Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo

Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantati...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 184; no. 8; pp. 2020 - 2032.e14
Main Authors Tan, Tao, Wu, Jun, Si, Chenyang, Dai, Shaoxing, Zhang, Youyue, Sun, Nianqin, Zhang, E, Shao, Honglian, Si, Wei, Yang, Pengpeng, Wang, Hong, Chen, Zhenzhen, Zhu, Ran, Kang, Yu, Hernandez-Benitez, Reyna, Martinez Martinez, Llanos, Nuñez Delicado, Estrella, Berggren, W. Travis, Schwarz, May, Ai, Zongyong, Li, Tianqing, Deng, Hongkui, Rodriguez Esteban, Concepcion, Ji, Weizhi, Niu, Yuyu, Izpisua Belmonte, Juan Carlos
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. [Display omitted] •Generation of human-monkey chimeric embryos ex vivo with hEPSCs•hEPSCs differentiated into hypoblast and epiblast lineages•scRNA-seq analyses revealed developmental trajectories of human and monkey cells•The approach may allow for enhancing chimerism between evolutionarily distant species Human cells, in the form of extended pluripotent stem cells, have the ability to contribute to both embryonic and extra-embryonic lineages in ex-vivo-cultured monkey embryos.
AbstractList Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. [Display omitted] •Generation of human-monkey chimeric embryos ex vivo with hEPSCs•hEPSCs differentiated into hypoblast and epiblast lineages•scRNA-seq analyses revealed developmental trajectories of human and monkey cells•The approach may allow for enhancing chimerism between evolutionarily distant species Human cells, in the form of extended pluripotent stem cells, have the ability to contribute to both embryonic and extra-embryonic lineages in ex-vivo-cultured monkey embryos.
Author Rodriguez Esteban, Concepcion
Zhang, Youyue
Nuñez Delicado, Estrella
Hernandez-Benitez, Reyna
Berggren, W. Travis
Ji, Weizhi
Zhu, Ran
Wu, Jun
Dai, Shaoxing
Chen, Zhenzhen
Deng, Hongkui
Si, Wei
Sun, Nianqin
Yang, Pengpeng
Izpisua Belmonte, Juan Carlos
Shao, Honglian
Zhang, E
Si, Chenyang
Martinez Martinez, Llanos
Schwarz, May
Ai, Zongyong
Li, Tianqing
Wang, Hong
Kang, Yu
Niu, Yuyu
Tan, Tao
Author_xml – sequence: 1
  givenname: Tao
  surname: Tan
  fullname: Tan, Tao
  email: tant@lpbr.cn
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 2
  givenname: Jun
  surname: Wu
  fullname: Wu, Jun
  email: jun2.wu@utsouthwestern.edu
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Chenyang
  surname: Si
  fullname: Si, Chenyang
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 4
  givenname: Shaoxing
  surname: Dai
  fullname: Dai, Shaoxing
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 5
  givenname: Youyue
  surname: Zhang
  fullname: Zhang, Youyue
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 6
  givenname: Nianqin
  surname: Sun
  fullname: Sun, Nianqin
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 7
  givenname: E
  surname: Zhang
  fullname: Zhang, E
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 8
  givenname: Honglian
  surname: Shao
  fullname: Shao, Honglian
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 9
  givenname: Wei
  surname: Si
  fullname: Si, Wei
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 10
  givenname: Pengpeng
  surname: Yang
  fullname: Yang, Pengpeng
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 11
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 12
  givenname: Zhenzhen
  surname: Chen
  fullname: Chen, Zhenzhen
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 13
  givenname: Ran
  surname: Zhu
  fullname: Zhu, Ran
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 14
  givenname: Yu
  surname: Kang
  fullname: Kang, Yu
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 15
  givenname: Reyna
  surname: Hernandez-Benitez
  fullname: Hernandez-Benitez, Reyna
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 16
  givenname: Llanos
  surname: Martinez Martinez
  fullname: Martinez Martinez, Llanos
  organization: Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain
– sequence: 17
  givenname: Estrella
  surname: Nuñez Delicado
  fullname: Nuñez Delicado, Estrella
  organization: Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain
– sequence: 18
  givenname: W. Travis
  surname: Berggren
  fullname: Berggren, W. Travis
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 19
  givenname: May
  surname: Schwarz
  fullname: Schwarz, May
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 20
  givenname: Zongyong
  surname: Ai
  fullname: Ai, Zongyong
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 21
  givenname: Tianqing
  surname: Li
  fullname: Li, Tianqing
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 22
  givenname: Hongkui
  surname: Deng
  fullname: Deng, Hongkui
  organization: Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
– sequence: 23
  givenname: Concepcion
  surname: Rodriguez Esteban
  fullname: Rodriguez Esteban, Concepcion
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 24
  givenname: Weizhi
  surname: Ji
  fullname: Ji, Weizhi
  email: wji@lpbr.cn
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 25
  givenname: Yuyu
  surname: Niu
  fullname: Niu, Yuyu
  email: niuyy@lpbr.cn
  organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
– sequence: 26
  givenname: Juan Carlos
  surname: Izpisua Belmonte
  fullname: Izpisua Belmonte, Juan Carlos
  email: belmonte@salk.edu
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33861963$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URKctL8ACeckmwT-xE0ts0AhapErdlEVXlmPfqB4Se7CdEfM2PAtPRqIpLFhUrKwrnXOv9X0X6CzEAAi9oaSmhMr3u9rCONaMMFoTXhNGXqANJaqtGtqyM7QhRLGqk21zji5y3hFCOiHEK3TOeSepknyDHraPfoLkLbYxlOT7ufgYcBzw4zyZgOFHgeDA4f04J7-Py1RwLjDh9XbGJeIphm9wxDD16RjzYvz6efCHeIVeDmbM8PrpvURfP3-6395Ut3fXX7YfbyvbKFUqR60ivXCUgmCWt4Zw67izpmsMHaQdZK_kAKa3hg0AnLqBWNZ1qmnFIE3PL9G70959it9nyEVPPq-fMwHinDUTgirKJWn-A6WNUG1LuwV9-4TO_QRO75OfTDrqP8ktADsBNsWcEwx_EUr0Wo_e6XW1XuvRhOulnkXq_pGsL2ZNvCTjx-fVDycVliwPHpLO1kOw4HwCW7SL_jn9N04LrUk
CitedBy_id crossref_primary_10_1016_j_stemcr_2021_09_018
crossref_primary_10_1038_s41592_022_01571_7
crossref_primary_10_1016_j_bbrc_2021_08_047
crossref_primary_10_1016_j_stemcr_2021_06_001
crossref_primary_10_1097_TP_0000000000004526
crossref_primary_10_26508_lsa_202201608
crossref_primary_10_1096_fj_202302402R
crossref_primary_10_1016_j_stemcr_2022_07_005
crossref_primary_10_1002_hast_1427
crossref_primary_10_1016_j_tcb_2021_07_008
crossref_primary_10_1089_ten_tea_2021_0057
crossref_primary_10_3390_cells12162075
crossref_primary_10_15283_ijsc21122
crossref_primary_10_1016_j_stem_2022_04_003
crossref_primary_10_1038_d41586_021_02624_1
crossref_primary_10_3390_cells11101628
crossref_primary_10_1089_scd_2022_0061
crossref_primary_10_1177_09636897231183112
crossref_primary_10_1016_j_celrep_2022_111264
crossref_primary_10_1017_S0963180122000780
crossref_primary_10_1051_medsci_2021124
crossref_primary_10_1080_19396368_2022_2052771
crossref_primary_10_1038_d41586_022_02073_4
crossref_primary_10_1038_s41422_021_00609_3
crossref_primary_10_1016_j_stemcr_2021_05_005
crossref_primary_10_1016_S2352_4642_22_00193_6
crossref_primary_10_1038_s41467_021_25853_4
crossref_primary_10_1016_j_cell_2023_04_019
crossref_primary_10_1016_j_stem_2022_06_003
crossref_primary_10_1057_s41292_023_00302_1
crossref_primary_10_1016_j_gde_2023_102093
crossref_primary_10_1172_JCI166998
crossref_primary_10_1016_j_cell_2022_01_005
crossref_primary_10_1038_s42003_024_06986_w
crossref_primary_10_1016_j_fct_2024_115022
crossref_primary_10_1038_s41576_021_00447_4
crossref_primary_10_1016_j_cell_2024_05_027
crossref_primary_10_1007_s13752_021_00385_8
crossref_primary_10_1016_j_xjtc_2022_01_012
crossref_primary_10_1177_09636897221110525
crossref_primary_10_1016_j_jobb_2022_12_003
crossref_primary_10_3803_EnM_2024_1989
crossref_primary_10_1177_00243639231162438
crossref_primary_10_1007_s11259_024_10294_3
crossref_primary_10_1111_gtc_13000
crossref_primary_10_1681_ASN_2021081073
crossref_primary_10_1016_j_animal_2023_100803
crossref_primary_10_1016_j_stem_2021_04_025
crossref_primary_10_1016_j_stemcr_2021_05_012
crossref_primary_10_1038_d41586_021_02625_0
crossref_primary_10_1038_d41586_023_02160_0
crossref_primary_10_3390_molecules27020379
crossref_primary_10_1093_biolre_ioac055
crossref_primary_10_2217_rme_2022_0043
crossref_primary_10_3390_cells13020179
crossref_primary_10_1007_s41649_022_00233_2
crossref_primary_10_1016_j_cell_2021_03_044
crossref_primary_10_1089_bio_2022_0041
crossref_primary_10_1093_biolre_ioad038
crossref_primary_10_1038_s44222_023_00066_0
crossref_primary_10_1002_advs_202205451
crossref_primary_10_3389_fcell_2022_1093534
crossref_primary_10_3390_philosophies9020039
crossref_primary_10_1007_s13238_021_00880_5
crossref_primary_10_1051_medsci_2021145
crossref_primary_10_1016_j_jgg_2021_12_013
crossref_primary_10_3389_fendo_2022_963282
crossref_primary_10_3389_fcell_2023_1070560
crossref_primary_10_1016_j_celrep_2024_114232
crossref_primary_10_1038_s41592_023_02071_y
crossref_primary_10_1038_s41587_021_01034_y
Cites_doi 10.1038/nmeth.3016
10.1038/nature20573
10.1038/nature12745
10.1038/s41467-017-00236-w
10.1242/dev.142679
10.1016/j.gde.2018.05.007
10.1038/s41587-019-0373-y
10.1038/nbt.2859
10.1016/j.cell.2016.12.036
10.1038/s41587-019-0201-4
10.1016/j.stem.2014.09.015
10.1038/s41586-019-1875-y
10.1038/nrm.2015.28
10.1038/nature17948
10.1038/nature15515
10.1016/j.stem.2014.07.002
10.1016/j.stemcr.2020.12.004
10.1016/j.stem.2016.12.004
10.1038/cr.2017.138
10.1038/s41563-018-0082-9
10.1242/dev.189845
10.1038/nature19096
10.1093/bioinformatics/btx792
10.1038/nbt.4096
10.1126/science.aas9302
10.1016/j.stem.2015.06.004
10.1038/s41586-019-1500-0
10.1126/sciadv.aaz0298
10.1016/j.cell.2016.05.043
10.1038/s41586-018-0150-y
10.1016/j.stem.2016.06.011
10.1016/j.cmet.2018.01.008
10.1016/j.stem.2013.11.015
10.1101/gad.1100503
10.1007/s13238-019-00676-8
10.1073/pnas.1012424107
10.15252/embj.2019104324
10.1002/pro.3715
10.1146/annurev-genet-120116-024544
10.1038/s41586-019-1535-2
10.1038/s41467-018-07098-w
10.1038/s41556-019-0349-7
10.1038/s41586-019-1654-9
10.1038/nprot.2014.006
10.1038/nmeth.4463
10.1016/j.stemcr.2019.09.003
10.1093/molbev/msy096
10.1016/j.cell.2019.05.031
10.1016/j.stem.2015.10.009
10.1038/nbt.3122
10.1016/j.cell.2017.02.005
10.1038/nature24052
10.1089/omi.2011.0118
10.1038/s41556-019-0333-2
10.1093/nar/gky962
10.1038/ncb3347
10.1093/nar/28.1.27
10.1038/s41586-018-0414-6
10.1126/science.aaw5754
10.1186/s12861-017-0150-4
10.1126/science.aax7890
10.1002/cpsc.87
10.1186/s12864-018-4772-0
10.1038/s41586-018-0698-6
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.cell.2021.03.020
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 1097-4172
EndPage 2032.e14
ExternalDocumentID 33861963
10_1016_j_cell_2021_03_020
S0092867421003056
Genre Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c499t-d1c90b5d11e52c37a03cd3dca84a1f6cf6b96feabca2fee31df0c2889475f6ab3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Fri Jul 11 07:34:24 EDT 2025
Tue Aug 05 11:34:05 EDT 2025
Thu Apr 03 06:58:47 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Tue Jul 01 02:17:09 EDT 2025
Fri Feb 23 02:46:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords human-monkey chimeric embryo
human extended pluripotent stem cells
interspecies chimera
pluripotent stem cell
ex-vivo-cultured mokey embryos
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-d1c90b5d11e52c37a03cd3dca84a1f6cf6b96feabca2fee31df0c2889475f6ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0092867421003056/pdf
PMID 33861963
PQID 2514597718
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2551913604
proquest_miscellaneous_2514597718
pubmed_primary_33861963
crossref_primary_10_1016_j_cell_2021_03_020
crossref_citationtrail_10_1016_j_cell_2021_03_020
elsevier_sciencedirect_doi_10_1016_j_cell_2021_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang, Zhu, Ma, Zhao, Fan, Li, Song, Chu, Ouyang, Zhang (bib18) 2018; 9
Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib32) 2015; 33
Hackett, Surani (bib15) 2014; 15
Nakamura, Okamoto, Sasaki, Yabuta, Iwatani, Tsuchiya, Seita, Nakamura, Yamamoto, Saitou (bib30) 2016; 537
Xiang, Yin, Zheng, Ma, Li, Zhao, Guo, Ai, Niu, Duan (bib60) 2020; 577
De Los Angeles (bib8) 2019; 50
Chen, Niu, Li, Ai, Kang, Shi, Xiang, Yang, Tan, Si (bib6) 2015; 17
Harvey, Caretti, Moresi, Renzini, Adamo (bib16) 2019; 13
Guo, Stirparo, Strawbridge, Yang, Clarke, Li, Myers, Özel, Nichols, Smith (bib14) 2020
Das, Koyano-Nakagawa, Gafni, Maeng, Singh, Rasmussen, Pan, Choi, Mickelson, Gong (bib7) 2020; 38
Wu, Greely, Jaenisch, Nakauchi, Rossant, Belmonte (bib58) 2016; 540
Yang, Ryan, Wang, Tsang, Lan, Masaki, Gao, Antunes, Yu, Zhu (bib62) 2017; 550
Yu, Wang, Han, He (bib64) 2012; 16
Kanehisa, Goto (bib20) 2000; 28
Martyn, Kanno, Ruzo, Siggia, Brivanlou (bib27) 2018; 558
Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib33) 2014; 9
Rossant, Tam (bib38) 2018; 360
Gao, Nowak-Imialek, Chen, Chen, Herrmann, Ruan, Chen, Eckersley-Maslin, Ahmad, Lee (bib13) 2019; 21
Trapnell, Cacchiarelli, Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen, Rinn (bib49) 2014; 32
Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib45) 2019; 177
Salazar-Roa, Trakala, Álvarez-Fernández, Valdés-Mora, Zhong, Muñoz, Yu, Peters, Graña-Castro, Serrano (bib39) 2020; 39
Niu, Sun, Li, Lei, Huang, Wu, Si, Dai, Liu, Wei (bib31) 2019; 366
Theunissen, Friedli, He, Planet, O’Neil, Markoulaki, Pontis, Wang, Iouranova, Imbeault (bib48) 2016; 19
Fu, Yu, Ren, Li, Wang, Feng, Wang, Wan, Li, Wang (bib11) 2020; 11
Ma, Zhai, Wan, Jiang, Wang, Wang, Xiang, He, Zhao, Zhao (bib26) 2019; 366
Rossant, Tam (bib37) 2017; 20
Vincent, Dunn, Hayashi, Norris, Robertson (bib51) 2003; 17
Kanehisa (bib19) 2019; 28
Aksoy, Rognard, Moulin, Marcy, Masfaraud, Wianny, Cortay, Bellemin-Ménard, Doerflinger, Dirheimer (bib2) 2021; 16
Zhou, Wang, Yuan, Ren, Mao, Li, Lian, Li, Wen, Yan (bib68) 2019; 572
Mishra, Grzybek, Niki, Hirashima, Simons (bib28) 2010; 107
Hu, Li, Jiang, Ren, Yu, Qiu, Stablewski, Zhang, Buck, Feng (bib17) 2020; 6
Riveiro, Brickman (bib35) 2020; 147
Zheng, Xue, Shao, Wang, Esfahani, Li, Muncie, Lakins, Weaver, Gumucio, Fu (bib66) 2019; 573
Wu, Izpisua Belmonte (bib57) 2016; 165
Butler, Hoffman, Smibert, Papalexi, Satija (bib4) 2018; 36
De Los Angeles, Ferrari, Xi, Fujiwara, Benvenisty, Deng, Hochedlinger, Jaenisch, Lee, Leitch (bib9) 2015; 525
Kim, Paggi, Park, Bennett, Salzberg (bib23) 2019; 37
Street, Risso, Fletcher, Das, Ngai, Yosef, Purdom, Dudoit (bib44) 2018; 19
Kumar, Stecher, Li, Knyaz, Tamura (bib24) 2018; 35
Bayerl, Ayyash, Shani, Manor, Gafni, Kalma, Aguilera-Castrejon, Zerbib, Amir, Sheban (bib3) 2020
Warmflash, Sorre, Etoc, Siggia, Brivanlou (bib53) 2014; 11
Shahbazi, Jedrusik, Vuoristo, Recher, Hupalowska, Bolton, Fogarty, Campbell, Devito, Ilic (bib40) 2016; 18
Kanton, Boyle, He, Santel, Weigert, Sanchís-Calleja, Guijarro, Sidow, Fleck, Han (bib22) 2019; 574
Xue, Sun, Resto-Irizarry, Yuan, Aw Yong, Zheng, Weng, Shao, Chai, Studer, Fu (bib61) 2018; 17
Smith (bib43) 2017; 144
Gafni, Weinberger, Mansour, Manor, Chomsky, Ben-Yosef, Kalma, Viukov, Maza, Zviran (bib12) 2013; 504
Rossant (bib36) 2018; 52
Suchy, Nakauchi (bib46) 2018; 52
Wu, Izpisua Belmonte (bib56) 2015; 17
Yang, Liu, Xu, Wang, Wu, Shi, Xu, Dong, Wang, Lai (bib63) 2017; 169
Wu, Platero-Luengo, Sakurai, Sugawara, Gil, Yamauchi, Suzuki, Bogliotti, Cuello, Morales Valencia (bib59) 2017; 168
Aibar, González-Blas, Moerman, Huynh-Thu, Imrichova, Hulselmans, Rambow, Marine, Geurts, Aerts (bib1) 2017; 14
Kanehisa, Sato, Furumichi, Morishima, Tanabe (bib21) 2019; 47
Posfai, Schell, Janiszewski, Rovic, Murray, Bradshaw, Pardon, El Bakkali, Talon, De Geest (bib34) 2020
Zhang, Zhao, Dahan, Lu, Zhang, Li, Teitell (bib65) 2018; 27
Morgani, Nichols, Hadjantonakis (bib29) 2017; 17
Deglincerti, Croft, Pietila, Zernicka-Goetz, Siggia, Brivanlou (bib10) 2016; 533
Weinreb, Wolock, Klein (bib55) 2018; 34
Wang, Li, Cui, Yu, Liu, Jiang, Feng, Wang, Fu, Zhang (bib52) 2018; 28
La Manno, Soldatov, Zeisel, Braun, Hochgerner, Petukhov, Lidschreiber, Kastriti, Lönnerberg, Furlan (bib25) 2018; 560
Shao, Taniguchi, Townshend, Miki, Gumucio, Fu (bib41) 2017; 8
Vento-Tormo, Efremova, Botting, Turco, Vento-Tormo, Meyer, Park, Stephenson, Polański, Goncalves (bib50) 2018; 563
Simunovic, Metzger, Etoc, Yoney, Ruzo, Martyn, Croft, You, Brivanlou, Siggia (bib42) 2019; 21
Theunissen, Powell, Wang, Mitalipova, Faddah, Reddy, Fan, Maetzel, Ganz, Shi (bib47) 2014; 15
Zheng, Hu, Sakurai, Pinzon-Arteaga, Li, Wei, Okamura, Ravaux, Barlow, Yu (bib67) 2021
Chan, Göke, Ng, Lu, Gonzales, Tan, Tng, Hong, Lim, Ng (bib5) 2013; 13
Weinberger, Ayyash, Novershtern, Hanna (bib54) 2016; 17
Huang (10.1016/j.cell.2021.03.020_bib18) 2018; 9
Butler (10.1016/j.cell.2021.03.020_bib4) 2018; 36
Das (10.1016/j.cell.2021.03.020_bib7) 2020; 38
Kumar (10.1016/j.cell.2021.03.020_bib24) 2018; 35
Harvey (10.1016/j.cell.2021.03.020_bib16) 2019; 13
Kanton (10.1016/j.cell.2021.03.020_bib22) 2019; 574
Niu (10.1016/j.cell.2021.03.020_bib31) 2019; 366
Shao (10.1016/j.cell.2021.03.020_bib41) 2017; 8
Warmflash (10.1016/j.cell.2021.03.020_bib53) 2014; 11
Zhou (10.1016/j.cell.2021.03.020_bib68) 2019; 572
Posfai (10.1016/j.cell.2021.03.020_bib34) 2020
Xue (10.1016/j.cell.2021.03.020_bib61) 2018; 17
Theunissen (10.1016/j.cell.2021.03.020_bib48) 2016; 19
Yang (10.1016/j.cell.2021.03.020_bib62) 2017; 550
Hu (10.1016/j.cell.2021.03.020_bib17) 2020; 6
Kanehisa (10.1016/j.cell.2021.03.020_bib19) 2019; 28
Weinreb (10.1016/j.cell.2021.03.020_bib55) 2018; 34
Morgani (10.1016/j.cell.2021.03.020_bib29) 2017; 17
Wu (10.1016/j.cell.2021.03.020_bib59) 2017; 168
Aksoy (10.1016/j.cell.2021.03.020_bib2) 2021; 16
Ma (10.1016/j.cell.2021.03.020_bib26) 2019; 366
Hackett (10.1016/j.cell.2021.03.020_bib15) 2014; 15
Gao (10.1016/j.cell.2021.03.020_bib13) 2019; 21
Trapnell (10.1016/j.cell.2021.03.020_bib49) 2014; 32
Riveiro (10.1016/j.cell.2021.03.020_bib35) 2020; 147
Guo (10.1016/j.cell.2021.03.020_bib14) 2020
Rossant (10.1016/j.cell.2021.03.020_bib38) 2018; 360
Shahbazi (10.1016/j.cell.2021.03.020_bib40) 2016; 18
De Los Angeles (10.1016/j.cell.2021.03.020_bib8) 2019; 50
Nakamura (10.1016/j.cell.2021.03.020_bib30) 2016; 537
Aibar (10.1016/j.cell.2021.03.020_bib1) 2017; 14
Rossant (10.1016/j.cell.2021.03.020_bib36) 2018; 52
Street (10.1016/j.cell.2021.03.020_bib44) 2018; 19
Kanehisa (10.1016/j.cell.2021.03.020_bib21) 2019; 47
Stuart (10.1016/j.cell.2021.03.020_bib45) 2019; 177
Wu (10.1016/j.cell.2021.03.020_bib58) 2016; 540
Picelli (10.1016/j.cell.2021.03.020_bib33) 2014; 9
Salazar-Roa (10.1016/j.cell.2021.03.020_bib39) 2020; 39
La Manno (10.1016/j.cell.2021.03.020_bib25) 2018; 560
Mishra (10.1016/j.cell.2021.03.020_bib28) 2010; 107
Rossant (10.1016/j.cell.2021.03.020_bib37) 2017; 20
De Los Angeles (10.1016/j.cell.2021.03.020_bib9) 2015; 525
Kim (10.1016/j.cell.2021.03.020_bib23) 2019; 37
Yu (10.1016/j.cell.2021.03.020_bib64) 2012; 16
Yang (10.1016/j.cell.2021.03.020_bib63) 2017; 169
Wu (10.1016/j.cell.2021.03.020_bib56) 2015; 17
Martyn (10.1016/j.cell.2021.03.020_bib27) 2018; 558
Deglincerti (10.1016/j.cell.2021.03.020_bib10) 2016; 533
Bayerl (10.1016/j.cell.2021.03.020_bib3) 2020
Fu (10.1016/j.cell.2021.03.020_bib11) 2020; 11
Pertea (10.1016/j.cell.2021.03.020_bib32) 2015; 33
Theunissen (10.1016/j.cell.2021.03.020_bib47) 2014; 15
Zheng (10.1016/j.cell.2021.03.020_bib66) 2019; 573
Gafni (10.1016/j.cell.2021.03.020_bib12) 2013; 504
Vincent (10.1016/j.cell.2021.03.020_bib51) 2003; 17
Chan (10.1016/j.cell.2021.03.020_bib5) 2013; 13
Simunovic (10.1016/j.cell.2021.03.020_bib42) 2019; 21
Weinberger (10.1016/j.cell.2021.03.020_bib54) 2016; 17
Vento-Tormo (10.1016/j.cell.2021.03.020_bib50) 2018; 563
Wang (10.1016/j.cell.2021.03.020_bib52) 2018; 28
Wu (10.1016/j.cell.2021.03.020_bib57) 2016; 165
Smith (10.1016/j.cell.2021.03.020_bib43) 2017; 144
Zheng (10.1016/j.cell.2021.03.020_bib67) 2021
Chen (10.1016/j.cell.2021.03.020_bib6) 2015; 17
Zhang (10.1016/j.cell.2021.03.020_bib65) 2018; 27
Kanehisa (10.1016/j.cell.2021.03.020_bib20) 2000; 28
Suchy (10.1016/j.cell.2021.03.020_bib46) 2018; 52
Xiang (10.1016/j.cell.2021.03.020_bib60) 2020; 577
33961759 - Cell Stem Cell. 2021 May 6;28(5):787-789
References_xml – volume: 19
  start-page: 502
  year: 2016
  end-page: 515
  ident: bib48
  article-title: Molecular Criteria for Defining the Naive Human Pluripotent State
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 1646
  year: 2003
  end-page: 1662
  ident: bib51
  article-title: Cell fate decisions within the mouse organizer are governed by graded Nodal signals
  publication-title: Genes Dev.
– volume: 14
  start-page: 1083
  year: 2017
  end-page: 1086
  ident: bib1
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat. Methods
– volume: 38
  start-page: 297
  year: 2020
  end-page: 302
  ident: bib7
  article-title: Generation of human endothelium in pig embryos deficient in ETV2
  publication-title: Nat. Biotechnol.
– volume: 360
  start-page: 1075
  year: 2018
  end-page: 1076
  ident: bib38
  article-title: Exploring early human embryo development
  publication-title: Science
– volume: 52
  start-page: 36
  year: 2018
  end-page: 41
  ident: bib46
  article-title: Interspecies chimeras
  publication-title: Curr. Opin. Genet. Dev.
– volume: 165
  start-page: 1572
  year: 2016
  end-page: 1585
  ident: bib57
  article-title: Stem Cells: A Renaissance in Human Biology Research
  publication-title: Cell
– volume: 16
  start-page: 56
  year: 2021
  end-page: 74
  ident: bib2
  article-title: Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells
  publication-title: Stem cell reports
– volume: 15
  start-page: 416
  year: 2014
  end-page: 430
  ident: bib15
  article-title: Regulatory principles of pluripotency: from the ground state up
  publication-title: Cell Stem Cell
– volume: 13
  start-page: 663
  year: 2013
  end-page: 675
  ident: bib5
  article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast
  publication-title: Cell Stem Cell
– volume: 144
  start-page: 365
  year: 2017
  end-page: 373
  ident: bib43
  article-title: Formative pluripotency: the executive phase in a developmental continuum
  publication-title: Development
– volume: 533
  start-page: 251
  year: 2016
  end-page: 254
  ident: bib10
  article-title: Self-organization of the in vitro attached human embryo
  publication-title: Nature
– volume: 21
  start-page: 687
  year: 2019
  end-page: 699
  ident: bib13
  article-title: Establishment of porcine and human expanded potential stem cells
  publication-title: Nat. Cell Biol.
– volume: 525
  start-page: 469
  year: 2015
  end-page: 478
  ident: bib9
  article-title: Hallmarks of pluripotency
  publication-title: Nature
– volume: 504
  start-page: 282
  year: 2013
  end-page: 286
  ident: bib12
  article-title: Derivation of novel human ground state naive pluripotent stem cells
  publication-title: Nature
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  ident: bib49
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 208
  year: 2017
  ident: bib41
  article-title: A pluripotent stem cell-based model for post-implantation human amniotic sac development
  publication-title: Nat. Commun.
– year: 2020
  ident: bib34
  article-title: Defining totipotency using criteria of increasing stringency
  publication-title: bioRxiv
– volume: 558
  start-page: 132
  year: 2018
  end-page: 135
  ident: bib27
  article-title: Self-organization of a human organizer by combined Wnt and Nodal signalling
  publication-title: Nature
– volume: 17
  start-page: 509
  year: 2015
  end-page: 525
  ident: bib56
  article-title: Dynamic Pluripotent Stem Cell States and Their Applications
  publication-title: Cell Stem Cell
– volume: 52
  start-page: 185
  year: 2018
  end-page: 201
  ident: bib36
  article-title: Genetic Control of Early Cell Lineages in the Mammalian Embryo
  publication-title: Annu. Rev. Genet.
– volume: 15
  start-page: 471
  year: 2014
  end-page: 487
  ident: bib47
  article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency
  publication-title: Cell Stem Cell
– volume: 147
  start-page: dev189845
  year: 2020
  ident: bib35
  article-title: From pluripotency to totipotency: an experimentalist’s guide to cellular potency
  publication-title: Development
– volume: 28
  start-page: 126
  year: 2018
  end-page: 129
  ident: bib52
  article-title: Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis
  publication-title: Cell Res.
– volume: 574
  start-page: 418
  year: 2019
  end-page: 422
  ident: bib22
  article-title: Organoid single-cell genomic atlas uncovers human-specific features of brain development
  publication-title: Nature
– volume: 169
  start-page: 243
  year: 2017
  end-page: 257.e25
  ident: bib63
  article-title: Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency
  publication-title: Cell
– volume: 366
  start-page: eaaw5754
  year: 2019
  ident: bib31
  article-title: Dissecting primate early post-implantation development using long-term in vitro embryo culture
  publication-title: Science
– volume: 17
  start-page: 116
  year: 2015
  end-page: 124
  ident: bib6
  article-title: Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells
  publication-title: Cell Stem Cell
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib23
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 4649
  year: 2018
  ident: bib18
  article-title: BMI1 enables interspecies chimerism with human pluripotent stem cells
  publication-title: Nat. Commun.
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  ident: bib33
  article-title: Full-length RNA-seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
– volume: 19
  start-page: 477
  year: 2018
  ident: bib44
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC Genomics
– volume: 11
  start-page: 97
  year: 2020
  end-page: 107
  ident: bib11
  article-title: Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs
  publication-title: Protein Cell
– volume: 50
  start-page: e87
  year: 2019
  ident: bib8
  article-title: The Pluripotency Continuum and Interspecies Chimeras
  publication-title: Curr. Protoc. Stem Cell Biol.
– volume: 573
  start-page: 421
  year: 2019
  end-page: 425
  ident: bib66
  article-title: Controlled modelling of human epiblast and amnion development using stem cells
  publication-title: Nature
– volume: 572
  start-page: 660
  year: 2019
  end-page: 664
  ident: bib68
  article-title: Reconstituting the transcriptome and DNA methylome landscapes of human implantation
  publication-title: Nature
– volume: 11
  start-page: 847
  year: 2014
  end-page: 854
  ident: bib53
  article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells
  publication-title: Nat. Methods
– volume: 34
  start-page: 1246
  year: 2018
  end-page: 1248
  ident: bib55
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: Bioinformatics
– year: 2020
  ident: bib3
  article-title: Tripartite Inhibition of SRC-WNT-PKC Signalling Consolidates Human Naïve Pluripotency
  publication-title: bioRxiv
– volume: 39
  start-page: e104324
  year: 2020
  ident: bib39
  article-title: Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells
  publication-title: EMBO J.
– volume: 563
  start-page: 347
  year: 2018
  end-page: 353
  ident: bib50
  article-title: Single-cell reconstruction of the early maternal-fetal interface in humans
  publication-title: Nature
– volume: 17
  start-page: 633
  year: 2018
  end-page: 641
  ident: bib61
  article-title: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells
  publication-title: Nat. Mater.
– volume: 13
  start-page: 573
  year: 2019
  end-page: 589
  ident: bib16
  article-title: Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance
  publication-title: Stem Cell Reports
– volume: 17
  start-page: 7
  year: 2017
  ident: bib29
  article-title: The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states
  publication-title: BMC Dev. Biol.
– volume: 577
  start-page: 537
  year: 2020
  end-page: 542
  ident: bib60
  article-title: A developmental landscape of 3D-cultured human pre-gastrulation embryos
  publication-title: Nature
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib4
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 1947
  year: 2019
  end-page: 1951
  ident: bib19
  article-title: Toward understanding the origin and evolution of cellular organisms
  publication-title: Protein Sci.
– year: 2020
  ident: bib14
  article-title: Trophectoderm Potency is Retained Exclusively in Human Naïve Cells
  publication-title: bioRxiv
– volume: 560
  start-page: 494
  year: 2018
  end-page: 498
  ident: bib25
  article-title: RNA velocity of single cells
  publication-title: Nature
– volume: 17
  start-page: 155
  year: 2016
  end-page: 169
  ident: bib54
  article-title: Dynamic stem cell states: naive to primed pluripotency in rodents and humans
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  ident: bib32
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
– volume: 550
  start-page: 393
  year: 2017
  end-page: 397
  ident: bib62
  article-title: Establishment of mouse expanded potential stem cells
  publication-title: Nature
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: bib20
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
– volume: 540
  start-page: 51
  year: 2016
  end-page: 59
  ident: bib58
  article-title: Stem cells and interspecies chimaeras
  publication-title: Nature
– volume: 537
  start-page: 57
  year: 2016
  end-page: 62
  ident: bib30
  article-title: A developmental coordinate of pluripotency among mice, monkeys and humans
  publication-title: Nature
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib64
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 107
  start-page: 17633
  year: 2010
  end-page: 17638
  ident: bib28
  article-title: Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: eaaz0298
  year: 2020
  ident: bib17
  article-title: Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos
  publication-title: Sci. Adv.
– volume: 366
  start-page: eaax7890
  year: 2019
  ident: bib26
  article-title: In vitro culture of cynomolgus monkey embryos beyond early gastrulation
  publication-title: Science
– volume: 27
  start-page: 332
  year: 2018
  end-page: 338
  ident: bib65
  article-title: Metabolism in Pluripotent Stem Cells and Early Mammalian Development
  publication-title: Cell Metab.
– year: 2021
  ident: bib67
  article-title: Cell competition constitutes a barrier for interspecies chimerism
  publication-title: Nature
– volume: 35
  start-page: 1547
  year: 2018
  end-page: 1549
  ident: bib24
  article-title: MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms
  publication-title: Mol. Biol. Evol.
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902.e1821
  ident: bib45
  article-title: Comprehensive Integration of Single-Cell Data
  publication-title: Cell
– volume: 168
  start-page: 473
  year: 2017
  end-page: 486.e15
  ident: bib59
  article-title: Interspecies Chimerism with Mammalian Pluripotent Stem Cells
  publication-title: Cell
– volume: 20
  start-page: 18
  year: 2017
  end-page: 28
  ident: bib37
  article-title: New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 700
  year: 2016
  end-page: 708
  ident: bib40
  article-title: Self-organization of the human embryo in the absence of maternal tissues
  publication-title: Nat. Cell Biol.
– volume: 21
  start-page: 900
  year: 2019
  end-page: 910
  ident: bib42
  article-title: A 3D model of a human epiblast reveals BMP4-driven symmetry breaking
  publication-title: Nat. Cell Biol.
– volume: 47
  start-page: D590
  year: 2019
  end-page: D595
  ident: bib21
  article-title: New approach for understanding genome variations in KEGG
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 847
  year: 2014
  ident: 10.1016/j.cell.2021.03.020_bib53
  article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3016
– volume: 540
  start-page: 51
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib58
  article-title: Stem cells and interspecies chimaeras
  publication-title: Nature
  doi: 10.1038/nature20573
– volume: 504
  start-page: 282
  year: 2013
  ident: 10.1016/j.cell.2021.03.020_bib12
  article-title: Derivation of novel human ground state naive pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature12745
– volume: 8
  start-page: 208
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib41
  article-title: A pluripotent stem cell-based model for post-implantation human amniotic sac development
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00236-w
– volume: 144
  start-page: 365
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib43
  article-title: Formative pluripotency: the executive phase in a developmental continuum
  publication-title: Development
  doi: 10.1242/dev.142679
– volume: 52
  start-page: 36
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib46
  article-title: Interspecies chimeras
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2018.05.007
– year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib3
  article-title: Tripartite Inhibition of SRC-WNT-PKC Signalling Consolidates Human Naïve Pluripotency
  publication-title: bioRxiv
– volume: 38
  start-page: 297
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib7
  article-title: Generation of human endothelium in pig embryos deficient in ETV2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0373-y
– volume: 32
  start-page: 381
  year: 2014
  ident: 10.1016/j.cell.2021.03.020_bib49
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 168
  start-page: 473
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib59
  article-title: Interspecies Chimerism with Mammalian Pluripotent Stem Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.036
– year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib14
  article-title: Trophectoderm Potency is Retained Exclusively in Human Naïve Cells
  publication-title: bioRxiv
– volume: 37
  start-page: 907
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib23
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 15
  start-page: 416
  year: 2014
  ident: 10.1016/j.cell.2021.03.020_bib15
  article-title: Regulatory principles of pluripotency: from the ground state up
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.015
– volume: 577
  start-page: 537
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib60
  article-title: A developmental landscape of 3D-cultured human pre-gastrulation embryos
  publication-title: Nature
  doi: 10.1038/s41586-019-1875-y
– volume: 17
  start-page: 155
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib54
  article-title: Dynamic stem cell states: naive to primed pluripotency in rodents and humans
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.28
– volume: 533
  start-page: 251
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib10
  article-title: Self-organization of the in vitro attached human embryo
  publication-title: Nature
  doi: 10.1038/nature17948
– volume: 525
  start-page: 469
  year: 2015
  ident: 10.1016/j.cell.2021.03.020_bib9
  article-title: Hallmarks of pluripotency
  publication-title: Nature
  doi: 10.1038/nature15515
– volume: 15
  start-page: 471
  year: 2014
  ident: 10.1016/j.cell.2021.03.020_bib47
  article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.07.002
– volume: 16
  start-page: 56
  year: 2021
  ident: 10.1016/j.cell.2021.03.020_bib2
  article-title: Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells
  publication-title: Stem cell reports
  doi: 10.1016/j.stemcr.2020.12.004
– volume: 20
  start-page: 18
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib37
  article-title: New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.12.004
– volume: 28
  start-page: 126
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib52
  article-title: Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.138
– volume: 17
  start-page: 633
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib61
  article-title: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0082-9
– volume: 147
  start-page: dev189845
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib35
  article-title: From pluripotency to totipotency: an experimentalist’s guide to cellular potency
  publication-title: Development
  doi: 10.1242/dev.189845
– volume: 537
  start-page: 57
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib30
  article-title: A developmental coordinate of pluripotency among mice, monkeys and humans
  publication-title: Nature
  doi: 10.1038/nature19096
– volume: 34
  start-page: 1246
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib55
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx792
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib4
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 360
  start-page: 1075
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib38
  article-title: Exploring early human embryo development
  publication-title: Science
  doi: 10.1126/science.aas9302
– volume: 17
  start-page: 116
  year: 2015
  ident: 10.1016/j.cell.2021.03.020_bib6
  article-title: Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.06.004
– volume: 572
  start-page: 660
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib68
  article-title: Reconstituting the transcriptome and DNA methylome landscapes of human implantation
  publication-title: Nature
  doi: 10.1038/s41586-019-1500-0
– volume: 6
  start-page: eaaz0298
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib17
  article-title: Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz0298
– volume: 165
  start-page: 1572
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib57
  article-title: Stem Cells: A Renaissance in Human Biology Research
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.043
– volume: 558
  start-page: 132
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib27
  article-title: Self-organization of a human organizer by combined Wnt and Nodal signalling
  publication-title: Nature
  doi: 10.1038/s41586-018-0150-y
– volume: 19
  start-page: 502
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib48
  article-title: Molecular Criteria for Defining the Naive Human Pluripotent State
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.06.011
– volume: 27
  start-page: 332
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib65
  article-title: Metabolism in Pluripotent Stem Cells and Early Mammalian Development
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.01.008
– volume: 13
  start-page: 663
  year: 2013
  ident: 10.1016/j.cell.2021.03.020_bib5
  article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.11.015
– volume: 17
  start-page: 1646
  year: 2003
  ident: 10.1016/j.cell.2021.03.020_bib51
  article-title: Cell fate decisions within the mouse organizer are governed by graded Nodal signals
  publication-title: Genes Dev.
  doi: 10.1101/gad.1100503
– volume: 11
  start-page: 97
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib11
  article-title: Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs
  publication-title: Protein Cell
  doi: 10.1007/s13238-019-00676-8
– volume: 107
  start-page: 17633
  year: 2010
  ident: 10.1016/j.cell.2021.03.020_bib28
  article-title: Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012424107
– volume: 39
  start-page: e104324
  year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib39
  article-title: Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells
  publication-title: EMBO J.
  doi: 10.15252/embj.2019104324
– year: 2021
  ident: 10.1016/j.cell.2021.03.020_bib67
  article-title: Cell competition constitutes a barrier for interspecies chimerism
  publication-title: Nature
– volume: 28
  start-page: 1947
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib19
  article-title: Toward understanding the origin and evolution of cellular organisms
  publication-title: Protein Sci.
  doi: 10.1002/pro.3715
– volume: 52
  start-page: 185
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib36
  article-title: Genetic Control of Early Cell Lineages in the Mammalian Embryo
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120116-024544
– volume: 573
  start-page: 421
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib66
  article-title: Controlled modelling of human epiblast and amnion development using stem cells
  publication-title: Nature
  doi: 10.1038/s41586-019-1535-2
– volume: 9
  start-page: 4649
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib18
  article-title: BMI1 enables interspecies chimerism with human pluripotent stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07098-w
– volume: 21
  start-page: 900
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib42
  article-title: A 3D model of a human epiblast reveals BMP4-driven symmetry breaking
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0349-7
– volume: 574
  start-page: 418
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib22
  article-title: Organoid single-cell genomic atlas uncovers human-specific features of brain development
  publication-title: Nature
  doi: 10.1038/s41586-019-1654-9
– volume: 9
  start-page: 171
  year: 2014
  ident: 10.1016/j.cell.2021.03.020_bib33
  article-title: Full-length RNA-seq from single cells using Smart-seq2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 14
  start-page: 1083
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib1
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4463
– volume: 13
  start-page: 573
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib16
  article-title: Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2019.09.003
– volume: 35
  start-page: 1547
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib24
  article-title: MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msy096
– volume: 177
  start-page: 1888
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib45
  article-title: Comprehensive Integration of Single-Cell Data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 17
  start-page: 509
  year: 2015
  ident: 10.1016/j.cell.2021.03.020_bib56
  article-title: Dynamic Pluripotent Stem Cell States and Their Applications
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.10.009
– volume: 33
  start-page: 290
  year: 2015
  ident: 10.1016/j.cell.2021.03.020_bib32
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
– volume: 169
  start-page: 243
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib63
  article-title: Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.005
– volume: 550
  start-page: 393
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib62
  article-title: Establishment of mouse expanded potential stem cells
  publication-title: Nature
  doi: 10.1038/nature24052
– volume: 16
  start-page: 284
  year: 2012
  ident: 10.1016/j.cell.2021.03.020_bib64
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 21
  start-page: 687
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib13
  article-title: Establishment of porcine and human expanded potential stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0333-2
– volume: 47
  start-page: D590
  issue: D1
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib21
  article-title: New approach for understanding genome variations in KEGG
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky962
– volume: 18
  start-page: 700
  year: 2016
  ident: 10.1016/j.cell.2021.03.020_bib40
  article-title: Self-organization of the human embryo in the absence of maternal tissues
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3347
– volume: 28
  start-page: 27
  year: 2000
  ident: 10.1016/j.cell.2021.03.020_bib20
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 560
  start-page: 494
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib25
  article-title: RNA velocity of single cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 366
  start-page: eaaw5754
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib31
  article-title: Dissecting primate early post-implantation development using long-term in vitro embryo culture
  publication-title: Science
  doi: 10.1126/science.aaw5754
– year: 2020
  ident: 10.1016/j.cell.2021.03.020_bib34
  article-title: Defining totipotency using criteria of increasing stringency
  publication-title: bioRxiv
– volume: 17
  start-page: 7
  year: 2017
  ident: 10.1016/j.cell.2021.03.020_bib29
  article-title: The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states
  publication-title: BMC Dev. Biol.
  doi: 10.1186/s12861-017-0150-4
– volume: 366
  start-page: eaax7890
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib26
  article-title: In vitro culture of cynomolgus monkey embryos beyond early gastrulation
  publication-title: Science
  doi: 10.1126/science.aax7890
– volume: 50
  start-page: e87
  year: 2019
  ident: 10.1016/j.cell.2021.03.020_bib8
  article-title: The Pluripotency Continuum and Interspecies Chimeras
  publication-title: Curr. Protoc. Stem Cell Biol.
  doi: 10.1002/cpsc.87
– volume: 19
  start-page: 477
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib44
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 563
  start-page: 347
  year: 2018
  ident: 10.1016/j.cell.2021.03.020_bib50
  article-title: Single-cell reconstruction of the early maternal-fetal interface in humans
  publication-title: Nature
  doi: 10.1038/s41586-018-0698-6
– reference: 33961759 - Cell Stem Cell. 2021 May 6;28(5):787-789
SSID ssj0008555
Score 2.6001372
Snippet Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might...
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2020
SubjectTerms chimerism
evolution
ex-vivo-cultured mokey embryos
genetic distance
human development
human extended pluripotent stem cells
human-monkey chimeric embryo
humans
interspecies chimera
Macaca fascicularis
medicine
mice
monkeys
pluripotent stem cell
swine
Title Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo
URI https://dx.doi.org/10.1016/j.cell.2021.03.020
https://www.ncbi.nlm.nih.gov/pubmed/33861963
https://www.proquest.com/docview/2514597718
https://www.proquest.com/docview/2551913604
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2DzbHnVRRNCTwnoKaR64ottltyv4b_wt_jInabsg6B48tk1gOpl8mUky8yF0Ck5yKjWNhCY04Zk3iRapS0xhRWHBYrJYMv_uXt488tuBGCyhfpcLE65VttjfYHpE6_bNeavN8_FwGHJ8C5pLCO1I4wgDDjOexyS-weUcjXMhGhaDAmY-tG4TZ5o7XmFzHGJESmKh08D5_fvi9JfzGReh63W01nqP-KIRcAMtudEmWmn4JD-20FP_eRhPYHC8gd5SWeHK40jFh7sdbzx-nQFYVPBU41DJGQcRp7iuMFglTGvs3srJRzWFHl-f78P3ahs9Xl899G-SljshMRDD1IklpkhLYQlxghqW6ZQZy6zROdfES-NlWUjvdGk09c4xYn1qaJ4XPBNe6pLtoOVRNXJ7CFubMWJKbagzHJbznLpMaGEyCpE1t76HSKc0ZdrC4oHf4lV1N8heVPgLFRStUqZA0T10Nu8zbspqLGwturFQP4xDAe4v7HfSDZyCWRM-65GrZlMFXh0PlfdIvqgNeLeEyZT30G4z6nNZIbCXAbv2_ynZAVoNT-FYiohDtFxPZu4IvJu6PI7m-w1w6_jq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEIILKq92-wAjcUMRsRM7ybFdFS0tcAJpOVmOH2Kr7WbFZpH4N_yW_jLGTrISEt0DxyS2NBmPx9_Y4_kAThAkx0KxQGjCojRzOlI8tpEuDC8MWkwWSuZfXYvBbfpryIcr0O_uwvi0ytb3Nz49eOv2zVmrzbPpaOTv-BYsFxja0QYIr8I6ooHM8zdcDH8s3HHOeUNjUODUx-btzZkmycvvjmOQyGiodOpJv99enf6HPsMqdP4Btlv4SL43Eu7Aip3swkZDKPm0B3f9-1E4giEhBb3lsiKVI4GLj3Rb3mQ6nqO3qPCpJr6UM_EizkhdETRLnNfE_i0fnqoZ9vj3_Dh6rPbh9vznTX8QteQJkcYgpo4M1UVcckOp5UwnmYoTbRKjVZ4q6oR2oiyEs6rUijlrE2pcrFmeF2nGnVBlcgBrk2piPwExJkuoLpVmVqe4nufMZlxxnTEMrVPjekA7pUndVhb3BBdj2aWQ_ZH-L6RXtIwTiYruwemiz7Spq7G0Ne_GQr6yDomOf2m_427gJE4b_1lNbDWfSYR1qS-9R_NlbRDe0kTEaQ8-NqO-kBUje-Gd1-d3SnYEm4Obq0t5eXH9-wts-S_-jIryr7BWP8ztN4Q6dXkYTPkF9e78CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chimeric+contribution+of+human+extended+pluripotent+stem+cells+to+monkey+embryos+ex+vivo&rft.jtitle=Cell&rft.au=Tan%2C+Tao&rft.au=Wu%2C+Jun&rft.au=Si%2C+Chenyang&rft.au=Dai%2C+Shaoxing&rft.date=2021-04-15&rft.issn=0092-8674&rft.volume=184&rft.issue=8+p.2020-2032.e14&rft.spage=2020&rft.epage=2032&rft_id=info:doi/10.1016%2Fj.cell.2021.03.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon