Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the Germination and Growth of Streptomyces coelicolor

Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tight...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 197; no. 5; pp. 848 - 860
Main Authors Sexton, Danielle L, St-Onge, Renée J, Haiser, Henry J, Yousef, Mary R, Brady, Lauren, Gao, Chan, Leonard, Jacqueline, Elliot, Marie A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.
AbstractList Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.
Author St-Onge, Renée J
Haiser, Henry J
Elliot, Marie A
Gao, Chan
Yousef, Mary R
Sexton, Danielle L
Brady, Lauren
Leonard, Jacqueline
Author_xml – sequence: 1
  fullname: Sexton, Danielle L
– sequence: 2
  fullname: St-Onge, Renée J
– sequence: 3
  fullname: Haiser, Henry J
– sequence: 4
  fullname: Yousef, Mary R
– sequence: 5
  fullname: Brady, Lauren
– sequence: 6
  fullname: Gao, Chan
– sequence: 7
  fullname: Leonard, Jacqueline
– sequence: 8
  fullname: Elliot, Marie A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25512314$$D View this record in MEDLINE/PubMed
BookMark eNqNklFrFDEUhYNU7Lb65LsGfBFkapJJZmdehHZp15YFpbX4GDKZO7spmWRNspb1H_ivze62RQtCn0KS7x7uufccoD3nHSD0mpIjSln98eLkiDBe8YLyZ2hESVMXQpRkD40IYbRoaFPuo4MYbwihnAv2Au0zISgrKR-h35cQV1GbpJLxrvga_OCTcXN8pnTyIeLjAHgC1uLvytpitk5G41P3az1AxLcmLfD5sPQhKZfwpbf50TicFoCnEAbjtqpYuQ5Pg7_NtO_xVQqwTH5Y60xrD9Zob314iZ73ykZ4dXceouuz02-Tz8Xsy_R8cjwrNG-aVHQt6zsQ2Qq0nLdUAfBaKTZWnajGVc0UgT5f2o7XWgvSsWx03PY1r0A0QMpD9Gmnu1y1A3QaXArKymUwgwpr6ZWR__44s5Bz_1PykgnSiCzw_k4g-B8riEkOJuo8IuXAr6KkVcMFKVnJn4BWnOUt1eUTUMG4qNi2gXeP0Bu_Ci4PbUMJSktGN9Sbv30-GLzffQY-7AAdfIwB-geEErlJlrw4kdtkyS1NH9H3oclDMvY_NW93Nb3yUs2DifL6ihEqchLrmlTj8g8On9sZ
CODEN JOBAAY
CitedBy_id crossref_primary_10_3389_fmicb_2017_02205
crossref_primary_10_1080_10409238_2017_1337705
crossref_primary_10_1038_s42003_020_0918_0
crossref_primary_10_7717_peerj_18561
crossref_primary_10_1099_acmi_0_000647_v4
crossref_primary_10_1016_j_syapm_2021_126234
crossref_primary_10_1080_07391102_2016_1182947
crossref_primary_10_1080_15476286_2017_1338241
crossref_primary_10_1038_s42003_024_07164_8
crossref_primary_10_1038_s41598_019_40876_0
crossref_primary_10_3389_fmicb_2022_965843
crossref_primary_10_1080_01490451_2022_2097339
crossref_primary_10_3389_fmicb_2023_1089630
crossref_primary_10_1039_D3SC05819K
crossref_primary_10_1074_jbc_RA120_013994
crossref_primary_10_1016_j_engmic_2022_100022
crossref_primary_10_3390_microorganisms11020485
crossref_primary_10_1186_s12934_024_02510_1
crossref_primary_10_3390_antibiotics7020041
crossref_primary_10_12688_f1000research_6709_1
crossref_primary_10_12688_f1000research_6709_2
crossref_primary_10_1111_mmi_12971
crossref_primary_10_3390_microorganisms12081528
crossref_primary_10_1038_s41598_017_00792_7
crossref_primary_10_1111_1462_2920_15008
crossref_primary_10_12688_f1000research_9534_1
Cites_doi 10.1038/nmeth.2089
10.1128/jb.109.3.1266-1272.1972
10.1128/JB.00767-09
10.1128/IAI.72.1.515-526.2004
10.1016/j.chom.2013.05.012
10.1073/pnas.0337542100
10.1038/nprot.2007.13
10.1093/bioinformatics/bti206
10.1073/pnas.120163297
10.1186/1471-2180-3-3
10.1046/j.1365-2958.2002.03184.x
10.1128/IAI.74.5.2985-2995.2006
10.1073/pnas.1315860110
10.1128/JB.182.16.4491-4499.2000
10.1093/nar/gkt095
10.1046/j.1365-2958.1996.6191336.x
10.1128/jb.105.2.629-636.1971
10.1016/0378-1119(92)90603-M
10.1093/nar/gkm086
10.1371/journal.ppat.1000001
10.1128/IAI.01735-07
10.1186/1471-2164-14-558
10.1093/nar/gng073
10.1016/j.mib.2012.10.012
10.1046/j.1365-2958.2002.03183.x
10.1093/oso/9780195150667.001.0001
10.1128/IAI.73.5.3038-3043.2005
10.1038/nmeth.1701
10.1111/j.1365-2958.2007.05945.x
10.1186/1471-2164-6-39
10.1128/JB.00093-13
10.1016/0003-2697(76)90527-3
10.1016/j.mib.2011.10.003
10.1128/JB.181.1.204-211.1999
10.1038/nrmicro2677
10.1186/1471-2334-7-146
10.1007/s00018-006-6188-2
10.1371/journal.ppat.1001020
10.1086/378563
10.1111/j.1365-2958.2007.06078.x
10.1038/nsmb905
10.1073/pnas.95.15.8916
10.1038/nrmicro1968
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Mar 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Mar 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1128/JB.02464-14
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
CrossRef

Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Rpfs of S. coelicolor
EISSN 1098-5530
EndPage 860
ExternalDocumentID PMC4325095
3590489351
25512314
10_1128_JB_02464_14
US201500188067
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-93635
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
ABPPZ
ABTAH
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-O
P-S
P2P
PQQKQ
QZG
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAGFI
AAYXX
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c499t-db2fde5014eb44b1aee48aa27ad567682a0ef7adbd48cc50d22317bf846e59e03
ISSN 0021-9193
1098-5530
IngestDate Thu Aug 21 18:32:20 EDT 2025
Fri Jul 11 02:52:23 EDT 2025
Fri Jul 11 10:19:05 EDT 2025
Fri Jul 11 11:23:01 EDT 2025
Mon Jun 30 08:39:12 EDT 2025
Mon Jul 21 06:03:51 EDT 2025
Tue Jul 01 03:26:28 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Thu Apr 03 09:44:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-db2fde5014eb44b1aee48aa27ad567682a0ef7adbd48cc50d22317bf846e59e03
Notes http://dx.doi.org/10.1128/JB.02464-14
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Citation Sexton DL, St-Onge RJ, Haiser HJ, Yousef MR, Brady L, Gao C, Leonard J, Elliot MA. 2015. Resuscitation-promoting factors are cell wall-lytic enzymes with important roles in the germination and growth of Streptomyces coelicolor. J Bacteriol 197:848–860. doi:10.1128/JB.02464-14.
OpenAccessLink https://jb.asm.org/content/jb/197/5/848.full.pdf
PMID 25512314
PQID 1655113215
PQPubID 40724
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4325095
proquest_miscellaneous_1694503234
proquest_miscellaneous_1664200283
proquest_miscellaneous_1652456295
proquest_journals_1655113215
pubmed_primary_25512314
crossref_primary_10_1128_JB_02464_14
crossref_citationtrail_10_1128_JB_02464_14
fao_agris_US201500188067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Hopwood DA (e_1_3_3_2_2) 2007
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Kieser T (e_1_3_3_22_2) 2000
Elliot MA (e_1_3_3_5_2) 2012
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
14688133 - Infect Immun. 2004 Jan;72(1):515-26
4110927 - J Bacteriol. 1972 Mar;109(3):1266-72
17401334 - Nat Protoc. 2007;2(1):31-4
20686708 - PLoS Pathog. 2010;6(7):e1001020
23427309 - Nucleic Acids Res. 2013 Apr;41(7):4171-84
10913082 - J Bacteriol. 2000 Aug;182(16):4491-9
18591237 - Infect Immun. 2008 Sep;76(9):4269-81
18463693 - PLoS Pathog. 2008 Feb 15;4(2):e1000001
8843436 - Mol Microbiol. 1996 Jul;21(1):77-96
9864331 - J Bacteriol. 1999 Jan;181(1):204-11
19717604 - J Bacteriol. 2009 Nov;191(21):6501-12
12410821 - Mol Microbiol. 2002 Nov;46(3):623-35
23153774 - Curr Opin Microbiol. 2012 Dec;15(6):737-43
1547955 - Gene. 1992 Feb 1;111(1):61-8
15598841 - Bioinformatics. 2005 Apr 15;21(8):1301-3
17013561 - Cell Mol Life Sci. 2006 Nov;63(22):2555-9
17919286 - Mol Microbiol. 2007 Nov;66(3):658-68
23768489 - Cell Host Microbe. 2013 Jun 12;13(6):643-51
10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
22930834 - Nat Methods. 2012 Jul;9(7):671-5
23947565 - BMC Genomics. 2013;14:558
22203377 - Nat Rev Microbiol. 2012 Feb;10(2):123-36
12853650 - Nucleic Acids Res. 2003 Jul 15;31(14):e73
942051 - Anal Biochem. 1976 May 7;72:248-54
24191058 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19095-100
9671779 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8916-21
22055466 - Curr Opin Microbiol. 2011 Dec;14(6):698-703
4993341 - J Bacteriol. 1971 Feb;105(2):629-36
15845511 - Infect Immun. 2005 May;73(5):3038-43
12625841 - BMC Microbiol. 2003 Feb 6;3:3
16622237 - Infect Immun. 2006 May;74(5):2985-95
14593589 - J Infect Dis. 2003 Nov 1;188(9):1326-31
19079351 - Nat Rev Microbiol. 2009 Jan;7(1):36-49
12410820 - Mol Microbiol. 2002 Nov;46(3):611-21
12563033 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6
15774001 - BMC Genomics. 2005;6:39
18086300 - BMC Infect Dis. 2007;7:146
17337439 - Nucleic Acids Res. 2007;35(6):e46
18186793 - Mol Microbiol. 2008 Feb;67(3):672-84
23417486 - J Bacteriol. 2013 May;195(9):1875-82
15723078 - Nat Struct Mol Biol. 2005 Mar;12(3):270-3
21959131 - Nat Methods. 2011;8(10):785-6
References_xml – ident: e_1_3_3_27_2
  doi: 10.1038/nmeth.2089
– ident: e_1_3_3_36_2
  doi: 10.1128/jb.109.3.1266-1272.1972
– ident: e_1_3_3_26_2
  doi: 10.1128/JB.00767-09
– ident: e_1_3_3_14_2
  doi: 10.1128/IAI.72.1.515-526.2004
– ident: e_1_3_3_6_2
  doi: 10.1016/j.chom.2013.05.012
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.0337542100
– ident: e_1_3_3_31_2
  doi: 10.1038/nprot.2007.13
– ident: e_1_3_3_32_2
  doi: 10.1093/bioinformatics/bti206
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.120163297
– ident: e_1_3_3_37_2
  doi: 10.1186/1471-2180-3-3
– volume-title: Streptomyces spores, encyclopedia of life sciences
  year: 2012
  ident: e_1_3_3_5_2
– volume-title: Practical Streptomyces genetics
  year: 2000
  ident: e_1_3_3_22_2
– ident: e_1_3_3_13_2
  doi: 10.1046/j.1365-2958.2002.03184.x
– ident: e_1_3_3_15_2
  doi: 10.1128/IAI.74.5.2985-2995.2006
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1315860110
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.182.16.4491-4499.2000
– ident: e_1_3_3_30_2
  doi: 10.1093/nar/gkt095
– ident: e_1_3_3_46_2
  doi: 10.1046/j.1365-2958.1996.6191336.x
– ident: e_1_3_3_35_2
  doi: 10.1128/jb.105.2.629-636.1971
– ident: e_1_3_3_43_2
  doi: 10.1016/0378-1119(92)90603-M
– ident: e_1_3_3_33_2
  doi: 10.1093/nar/gkm086
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.ppat.1000001
– ident: e_1_3_3_17_2
  doi: 10.1128/IAI.01735-07
– ident: e_1_3_3_23_2
  doi: 10.1186/1471-2164-14-558
– ident: e_1_3_3_24_2
  doi: 10.1093/nar/gng073
– ident: e_1_3_3_4_2
  doi: 10.1016/j.mib.2012.10.012
– ident: e_1_3_3_12_2
  doi: 10.1046/j.1365-2958.2002.03183.x
– volume-title: Streptomyces in nature and medicine: the antibiotic makers
  year: 2007
  ident: e_1_3_3_2_2
  doi: 10.1093/oso/9780195150667.001.0001
– ident: e_1_3_3_39_2
  doi: 10.1128/IAI.73.5.3038-3043.2005
– ident: e_1_3_3_28_2
  doi: 10.1038/nmeth.1701
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1365-2958.2007.05945.x
– ident: e_1_3_3_21_2
  doi: 10.1186/1471-2164-6-39
– ident: e_1_3_3_38_2
  doi: 10.1128/JB.00093-13
– ident: e_1_3_3_29_2
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_3_3_42_2
  doi: 10.1016/j.mib.2011.10.003
– ident: e_1_3_3_44_2
  doi: 10.1128/JB.181.1.204-211.1999
– ident: e_1_3_3_34_2
  doi: 10.1038/nrmicro2677
– ident: e_1_3_3_40_2
  doi: 10.1186/1471-2334-7-146
– ident: e_1_3_3_10_2
  doi: 10.1007/s00018-006-6188-2
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.ppat.1001020
– ident: e_1_3_3_9_2
  doi: 10.1086/378563
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1365-2958.2007.06078.x
– ident: e_1_3_3_20_2
  doi: 10.1038/nsmb905
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.95.15.8916
– ident: e_1_3_3_3_2
  doi: 10.1038/nrmicro1968
– reference: 15774001 - BMC Genomics. 2005;6:39
– reference: 9671779 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8916-21
– reference: 23153774 - Curr Opin Microbiol. 2012 Dec;15(6):737-43
– reference: 23947565 - BMC Genomics. 2013;14:558
– reference: 12410821 - Mol Microbiol. 2002 Nov;46(3):623-35
– reference: 18591237 - Infect Immun. 2008 Sep;76(9):4269-81
– reference: 24191058 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19095-100
– reference: 8843436 - Mol Microbiol. 1996 Jul;21(1):77-96
– reference: 14593589 - J Infect Dis. 2003 Nov 1;188(9):1326-31
– reference: 12563033 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6
– reference: 22203377 - Nat Rev Microbiol. 2012 Feb;10(2):123-36
– reference: 1547955 - Gene. 1992 Feb 1;111(1):61-8
– reference: 21959131 - Nat Methods. 2011;8(10):785-6
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 17919286 - Mol Microbiol. 2007 Nov;66(3):658-68
– reference: 14688133 - Infect Immun. 2004 Jan;72(1):515-26
– reference: 23417486 - J Bacteriol. 2013 May;195(9):1875-82
– reference: 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
– reference: 19079351 - Nat Rev Microbiol. 2009 Jan;7(1):36-49
– reference: 16622237 - Infect Immun. 2006 May;74(5):2985-95
– reference: 4110927 - J Bacteriol. 1972 Mar;109(3):1266-72
– reference: 18186793 - Mol Microbiol. 2008 Feb;67(3):672-84
– reference: 19717604 - J Bacteriol. 2009 Nov;191(21):6501-12
– reference: 18463693 - PLoS Pathog. 2008 Feb 15;4(2):e1000001
– reference: 10913082 - J Bacteriol. 2000 Aug;182(16):4491-9
– reference: 12853650 - Nucleic Acids Res. 2003 Jul 15;31(14):e73
– reference: 12410820 - Mol Microbiol. 2002 Nov;46(3):611-21
– reference: 17337439 - Nucleic Acids Res. 2007;35(6):e46
– reference: 18086300 - BMC Infect Dis. 2007;7:146
– reference: 17401334 - Nat Protoc. 2007;2(1):31-4
– reference: 15598841 - Bioinformatics. 2005 Apr 15;21(8):1301-3
– reference: 17013561 - Cell Mol Life Sci. 2006 Nov;63(22):2555-9
– reference: 22055466 - Curr Opin Microbiol. 2011 Dec;14(6):698-703
– reference: 15723078 - Nat Struct Mol Biol. 2005 Mar;12(3):270-3
– reference: 15845511 - Infect Immun. 2005 May;73(5):3038-43
– reference: 23768489 - Cell Host Microbe. 2013 Jun 12;13(6):643-51
– reference: 4993341 - J Bacteriol. 1971 Feb;105(2):629-36
– reference: 12625841 - BMC Microbiol. 2003 Feb 6;3:3
– reference: 9864331 - J Bacteriol. 1999 Jan;181(1):204-11
– reference: 23427309 - Nucleic Acids Res. 2013 Apr;41(7):4171-84
– reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5
– reference: 20686708 - PLoS Pathog. 2010;6(7):e1001020
SSID ssj0014452
Score 2.3104181
Snippet Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves...
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 848
SubjectTerms Actinobacteria
Amino Acid Sequence
autoregulation
bacteria
Bacterial proteins
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Cell Wall - genetics
Cell Wall - metabolism
cell walls
Cells
Cytokines - chemistry
Cytokines - genetics
Cytokines - metabolism
dormancy
Environmental conditions
environmental factors
Enzymes
Germination
Gram-positive bacteria
lysozyme
Molecular Sequence Data
Peptidoglycan - metabolism
peptidoglycans
proteins
Sequence Alignment
spore germination
spores
Spores, Bacterial - chemistry
Spores, Bacterial - genetics
Spores, Bacterial - growth & development
Spores, Bacterial - metabolism
Streptomyces
Streptomyces coelicolor
Streptomyces coelicolor - chemistry
Streptomyces coelicolor - genetics
Streptomyces coelicolor - growth & development
Streptomyces coelicolor - metabolism
Title Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the Germination and Growth of Streptomyces coelicolor
URI https://www.ncbi.nlm.nih.gov/pubmed/25512314
https://www.proquest.com/docview/1655113215
https://www.proquest.com/docview/1652456295
https://www.proquest.com/docview/1664200283
https://www.proquest.com/docview/1694503234
https://pubmed.ncbi.nlm.nih.gov/PMC4325095
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lRUhcEO8GClqknogcbGfXsY9tlQdRaFEeUm6WH2OolDpV4hzSf8CZP8yMd-04kFaFi5V4J2vH83l2ZufF2AkAJLHXMo0YGWyIUArDo1qErt0OEhmigpq38_l64fSnYjCTs1rtVyVqaZ2Fzeh2b17J_3AVzyFfKUv2HzhbToon8DPyF4_IYTw-iMcjWK1xCVPedOObiqxD07-rm-icLqFxTptztF1uDDdUnLWT3m6oQFO-AfvlOle_06wxosJORdBjT0XIZEWocg9tdaSm_BaqgpktrjcUyBUtYE5AWizvUHFDVQp6Z-d-jKuB8vSr7PY5NMr953FmXKaq1_sIxWHuw4et46pPbq6lWixTCvariKwVJDr1aKNjIPVWhiW3sVxlaoGF0le1TCzFs4rf1TiUjZumK1zDVV0ItNh1VbXOYgVXY38vDjYlPAzOmqiXOMJQyau7JbgvLv3udDj0J53Z5IA9stH2oLYYvVkZN4QGqNQl6NW96qRPnPxzZeodNecgCRb7LJg_A3Erms3kGXuq-cVPFb6esxqkL9hj1aR085L9vANlXKMMfwicUMa3KOMaZZxQxkuU8Rxl_CrliDJeQRlHlHGFMr5IeBVlfIuyV2za7UzO-4Zu4GFEaEhnRhzaSQzkuYZQiNAKAIQbBCgGYumgnWsHJiT4JYyFG0XSjFFXtdphgjoxSA_M1mt2mC5SOGJchk4gIJBghpGIIPDa-dxOO_BMD1yos0_F8_aLJ0JNVuZ-buXarj8483PmoLFbZycl8Y0q6rKf7AgZ5wffcbn1p2NCLPWwdFHBq7Pjgpu-Fggr33LQ_LBaqETX2cdyGMU1-eCCFPBdIBoKNbC9e2kcYedNxO6j8YQ0W3YL7_KNAlH5V2y8DXyQONLegVdJQCXld0fSqx95aXnRQpPIk28fcN137Mn2HT5mh9lyDe9RQc_CD_kL8xtbGOpj
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resuscitation-Promoting+Factors+Are+Cell+Wall-Lytic+Enzymes+with+Important+Roles+in+the+Germination+and+Growth+of+Streptomyces+coelicolor&rft.jtitle=Journal+of+bacteriology&rft.au=Sexton%2C+Danielle+L&rft.au=St-Onge%2C+Ren%C3%A9e+J&rft.au=Haiser%2C+Henry+J&rft.au=Yousef%2C+Mary+R&rft.date=2015-03-01&rft.issn=0021-9193&rft.volume=197&rft.issue=5+p.848-860&rft.spage=848&rft.epage=860&rft_id=info:doi/10.1128%2FJB.02464-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon