoglycan - metabolism peptidoglycans proteins Sequence Alignment spore germination spores Spores, Bacterial - chemistry Spores, Bacterial - genetics Spores, Bacterial - growth & development Spores, Bacterial - metabolism Streptomyces Streptomyces coelicolor Streptomyces coelicolor - chemistry Streptomyces coelicolor - genetics Streptomyces coelicolor - growth & development Streptomyces coelicolor - metabolism |
Title | Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the Germination and Growth of Streptomyces coelicolor |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25512314 https://www.proquest.com/docview/1655113215 https://www.proquest.com/docview/1652456295 https://www.proquest.com/docview/1664200283 https://www.proquest.com/docview/1694503234 https://pubmed.ncbi.nlm.nih.gov/PMC4325095 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lRUhcEO8GClqknogcbGfXsY9tlQdRaFEeUm6WH2OolDpV4hzSf8CZP8yMd-04kFaFi5V4J2vH83l2ZufF2AkAJLHXMo0YGWyIUArDo1qErt0OEhmigpq38_l64fSnYjCTs1rtVyVqaZ2Fzeh2b17J_3AVzyFfKUv2HzhbToon8DPyF4_IYTw-iMcjWK1xCVPedOObiqxD07-rm-icLqFxTptztF1uDDdUnLWT3m6oQFO-AfvlOle_06wxosJORdBjT0XIZEWocg9tdaSm_BaqgpktrjcUyBUtYE5AWizvUHFDVQp6Z-d-jKuB8vSr7PY5NMr953FmXKaq1_sIxWHuw4et46pPbq6lWixTCvariKwVJDr1aKNjIPVWhiW3sVxlaoGF0le1TCzFs4rf1TiUjZumK1zDVV0ItNh1VbXOYgVXY38vDjYlPAzOmqiXOMJQyau7JbgvLv3udDj0J53Z5IA9stH2oLYYvVkZN4QGqNQl6NW96qRPnPxzZeodNecgCRb7LJg_A3Erms3kGXuq-cVPFb6esxqkL9hj1aR085L9vANlXKMMfwicUMa3KOMaZZxQxkuU8Rxl_CrliDJeQRlHlHGFMr5IeBVlfIuyV2za7UzO-4Zu4GFEaEhnRhzaSQzkuYZQiNAKAIQbBCgGYumgnWsHJiT4JYyFG0XSjFFXtdphgjoxSA_M1mt2mC5SOGJchk4gIJBghpGIIPDa-dxOO_BMD1yos0_F8_aLJ0JNVuZ-buXarj8483PmoLFbZycl8Y0q6rKf7AgZ5wffcbn1p2NCLPWwdFHBq7Pjgpu-Fggr33LQ_LBaqETX2cdyGMU1-eCCFPBdIBoKNbC9e2kcYedNxO6j8YQ0W3YL7_KNAlH5V2y8DXyQONLegVdJQCXld0fSqx95aXnRQpPIk28fcN137Mn2HT5mh9lyDe9RQc_CD_kL8xtbGOpj |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resuscitation-Promoting+Factors+Are+Cell+Wall-Lytic+Enzymes+with+Important+Roles+in+the+Germination+and+Growth+of+Streptomyces+coelicolor&rft.jtitle=Journal+of+bacteriology&rft.au=Sexton%2C+Danielle+L&rft.au=St-Onge%2C+Ren%C3%A9e+J&rft.au=Haiser%2C+Henry+J&rft.au=Yousef%2C+Mary+R&rft.date=2015-03-01&rft.issn=0021-9193&rft.volume=197&rft.issue=5+p.848-860&rft.spage=848&rft.epage=860&rft_id=info:doi/10.1128%2FJB.02464-14&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |