The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally les...
Saved in:
Published in | Journal of biomechanics Vol. 65; pp. 1 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
08.12.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2017.08.030 |
Cover
Abstract | In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models.
Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. |
---|---|
AbstractList | In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models.Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. |
Author | Van den Boogaard, Ton Janssen, Dennis Naghibi Beidokhti, Hamid Verdonschot, Nico van de Groes, Sebastiaan Hazrati, Javad |
Author_xml | – sequence: 1 givenname: Hamid surname: Naghibi Beidokhti fullname: Naghibi Beidokhti, Hamid email: Hamid.NaghibiBeidokhti@radboudumc.nl organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands – sequence: 2 givenname: Dennis surname: Janssen fullname: Janssen, Dennis organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands – sequence: 3 givenname: Sebastiaan surname: van de Groes fullname: van de Groes, Sebastiaan organization: Orthopaedic Department, Radboud University Medical Center, The Netherlands – sequence: 4 givenname: Javad surname: Hazrati fullname: Hazrati, Javad organization: Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands – sequence: 5 givenname: Ton surname: Van den Boogaard fullname: Van den Boogaard, Ton organization: Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands – sequence: 6 givenname: Nico surname: Verdonschot fullname: Verdonschot, Nico organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28917580$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1q3DAURkVJaSZpXyEIuulmXMn2WBKU0hL6B4FuZi9k-WrmOrY0teTAQB--MpO0MJt0pYXO-ZDud6_IhQ8eCLnhrOCMN-_7om8xjGD3Rcm4KJgsWMVekBWXolqXlWQXZMVYydeqVOySXMXYM8ZELdQrcllKxcVGshX5vd0DRe-GGbwFGhwdcGdG8ImOoYNhQL-jMU0mwQ4h0uBpysZhgg5twgeg1hxMiwOm42I79JiAwgD_MuJysVj7eTSe3nsA2gf06TV56cwQ4c3jeU22X79sb7-v735--3H7-W5ta6XS2gKXXBlwcqOcFVZZJ4Uqu66qWVuLWvGyLBvOLADUThrTbEznlJKtqF3VVNfk3Sn2MIVfM8SkR4w2_814CHPUXNWMK8U3PKNvz9A-zJPPj8tUs6lrLiqRqZtHam5H6PRhwtFMR_001gw0J8BOIcYJ3F-EM730p3v91J9e-tNM6txfFj-ciRaTSRh8rgCH5_VPJz0PHR4QJh0tLsV2OIFNugv4fMTHswibdwCtGe7h-D8BfwCQqNFf |
CitedBy_id | crossref_primary_10_1115_1_4039674 crossref_primary_10_1177_09544119241307793 crossref_primary_10_1115_1_4047658 crossref_primary_10_1038_s41598_023_45408_5 crossref_primary_10_1177_0954411920941400 crossref_primary_10_1080_10255842_2023_2253950 crossref_primary_10_1111_os_13980 crossref_primary_10_1115_1_4062498 crossref_primary_10_1016_j_compbiomed_2021_105023 crossref_primary_10_1080_10255842_2020_1870220 crossref_primary_10_1098_rsif_2024_0588 crossref_primary_10_1115_1_4063627 crossref_primary_10_1115_1_4050028 crossref_primary_10_17352_ojor_000031 crossref_primary_10_1115_1_4050027 crossref_primary_10_1007_s11517_020_02158_0 crossref_primary_10_1007_s10237_024_01822_w crossref_primary_10_21597_jist_895137 crossref_primary_10_1016_j_medengphy_2022_103871 crossref_primary_10_3390_app13063802 crossref_primary_10_1016_j_knee_2020_01_010 crossref_primary_10_1002_jor_25652 crossref_primary_10_3390_bioengineering11121183 crossref_primary_10_1007_s11517_017_1757_0 crossref_primary_10_1016_j_cmpb_2024_108132 crossref_primary_10_1016_j_medengphy_2024_104246 crossref_primary_10_1016_j_ymssp_2022_109525 crossref_primary_10_1109_TNSRE_2020_3037411 crossref_primary_10_4236_am_2021_1212075 crossref_primary_10_1016_j_heliyon_2024_e30658 crossref_primary_10_3390_ma15010153 crossref_primary_10_1016_j_jbiomech_2021_110464 crossref_primary_10_1115_1_4066957 crossref_primary_10_1002_jor_24313 crossref_primary_10_1016_j_jbiomech_2020_110141 crossref_primary_10_1186_s13018_024_05006_1 crossref_primary_10_1080_10255842_2023_2256925 crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1 crossref_primary_10_3233_THC_218022 crossref_primary_10_1016_j_jmbbm_2020_103994 crossref_primary_10_1016_j_otsr_2022_103519 crossref_primary_10_1016_j_compbiomed_2021_104311 crossref_primary_10_1016_j_rcot_2022_12_017 crossref_primary_10_3389_fbioe_2022_930724 crossref_primary_10_1016_j_jmbbm_2020_103797 crossref_primary_10_1038_s41598_022_11601_1 crossref_primary_10_1115_1_4053791 crossref_primary_10_1080_10255842_2020_1808970 crossref_primary_10_1016_j_jmbbm_2020_103639 crossref_primary_10_3390_bioengineering9100590 crossref_primary_10_1016_j_medengphy_2019_08_002 crossref_primary_10_1115_1_4043346 crossref_primary_10_1177_0954411919865401 crossref_primary_10_3389_fbioe_2020_00967 crossref_primary_10_1002_jor_25358 crossref_primary_10_1016_j_jmbbm_2019_01_022 crossref_primary_10_1038_s41598_020_59602_2 crossref_primary_10_1115_1_4047343 crossref_primary_10_1016_j_jbiomech_2019_04_040 crossref_primary_10_1016_j_jbiomech_2024_112441 crossref_primary_10_1016_j_medengphy_2024_104183 crossref_primary_10_1007_s10439_021_02812_0 crossref_primary_10_1186_s12891_024_07372_7 |
Cites_doi | 10.1016/j.jbiomech.2012.05.040 10.1016/0021-9290(91)90019-J 10.1016/j.jbiomech.2011.02.081 10.1016/j.jbiomech.2004.02.024 10.1016/0021-9290(80)90354-1 10.1016/0021-9290(95)00040-2 10.1016/0021-9290(94)00081-E 10.1115/1.1470171 10.1016/0045-7825(96)01035-3 10.1007/BF01845594 10.1097/00003086-197606000-00034 10.1016/j.jbiomech.2015.02.031 10.1016/j.jbiomech.2012.06.014 10.1016/0021-9290(86)90019-9 10.1016/S0021-9290(02)00436-0 10.1016/j.jmbbm.2015.06.018 10.1016/0021-9290(83)90043-X 10.1016/S0021-9290(12)70374-3 10.1016/j.jbiomech.2004.05.034 10.1016/0021-9290(80)90240-7 10.1007/s00167-005-0686-x 10.1016/j.jbiomech.2010.10.001 10.1016/j.medengphy.2016.06.001 10.1016/S0021-9290(02)00305-6 10.1016/0268-0033(95)98193-X 10.1115/1.4023982 10.1016/j.jbiomech.2008.09.033 10.1016/j.jbiomech.2014.01.055 10.1679/aohc.65.109 10.1590/S0100-69912011000500010 10.1016/j.jbiomech.2014.02.028 10.1016/S0268-0033(98)00035-7 10.1115/1.2894090 10.1016/j.clinbiomech.2014.01.006 10.3389/fbioe.2014.00054 10.1016/S0268-0033(03)00140-2 10.1177/0363546515594447 10.1115/1.2720918 10.1016/S0268-0033(97)00072-7 10.1016/j.jbiomech.2013.11.026 10.1023/A:1010835316564 10.1016/j.jbiomech.2009.06.049 10.1016/j.jbiomech.2012.09.035 10.1080/10255840600795959 10.1016/S0268-0033(01)00020-1 10.1016/j.medengphy.2005.07.022 10.1016/j.jbiomech.2006.12.002 10.1016/j.jbiomech.2015.01.048 10.1016/0021-9290(74)90027-X 10.1002/jor.1100160123 10.1115/1.3138397 10.1016/S0736-0266(03)00113-X 10.1016/j.jbiomech.2015.02.043 10.1115/1.3138398 10.1016/j.jmbbm.2015.09.030 10.1080/10255840902822550 10.1115/1.2894883 10.1016/j.jbiomech.2015.03.014 10.1302/0301-620X.86B3.14330 10.1093/rheumatology/38.2.124 10.1016/j.jbiomech.2005.04.030 10.1016/j.knee.2003.10.004 10.2106/00004623-198769020-00010 10.1093/comjnl/7.4.308 10.1016/j.jbiomech.2011.11.003 10.1016/j.jbiomech.2016.02.033 10.1016/S0021-9290(03)00261-6 10.1177/036354659101900303 10.1002/jor.20553 10.1016/j.jbiomech.2011.11.052 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Dec 8, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Dec 8, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2017.08.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 11 |
ExternalDocumentID | 28917580 10_1016_j_jbiomech_2017_08_030 S0021929017304529 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c499t-ce1819aef859fc7c9cf8792dd340b47491222610ceee4f8aa65adf998b74f363 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Sep 05 10:14:52 EDT 2025 Wed Aug 13 04:15:45 EDT 2025 Wed Feb 19 02:44:24 EST 2025 Tue Jul 01 00:44:09 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Aug 26 17:10:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Knee contact pressure Subject-specific model Knee ligament Kinematics Computational model validation |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-ce1819aef859fc7c9cf8792dd340b47491222610ceee4f8aa65adf998b74f363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://research.utwente.nl/en/publications/5d5beb16-5533-41b5-8308-100a4a9642fa |
PMID | 28917580 |
PQID | 1965441737 |
PQPubID | 1226346 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1940199151 proquest_journals_1965441737 pubmed_primary_28917580 crossref_primary_10_1016_j_jbiomech_2017_08_030 crossref_citationtrail_10_1016_j_jbiomech_2017_08_030 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_08_030 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_08_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-08 |
PublicationDateYYYYMMDD | 2017-12-08 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Mootanah, R., Reisse, F., Carpanen, D., Walker, R., Hillstrom, H.J., 2012. The effects of the material properties of bones and soft tissues on knee joint contact stress, in: 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin. Baldwin, Laz, Stowe, Rullkoetter (b0050) 2009; 12 Innocenti, Pianigiani, Labey, Victor, Bellemans (b0195) 2011; 44 Stieven-Filho, Garschagen, Namba, da Silva, Malafaia, da Cunha (b0315) 2011; 38 Trent, P.S., Walker, P.S., Wolf, B., 1976. Ligament length patterns, strength, and rotational axes of the knee joint. Clin. Orthop. Relat. Res. Wismans, Veldpaus, Janssen, Huson, Struben (b0365) 1980; 13 Abraham, Moyer, Villegas, Odegard, Haut Donahue (b0010) 2011; 44 Nakagawa, Johal, Pinskerova, Komatsu, Sosna, Williams, Freeman (b0260) 2004; 86 Grood, Suntay (b0160) 1983; 105 Rood, Hannink, Lenting, Groenen, Koeter, Verdonschot, van Kampen (b0290) 2015; 43 Galbusera, Freutel, Dürselen, D’Aiuto, Croce, Villa, Sansone, Innocenti (b0145) 2014; 2 Robinson, Bull, Amis (b0280) 2005; 38 Blankevoort, Kuiper, Huiskes, Grootenboer (b0080) 1991; 24 Peña, Calvo, Martínez, Doblaré (b0270) 2006; 39 Bachus, DeMarco, Judd, Horwitz, Brodke (b0045) 2006; 28 Bendjaballah, Shirazi-Adl, Zukor (b0060) 1997; 12 Farahmand, Senavongse, Amis (b0115) 1998; 16 Seering, Piziali, Nagel, Schurman (b0295) 1980; 13 Adouni, Shirazi-Adl (b0015) 2014; 47 Wan, Hao, Tong, Lin, Li, Wen (b0350) 2015; 50 Pianigiani, Chevalier, Labey, Pascale, Innocenti (b0275) 2012; 45 . Holzapfel, Gasser, Ogden (b0185) 2000; 61 Song, Debski, Musahl, Thomas, Woo (b0310) 2004; 37 Yao, Lancianese, Hovinga, Lee, Lerner (b0375) 2008; 26 Adouni, Shirazi-Adl, Shirazi (b0025) 2012; 45 Fregly, Sawyer (b0125) 2003; 36 Weiss, Maker, Govindjee (b0355) 1996; 135 Guo, Santner, Chen, Wang, Brial, Gilbert, Koff, Lerner, Maher (b0165) 2015; 48 Ushiki (b0340) 2002; 65 Blankevoort, Huiskes (b0070) 1991; 113 Ateshian, Ellis, Weiss (b0040) 2012; 129 Mommersteeg, Blankevoort, Huiskes, Kooloos, Kauer (b0240) 1996; 29 Shepherd, Seedhom (b0300) 1999; 38 Andriacchi, Mikosz, Hampton, Galante (b0035) 1983; 16 Butler, Kay, Stouffer (b0085) 1986; 19 Mononen, Mikkola, Julkunen, Ojala, Nieminen, Jurvelin, Korhonen (b0245) 2012; 45 Moglo, Shirazi-Adl (b0235) 2003; 18 Farahmand, Tahmasbi, Amis (b0120) 2004; 11 Haut Donahue, Hull, Rashid, Jacobs (b0170) 2003; 36 Naghibi Beidokhti, Janssen, Khoshgoftar, Sprengers, Perdahcioglu, Van den Boogaard, Verdonschot (b0255) 2016; 38 Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (b0055) 2012; 45 Galbusera, F., Freutel, M., Dürselen, L., Dâ€TMAiuto, M., Croce, D., Villa, T., Sansone, V., Innocenti, B., 2014a. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Front. Bioeng. Biotechnol. 2, 1–11. Criscenti, De Maria, Sebastiani, Tei, Placella, Speziali, Vozzi, Cerulli (b0090) 2016; 54 Imran, A., 2012. Anterior Cruciate Ligament Fibres – Effects of Tibial Translation During Flexion at the Knee, in: Proceedings of the World Congress on Engineering, London. Heegaard, Leyvraz, Hovey (b0175) 2001; 16 Jones, Nawana, Pearcy, Learmonth, Bickerstaff, Costi, Paterson (b0200) 1995; 10 Gardiner, Weiss (b0150) 2003; 21 Tanska, Mononen, Korhonen (b0325) 2015; 48 Robleto (b0285) 1997 Drewniak, Crisco, Spenciner, Fleming (b0105) 2007; 40 Werner, Ayers, Maletsky, Rullkoetter (b0360) 2005; 38 Tissakht, Ahmed (b0330) 1995; 28 Shirazi, Shirazi-Adl, Hurtig (b0305) 2008; 41 Hefzy, Grood (b0180) 1983; 105 Blankevoort, Huiskes, de Lange (b0075) 1991; 113 Amis, Gupte, Bull, Edwards (b0030) 2006; 14 Marouane, Shirazi-Adl, Adouni, Hashemi (b0220) 2014; 47 Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin, Töyräs, Julkunen, Korhonen (b0095) 2015; 48 Bendjaballah, Shirazi-Adl, Zukor (b0065) 1998; 13 Donahue, Hull, Rashid, Jacobs (b0100) 2002; 124 Gollehon, Torzilli, Warren (b0155) 1987; 69 Abaqus, A., Simulia, 2011. ABAQUS 6.11 Documentation. Dassault Syst. Simulia 1100. Markolf, Mensch, Amstutz (b0205) 1976 Merican, Sanghavi, Iranpour, Amis (b0225) 2009; 42 Nelder, Mead, Nelder, Mead (b0265) 1965; 7 Stylianou, Guess, Kia (b0320) 2013; 135 Venäläinen, Mononen, Väänänen, Jurvelin, Töyräs, Virén (b0345) 2016; 49 Adouni, Shirazi-Adl (b0020) 2013; 46 Freutel, Galbusera, Ignatius, Dürselen (b0130) 2015; 48 Kusayama, Harner, Carlin, Xerogeanes, Smith (b0215) 1994; 2 Kim, Hsu, Woo (b0210) 2014; 47 Freutel, Schmidt, Dürselen, Ignatius, Galbusera (b0135) 2014; 29 Woo, Hollis, Adams, Lyon, Takai (b0370) 1991; 19 Engin, Korde (b0110) 1974; 7 Mesfar, Shirazi-Adl (b0230) 2006; 9 Robleto (10.1016/j.jbiomech.2017.08.030_b0285) 1997 Blankevoort (10.1016/j.jbiomech.2017.08.030_b0075) 1991; 113 Farahmand (10.1016/j.jbiomech.2017.08.030_b0120) 2004; 11 Blankevoort (10.1016/j.jbiomech.2017.08.030_b0080) 1991; 24 Baldwin (10.1016/j.jbiomech.2017.08.030_b0055) 2012; 45 Robinson (10.1016/j.jbiomech.2017.08.030_b0280) 2005; 38 Drewniak (10.1016/j.jbiomech.2017.08.030_b0105) 2007; 40 Abraham (10.1016/j.jbiomech.2017.08.030_b0010) 2011; 44 Guo (10.1016/j.jbiomech.2017.08.030_b0165) 2015; 48 Innocenti (10.1016/j.jbiomech.2017.08.030_b0195) 2011; 44 10.1016/j.jbiomech.2017.08.030_b0190 Bendjaballah (10.1016/j.jbiomech.2017.08.030_b0065) 1998; 13 Grood (10.1016/j.jbiomech.2017.08.030_b0160) 1983; 105 Mesfar (10.1016/j.jbiomech.2017.08.030_b0230) 2006; 9 Freutel (10.1016/j.jbiomech.2017.08.030_b0135) 2014; 29 10.1016/j.jbiomech.2017.08.030_b0335 Venäläinen (10.1016/j.jbiomech.2017.08.030_b0345) 2016; 49 Heegaard (10.1016/j.jbiomech.2017.08.030_b0175) 2001; 16 Danso (10.1016/j.jbiomech.2017.08.030_b0095) 2015; 48 Merican (10.1016/j.jbiomech.2017.08.030_b0225) 2009; 42 Tanska (10.1016/j.jbiomech.2017.08.030_b0325) 2015; 48 10.1016/j.jbiomech.2017.08.030_b0140 Kim (10.1016/j.jbiomech.2017.08.030_b0210) 2014; 47 Galbusera (10.1016/j.jbiomech.2017.08.030_b0145) 2014; 2 Marouane (10.1016/j.jbiomech.2017.08.030_b0220) 2014; 47 Engin (10.1016/j.jbiomech.2017.08.030_b0110) 1974; 7 Nakagawa (10.1016/j.jbiomech.2017.08.030_b0260) 2004; 86 Fregly (10.1016/j.jbiomech.2017.08.030_b0125) 2003; 36 Seering (10.1016/j.jbiomech.2017.08.030_b0295) 1980; 13 Ateshian (10.1016/j.jbiomech.2017.08.030_b0040) 2012; 129 Song (10.1016/j.jbiomech.2017.08.030_b0310) 2004; 37 Baldwin (10.1016/j.jbiomech.2017.08.030_b0050) 2009; 12 Woo (10.1016/j.jbiomech.2017.08.030_b0370) 1991; 19 Stieven-Filho (10.1016/j.jbiomech.2017.08.030_b0315) 2011; 38 Adouni (10.1016/j.jbiomech.2017.08.030_b0020) 2013; 46 Amis (10.1016/j.jbiomech.2017.08.030_b0030) 2006; 14 Naghibi Beidokhti (10.1016/j.jbiomech.2017.08.030_b0255) 2016; 38 Nelder (10.1016/j.jbiomech.2017.08.030_b0265) 1965; 7 Moglo (10.1016/j.jbiomech.2017.08.030_b0235) 2003; 18 Hefzy (10.1016/j.jbiomech.2017.08.030_b0180) 1983; 105 Wan (10.1016/j.jbiomech.2017.08.030_b0350) 2015; 50 10.1016/j.jbiomech.2017.08.030_b0005 Gollehon (10.1016/j.jbiomech.2017.08.030_b0155) 1987; 69 Butler (10.1016/j.jbiomech.2017.08.030_b0085) 1986; 19 Freutel (10.1016/j.jbiomech.2017.08.030_b0130) 2015; 48 Rood (10.1016/j.jbiomech.2017.08.030_b0290) 2015; 43 Bachus (10.1016/j.jbiomech.2017.08.030_b0045) 2006; 28 10.1016/j.jbiomech.2017.08.030_b0250 Wismans (10.1016/j.jbiomech.2017.08.030_b0365) 1980; 13 Mononen (10.1016/j.jbiomech.2017.08.030_b0245) 2012; 45 Andriacchi (10.1016/j.jbiomech.2017.08.030_b0035) 1983; 16 Weiss (10.1016/j.jbiomech.2017.08.030_b0355) 1996; 135 Haut Donahue (10.1016/j.jbiomech.2017.08.030_b0170) 2003; 36 Tissakht (10.1016/j.jbiomech.2017.08.030_b0330) 1995; 28 Donahue (10.1016/j.jbiomech.2017.08.030_b0100) 2002; 124 Criscenti (10.1016/j.jbiomech.2017.08.030_b0090) 2016; 54 Werner (10.1016/j.jbiomech.2017.08.030_b0360) 2005; 38 Shepherd (10.1016/j.jbiomech.2017.08.030_b0300) 1999; 38 Farahmand (10.1016/j.jbiomech.2017.08.030_b0115) 1998; 16 Mommersteeg (10.1016/j.jbiomech.2017.08.030_b0240) 1996; 29 Yao (10.1016/j.jbiomech.2017.08.030_b0375) 2008; 26 Bendjaballah (10.1016/j.jbiomech.2017.08.030_b0060) 1997; 12 Ushiki (10.1016/j.jbiomech.2017.08.030_b0340) 2002; 65 Adouni (10.1016/j.jbiomech.2017.08.030_b0025) 2012; 45 Holzapfel (10.1016/j.jbiomech.2017.08.030_b0185) 2000; 61 Markolf (10.1016/j.jbiomech.2017.08.030_b0205) 1976 Shirazi (10.1016/j.jbiomech.2017.08.030_b0305) 2008; 41 Pianigiani (10.1016/j.jbiomech.2017.08.030_b0275) 2012; 45 Peña (10.1016/j.jbiomech.2017.08.030_b0270) 2006; 39 Adouni (10.1016/j.jbiomech.2017.08.030_b0015) 2014; 47 Stylianou (10.1016/j.jbiomech.2017.08.030_b0320) 2013; 135 Blankevoort (10.1016/j.jbiomech.2017.08.030_b0070) 1991; 113 Kusayama (10.1016/j.jbiomech.2017.08.030_b0215) 1994; 2 Gardiner (10.1016/j.jbiomech.2017.08.030_b0150) 2003; 21 Jones (10.1016/j.jbiomech.2017.08.030_b0200) 1995; 10 |
References_xml | – volume: 26 start-page: 673 year: 2008 end-page: 684 ident: b0375 article-title: Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion publication-title: J. Orthop. Res. – volume: 47 start-page: 1353 year: 2014 end-page: 1359 ident: b0220 article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression publication-title: J. Biomech. – volume: 18 start-page: 751 year: 2003 end-page: 759 ident: b0235 article-title: On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study publication-title: Clin. Biomech. – volume: 39 start-page: 1686 year: 2006 end-page: 1701 ident: b0270 article-title: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint publication-title: J. Biomech. – volume: 38 start-page: 338 year: 2011 end-page: 342 ident: b0315 article-title: Anatomic study of the double-bundle of the anterior cruciate ligament with the knee in 90 publication-title: Rev. Col. Bras. Cir. – volume: 50 start-page: 255 year: 2015 end-page: 267 ident: b0350 article-title: An update on the constitutive relation of ligament tissues with the effects of collagen types publication-title: J. Mech. Behav. Biomed. Mater. – volume: 69 start-page: 233 year: 1987 end-page: 242 ident: b0155 article-title: The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study publication-title: J. Bone Joint Surg. Am. – volume: 45 start-page: 474 year: 2012 end-page: 483 ident: b0055 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. – volume: 12 start-page: 651 year: 2009 end-page: 659 ident: b0050 article-title: Efficient probabilistic representation of tibiofemoral soft tissue constraint publication-title: Comput. Methods Biomech. Biomed. Engin. – volume: 105 start-page: 145 year: 1983 end-page: 153 ident: b0180 article-title: An analytical technique for modeling knee joint stiffness—Part II: Ligamentous geometric nonlinearities publication-title: J. Biomech. Eng. – volume: 65 start-page: 109 year: 2002 end-page: 126 ident: b0340 article-title: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint publication-title: Arch. Histol. Cytol. – volume: 38 start-page: 1123 year: 2016 end-page: 1130 ident: b0255 article-title: A comparison between dynamic implicit and explicit finite element simulations of the native knee joint publication-title: Med. Eng. Phys. – volume: 129 start-page: 405 year: 2012 end-page: 412 ident: b0040 article-title: Equivalence between short-time biphasic and incompressible elastic material responses publication-title: J. Biomech. Eng. – volume: 61 start-page: 1 year: 2000 end-page: 48 ident: b0185 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elast. – volume: 13 start-page: 785 year: 1980 end-page: 794 ident: b0295 article-title: The function of the primary ligaments of the knee in varus-valgus and axial rotation publication-title: J. Biomech. – volume: 47 start-page: 1696 year: 2014 end-page: 1703 ident: b0015 article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment publication-title: J. Biomech. – volume: 54 start-page: 141 year: 2016 end-page: 148 ident: b0090 article-title: Material and structural tensile properties of the human medial patello-femoral ligament publication-title: J. Mech. Behav. Biomed. Mater. – volume: 19 start-page: 217 year: 1991 end-page: 225 ident: b0370 article-title: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation publication-title: Am. J. Sports Med. – volume: 14 start-page: 257 year: 2006 end-page: 263 ident: b0030 article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments publication-title: Knee Surg. Sport. Traumatol. Arthrosc. – volume: 9 start-page: 201 year: 2006 end-page: 209 ident: b0230 article-title: Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction publication-title: Comput. Meth. Biomech. Biomed. Engin. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: b0265 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 44 start-page: 413 year: 2011 end-page: 418 ident: b0010 article-title: Hyperelastic properties of human meniscal attachments publication-title: J. Biomech. – volume: 113 start-page: 94 year: 1991 end-page: 103 ident: b0075 article-title: Recruitment of knee joint ligaments publication-title: J. Biomech. Eng. – volume: 40 start-page: 2569 year: 2007 end-page: 2572 ident: b0105 article-title: Accuracy of circular contact area measurements with thin-film pressure sensors publication-title: J. Biomech. – volume: 45 start-page: 579 year: 2012 end-page: 587 ident: b0245 article-title: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis publication-title: J. Biomech. – volume: 13 start-page: 625 year: 1998 end-page: 633 ident: b0065 article-title: Biomechanical response of the passive human knee joint under anterior-posterior forces publication-title: Clin. Biomech. – volume: 29 start-page: 363 year: 2014 end-page: 372 ident: b0135 article-title: Finite element modeling of soft tissues: material models, tissue interaction and challenges publication-title: Clin. Biomech. – volume: 24 start-page: 1019 year: 1991 end-page: 1031 ident: b0080 article-title: Articular contact in a three-dimensional model of the knee publication-title: J. Biomech. – volume: 36 start-page: 19 year: 2003 end-page: 34 ident: b0170 article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint publication-title: J. Biomech. – volume: 28 start-page: 411 year: 1995 end-page: 422 ident: b0330 article-title: Tensile stress-strain characteristics of the human meniscal material publication-title: J. Biomech. – volume: 41 start-page: 3340 year: 2008 end-page: 3348 ident: b0305 article-title: Role of cartilage collagen fibrils networks in knee joint biomechanics under compression publication-title: J. Biomech. – volume: 48 start-page: 1444 year: 2015 end-page: 1453 ident: b0165 article-title: A statistically-augmented computational platform for evaluating meniscal function publication-title: J. Biomech. – reference: Trent, P.S., Walker, P.S., Wolf, B., 1976. Ligament length patterns, strength, and rotational axes of the knee joint. Clin. Orthop. Relat. Res. – volume: 7 year: 1974 ident: b0110 article-title: Biomechanics of normal and abnormal knee joint publication-title: J. Biomech. – volume: 48 start-page: 1397 year: 2015 end-page: 1406 ident: b0325 article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking publication-title: J. Biomech. – volume: 113 start-page: 263 year: 1991 end-page: 269 ident: b0070 article-title: Ligament-bone interaction in a three-dimensional model of the knee publication-title: J. Biomech. Eng. – volume: 16 start-page: 23 year: 1983 end-page: 29 ident: b0035 article-title: Model studies of the stiffness characteristics of the human knee joint publication-title: J. Biomech. – volume: 21 start-page: 1098 year: 2003 end-page: 1106 ident: b0150 article-title: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading publication-title: J. Orthop. Res. – volume: 28 start-page: 483 year: 2006 end-page: 488 ident: b0045 article-title: Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems publication-title: Med. Eng. Phys. – volume: 13 year: 1980 ident: b0365 article-title: A three-dimensional mathematical model of the knee-joint publication-title: J. Biomech. – volume: 45 start-page: 2149 year: 2012 end-page: 2156 ident: b0025 article-title: Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses publication-title: J. Biomech. – start-page: 58 year: 1976 ident: b0205 article-title: Stiffness and laxity of the knee - the contributions of the supporting structures – volume: 48 start-page: 1499 year: 2015 end-page: 1507 ident: b0095 article-title: Characterization of site-specific biomechanical properties of human meniscus—importance of collagen and fluid on mechanical nonlinearities publication-title: J. Biomech. – volume: 47 start-page: 592 year: 2014 end-page: 595 ident: b0210 article-title: Tensile properties of the medial patellofemoral ligament: the effect of specimen orientation publication-title: J. Biomech. – volume: 38 start-page: 349 year: 2005 end-page: 355 ident: b0360 article-title: The effect of valgus/varus malalignment on load distribution in total knee replacements publication-title: J. Biomech. – reference: Abaqus, A., Simulia, 2011. ABAQUS 6.11 Documentation. Dassault Syst. Simulia 1100. – volume: 10 start-page: 339 year: 1995 end-page: 344 ident: b0200 article-title: Mechanical properties of the human anterior cruciate ligament publication-title: Clin. Biomech. – reference: Galbusera, F., Freutel, M., Dürselen, L., Dâ€TMAiuto, M., Croce, D., Villa, T., Sansone, V., Innocenti, B., 2014a. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Front. Bioeng. Biotechnol. 2, 1–11. – volume: 135 start-page: 41008 year: 2013 ident: b0320 article-title: Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions publication-title: J. Biomech. Eng. – volume: 37 start-page: 383 year: 2004 end-page: 390 ident: b0310 article-title: A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation publication-title: J. Biomech. – volume: 135 start-page: 107 year: 1996 end-page: 128 ident: b0355 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Eng. – volume: 105 start-page: 136 year: 1983 end-page: 144 ident: b0160 article-title: A joint coordinate system for the clinical description of three-dimensional motions applications to the knee publication-title: J. Biomech. Eng. – volume: 29 start-page: 151 year: 1996 end-page: 160 ident: b0240 article-title: Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach publication-title: J. Biomech. – volume: 48 start-page: 1343 year: 2015 end-page: 1349 ident: b0130 article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis publication-title: J. Biomech. – volume: 46 start-page: 619 year: 2013 end-page: 624 ident: b0020 article-title: Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait publication-title: J. Biomech. – volume: 11 start-page: 89 year: 2004 end-page: 94 ident: b0120 article-title: The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability – an in-vitro study publication-title: Knee – volume: 2 start-page: 234 year: 1994 end-page: 237 ident: b0215 article-title: Anatomical and biomechanical characteristics of human meniscofemoral ligaments publication-title: Knee Surg. Sport. Traumatol. Arthrosc. – reference: Mootanah, R., Reisse, F., Carpanen, D., Walker, R., Hillstrom, H.J., 2012. The effects of the material properties of bones and soft tissues on knee joint contact stress, in: 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin. – year: 1997 ident: b0285 article-title: An Analysis of the Musculotendon Dynamics of Hill-Based Models – volume: 45 start-page: 2315 year: 2012 end-page: 2323 ident: b0275 article-title: Tibio-femoral kinematics in different total knee arthroplasty designs during a loaded squat: a numerical sensitivity study publication-title: J. Biomech. – volume: 38 start-page: 1067 year: 2005 end-page: 1074 ident: b0280 article-title: Structural properties of the medial collateral ligament complex of the human knee publication-title: J. Biomech. – volume: 43 start-page: 2538 year: 2015 end-page: 2544 ident: b0290 article-title: Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions publication-title: Am. J. Sports Med. – volume: 49 start-page: 1111 year: 2016 end-page: 1120 ident: b0345 article-title: Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading publication-title: J. Biomech. – volume: 19 start-page: 425 year: 1986 end-page: 432 ident: b0085 article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments publication-title: J. Biomech. – volume: 16 start-page: 136 year: 1998 end-page: 143 ident: b0115 article-title: Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint publication-title: J. Orthop. Res. – volume: 38 start-page: 124 year: 1999 end-page: 132 ident: b0300 article-title: The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb publication-title: Rheumatology (Oxford) – volume: 36 start-page: 609 year: 2003 end-page: 613 ident: b0125 article-title: Estimation of discretization errors in contact pressure measurements publication-title: J. Biomech. – reference: . – volume: 86 start-page: 450 year: 2004 end-page: 456 ident: b0260 article-title: The posterior cruciate ligament during flexion of the normal knee publication-title: J. Bone Joint Surg. Br. – reference: Imran, A., 2012. Anterior Cruciate Ligament Fibres – Effects of Tibial Translation During Flexion at the Knee, in: Proceedings of the World Congress on Engineering, London. – volume: 16 start-page: 415 year: 2001 end-page: 423 ident: b0175 article-title: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment publication-title: Clin. Biomech. – volume: 42 start-page: 2323 year: 2009 end-page: 2329 ident: b0225 article-title: The structural properties of the lateral retinaculum and capsular complex of the knee publication-title: J. Biomech. – volume: 12 start-page: 139 year: 1997 end-page: 148 ident: b0060 article-title: Finite element analysis of human knee joint in varus-valgus publication-title: Clin. Biomech. – volume: 2 start-page: 54 year: 2014 ident: b0145 article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review publication-title: Front. Bioeng. Biotechnol. – volume: 44 start-page: 1573 year: 2011 end-page: 1581 ident: b0195 article-title: Contact forces in several TKA designs during squatting: a numerical sensitivity analysis publication-title: J. Biomech. – volume: 124 start-page: 273 year: 2002 end-page: 280 ident: b0100 article-title: A finite element model of the human knee joint for the study of tibio-femoral contact publication-title: J. Biomech. Eng. – volume: 45 start-page: 2149 year: 2012 ident: 10.1016/j.jbiomech.2017.08.030_b0025 article-title: Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.040 – volume: 24 start-page: 1019 year: 1991 ident: 10.1016/j.jbiomech.2017.08.030_b0080 article-title: Articular contact in a three-dimensional model of the knee publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90019-J – volume: 44 start-page: 1573 year: 2011 ident: 10.1016/j.jbiomech.2017.08.030_b0195 article-title: Contact forces in several TKA designs during squatting: a numerical sensitivity analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.02.081 – volume: 38 start-page: 349 year: 2005 ident: 10.1016/j.jbiomech.2017.08.030_b0360 article-title: The effect of valgus/varus malalignment on load distribution in total knee replacements publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.02.024 – volume: 13 year: 1980 ident: 10.1016/j.jbiomech.2017.08.030_b0365 article-title: A three-dimensional mathematical model of the knee-joint publication-title: J. Biomech. doi: 10.1016/0021-9290(80)90354-1 – volume: 29 start-page: 151 year: 1996 ident: 10.1016/j.jbiomech.2017.08.030_b0240 article-title: Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00040-2 – volume: 28 start-page: 411 year: 1995 ident: 10.1016/j.jbiomech.2017.08.030_b0330 article-title: Tensile stress-strain characteristics of the human meniscal material publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00081-E – volume: 124 start-page: 273 year: 2002 ident: 10.1016/j.jbiomech.2017.08.030_b0100 article-title: A finite element model of the human knee joint for the study of tibio-femoral contact publication-title: J. Biomech. Eng. doi: 10.1115/1.1470171 – volume: 135 start-page: 107 year: 1996 ident: 10.1016/j.jbiomech.2017.08.030_b0355 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(96)01035-3 – volume: 2 start-page: 234 year: 1994 ident: 10.1016/j.jbiomech.2017.08.030_b0215 article-title: Anatomical and biomechanical characteristics of human meniscofemoral ligaments publication-title: Knee Surg. Sport. Traumatol. Arthrosc. doi: 10.1007/BF01845594 – ident: 10.1016/j.jbiomech.2017.08.030_b0335 doi: 10.1097/00003086-197606000-00034 – volume: 48 start-page: 1444 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0165 article-title: A statistically-augmented computational platform for evaluating meniscal function publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.031 – volume: 45 start-page: 2315 year: 2012 ident: 10.1016/j.jbiomech.2017.08.030_b0275 article-title: Tibio-femoral kinematics in different total knee arthroplasty designs during a loaded squat: a numerical sensitivity study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.06.014 – volume: 19 start-page: 425 year: 1986 ident: 10.1016/j.jbiomech.2017.08.030_b0085 article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments publication-title: J. Biomech. doi: 10.1016/0021-9290(86)90019-9 – start-page: 58 year: 1976 ident: 10.1016/j.jbiomech.2017.08.030_b0205 – ident: 10.1016/j.jbiomech.2017.08.030_b0250 – year: 1997 ident: 10.1016/j.jbiomech.2017.08.030_b0285 – volume: 36 start-page: 609 year: 2003 ident: 10.1016/j.jbiomech.2017.08.030_b0125 article-title: Estimation of discretization errors in contact pressure measurements publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00436-0 – volume: 50 start-page: 255 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0350 article-title: An update on the constitutive relation of ligament tissues with the effects of collagen types publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.018 – volume: 16 start-page: 23 year: 1983 ident: 10.1016/j.jbiomech.2017.08.030_b0035 article-title: Model studies of the stiffness characteristics of the human knee joint publication-title: J. Biomech. doi: 10.1016/0021-9290(83)90043-X – ident: 10.1016/j.jbiomech.2017.08.030_b0190 doi: 10.1016/S0021-9290(12)70374-3 – volume: 38 start-page: 1067 year: 2005 ident: 10.1016/j.jbiomech.2017.08.030_b0280 article-title: Structural properties of the medial collateral ligament complex of the human knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.05.034 – volume: 13 start-page: 785 year: 1980 ident: 10.1016/j.jbiomech.2017.08.030_b0295 article-title: The function of the primary ligaments of the knee in varus-valgus and axial rotation publication-title: J. Biomech. doi: 10.1016/0021-9290(80)90240-7 – volume: 14 start-page: 257 year: 2006 ident: 10.1016/j.jbiomech.2017.08.030_b0030 article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments publication-title: Knee Surg. Sport. Traumatol. Arthrosc. doi: 10.1007/s00167-005-0686-x – volume: 44 start-page: 413 year: 2011 ident: 10.1016/j.jbiomech.2017.08.030_b0010 article-title: Hyperelastic properties of human meniscal attachments publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.10.001 – volume: 38 start-page: 1123 year: 2016 ident: 10.1016/j.jbiomech.2017.08.030_b0255 article-title: A comparison between dynamic implicit and explicit finite element simulations of the native knee joint publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.06.001 – volume: 36 start-page: 19 year: 2003 ident: 10.1016/j.jbiomech.2017.08.030_b0170 article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00305-6 – volume: 10 start-page: 339 year: 1995 ident: 10.1016/j.jbiomech.2017.08.030_b0200 article-title: Mechanical properties of the human anterior cruciate ligament publication-title: Clin. Biomech. doi: 10.1016/0268-0033(95)98193-X – volume: 135 start-page: 41008 year: 2013 ident: 10.1016/j.jbiomech.2017.08.030_b0320 article-title: Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions publication-title: J. Biomech. Eng. doi: 10.1115/1.4023982 – volume: 41 start-page: 3340 year: 2008 ident: 10.1016/j.jbiomech.2017.08.030_b0305 article-title: Role of cartilage collagen fibrils networks in knee joint biomechanics under compression publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.09.033 – volume: 47 start-page: 1353 year: 2014 ident: 10.1016/j.jbiomech.2017.08.030_b0220 article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.01.055 – volume: 65 start-page: 109 year: 2002 ident: 10.1016/j.jbiomech.2017.08.030_b0340 article-title: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint publication-title: Arch. Histol. Cytol. doi: 10.1679/aohc.65.109 – volume: 38 start-page: 338 year: 2011 ident: 10.1016/j.jbiomech.2017.08.030_b0315 article-title: Anatomic study of the double-bundle of the anterior cruciate ligament with the knee in 90o flexion publication-title: Rev. Col. Bras. Cir. doi: 10.1590/S0100-69912011000500010 – volume: 47 start-page: 1696 year: 2014 ident: 10.1016/j.jbiomech.2017.08.030_b0015 article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.02.028 – volume: 13 start-page: 625 year: 1998 ident: 10.1016/j.jbiomech.2017.08.030_b0065 article-title: Biomechanical response of the passive human knee joint under anterior-posterior forces publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(98)00035-7 – volume: 113 start-page: 94 year: 1991 ident: 10.1016/j.jbiomech.2017.08.030_b0075 article-title: Recruitment of knee joint ligaments publication-title: J. Biomech. Eng. doi: 10.1115/1.2894090 – volume: 29 start-page: 363 year: 2014 ident: 10.1016/j.jbiomech.2017.08.030_b0135 article-title: Finite element modeling of soft tissues: material models, tissue interaction and challenges publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2014.01.006 – ident: 10.1016/j.jbiomech.2017.08.030_b0140 doi: 10.3389/fbioe.2014.00054 – volume: 18 start-page: 751 year: 2003 ident: 10.1016/j.jbiomech.2017.08.030_b0235 article-title: On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(03)00140-2 – volume: 43 start-page: 2538 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0290 article-title: Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions publication-title: Am. J. Sports Med. doi: 10.1177/0363546515594447 – ident: 10.1016/j.jbiomech.2017.08.030_b0005 – volume: 129 start-page: 405 year: 2012 ident: 10.1016/j.jbiomech.2017.08.030_b0040 article-title: Equivalence between short-time biphasic and incompressible elastic material responses publication-title: J. Biomech. Eng. doi: 10.1115/1.2720918 – volume: 12 start-page: 139 year: 1997 ident: 10.1016/j.jbiomech.2017.08.030_b0060 article-title: Finite element analysis of human knee joint in varus-valgus publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(97)00072-7 – volume: 47 start-page: 592 year: 2014 ident: 10.1016/j.jbiomech.2017.08.030_b0210 article-title: Tensile properties of the medial patellofemoral ligament: the effect of specimen orientation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.11.026 – volume: 61 start-page: 1 year: 2000 ident: 10.1016/j.jbiomech.2017.08.030_b0185 article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models publication-title: J. Elast. doi: 10.1023/A:1010835316564 – volume: 42 start-page: 2323 year: 2009 ident: 10.1016/j.jbiomech.2017.08.030_b0225 article-title: The structural properties of the lateral retinaculum and capsular complex of the knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.049 – volume: 46 start-page: 619 year: 2013 ident: 10.1016/j.jbiomech.2017.08.030_b0020 article-title: Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.09.035 – volume: 9 start-page: 201 year: 2006 ident: 10.1016/j.jbiomech.2017.08.030_b0230 article-title: Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction publication-title: Comput. Meth. Biomech. Biomed. Engin. doi: 10.1080/10255840600795959 – volume: 16 start-page: 415 year: 2001 ident: 10.1016/j.jbiomech.2017.08.030_b0175 article-title: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(01)00020-1 – volume: 28 start-page: 483 year: 2006 ident: 10.1016/j.jbiomech.2017.08.030_b0045 article-title: Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.07.022 – volume: 40 start-page: 2569 year: 2007 ident: 10.1016/j.jbiomech.2017.08.030_b0105 article-title: Accuracy of circular contact area measurements with thin-film pressure sensors publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.12.002 – volume: 48 start-page: 1499 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0095 article-title: Characterization of site-specific biomechanical properties of human meniscus—importance of collagen and fluid on mechanical nonlinearities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.01.048 – volume: 7 year: 1974 ident: 10.1016/j.jbiomech.2017.08.030_b0110 article-title: Biomechanics of normal and abnormal knee joint publication-title: J. Biomech. doi: 10.1016/0021-9290(74)90027-X – volume: 16 start-page: 136 year: 1998 ident: 10.1016/j.jbiomech.2017.08.030_b0115 article-title: Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint publication-title: J. Orthop. Res. doi: 10.1002/jor.1100160123 – volume: 105 start-page: 136 year: 1983 ident: 10.1016/j.jbiomech.2017.08.030_b0160 article-title: A joint coordinate system for the clinical description of three-dimensional motions applications to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 2 start-page: 54 year: 2014 ident: 10.1016/j.jbiomech.2017.08.030_b0145 article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2014.00054 – volume: 21 start-page: 1098 year: 2003 ident: 10.1016/j.jbiomech.2017.08.030_b0150 article-title: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(03)00113-X – volume: 48 start-page: 1397 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0325 article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.043 – volume: 105 start-page: 145 year: 1983 ident: 10.1016/j.jbiomech.2017.08.030_b0180 article-title: An analytical technique for modeling knee joint stiffness—Part II: Ligamentous geometric nonlinearities publication-title: J. Biomech. Eng. doi: 10.1115/1.3138398 – volume: 54 start-page: 141 year: 2016 ident: 10.1016/j.jbiomech.2017.08.030_b0090 article-title: Material and structural tensile properties of the human medial patello-femoral ligament publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.09.030 – volume: 12 start-page: 651 year: 2009 ident: 10.1016/j.jbiomech.2017.08.030_b0050 article-title: Efficient probabilistic representation of tibiofemoral soft tissue constraint publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255840902822550 – volume: 113 start-page: 263 year: 1991 ident: 10.1016/j.jbiomech.2017.08.030_b0070 article-title: Ligament-bone interaction in a three-dimensional model of the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.2894883 – volume: 48 start-page: 1343 year: 2015 ident: 10.1016/j.jbiomech.2017.08.030_b0130 article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.03.014 – volume: 86 start-page: 450 year: 2004 ident: 10.1016/j.jbiomech.2017.08.030_b0260 article-title: The posterior cruciate ligament during flexion of the normal knee publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.86B3.14330 – volume: 38 start-page: 124 year: 1999 ident: 10.1016/j.jbiomech.2017.08.030_b0300 article-title: The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/38.2.124 – volume: 39 start-page: 1686 year: 2006 ident: 10.1016/j.jbiomech.2017.08.030_b0270 article-title: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.030 – volume: 11 start-page: 89 year: 2004 ident: 10.1016/j.jbiomech.2017.08.030_b0120 article-title: The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability – an in-vitro study publication-title: Knee doi: 10.1016/j.knee.2003.10.004 – volume: 69 start-page: 233 year: 1987 ident: 10.1016/j.jbiomech.2017.08.030_b0155 article-title: The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-198769020-00010 – volume: 7 start-page: 308 year: 1965 ident: 10.1016/j.jbiomech.2017.08.030_b0265 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 45 start-page: 579 year: 2012 ident: 10.1016/j.jbiomech.2017.08.030_b0245 article-title: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.003 – volume: 49 start-page: 1111 year: 2016 ident: 10.1016/j.jbiomech.2017.08.030_b0345 article-title: Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.02.033 – volume: 37 start-page: 383 year: 2004 ident: 10.1016/j.jbiomech.2017.08.030_b0310 article-title: A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00261-6 – volume: 19 start-page: 217 year: 1991 ident: 10.1016/j.jbiomech.2017.08.030_b0370 article-title: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation publication-title: Am. J. Sports Med. doi: 10.1177/036354659101900303 – volume: 26 start-page: 673 year: 2008 ident: 10.1016/j.jbiomech.2017.08.030_b0375 article-title: Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion publication-title: J. Orthop. Res. doi: 10.1002/jor.20553 – volume: 45 start-page: 474 year: 2012 ident: 10.1016/j.jbiomech.2017.08.030_b0055 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.052 |
SSID | ssj0007479 |
Score | 2.4869726 |
Snippet | In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Biomechanical Phenomena Biomechanics Collagen Computational model validation Contact pressure Continuum modeling Finite Element Analysis Finite element method Human performance Humans Kinematics Knee Knee contact pressure Knee Joint - physiology Knee ligament Ligaments Ligaments, Articular - physiology Mathematical models Mechanical properties Modelling Models, Biological Predictions Representations Sensors Springs Stiffness Subject-specific model Three dimensional models |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BkRAcEGz5WCjISIib6aZ24viEKkRVIcGpSHuzHMdGu7TJ0k0PlfrjO-PYoQegnJOxkngyfuMZvwfwrrDaHmCezFUTBJeu1dyWSnLbyMpWoiFWMOq2-FYdf5dfluUybbhtU1tljokxULe9oz3yfWK-I7ksoT5ufnFSjaLqapLQuAv3InUZ-rNaTgkXccOnFo-CIwxY3DghvP6wjufbY0GiUJHGkzqh_7w4_Q18xkXo6DE8SuiRHY7T_QTu-G4Gu4cdZs5nl-w9i_2ccaN8Bg9vUA3O4P7XVETfhSt0DbbK4iSsD-x09cPSLiGLujh0QJ1th8whwfqOIUpkm3MagaIjc7jCxqbaS7IOK8KtzI-N6OMYW7pAVlEDkP3E52DrftUNT-Hk6PPJp2OeRBi4w2Ro4M4jBtDWh7rUwSmnXaiVPmhbIReNVFIXiDAQg-Fi62Wora1K2wZM4holg6jEM9jp-s6_ANZWdSNIj7NoiXxU6JrI5UVTeku11HIOZf74xiWCctLJODW5E21t8qQZmjRDAppiMYf9yW4zUnTcaqHy3Jp8ABVDpsFV5FZLPVkmiDJCj_-y3ctuZFKg2Jrfbj2Ht9Nl_MWpbmM731_QPZgEI44vizk8H91velHMlxEA1ouX_x78FTygJ4l9OPUe7AznF_41oqmheRN_mWtVHx4b priority: 102 providerName: ProQuest |
Title | The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017304529 https://dx.doi.org/10.1016/j.jbiomech.2017.08.030 https://www.ncbi.nlm.nih.gov/pubmed/28917580 https://www.proquest.com/docview/1965441737 https://www.proquest.com/docview/1940199151 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7aFMb6ULZ0P7J2RYOxNzdxJFvWY1paso2FMTrIm5FtuTjr7NC4D4Wyv713smQ62OhgLzGJfUaxpLvvfN_dAbwPtdJT9JMDmZU8EHmhAh1JEehMxDrmGVUFI7bFIp5_F5-W0XILTn0uDNEqne7vdLrV1u6XsXua43VVUY4v7jYKA0qK9k3VNuxMuYqjAezMPn6eL3qFjIjZMT3CgAQeJAqvjlc2zd3GJUJpq3kSIfrPNupvGNTaovNnsOdAJJt143wOW6Yewv6sRgf65y37wCyt074vH8Lug4qDQ3jyxcXS9-EOVwirfI8S1pTsqrrU9LKQ2fY4lKfONq0vJcGamiFYZOtrugMpSZajobXc2luSLiuCr8x0fPTuHhs6QVK2FSD7geNgq6aq2xdwcX52cToPXC-GIEefqA1yg1BAaVMmkSpzmau8TKSaFgUXk0xIoUIEGgjF0OYaUSZax5EuSvTlMilKHvOXMKib2rwGVsRJxqktZ1hQDVKuEqoxz7PIaAqpRiOI_MNPc1ennNplXKWekLZK_aSlNGkp9dHkkxGMe7l1V6njUQnp5zb1eaioOVM0Jo9Kql7yt9X6T7KHfhmlTl9sUqrrSM3guBzBu_407nQK3-jaNDd0DfrCCOejcASvuuXX_1F0mxEHJpM3_zGwA3hK3yxXJzmEQXt9Y94i4mqzI9g-_hXip1zKI7e78Hhytvj67R6rKy1b |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToLxgKDjozDASMBbWFM7Xw8IDdjUsa1CqEh7sxzHRu1GUtZMqBL_Ev8jd04c9gCMlz0nZ6W9893v7Lv7ATwPVaZGmCcHSW55IHSRBSpKRKByEauY5zQVjKotJvH4s_hwHB2vwU_fC0Nlld4nOkddVJrOyLdp8h3RZfHkzeJbQKxRdLvqKTQaszgwq--Ysi1f779H_b4YjfZ2p-_GQcsqEGhE93WgDQa1TBmbRpnVic60TZNsVBRcDHORiCzEkImgAqOHETZVKo5UYTEryRNhecxx2WuwLqihtQfrb3cnHz91rh-xeVtTEgaIO4YXWpLnr-auod7dgISJmxtKpdd_joZ_Q7su6u3dhlstXGU7jX3dgTVT9mFzp8RU_euKvWSugNSdzPfh5oXZhn24ftTe2m_CD7RFNvNsKKyy7HT2RdGxJHNEPNQRz5a1H1rBqpIhLGWLM1qB3DHTGNJdFe-KpO2MgDIzTeV7s8aSHpCUIx1kJ_gdbF7NyvouTK9CP_egV1aleQCsiNOcEwFoWNC0U56lNM2e55FRdHkbDSDyf77U7UR0IuY4lb70bS690iQpTRJjJx8OYLuTWzQzQS6VSLxupe94RR8tMWxdKpl1ki0marDOf8lueTOSrWdayt_7aADPusfoU-iiSJWmOqd3MOvGxCEKB3C_Mb_uh2KCjogzHT789-JP4cZ4enQoD_cnB49gg77KFQGlW9Crz87NY4Rydf6k3UAM5BVv2V9FSFyC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQ5rggKCDURhgJOAW2tRJHB8QmhjVxmDiMKTeLMexUctIypoJVeIf47_jPScOOwDjsnPyrLTv6_f8vgCexVrqCcbJkSgcjxJTykinIol0kWQ64wVNBaNqi-Ps4FPybpbONuBn6IWhsspgE72hLmtDd-QjmnxH67K4GLmuLOLj_vT18ltEG6Qo0xrWabQicmTX3zF8W7063EdeP59Mpm9P3hxE3YaByCDSbyJj0cFJbV2eSmeEkcblQk7KkifjIhGJjNF9IsBAT2ITl2udpbp0GKEUInE843jsNbguOIIqVCUx62M9GkvfVZfEESKQ8YXm5MXLhW-t97mQWPgJolSE_We_-Dfc6_3f9Dbc6oAr22sl7Q5s2GoA23sVBu1f1-wF86Wk_o5-ADcvTDkcwNaHLn-_DT9QKtk87EVhtWOn88-aLiiZX8lDvfFs1YTxFayuGAJUtjyjE8gwM4PO3dfzronazQkyM9vWwLdnrOgBUfn1g-wLfgdb1POquQsnV8Gde7BZ1ZW9D6zM8oLTKtC4pLmnXOY0154XqdWUxk2HkIY_X5luNjqt6DhVoQhuoQLTFDFN0e5OPh7CqKdbttNBLqUQgbcq9L6itVbowC6llD1lh45a1PNftLtBjFRno1bqt0YN4Wn_GK0LpYx0Zetzegfjbwwh0ngIO6349T8UQ3XEnvn4wb8PfwJbqKjq_eHx0UO4QR_lq4HyXdhszs7tI8R0TfHYaw8DdcXa-gtqHl9J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+ligament+modelling+strategies+on+the+predictive+capability+of+finite+element+models+of+the+human+knee+joint&rft.jtitle=Journal+of+biomechanics&rft.au=Naghibi+Beidokhti%2C+Hamid&rft.au=Janssen%2C+Dennis&rft.au=van+de+Groes%2C+Sebastiaan&rft.au=Hazrati%2C+Javad&rft.date=2017-12-08&rft.issn=0021-9290&rft.volume=65&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.08.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2017_08_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |