Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantati...
Saved in:
Published in | Cell Vol. 184; no. 8; pp. 2020 - 2032.e14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
[Display omitted]
•Generation of human-monkey chimeric embryos ex vivo with hEPSCs•hEPSCs differentiated into hypoblast and epiblast lineages•scRNA-seq analyses revealed developmental trajectories of human and monkey cells•The approach may allow for enhancing chimerism between evolutionarily distant species
Human cells, in the form of extended pluripotent stem cells, have the ability to contribute to both embryonic and extra-embryonic lineages in ex-vivo-cultured monkey embryos. |
---|---|
AbstractList | Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species. [Display omitted] •Generation of human-monkey chimeric embryos ex vivo with hEPSCs•hEPSCs differentiated into hypoblast and epiblast lineages•scRNA-seq analyses revealed developmental trajectories of human and monkey cells•The approach may allow for enhancing chimerism between evolutionarily distant species Human cells, in the form of extended pluripotent stem cells, have the ability to contribute to both embryonic and extra-embryonic lineages in ex-vivo-cultured monkey embryos. |
Author | Rodriguez Esteban, Concepcion Zhang, Youyue Nuñez Delicado, Estrella Hernandez-Benitez, Reyna Berggren, W. Travis Ji, Weizhi Zhu, Ran Wu, Jun Dai, Shaoxing Chen, Zhenzhen Deng, Hongkui Si, Wei Sun, Nianqin Yang, Pengpeng Izpisua Belmonte, Juan Carlos Shao, Honglian Zhang, E Si, Chenyang Martinez Martinez, Llanos Schwarz, May Ai, Zongyong Li, Tianqing Wang, Hong Kang, Yu Niu, Yuyu Tan, Tao |
Author_xml | – sequence: 1 givenname: Tao surname: Tan fullname: Tan, Tao email: tant@lpbr.cn organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 2 givenname: Jun surname: Wu fullname: Wu, Jun email: jun2.wu@utsouthwestern.edu organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 3 givenname: Chenyang surname: Si fullname: Si, Chenyang organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 4 givenname: Shaoxing surname: Dai fullname: Dai, Shaoxing organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 5 givenname: Youyue surname: Zhang fullname: Zhang, Youyue organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 6 givenname: Nianqin surname: Sun fullname: Sun, Nianqin organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 7 givenname: E surname: Zhang fullname: Zhang, E organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 8 givenname: Honglian surname: Shao fullname: Shao, Honglian organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 9 givenname: Wei surname: Si fullname: Si, Wei organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 10 givenname: Pengpeng surname: Yang fullname: Yang, Pengpeng organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 11 givenname: Hong surname: Wang fullname: Wang, Hong organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 12 givenname: Zhenzhen surname: Chen fullname: Chen, Zhenzhen organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 13 givenname: Ran surname: Zhu fullname: Zhu, Ran organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 14 givenname: Yu surname: Kang fullname: Kang, Yu organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 15 givenname: Reyna surname: Hernandez-Benitez fullname: Hernandez-Benitez, Reyna organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 16 givenname: Llanos surname: Martinez Martinez fullname: Martinez Martinez, Llanos organization: Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain – sequence: 17 givenname: Estrella surname: Nuñez Delicado fullname: Nuñez Delicado, Estrella organization: Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain – sequence: 18 givenname: W. Travis surname: Berggren fullname: Berggren, W. Travis organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 19 givenname: May surname: Schwarz fullname: Schwarz, May organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 20 givenname: Zongyong surname: Ai fullname: Ai, Zongyong organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 21 givenname: Tianqing surname: Li fullname: Li, Tianqing organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 22 givenname: Hongkui surname: Deng fullname: Deng, Hongkui organization: Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China – sequence: 23 givenname: Concepcion surname: Rodriguez Esteban fullname: Rodriguez Esteban, Concepcion organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 24 givenname: Weizhi surname: Ji fullname: Ji, Weizhi email: wji@lpbr.cn organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 25 givenname: Yuyu surname: Niu fullname: Niu, Yuyu email: niuyy@lpbr.cn organization: State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China – sequence: 26 givenname: Juan Carlos surname: Izpisua Belmonte fullname: Izpisua Belmonte, Juan Carlos email: belmonte@salk.edu organization: Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33861963$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAURi1URKctL8ACeckmwT-xE0ts0AhapErdlEVXlmPfqB4Se7CdEfM2PAtPRqIpLFhUrKwrnXOv9X0X6CzEAAi9oaSmhMr3u9rCONaMMFoTXhNGXqANJaqtGtqyM7QhRLGqk21zji5y3hFCOiHEK3TOeSepknyDHraPfoLkLbYxlOT7ufgYcBzw4zyZgOFHgeDA4f04J7-Py1RwLjDh9XbGJeIphm9wxDD16RjzYvz6efCHeIVeDmbM8PrpvURfP3-6395Ut3fXX7YfbyvbKFUqR60ivXCUgmCWt4Zw67izpmsMHaQdZK_kAKa3hg0AnLqBWNZ1qmnFIE3PL9G70959it9nyEVPPq-fMwHinDUTgirKJWn-A6WNUG1LuwV9-4TO_QRO75OfTDrqP8ktADsBNsWcEwx_EUr0Wo_e6XW1XuvRhOulnkXq_pGsL2ZNvCTjx-fVDycVliwPHpLO1kOw4HwCW7SL_jn9N04LrUk |
CitedBy_id | crossref_primary_10_1016_j_stemcr_2021_09_018 crossref_primary_10_1038_s41592_022_01571_7 crossref_primary_10_1016_j_bbrc_2021_08_047 crossref_primary_10_1016_j_stemcr_2021_06_001 crossref_primary_10_1097_TP_0000000000004526 crossref_primary_10_26508_lsa_202201608 crossref_primary_10_1096_fj_202302402R crossref_primary_10_1016_j_stemcr_2022_07_005 crossref_primary_10_1002_hast_1427 crossref_primary_10_1016_j_tcb_2021_07_008 crossref_primary_10_1089_ten_tea_2021_0057 crossref_primary_10_3390_cells12162075 crossref_primary_10_15283_ijsc21122 crossref_primary_10_1016_j_stem_2022_04_003 crossref_primary_10_1038_d41586_021_02624_1 crossref_primary_10_3390_cells11101628 crossref_primary_10_1089_scd_2022_0061 crossref_primary_10_1177_09636897231183112 crossref_primary_10_1016_j_celrep_2022_111264 crossref_primary_10_1017_S0963180122000780 crossref_primary_10_1051_medsci_2021124 crossref_primary_10_1080_19396368_2022_2052771 crossref_primary_10_1038_d41586_022_02073_4 crossref_primary_10_1038_s41422_021_00609_3 crossref_primary_10_1016_j_stemcr_2021_05_005 crossref_primary_10_1016_S2352_4642_22_00193_6 crossref_primary_10_1038_s41467_021_25853_4 crossref_primary_10_1016_j_cell_2023_04_019 crossref_primary_10_1016_j_stem_2022_06_003 crossref_primary_10_1057_s41292_023_00302_1 crossref_primary_10_1016_j_gde_2023_102093 crossref_primary_10_1172_JCI166998 crossref_primary_10_1016_j_cell_2022_01_005 crossref_primary_10_1038_s42003_024_06986_w crossref_primary_10_1016_j_fct_2024_115022 crossref_primary_10_1038_s41576_021_00447_4 crossref_primary_10_1016_j_cell_2024_05_027 crossref_primary_10_1007_s13752_021_00385_8 crossref_primary_10_1016_j_xjtc_2022_01_012 crossref_primary_10_1177_09636897221110525 crossref_primary_10_1016_j_jobb_2022_12_003 crossref_primary_10_3803_EnM_2024_1989 crossref_primary_10_1177_00243639231162438 crossref_primary_10_1007_s11259_024_10294_3 crossref_primary_10_1111_gtc_13000 crossref_primary_10_1681_ASN_2021081073 crossref_primary_10_1016_j_animal_2023_100803 crossref_primary_10_1016_j_stem_2021_04_025 crossref_primary_10_1016_j_stemcr_2021_05_012 crossref_primary_10_1038_d41586_021_02625_0 crossref_primary_10_1038_d41586_023_02160_0 crossref_primary_10_3390_molecules27020379 crossref_primary_10_1093_biolre_ioac055 crossref_primary_10_2217_rme_2022_0043 crossref_primary_10_3390_cells13020179 crossref_primary_10_1007_s41649_022_00233_2 crossref_primary_10_1016_j_cell_2021_03_044 crossref_primary_10_1089_bio_2022_0041 crossref_primary_10_1093_biolre_ioad038 crossref_primary_10_1038_s44222_023_00066_0 crossref_primary_10_1002_advs_202205451 crossref_primary_10_3389_fcell_2022_1093534 crossref_primary_10_3390_philosophies9020039 crossref_primary_10_1007_s13238_021_00880_5 crossref_primary_10_1051_medsci_2021145 crossref_primary_10_1016_j_jgg_2021_12_013 crossref_primary_10_3389_fendo_2022_963282 crossref_primary_10_3389_fcell_2023_1070560 crossref_primary_10_1016_j_celrep_2024_114232 crossref_primary_10_1038_s41592_023_02071_y crossref_primary_10_1038_s41587_021_01034_y |
Cites_doi | 10.1038/nmeth.3016 10.1038/nature20573 10.1038/nature12745 10.1038/s41467-017-00236-w 10.1242/dev.142679 10.1016/j.gde.2018.05.007 10.1038/s41587-019-0373-y 10.1038/nbt.2859 10.1016/j.cell.2016.12.036 10.1038/s41587-019-0201-4 10.1016/j.stem.2014.09.015 10.1038/s41586-019-1875-y 10.1038/nrm.2015.28 10.1038/nature17948 10.1038/nature15515 10.1016/j.stem.2014.07.002 10.1016/j.stemcr.2020.12.004 10.1016/j.stem.2016.12.004 10.1038/cr.2017.138 10.1038/s41563-018-0082-9 10.1242/dev.189845 10.1038/nature19096 10.1093/bioinformatics/btx792 10.1038/nbt.4096 10.1126/science.aas9302 10.1016/j.stem.2015.06.004 10.1038/s41586-019-1500-0 10.1126/sciadv.aaz0298 10.1016/j.cell.2016.05.043 10.1038/s41586-018-0150-y 10.1016/j.stem.2016.06.011 10.1016/j.cmet.2018.01.008 10.1016/j.stem.2013.11.015 10.1101/gad.1100503 10.1007/s13238-019-00676-8 10.1073/pnas.1012424107 10.15252/embj.2019104324 10.1002/pro.3715 10.1146/annurev-genet-120116-024544 10.1038/s41586-019-1535-2 10.1038/s41467-018-07098-w 10.1038/s41556-019-0349-7 10.1038/s41586-019-1654-9 10.1038/nprot.2014.006 10.1038/nmeth.4463 10.1016/j.stemcr.2019.09.003 10.1093/molbev/msy096 10.1016/j.cell.2019.05.031 10.1016/j.stem.2015.10.009 10.1038/nbt.3122 10.1016/j.cell.2017.02.005 10.1038/nature24052 10.1089/omi.2011.0118 10.1038/s41556-019-0333-2 10.1093/nar/gky962 10.1038/ncb3347 10.1093/nar/28.1.27 10.1038/s41586-018-0414-6 10.1126/science.aaw5754 10.1186/s12861-017-0150-4 10.1126/science.aax7890 10.1002/cpsc.87 10.1186/s12864-018-4772-0 10.1038/s41586-018-0698-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.cell.2021.03.020 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
EISSN | 1097-4172 |
EndPage | 2032.e14 |
ExternalDocumentID | 33861963 10_1016_j_cell_2021_03_020 S0092867421003056 |
Genre | Journal Article |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-d1c90b5d11e52c37a03cd3dca84a1f6cf6b96feabca2fee31df0c2889475f6ab3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Fri Jul 11 07:34:24 EDT 2025 Tue Aug 05 11:34:05 EDT 2025 Thu Apr 03 06:58:47 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Tue Jul 01 02:17:09 EDT 2025 Fri Feb 23 02:46:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | human-monkey chimeric embryo human extended pluripotent stem cells interspecies chimera pluripotent stem cell ex-vivo-cultured mokey embryos |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-d1c90b5d11e52c37a03cd3dca84a1f6cf6b96feabca2fee31df0c2889475f6ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S0092867421003056/pdf |
PMID | 33861963 |
PQID | 2514597718 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2551913604 proquest_miscellaneous_2514597718 pubmed_primary_33861963 crossref_primary_10_1016_j_cell_2021_03_020 crossref_citationtrail_10_1016_j_cell_2021_03_020 elsevier_sciencedirect_doi_10_1016_j_cell_2021_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Huang, Zhu, Ma, Zhao, Fan, Li, Song, Chu, Ouyang, Zhang (bib18) 2018; 9 Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib32) 2015; 33 Hackett, Surani (bib15) 2014; 15 Nakamura, Okamoto, Sasaki, Yabuta, Iwatani, Tsuchiya, Seita, Nakamura, Yamamoto, Saitou (bib30) 2016; 537 Xiang, Yin, Zheng, Ma, Li, Zhao, Guo, Ai, Niu, Duan (bib60) 2020; 577 De Los Angeles (bib8) 2019; 50 Chen, Niu, Li, Ai, Kang, Shi, Xiang, Yang, Tan, Si (bib6) 2015; 17 Harvey, Caretti, Moresi, Renzini, Adamo (bib16) 2019; 13 Guo, Stirparo, Strawbridge, Yang, Clarke, Li, Myers, Özel, Nichols, Smith (bib14) 2020 Das, Koyano-Nakagawa, Gafni, Maeng, Singh, Rasmussen, Pan, Choi, Mickelson, Gong (bib7) 2020; 38 Wu, Greely, Jaenisch, Nakauchi, Rossant, Belmonte (bib58) 2016; 540 Yang, Ryan, Wang, Tsang, Lan, Masaki, Gao, Antunes, Yu, Zhu (bib62) 2017; 550 Yu, Wang, Han, He (bib64) 2012; 16 Kanehisa, Goto (bib20) 2000; 28 Martyn, Kanno, Ruzo, Siggia, Brivanlou (bib27) 2018; 558 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (bib33) 2014; 9 Rossant, Tam (bib38) 2018; 360 Gao, Nowak-Imialek, Chen, Chen, Herrmann, Ruan, Chen, Eckersley-Maslin, Ahmad, Lee (bib13) 2019; 21 Trapnell, Cacchiarelli, Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen, Rinn (bib49) 2014; 32 Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib45) 2019; 177 Salazar-Roa, Trakala, Álvarez-Fernández, Valdés-Mora, Zhong, Muñoz, Yu, Peters, Graña-Castro, Serrano (bib39) 2020; 39 Niu, Sun, Li, Lei, Huang, Wu, Si, Dai, Liu, Wei (bib31) 2019; 366 Theunissen, Friedli, He, Planet, O’Neil, Markoulaki, Pontis, Wang, Iouranova, Imbeault (bib48) 2016; 19 Fu, Yu, Ren, Li, Wang, Feng, Wang, Wan, Li, Wang (bib11) 2020; 11 Ma, Zhai, Wan, Jiang, Wang, Wang, Xiang, He, Zhao, Zhao (bib26) 2019; 366 Rossant, Tam (bib37) 2017; 20 Vincent, Dunn, Hayashi, Norris, Robertson (bib51) 2003; 17 Kanehisa (bib19) 2019; 28 Aksoy, Rognard, Moulin, Marcy, Masfaraud, Wianny, Cortay, Bellemin-Ménard, Doerflinger, Dirheimer (bib2) 2021; 16 Zhou, Wang, Yuan, Ren, Mao, Li, Lian, Li, Wen, Yan (bib68) 2019; 572 Mishra, Grzybek, Niki, Hirashima, Simons (bib28) 2010; 107 Hu, Li, Jiang, Ren, Yu, Qiu, Stablewski, Zhang, Buck, Feng (bib17) 2020; 6 Riveiro, Brickman (bib35) 2020; 147 Zheng, Xue, Shao, Wang, Esfahani, Li, Muncie, Lakins, Weaver, Gumucio, Fu (bib66) 2019; 573 Wu, Izpisua Belmonte (bib57) 2016; 165 Butler, Hoffman, Smibert, Papalexi, Satija (bib4) 2018; 36 De Los Angeles, Ferrari, Xi, Fujiwara, Benvenisty, Deng, Hochedlinger, Jaenisch, Lee, Leitch (bib9) 2015; 525 Kim, Paggi, Park, Bennett, Salzberg (bib23) 2019; 37 Street, Risso, Fletcher, Das, Ngai, Yosef, Purdom, Dudoit (bib44) 2018; 19 Kumar, Stecher, Li, Knyaz, Tamura (bib24) 2018; 35 Bayerl, Ayyash, Shani, Manor, Gafni, Kalma, Aguilera-Castrejon, Zerbib, Amir, Sheban (bib3) 2020 Warmflash, Sorre, Etoc, Siggia, Brivanlou (bib53) 2014; 11 Shahbazi, Jedrusik, Vuoristo, Recher, Hupalowska, Bolton, Fogarty, Campbell, Devito, Ilic (bib40) 2016; 18 Kanton, Boyle, He, Santel, Weigert, Sanchís-Calleja, Guijarro, Sidow, Fleck, Han (bib22) 2019; 574 Xue, Sun, Resto-Irizarry, Yuan, Aw Yong, Zheng, Weng, Shao, Chai, Studer, Fu (bib61) 2018; 17 Smith (bib43) 2017; 144 Gafni, Weinberger, Mansour, Manor, Chomsky, Ben-Yosef, Kalma, Viukov, Maza, Zviran (bib12) 2013; 504 Rossant (bib36) 2018; 52 Suchy, Nakauchi (bib46) 2018; 52 Wu, Izpisua Belmonte (bib56) 2015; 17 Yang, Liu, Xu, Wang, Wu, Shi, Xu, Dong, Wang, Lai (bib63) 2017; 169 Wu, Platero-Luengo, Sakurai, Sugawara, Gil, Yamauchi, Suzuki, Bogliotti, Cuello, Morales Valencia (bib59) 2017; 168 Aibar, González-Blas, Moerman, Huynh-Thu, Imrichova, Hulselmans, Rambow, Marine, Geurts, Aerts (bib1) 2017; 14 Kanehisa, Sato, Furumichi, Morishima, Tanabe (bib21) 2019; 47 Posfai, Schell, Janiszewski, Rovic, Murray, Bradshaw, Pardon, El Bakkali, Talon, De Geest (bib34) 2020 Zhang, Zhao, Dahan, Lu, Zhang, Li, Teitell (bib65) 2018; 27 Morgani, Nichols, Hadjantonakis (bib29) 2017; 17 Deglincerti, Croft, Pietila, Zernicka-Goetz, Siggia, Brivanlou (bib10) 2016; 533 Weinreb, Wolock, Klein (bib55) 2018; 34 Wang, Li, Cui, Yu, Liu, Jiang, Feng, Wang, Fu, Zhang (bib52) 2018; 28 La Manno, Soldatov, Zeisel, Braun, Hochgerner, Petukhov, Lidschreiber, Kastriti, Lönnerberg, Furlan (bib25) 2018; 560 Shao, Taniguchi, Townshend, Miki, Gumucio, Fu (bib41) 2017; 8 Vento-Tormo, Efremova, Botting, Turco, Vento-Tormo, Meyer, Park, Stephenson, Polański, Goncalves (bib50) 2018; 563 Simunovic, Metzger, Etoc, Yoney, Ruzo, Martyn, Croft, You, Brivanlou, Siggia (bib42) 2019; 21 Theunissen, Powell, Wang, Mitalipova, Faddah, Reddy, Fan, Maetzel, Ganz, Shi (bib47) 2014; 15 Zheng, Hu, Sakurai, Pinzon-Arteaga, Li, Wei, Okamura, Ravaux, Barlow, Yu (bib67) 2021 Chan, Göke, Ng, Lu, Gonzales, Tan, Tng, Hong, Lim, Ng (bib5) 2013; 13 Weinberger, Ayyash, Novershtern, Hanna (bib54) 2016; 17 Huang (10.1016/j.cell.2021.03.020_bib18) 2018; 9 Butler (10.1016/j.cell.2021.03.020_bib4) 2018; 36 Das (10.1016/j.cell.2021.03.020_bib7) 2020; 38 Kumar (10.1016/j.cell.2021.03.020_bib24) 2018; 35 Harvey (10.1016/j.cell.2021.03.020_bib16) 2019; 13 Kanton (10.1016/j.cell.2021.03.020_bib22) 2019; 574 Niu (10.1016/j.cell.2021.03.020_bib31) 2019; 366 Shao (10.1016/j.cell.2021.03.020_bib41) 2017; 8 Warmflash (10.1016/j.cell.2021.03.020_bib53) 2014; 11 Zhou (10.1016/j.cell.2021.03.020_bib68) 2019; 572 Posfai (10.1016/j.cell.2021.03.020_bib34) 2020 Xue (10.1016/j.cell.2021.03.020_bib61) 2018; 17 Theunissen (10.1016/j.cell.2021.03.020_bib48) 2016; 19 Yang (10.1016/j.cell.2021.03.020_bib62) 2017; 550 Hu (10.1016/j.cell.2021.03.020_bib17) 2020; 6 Kanehisa (10.1016/j.cell.2021.03.020_bib19) 2019; 28 Weinreb (10.1016/j.cell.2021.03.020_bib55) 2018; 34 Morgani (10.1016/j.cell.2021.03.020_bib29) 2017; 17 Wu (10.1016/j.cell.2021.03.020_bib59) 2017; 168 Aksoy (10.1016/j.cell.2021.03.020_bib2) 2021; 16 Ma (10.1016/j.cell.2021.03.020_bib26) 2019; 366 Hackett (10.1016/j.cell.2021.03.020_bib15) 2014; 15 Gao (10.1016/j.cell.2021.03.020_bib13) 2019; 21 Trapnell (10.1016/j.cell.2021.03.020_bib49) 2014; 32 Riveiro (10.1016/j.cell.2021.03.020_bib35) 2020; 147 Guo (10.1016/j.cell.2021.03.020_bib14) 2020 Rossant (10.1016/j.cell.2021.03.020_bib38) 2018; 360 Shahbazi (10.1016/j.cell.2021.03.020_bib40) 2016; 18 De Los Angeles (10.1016/j.cell.2021.03.020_bib8) 2019; 50 Nakamura (10.1016/j.cell.2021.03.020_bib30) 2016; 537 Aibar (10.1016/j.cell.2021.03.020_bib1) 2017; 14 Rossant (10.1016/j.cell.2021.03.020_bib36) 2018; 52 Street (10.1016/j.cell.2021.03.020_bib44) 2018; 19 Kanehisa (10.1016/j.cell.2021.03.020_bib21) 2019; 47 Stuart (10.1016/j.cell.2021.03.020_bib45) 2019; 177 Wu (10.1016/j.cell.2021.03.020_bib58) 2016; 540 Picelli (10.1016/j.cell.2021.03.020_bib33) 2014; 9 Salazar-Roa (10.1016/j.cell.2021.03.020_bib39) 2020; 39 La Manno (10.1016/j.cell.2021.03.020_bib25) 2018; 560 Mishra (10.1016/j.cell.2021.03.020_bib28) 2010; 107 Rossant (10.1016/j.cell.2021.03.020_bib37) 2017; 20 De Los Angeles (10.1016/j.cell.2021.03.020_bib9) 2015; 525 Kim (10.1016/j.cell.2021.03.020_bib23) 2019; 37 Yu (10.1016/j.cell.2021.03.020_bib64) 2012; 16 Yang (10.1016/j.cell.2021.03.020_bib63) 2017; 169 Wu (10.1016/j.cell.2021.03.020_bib56) 2015; 17 Martyn (10.1016/j.cell.2021.03.020_bib27) 2018; 558 Deglincerti (10.1016/j.cell.2021.03.020_bib10) 2016; 533 Bayerl (10.1016/j.cell.2021.03.020_bib3) 2020 Fu (10.1016/j.cell.2021.03.020_bib11) 2020; 11 Pertea (10.1016/j.cell.2021.03.020_bib32) 2015; 33 Theunissen (10.1016/j.cell.2021.03.020_bib47) 2014; 15 Zheng (10.1016/j.cell.2021.03.020_bib66) 2019; 573 Gafni (10.1016/j.cell.2021.03.020_bib12) 2013; 504 Vincent (10.1016/j.cell.2021.03.020_bib51) 2003; 17 Chan (10.1016/j.cell.2021.03.020_bib5) 2013; 13 Simunovic (10.1016/j.cell.2021.03.020_bib42) 2019; 21 Weinberger (10.1016/j.cell.2021.03.020_bib54) 2016; 17 Vento-Tormo (10.1016/j.cell.2021.03.020_bib50) 2018; 563 Wang (10.1016/j.cell.2021.03.020_bib52) 2018; 28 Wu (10.1016/j.cell.2021.03.020_bib57) 2016; 165 Smith (10.1016/j.cell.2021.03.020_bib43) 2017; 144 Zheng (10.1016/j.cell.2021.03.020_bib67) 2021 Chen (10.1016/j.cell.2021.03.020_bib6) 2015; 17 Zhang (10.1016/j.cell.2021.03.020_bib65) 2018; 27 Kanehisa (10.1016/j.cell.2021.03.020_bib20) 2000; 28 Suchy (10.1016/j.cell.2021.03.020_bib46) 2018; 52 Xiang (10.1016/j.cell.2021.03.020_bib60) 2020; 577 33961759 - Cell Stem Cell. 2021 May 6;28(5):787-789 |
References_xml | – volume: 19 start-page: 502 year: 2016 end-page: 515 ident: bib48 article-title: Molecular Criteria for Defining the Naive Human Pluripotent State publication-title: Cell Stem Cell – volume: 17 start-page: 1646 year: 2003 end-page: 1662 ident: bib51 article-title: Cell fate decisions within the mouse organizer are governed by graded Nodal signals publication-title: Genes Dev. – volume: 14 start-page: 1083 year: 2017 end-page: 1086 ident: bib1 article-title: SCENIC: single-cell regulatory network inference and clustering publication-title: Nat. Methods – volume: 38 start-page: 297 year: 2020 end-page: 302 ident: bib7 article-title: Generation of human endothelium in pig embryos deficient in ETV2 publication-title: Nat. Biotechnol. – volume: 360 start-page: 1075 year: 2018 end-page: 1076 ident: bib38 article-title: Exploring early human embryo development publication-title: Science – volume: 52 start-page: 36 year: 2018 end-page: 41 ident: bib46 article-title: Interspecies chimeras publication-title: Curr. Opin. Genet. Dev. – volume: 165 start-page: 1572 year: 2016 end-page: 1585 ident: bib57 article-title: Stem Cells: A Renaissance in Human Biology Research publication-title: Cell – volume: 16 start-page: 56 year: 2021 end-page: 74 ident: bib2 article-title: Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells publication-title: Stem cell reports – volume: 15 start-page: 416 year: 2014 end-page: 430 ident: bib15 article-title: Regulatory principles of pluripotency: from the ground state up publication-title: Cell Stem Cell – volume: 13 start-page: 663 year: 2013 end-page: 675 ident: bib5 article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast publication-title: Cell Stem Cell – volume: 144 start-page: 365 year: 2017 end-page: 373 ident: bib43 article-title: Formative pluripotency: the executive phase in a developmental continuum publication-title: Development – volume: 533 start-page: 251 year: 2016 end-page: 254 ident: bib10 article-title: Self-organization of the in vitro attached human embryo publication-title: Nature – volume: 21 start-page: 687 year: 2019 end-page: 699 ident: bib13 article-title: Establishment of porcine and human expanded potential stem cells publication-title: Nat. Cell Biol. – volume: 525 start-page: 469 year: 2015 end-page: 478 ident: bib9 article-title: Hallmarks of pluripotency publication-title: Nature – volume: 504 start-page: 282 year: 2013 end-page: 286 ident: bib12 article-title: Derivation of novel human ground state naive pluripotent stem cells publication-title: Nature – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: bib49 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. – volume: 8 start-page: 208 year: 2017 ident: bib41 article-title: A pluripotent stem cell-based model for post-implantation human amniotic sac development publication-title: Nat. Commun. – year: 2020 ident: bib34 article-title: Defining totipotency using criteria of increasing stringency publication-title: bioRxiv – volume: 558 start-page: 132 year: 2018 end-page: 135 ident: bib27 article-title: Self-organization of a human organizer by combined Wnt and Nodal signalling publication-title: Nature – volume: 17 start-page: 509 year: 2015 end-page: 525 ident: bib56 article-title: Dynamic Pluripotent Stem Cell States and Their Applications publication-title: Cell Stem Cell – volume: 52 start-page: 185 year: 2018 end-page: 201 ident: bib36 article-title: Genetic Control of Early Cell Lineages in the Mammalian Embryo publication-title: Annu. Rev. Genet. – volume: 15 start-page: 471 year: 2014 end-page: 487 ident: bib47 article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency publication-title: Cell Stem Cell – volume: 147 start-page: dev189845 year: 2020 ident: bib35 article-title: From pluripotency to totipotency: an experimentalist’s guide to cellular potency publication-title: Development – volume: 28 start-page: 126 year: 2018 end-page: 129 ident: bib52 article-title: Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis publication-title: Cell Res. – volume: 574 start-page: 418 year: 2019 end-page: 422 ident: bib22 article-title: Organoid single-cell genomic atlas uncovers human-specific features of brain development publication-title: Nature – volume: 169 start-page: 243 year: 2017 end-page: 257.e25 ident: bib63 article-title: Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency publication-title: Cell – volume: 366 start-page: eaaw5754 year: 2019 ident: bib31 article-title: Dissecting primate early post-implantation development using long-term in vitro embryo culture publication-title: Science – volume: 17 start-page: 116 year: 2015 end-page: 124 ident: bib6 article-title: Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells publication-title: Cell Stem Cell – volume: 37 start-page: 907 year: 2019 end-page: 915 ident: bib23 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. – volume: 9 start-page: 4649 year: 2018 ident: bib18 article-title: BMI1 enables interspecies chimerism with human pluripotent stem cells publication-title: Nat. Commun. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: bib33 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. – volume: 19 start-page: 477 year: 2018 ident: bib44 article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics publication-title: BMC Genomics – volume: 11 start-page: 97 year: 2020 end-page: 107 ident: bib11 article-title: Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs publication-title: Protein Cell – volume: 50 start-page: e87 year: 2019 ident: bib8 article-title: The Pluripotency Continuum and Interspecies Chimeras publication-title: Curr. Protoc. Stem Cell Biol. – volume: 573 start-page: 421 year: 2019 end-page: 425 ident: bib66 article-title: Controlled modelling of human epiblast and amnion development using stem cells publication-title: Nature – volume: 572 start-page: 660 year: 2019 end-page: 664 ident: bib68 article-title: Reconstituting the transcriptome and DNA methylome landscapes of human implantation publication-title: Nature – volume: 11 start-page: 847 year: 2014 end-page: 854 ident: bib53 article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells publication-title: Nat. Methods – volume: 34 start-page: 1246 year: 2018 end-page: 1248 ident: bib55 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: Bioinformatics – year: 2020 ident: bib3 article-title: Tripartite Inhibition of SRC-WNT-PKC Signalling Consolidates Human Naïve Pluripotency publication-title: bioRxiv – volume: 39 start-page: e104324 year: 2020 ident: bib39 article-title: Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells publication-title: EMBO J. – volume: 563 start-page: 347 year: 2018 end-page: 353 ident: bib50 article-title: Single-cell reconstruction of the early maternal-fetal interface in humans publication-title: Nature – volume: 17 start-page: 633 year: 2018 end-page: 641 ident: bib61 article-title: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells publication-title: Nat. Mater. – volume: 13 start-page: 573 year: 2019 end-page: 589 ident: bib16 article-title: Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance publication-title: Stem Cell Reports – volume: 17 start-page: 7 year: 2017 ident: bib29 article-title: The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states publication-title: BMC Dev. Biol. – volume: 577 start-page: 537 year: 2020 end-page: 542 ident: bib60 article-title: A developmental landscape of 3D-cultured human pre-gastrulation embryos publication-title: Nature – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: bib4 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. – volume: 28 start-page: 1947 year: 2019 end-page: 1951 ident: bib19 article-title: Toward understanding the origin and evolution of cellular organisms publication-title: Protein Sci. – year: 2020 ident: bib14 article-title: Trophectoderm Potency is Retained Exclusively in Human Naïve Cells publication-title: bioRxiv – volume: 560 start-page: 494 year: 2018 end-page: 498 ident: bib25 article-title: RNA velocity of single cells publication-title: Nature – volume: 17 start-page: 155 year: 2016 end-page: 169 ident: bib54 article-title: Dynamic stem cell states: naive to primed pluripotency in rodents and humans publication-title: Nat. Rev. Mol. Cell Biol. – volume: 33 start-page: 290 year: 2015 end-page: 295 ident: bib32 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. – volume: 550 start-page: 393 year: 2017 end-page: 397 ident: bib62 article-title: Establishment of mouse expanded potential stem cells publication-title: Nature – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: bib20 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. – volume: 540 start-page: 51 year: 2016 end-page: 59 ident: bib58 article-title: Stem cells and interspecies chimaeras publication-title: Nature – volume: 537 start-page: 57 year: 2016 end-page: 62 ident: bib30 article-title: A developmental coordinate of pluripotency among mice, monkeys and humans publication-title: Nature – volume: 16 start-page: 284 year: 2012 end-page: 287 ident: bib64 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS – volume: 107 start-page: 17633 year: 2010 end-page: 17638 ident: bib28 article-title: Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: eaaz0298 year: 2020 ident: bib17 article-title: Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos publication-title: Sci. Adv. – volume: 366 start-page: eaax7890 year: 2019 ident: bib26 article-title: In vitro culture of cynomolgus monkey embryos beyond early gastrulation publication-title: Science – volume: 27 start-page: 332 year: 2018 end-page: 338 ident: bib65 article-title: Metabolism in Pluripotent Stem Cells and Early Mammalian Development publication-title: Cell Metab. – year: 2021 ident: bib67 article-title: Cell competition constitutes a barrier for interspecies chimerism publication-title: Nature – volume: 35 start-page: 1547 year: 2018 end-page: 1549 ident: bib24 article-title: MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms publication-title: Mol. Biol. Evol. – volume: 177 start-page: 1888 year: 2019 end-page: 1902.e1821 ident: bib45 article-title: Comprehensive Integration of Single-Cell Data publication-title: Cell – volume: 168 start-page: 473 year: 2017 end-page: 486.e15 ident: bib59 article-title: Interspecies Chimerism with Mammalian Pluripotent Stem Cells publication-title: Cell – volume: 20 start-page: 18 year: 2017 end-page: 28 ident: bib37 article-title: New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation publication-title: Cell Stem Cell – volume: 18 start-page: 700 year: 2016 end-page: 708 ident: bib40 article-title: Self-organization of the human embryo in the absence of maternal tissues publication-title: Nat. Cell Biol. – volume: 21 start-page: 900 year: 2019 end-page: 910 ident: bib42 article-title: A 3D model of a human epiblast reveals BMP4-driven symmetry breaking publication-title: Nat. Cell Biol. – volume: 47 start-page: D590 year: 2019 end-page: D595 ident: bib21 article-title: New approach for understanding genome variations in KEGG publication-title: Nucleic Acids Res. – volume: 11 start-page: 847 year: 2014 ident: 10.1016/j.cell.2021.03.020_bib53 article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells publication-title: Nat. Methods doi: 10.1038/nmeth.3016 – volume: 540 start-page: 51 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib58 article-title: Stem cells and interspecies chimaeras publication-title: Nature doi: 10.1038/nature20573 – volume: 504 start-page: 282 year: 2013 ident: 10.1016/j.cell.2021.03.020_bib12 article-title: Derivation of novel human ground state naive pluripotent stem cells publication-title: Nature doi: 10.1038/nature12745 – volume: 8 start-page: 208 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib41 article-title: A pluripotent stem cell-based model for post-implantation human amniotic sac development publication-title: Nat. Commun. doi: 10.1038/s41467-017-00236-w – volume: 144 start-page: 365 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib43 article-title: Formative pluripotency: the executive phase in a developmental continuum publication-title: Development doi: 10.1242/dev.142679 – volume: 52 start-page: 36 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib46 article-title: Interspecies chimeras publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2018.05.007 – year: 2020 ident: 10.1016/j.cell.2021.03.020_bib3 article-title: Tripartite Inhibition of SRC-WNT-PKC Signalling Consolidates Human Naïve Pluripotency publication-title: bioRxiv – volume: 38 start-page: 297 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib7 article-title: Generation of human endothelium in pig embryos deficient in ETV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0373-y – volume: 32 start-page: 381 year: 2014 ident: 10.1016/j.cell.2021.03.020_bib49 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 168 start-page: 473 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib59 article-title: Interspecies Chimerism with Mammalian Pluripotent Stem Cells publication-title: Cell doi: 10.1016/j.cell.2016.12.036 – year: 2020 ident: 10.1016/j.cell.2021.03.020_bib14 article-title: Trophectoderm Potency is Retained Exclusively in Human Naïve Cells publication-title: bioRxiv – volume: 37 start-page: 907 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib23 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 15 start-page: 416 year: 2014 ident: 10.1016/j.cell.2021.03.020_bib15 article-title: Regulatory principles of pluripotency: from the ground state up publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.015 – volume: 577 start-page: 537 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib60 article-title: A developmental landscape of 3D-cultured human pre-gastrulation embryos publication-title: Nature doi: 10.1038/s41586-019-1875-y – volume: 17 start-page: 155 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib54 article-title: Dynamic stem cell states: naive to primed pluripotency in rodents and humans publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.28 – volume: 533 start-page: 251 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib10 article-title: Self-organization of the in vitro attached human embryo publication-title: Nature doi: 10.1038/nature17948 – volume: 525 start-page: 469 year: 2015 ident: 10.1016/j.cell.2021.03.020_bib9 article-title: Hallmarks of pluripotency publication-title: Nature doi: 10.1038/nature15515 – volume: 15 start-page: 471 year: 2014 ident: 10.1016/j.cell.2021.03.020_bib47 article-title: Systematic identification of culture conditions for induction and maintenance of naive human pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.07.002 – volume: 16 start-page: 56 year: 2021 ident: 10.1016/j.cell.2021.03.020_bib2 article-title: Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells publication-title: Stem cell reports doi: 10.1016/j.stemcr.2020.12.004 – volume: 20 start-page: 18 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib37 article-title: New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.12.004 – volume: 28 start-page: 126 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib52 article-title: Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis publication-title: Cell Res. doi: 10.1038/cr.2017.138 – volume: 17 start-page: 633 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib61 article-title: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells publication-title: Nat. Mater. doi: 10.1038/s41563-018-0082-9 – volume: 147 start-page: dev189845 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib35 article-title: From pluripotency to totipotency: an experimentalist’s guide to cellular potency publication-title: Development doi: 10.1242/dev.189845 – volume: 537 start-page: 57 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib30 article-title: A developmental coordinate of pluripotency among mice, monkeys and humans publication-title: Nature doi: 10.1038/nature19096 – volume: 34 start-page: 1246 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib55 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx792 – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib4 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 360 start-page: 1075 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib38 article-title: Exploring early human embryo development publication-title: Science doi: 10.1126/science.aas9302 – volume: 17 start-page: 116 year: 2015 ident: 10.1016/j.cell.2021.03.020_bib6 article-title: Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.06.004 – volume: 572 start-page: 660 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib68 article-title: Reconstituting the transcriptome and DNA methylome landscapes of human implantation publication-title: Nature doi: 10.1038/s41586-019-1500-0 – volume: 6 start-page: eaaz0298 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib17 article-title: Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0298 – volume: 165 start-page: 1572 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib57 article-title: Stem Cells: A Renaissance in Human Biology Research publication-title: Cell doi: 10.1016/j.cell.2016.05.043 – volume: 558 start-page: 132 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib27 article-title: Self-organization of a human organizer by combined Wnt and Nodal signalling publication-title: Nature doi: 10.1038/s41586-018-0150-y – volume: 19 start-page: 502 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib48 article-title: Molecular Criteria for Defining the Naive Human Pluripotent State publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.06.011 – volume: 27 start-page: 332 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib65 article-title: Metabolism in Pluripotent Stem Cells and Early Mammalian Development publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.01.008 – volume: 13 start-page: 663 year: 2013 ident: 10.1016/j.cell.2021.03.020_bib5 article-title: Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.015 – volume: 17 start-page: 1646 year: 2003 ident: 10.1016/j.cell.2021.03.020_bib51 article-title: Cell fate decisions within the mouse organizer are governed by graded Nodal signals publication-title: Genes Dev. doi: 10.1101/gad.1100503 – volume: 11 start-page: 97 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib11 article-title: Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs publication-title: Protein Cell doi: 10.1007/s13238-019-00676-8 – volume: 107 start-page: 17633 year: 2010 ident: 10.1016/j.cell.2021.03.020_bib28 article-title: Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012424107 – volume: 39 start-page: e104324 year: 2020 ident: 10.1016/j.cell.2021.03.020_bib39 article-title: Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells publication-title: EMBO J. doi: 10.15252/embj.2019104324 – year: 2021 ident: 10.1016/j.cell.2021.03.020_bib67 article-title: Cell competition constitutes a barrier for interspecies chimerism publication-title: Nature – volume: 28 start-page: 1947 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib19 article-title: Toward understanding the origin and evolution of cellular organisms publication-title: Protein Sci. doi: 10.1002/pro.3715 – volume: 52 start-page: 185 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib36 article-title: Genetic Control of Early Cell Lineages in the Mammalian Embryo publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120116-024544 – volume: 573 start-page: 421 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib66 article-title: Controlled modelling of human epiblast and amnion development using stem cells publication-title: Nature doi: 10.1038/s41586-019-1535-2 – volume: 9 start-page: 4649 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib18 article-title: BMI1 enables interspecies chimerism with human pluripotent stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-07098-w – volume: 21 start-page: 900 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib42 article-title: A 3D model of a human epiblast reveals BMP4-driven symmetry breaking publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0349-7 – volume: 574 start-page: 418 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib22 article-title: Organoid single-cell genomic atlas uncovers human-specific features of brain development publication-title: Nature doi: 10.1038/s41586-019-1654-9 – volume: 9 start-page: 171 year: 2014 ident: 10.1016/j.cell.2021.03.020_bib33 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 14 start-page: 1083 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib1 article-title: SCENIC: single-cell regulatory network inference and clustering publication-title: Nat. Methods doi: 10.1038/nmeth.4463 – volume: 13 start-page: 573 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib16 article-title: Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2019.09.003 – volume: 35 start-page: 1547 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib24 article-title: MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msy096 – volume: 177 start-page: 1888 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib45 article-title: Comprehensive Integration of Single-Cell Data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 17 start-page: 509 year: 2015 ident: 10.1016/j.cell.2021.03.020_bib56 article-title: Dynamic Pluripotent Stem Cell States and Their Applications publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.10.009 – volume: 33 start-page: 290 year: 2015 ident: 10.1016/j.cell.2021.03.020_bib32 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 – volume: 169 start-page: 243 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib63 article-title: Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency publication-title: Cell doi: 10.1016/j.cell.2017.02.005 – volume: 550 start-page: 393 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib62 article-title: Establishment of mouse expanded potential stem cells publication-title: Nature doi: 10.1038/nature24052 – volume: 16 start-page: 284 year: 2012 ident: 10.1016/j.cell.2021.03.020_bib64 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 21 start-page: 687 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib13 article-title: Establishment of porcine and human expanded potential stem cells publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0333-2 – volume: 47 start-page: D590 issue: D1 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib21 article-title: New approach for understanding genome variations in KEGG publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky962 – volume: 18 start-page: 700 year: 2016 ident: 10.1016/j.cell.2021.03.020_bib40 article-title: Self-organization of the human embryo in the absence of maternal tissues publication-title: Nat. Cell Biol. doi: 10.1038/ncb3347 – volume: 28 start-page: 27 year: 2000 ident: 10.1016/j.cell.2021.03.020_bib20 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 560 start-page: 494 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib25 article-title: RNA velocity of single cells publication-title: Nature doi: 10.1038/s41586-018-0414-6 – volume: 366 start-page: eaaw5754 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib31 article-title: Dissecting primate early post-implantation development using long-term in vitro embryo culture publication-title: Science doi: 10.1126/science.aaw5754 – year: 2020 ident: 10.1016/j.cell.2021.03.020_bib34 article-title: Defining totipotency using criteria of increasing stringency publication-title: bioRxiv – volume: 17 start-page: 7 year: 2017 ident: 10.1016/j.cell.2021.03.020_bib29 article-title: The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states publication-title: BMC Dev. Biol. doi: 10.1186/s12861-017-0150-4 – volume: 366 start-page: eaax7890 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib26 article-title: In vitro culture of cynomolgus monkey embryos beyond early gastrulation publication-title: Science doi: 10.1126/science.aax7890 – volume: 50 start-page: e87 year: 2019 ident: 10.1016/j.cell.2021.03.020_bib8 article-title: The Pluripotency Continuum and Interspecies Chimeras publication-title: Curr. Protoc. Stem Cell Biol. doi: 10.1002/cpsc.87 – volume: 19 start-page: 477 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib44 article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 563 start-page: 347 year: 2018 ident: 10.1016/j.cell.2021.03.020_bib50 article-title: Single-cell reconstruction of the early maternal-fetal interface in humans publication-title: Nature doi: 10.1038/s41586-018-0698-6 – reference: 33961759 - Cell Stem Cell. 2021 May 6;28(5):787-789 |
SSID | ssj0008555 |
Score | 2.6001372 |
Snippet | Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might... Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2020 |
SubjectTerms | chimerism evolution ex-vivo-cultured mokey embryos genetic distance human development human extended pluripotent stem cells human-monkey chimeric embryo humans interspecies chimera Macaca fascicularis medicine mice monkeys pluripotent stem cell swine |
Title | Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo |
URI | https://dx.doi.org/10.1016/j.cell.2021.03.020 https://www.ncbi.nlm.nih.gov/pubmed/33861963 https://www.proquest.com/docview/2514597718 https://www.proquest.com/docview/2551913604 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6k2DzbHnVRRNCTwnoKaR64ottltyv4b_wt_jInabsg6B48tk1gOpl8mUky8yF0Ck5yKjWNhCY04Zk3iRapS0xhRWHBYrJYMv_uXt488tuBGCyhfpcLE65VttjfYHpE6_bNeavN8_FwGHJ8C5pLCO1I4wgDDjOexyS-weUcjXMhGhaDAmY-tG4TZ5o7XmFzHGJESmKh08D5_fvi9JfzGReh63W01nqP-KIRcAMtudEmWmn4JD-20FP_eRhPYHC8gd5SWeHK40jFh7sdbzx-nQFYVPBU41DJGQcRp7iuMFglTGvs3srJRzWFHl-f78P3ahs9Xl899G-SljshMRDD1IklpkhLYQlxghqW6ZQZy6zROdfES-NlWUjvdGk09c4xYn1qaJ4XPBNe6pLtoOVRNXJ7CFubMWJKbagzHJbznLpMaGEyCpE1t76HSKc0ZdrC4oHf4lV1N8heVPgLFRStUqZA0T10Nu8zbspqLGwturFQP4xDAe4v7HfSDZyCWRM-65GrZlMFXh0PlfdIvqgNeLeEyZT30G4z6nNZIbCXAbv2_ynZAVoNT-FYiohDtFxPZu4IvJu6PI7m-w1w6_jq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEIILKq92-wAjcUMRsRM7ybFdFS0tcAJpOVmOH2Kr7WbFZpH4N_yW_jLGTrISEt0DxyS2NBmPx9_Y4_kAThAkx0KxQGjCojRzOlI8tpEuDC8MWkwWSuZfXYvBbfpryIcr0O_uwvi0ytb3Nz49eOv2zVmrzbPpaOTv-BYsFxja0QYIr8I6ooHM8zdcDH8s3HHOeUNjUODUx-btzZkmycvvjmOQyGiodOpJv99enf6HPsMqdP4Btlv4SL43Eu7Aip3swkZDKPm0B3f9-1E4giEhBb3lsiKVI4GLj3Rb3mQ6nqO3qPCpJr6UM_EizkhdETRLnNfE_i0fnqoZ9vj3_Dh6rPbh9vznTX8QteQJkcYgpo4M1UVcckOp5UwnmYoTbRKjVZ4q6oR2oiyEs6rUijlrE2pcrFmeF2nGnVBlcgBrk2piPwExJkuoLpVmVqe4nufMZlxxnTEMrVPjekA7pUndVhb3BBdj2aWQ_ZH-L6RXtIwTiYruwemiz7Spq7G0Ne_GQr6yDomOf2m_427gJE4b_1lNbDWfSYR1qS-9R_NlbRDe0kTEaQ8-NqO-kBUje-Gd1-d3SnYEm4Obq0t5eXH9-wts-S_-jIryr7BWP8ztN4Q6dXkYTPkF9e78CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chimeric+contribution+of+human+extended+pluripotent+stem+cells+to+monkey+embryos+ex+vivo&rft.jtitle=Cell&rft.au=Tan%2C+Tao&rft.au=Wu%2C+Jun&rft.au=Si%2C+Chenyang&rft.au=Dai%2C+Shaoxing&rft.date=2021-04-15&rft.issn=0092-8674&rft.volume=184&rft.issue=8+p.2020-2032.e14&rft.spage=2020&rft.epage=2032&rft_id=info:doi/10.1016%2Fj.cell.2021.03.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |