The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint

In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally les...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 65; pp. 1 - 11
Main Authors Naghibi Beidokhti, Hamid, Janssen, Dennis, van de Groes, Sebastiaan, Hazrati, Javad, Van den Boogaard, Ton, Verdonschot, Nico
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 08.12.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2017.08.030

Cover

Abstract In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.
AbstractList In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models.Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.
Author Van den Boogaard, Ton
Janssen, Dennis
Naghibi Beidokhti, Hamid
Verdonschot, Nico
van de Groes, Sebastiaan
Hazrati, Javad
Author_xml – sequence: 1
  givenname: Hamid
  surname: Naghibi Beidokhti
  fullname: Naghibi Beidokhti, Hamid
  email: Hamid.NaghibiBeidokhti@radboudumc.nl
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands
– sequence: 2
  givenname: Dennis
  surname: Janssen
  fullname: Janssen, Dennis
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands
– sequence: 3
  givenname: Sebastiaan
  surname: van de Groes
  fullname: van de Groes, Sebastiaan
  organization: Orthopaedic Department, Radboud University Medical Center, The Netherlands
– sequence: 4
  givenname: Javad
  surname: Hazrati
  fullname: Hazrati, Javad
  organization: Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
– sequence: 5
  givenname: Ton
  surname: Van den Boogaard
  fullname: Van den Boogaard, Ton
  organization: Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
– sequence: 6
  givenname: Nico
  surname: Verdonschot
  fullname: Verdonschot, Nico
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Lab, 6525 GA, Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28917580$$D View this record in MEDLINE/PubMed
BookMark eNqNks1q3DAURkVJaSZpXyEIuulmXMn2WBKU0hL6B4FuZi9k-WrmOrY0teTAQB--MpO0MJt0pYXO-ZDud6_IhQ8eCLnhrOCMN-_7om8xjGD3Rcm4KJgsWMVekBWXolqXlWQXZMVYydeqVOySXMXYM8ZELdQrcllKxcVGshX5vd0DRe-GGbwFGhwdcGdG8ImOoYNhQL-jMU0mwQ4h0uBpysZhgg5twgeg1hxMiwOm42I79JiAwgD_MuJysVj7eTSe3nsA2gf06TV56cwQ4c3jeU22X79sb7-v735--3H7-W5ta6XS2gKXXBlwcqOcFVZZJ4Uqu66qWVuLWvGyLBvOLADUThrTbEznlJKtqF3VVNfk3Sn2MIVfM8SkR4w2_814CHPUXNWMK8U3PKNvz9A-zJPPj8tUs6lrLiqRqZtHam5H6PRhwtFMR_001gw0J8BOIcYJ3F-EM730p3v91J9e-tNM6txfFj-ciRaTSRh8rgCH5_VPJz0PHR4QJh0tLsV2OIFNugv4fMTHswibdwCtGe7h-D8BfwCQqNFf
CitedBy_id crossref_primary_10_1115_1_4039674
crossref_primary_10_1177_09544119241307793
crossref_primary_10_1115_1_4047658
crossref_primary_10_1038_s41598_023_45408_5
crossref_primary_10_1177_0954411920941400
crossref_primary_10_1080_10255842_2023_2253950
crossref_primary_10_1111_os_13980
crossref_primary_10_1115_1_4062498
crossref_primary_10_1016_j_compbiomed_2021_105023
crossref_primary_10_1080_10255842_2020_1870220
crossref_primary_10_1098_rsif_2024_0588
crossref_primary_10_1115_1_4063627
crossref_primary_10_1115_1_4050028
crossref_primary_10_17352_ojor_000031
crossref_primary_10_1115_1_4050027
crossref_primary_10_1007_s11517_020_02158_0
crossref_primary_10_1007_s10237_024_01822_w
crossref_primary_10_21597_jist_895137
crossref_primary_10_1016_j_medengphy_2022_103871
crossref_primary_10_3390_app13063802
crossref_primary_10_1016_j_knee_2020_01_010
crossref_primary_10_1002_jor_25652
crossref_primary_10_3390_bioengineering11121183
crossref_primary_10_1007_s11517_017_1757_0
crossref_primary_10_1016_j_cmpb_2024_108132
crossref_primary_10_1016_j_medengphy_2024_104246
crossref_primary_10_1016_j_ymssp_2022_109525
crossref_primary_10_1109_TNSRE_2020_3037411
crossref_primary_10_4236_am_2021_1212075
crossref_primary_10_1016_j_heliyon_2024_e30658
crossref_primary_10_3390_ma15010153
crossref_primary_10_1016_j_jbiomech_2021_110464
crossref_primary_10_1115_1_4066957
crossref_primary_10_1002_jor_24313
crossref_primary_10_1016_j_jbiomech_2020_110141
crossref_primary_10_1186_s13018_024_05006_1
crossref_primary_10_1080_10255842_2023_2256925
crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1
crossref_primary_10_3233_THC_218022
crossref_primary_10_1016_j_jmbbm_2020_103994
crossref_primary_10_1016_j_otsr_2022_103519
crossref_primary_10_1016_j_compbiomed_2021_104311
crossref_primary_10_1016_j_rcot_2022_12_017
crossref_primary_10_3389_fbioe_2022_930724
crossref_primary_10_1016_j_jmbbm_2020_103797
crossref_primary_10_1038_s41598_022_11601_1
crossref_primary_10_1115_1_4053791
crossref_primary_10_1080_10255842_2020_1808970
crossref_primary_10_1016_j_jmbbm_2020_103639
crossref_primary_10_3390_bioengineering9100590
crossref_primary_10_1016_j_medengphy_2019_08_002
crossref_primary_10_1115_1_4043346
crossref_primary_10_1177_0954411919865401
crossref_primary_10_3389_fbioe_2020_00967
crossref_primary_10_1002_jor_25358
crossref_primary_10_1016_j_jmbbm_2019_01_022
crossref_primary_10_1038_s41598_020_59602_2
crossref_primary_10_1115_1_4047343
crossref_primary_10_1016_j_jbiomech_2019_04_040
crossref_primary_10_1016_j_jbiomech_2024_112441
crossref_primary_10_1016_j_medengphy_2024_104183
crossref_primary_10_1007_s10439_021_02812_0
crossref_primary_10_1186_s12891_024_07372_7
Cites_doi 10.1016/j.jbiomech.2012.05.040
10.1016/0021-9290(91)90019-J
10.1016/j.jbiomech.2011.02.081
10.1016/j.jbiomech.2004.02.024
10.1016/0021-9290(80)90354-1
10.1016/0021-9290(95)00040-2
10.1016/0021-9290(94)00081-E
10.1115/1.1470171
10.1016/0045-7825(96)01035-3
10.1007/BF01845594
10.1097/00003086-197606000-00034
10.1016/j.jbiomech.2015.02.031
10.1016/j.jbiomech.2012.06.014
10.1016/0021-9290(86)90019-9
10.1016/S0021-9290(02)00436-0
10.1016/j.jmbbm.2015.06.018
10.1016/0021-9290(83)90043-X
10.1016/S0021-9290(12)70374-3
10.1016/j.jbiomech.2004.05.034
10.1016/0021-9290(80)90240-7
10.1007/s00167-005-0686-x
10.1016/j.jbiomech.2010.10.001
10.1016/j.medengphy.2016.06.001
10.1016/S0021-9290(02)00305-6
10.1016/0268-0033(95)98193-X
10.1115/1.4023982
10.1016/j.jbiomech.2008.09.033
10.1016/j.jbiomech.2014.01.055
10.1679/aohc.65.109
10.1590/S0100-69912011000500010
10.1016/j.jbiomech.2014.02.028
10.1016/S0268-0033(98)00035-7
10.1115/1.2894090
10.1016/j.clinbiomech.2014.01.006
10.3389/fbioe.2014.00054
10.1016/S0268-0033(03)00140-2
10.1177/0363546515594447
10.1115/1.2720918
10.1016/S0268-0033(97)00072-7
10.1016/j.jbiomech.2013.11.026
10.1023/A:1010835316564
10.1016/j.jbiomech.2009.06.049
10.1016/j.jbiomech.2012.09.035
10.1080/10255840600795959
10.1016/S0268-0033(01)00020-1
10.1016/j.medengphy.2005.07.022
10.1016/j.jbiomech.2006.12.002
10.1016/j.jbiomech.2015.01.048
10.1016/0021-9290(74)90027-X
10.1002/jor.1100160123
10.1115/1.3138397
10.1016/S0736-0266(03)00113-X
10.1016/j.jbiomech.2015.02.043
10.1115/1.3138398
10.1016/j.jmbbm.2015.09.030
10.1080/10255840902822550
10.1115/1.2894883
10.1016/j.jbiomech.2015.03.014
10.1302/0301-620X.86B3.14330
10.1093/rheumatology/38.2.124
10.1016/j.jbiomech.2005.04.030
10.1016/j.knee.2003.10.004
10.2106/00004623-198769020-00010
10.1093/comjnl/7.4.308
10.1016/j.jbiomech.2011.11.003
10.1016/j.jbiomech.2016.02.033
10.1016/S0021-9290(03)00261-6
10.1177/036354659101900303
10.1002/jor.20553
10.1016/j.jbiomech.2011.11.052
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Dec 8, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Dec 8, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2017.08.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 11
ExternalDocumentID 28917580
10_1016_j_jbiomech_2017_08_030
S0021929017304529
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c499t-ce1819aef859fc7c9cf8792dd340b47491222610ceee4f8aa65adf998b74f363
IEDL.DBID AIKHN
ISSN 0021-9290
1873-2380
IngestDate Fri Sep 05 10:14:52 EDT 2025
Wed Aug 13 04:15:45 EDT 2025
Wed Feb 19 02:44:24 EST 2025
Tue Jul 01 00:44:09 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Knee contact pressure
Subject-specific model
Knee ligament
Kinematics
Computational model validation
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-ce1819aef859fc7c9cf8792dd340b47491222610ceee4f8aa65adf998b74f363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://research.utwente.nl/en/publications/5d5beb16-5533-41b5-8308-100a4a9642fa
PMID 28917580
PQID 1965441737
PQPubID 1226346
PageCount 11
ParticipantIDs proquest_miscellaneous_1940199151
proquest_journals_1965441737
pubmed_primary_28917580
crossref_primary_10_1016_j_jbiomech_2017_08_030
crossref_citationtrail_10_1016_j_jbiomech_2017_08_030
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_08_030
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_08_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-08
PublicationDateYYYYMMDD 2017-12-08
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Mootanah, R., Reisse, F., Carpanen, D., Walker, R., Hillstrom, H.J., 2012. The effects of the material properties of bones and soft tissues on knee joint contact stress, in: 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin.
Baldwin, Laz, Stowe, Rullkoetter (b0050) 2009; 12
Innocenti, Pianigiani, Labey, Victor, Bellemans (b0195) 2011; 44
Stieven-Filho, Garschagen, Namba, da Silva, Malafaia, da Cunha (b0315) 2011; 38
Trent, P.S., Walker, P.S., Wolf, B., 1976. Ligament length patterns, strength, and rotational axes of the knee joint. Clin. Orthop. Relat. Res.
Wismans, Veldpaus, Janssen, Huson, Struben (b0365) 1980; 13
Abraham, Moyer, Villegas, Odegard, Haut Donahue (b0010) 2011; 44
Nakagawa, Johal, Pinskerova, Komatsu, Sosna, Williams, Freeman (b0260) 2004; 86
Grood, Suntay (b0160) 1983; 105
Rood, Hannink, Lenting, Groenen, Koeter, Verdonschot, van Kampen (b0290) 2015; 43
Galbusera, Freutel, Dürselen, D’Aiuto, Croce, Villa, Sansone, Innocenti (b0145) 2014; 2
Robinson, Bull, Amis (b0280) 2005; 38
Blankevoort, Kuiper, Huiskes, Grootenboer (b0080) 1991; 24
Peña, Calvo, Martínez, Doblaré (b0270) 2006; 39
Bachus, DeMarco, Judd, Horwitz, Brodke (b0045) 2006; 28
Bendjaballah, Shirazi-Adl, Zukor (b0060) 1997; 12
Farahmand, Senavongse, Amis (b0115) 1998; 16
Seering, Piziali, Nagel, Schurman (b0295) 1980; 13
Adouni, Shirazi-Adl (b0015) 2014; 47
Wan, Hao, Tong, Lin, Li, Wen (b0350) 2015; 50
Pianigiani, Chevalier, Labey, Pascale, Innocenti (b0275) 2012; 45
.
Holzapfel, Gasser, Ogden (b0185) 2000; 61
Song, Debski, Musahl, Thomas, Woo (b0310) 2004; 37
Yao, Lancianese, Hovinga, Lee, Lerner (b0375) 2008; 26
Adouni, Shirazi-Adl, Shirazi (b0025) 2012; 45
Fregly, Sawyer (b0125) 2003; 36
Weiss, Maker, Govindjee (b0355) 1996; 135
Guo, Santner, Chen, Wang, Brial, Gilbert, Koff, Lerner, Maher (b0165) 2015; 48
Ushiki (b0340) 2002; 65
Blankevoort, Huiskes (b0070) 1991; 113
Ateshian, Ellis, Weiss (b0040) 2012; 129
Mommersteeg, Blankevoort, Huiskes, Kooloos, Kauer (b0240) 1996; 29
Shepherd, Seedhom (b0300) 1999; 38
Andriacchi, Mikosz, Hampton, Galante (b0035) 1983; 16
Butler, Kay, Stouffer (b0085) 1986; 19
Mononen, Mikkola, Julkunen, Ojala, Nieminen, Jurvelin, Korhonen (b0245) 2012; 45
Moglo, Shirazi-Adl (b0235) 2003; 18
Farahmand, Tahmasbi, Amis (b0120) 2004; 11
Haut Donahue, Hull, Rashid, Jacobs (b0170) 2003; 36
Naghibi Beidokhti, Janssen, Khoshgoftar, Sprengers, Perdahcioglu, Van den Boogaard, Verdonschot (b0255) 2016; 38
Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (b0055) 2012; 45
Galbusera, F., Freutel, M., Dürselen, L., Dâ€TMAiuto, M., Croce, D., Villa, T., Sansone, V., Innocenti, B., 2014a. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Front. Bioeng. Biotechnol. 2, 1–11.
Criscenti, De Maria, Sebastiani, Tei, Placella, Speziali, Vozzi, Cerulli (b0090) 2016; 54
Imran, A., 2012. Anterior Cruciate Ligament Fibres – Effects of Tibial Translation During Flexion at the Knee, in: Proceedings of the World Congress on Engineering, London.
Heegaard, Leyvraz, Hovey (b0175) 2001; 16
Jones, Nawana, Pearcy, Learmonth, Bickerstaff, Costi, Paterson (b0200) 1995; 10
Gardiner, Weiss (b0150) 2003; 21
Tanska, Mononen, Korhonen (b0325) 2015; 48
Robleto (b0285) 1997
Drewniak, Crisco, Spenciner, Fleming (b0105) 2007; 40
Werner, Ayers, Maletsky, Rullkoetter (b0360) 2005; 38
Tissakht, Ahmed (b0330) 1995; 28
Shirazi, Shirazi-Adl, Hurtig (b0305) 2008; 41
Hefzy, Grood (b0180) 1983; 105
Blankevoort, Huiskes, de Lange (b0075) 1991; 113
Amis, Gupte, Bull, Edwards (b0030) 2006; 14
Marouane, Shirazi-Adl, Adouni, Hashemi (b0220) 2014; 47
Danso, Mäkelä, Tanska, Mononen, Honkanen, Jurvelin, Töyräs, Julkunen, Korhonen (b0095) 2015; 48
Bendjaballah, Shirazi-Adl, Zukor (b0065) 1998; 13
Donahue, Hull, Rashid, Jacobs (b0100) 2002; 124
Gollehon, Torzilli, Warren (b0155) 1987; 69
Abaqus, A., Simulia, 2011. ABAQUS 6.11 Documentation. Dassault Syst. Simulia 1100.
Markolf, Mensch, Amstutz (b0205) 1976
Merican, Sanghavi, Iranpour, Amis (b0225) 2009; 42
Nelder, Mead, Nelder, Mead (b0265) 1965; 7
Stylianou, Guess, Kia (b0320) 2013; 135
Venäläinen, Mononen, Väänänen, Jurvelin, Töyräs, Virén (b0345) 2016; 49
Adouni, Shirazi-Adl (b0020) 2013; 46
Freutel, Galbusera, Ignatius, Dürselen (b0130) 2015; 48
Kusayama, Harner, Carlin, Xerogeanes, Smith (b0215) 1994; 2
Kim, Hsu, Woo (b0210) 2014; 47
Freutel, Schmidt, Dürselen, Ignatius, Galbusera (b0135) 2014; 29
Woo, Hollis, Adams, Lyon, Takai (b0370) 1991; 19
Engin, Korde (b0110) 1974; 7
Mesfar, Shirazi-Adl (b0230) 2006; 9
Robleto (10.1016/j.jbiomech.2017.08.030_b0285) 1997
Blankevoort (10.1016/j.jbiomech.2017.08.030_b0075) 1991; 113
Farahmand (10.1016/j.jbiomech.2017.08.030_b0120) 2004; 11
Blankevoort (10.1016/j.jbiomech.2017.08.030_b0080) 1991; 24
Baldwin (10.1016/j.jbiomech.2017.08.030_b0055) 2012; 45
Robinson (10.1016/j.jbiomech.2017.08.030_b0280) 2005; 38
Drewniak (10.1016/j.jbiomech.2017.08.030_b0105) 2007; 40
Abraham (10.1016/j.jbiomech.2017.08.030_b0010) 2011; 44
Guo (10.1016/j.jbiomech.2017.08.030_b0165) 2015; 48
Innocenti (10.1016/j.jbiomech.2017.08.030_b0195) 2011; 44
10.1016/j.jbiomech.2017.08.030_b0190
Bendjaballah (10.1016/j.jbiomech.2017.08.030_b0065) 1998; 13
Grood (10.1016/j.jbiomech.2017.08.030_b0160) 1983; 105
Mesfar (10.1016/j.jbiomech.2017.08.030_b0230) 2006; 9
Freutel (10.1016/j.jbiomech.2017.08.030_b0135) 2014; 29
10.1016/j.jbiomech.2017.08.030_b0335
Venäläinen (10.1016/j.jbiomech.2017.08.030_b0345) 2016; 49
Heegaard (10.1016/j.jbiomech.2017.08.030_b0175) 2001; 16
Danso (10.1016/j.jbiomech.2017.08.030_b0095) 2015; 48
Merican (10.1016/j.jbiomech.2017.08.030_b0225) 2009; 42
Tanska (10.1016/j.jbiomech.2017.08.030_b0325) 2015; 48
10.1016/j.jbiomech.2017.08.030_b0140
Kim (10.1016/j.jbiomech.2017.08.030_b0210) 2014; 47
Galbusera (10.1016/j.jbiomech.2017.08.030_b0145) 2014; 2
Marouane (10.1016/j.jbiomech.2017.08.030_b0220) 2014; 47
Engin (10.1016/j.jbiomech.2017.08.030_b0110) 1974; 7
Nakagawa (10.1016/j.jbiomech.2017.08.030_b0260) 2004; 86
Fregly (10.1016/j.jbiomech.2017.08.030_b0125) 2003; 36
Seering (10.1016/j.jbiomech.2017.08.030_b0295) 1980; 13
Ateshian (10.1016/j.jbiomech.2017.08.030_b0040) 2012; 129
Song (10.1016/j.jbiomech.2017.08.030_b0310) 2004; 37
Baldwin (10.1016/j.jbiomech.2017.08.030_b0050) 2009; 12
Woo (10.1016/j.jbiomech.2017.08.030_b0370) 1991; 19
Stieven-Filho (10.1016/j.jbiomech.2017.08.030_b0315) 2011; 38
Adouni (10.1016/j.jbiomech.2017.08.030_b0020) 2013; 46
Amis (10.1016/j.jbiomech.2017.08.030_b0030) 2006; 14
Naghibi Beidokhti (10.1016/j.jbiomech.2017.08.030_b0255) 2016; 38
Nelder (10.1016/j.jbiomech.2017.08.030_b0265) 1965; 7
Moglo (10.1016/j.jbiomech.2017.08.030_b0235) 2003; 18
Hefzy (10.1016/j.jbiomech.2017.08.030_b0180) 1983; 105
Wan (10.1016/j.jbiomech.2017.08.030_b0350) 2015; 50
10.1016/j.jbiomech.2017.08.030_b0005
Gollehon (10.1016/j.jbiomech.2017.08.030_b0155) 1987; 69
Butler (10.1016/j.jbiomech.2017.08.030_b0085) 1986; 19
Freutel (10.1016/j.jbiomech.2017.08.030_b0130) 2015; 48
Rood (10.1016/j.jbiomech.2017.08.030_b0290) 2015; 43
Bachus (10.1016/j.jbiomech.2017.08.030_b0045) 2006; 28
10.1016/j.jbiomech.2017.08.030_b0250
Wismans (10.1016/j.jbiomech.2017.08.030_b0365) 1980; 13
Mononen (10.1016/j.jbiomech.2017.08.030_b0245) 2012; 45
Andriacchi (10.1016/j.jbiomech.2017.08.030_b0035) 1983; 16
Weiss (10.1016/j.jbiomech.2017.08.030_b0355) 1996; 135
Haut Donahue (10.1016/j.jbiomech.2017.08.030_b0170) 2003; 36
Tissakht (10.1016/j.jbiomech.2017.08.030_b0330) 1995; 28
Donahue (10.1016/j.jbiomech.2017.08.030_b0100) 2002; 124
Criscenti (10.1016/j.jbiomech.2017.08.030_b0090) 2016; 54
Werner (10.1016/j.jbiomech.2017.08.030_b0360) 2005; 38
Shepherd (10.1016/j.jbiomech.2017.08.030_b0300) 1999; 38
Farahmand (10.1016/j.jbiomech.2017.08.030_b0115) 1998; 16
Mommersteeg (10.1016/j.jbiomech.2017.08.030_b0240) 1996; 29
Yao (10.1016/j.jbiomech.2017.08.030_b0375) 2008; 26
Bendjaballah (10.1016/j.jbiomech.2017.08.030_b0060) 1997; 12
Ushiki (10.1016/j.jbiomech.2017.08.030_b0340) 2002; 65
Adouni (10.1016/j.jbiomech.2017.08.030_b0025) 2012; 45
Holzapfel (10.1016/j.jbiomech.2017.08.030_b0185) 2000; 61
Markolf (10.1016/j.jbiomech.2017.08.030_b0205) 1976
Shirazi (10.1016/j.jbiomech.2017.08.030_b0305) 2008; 41
Pianigiani (10.1016/j.jbiomech.2017.08.030_b0275) 2012; 45
Peña (10.1016/j.jbiomech.2017.08.030_b0270) 2006; 39
Adouni (10.1016/j.jbiomech.2017.08.030_b0015) 2014; 47
Stylianou (10.1016/j.jbiomech.2017.08.030_b0320) 2013; 135
Blankevoort (10.1016/j.jbiomech.2017.08.030_b0070) 1991; 113
Kusayama (10.1016/j.jbiomech.2017.08.030_b0215) 1994; 2
Gardiner (10.1016/j.jbiomech.2017.08.030_b0150) 2003; 21
Jones (10.1016/j.jbiomech.2017.08.030_b0200) 1995; 10
References_xml – volume: 26
  start-page: 673
  year: 2008
  end-page: 684
  ident: b0375
  article-title: Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion
  publication-title: J. Orthop. Res.
– volume: 47
  start-page: 1353
  year: 2014
  end-page: 1359
  ident: b0220
  article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression
  publication-title: J. Biomech.
– volume: 18
  start-page: 751
  year: 2003
  end-page: 759
  ident: b0235
  article-title: On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study
  publication-title: Clin. Biomech.
– volume: 39
  start-page: 1686
  year: 2006
  end-page: 1701
  ident: b0270
  article-title: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint
  publication-title: J. Biomech.
– volume: 38
  start-page: 338
  year: 2011
  end-page: 342
  ident: b0315
  article-title: Anatomic study of the double-bundle of the anterior cruciate ligament with the knee in 90
  publication-title: Rev. Col. Bras. Cir.
– volume: 50
  start-page: 255
  year: 2015
  end-page: 267
  ident: b0350
  article-title: An update on the constitutive relation of ligament tissues with the effects of collagen types
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 69
  start-page: 233
  year: 1987
  end-page: 242
  ident: b0155
  article-title: The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study
  publication-title: J. Bone Joint Surg. Am.
– volume: 45
  start-page: 474
  year: 2012
  end-page: 483
  ident: b0055
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
– volume: 12
  start-page: 651
  year: 2009
  end-page: 659
  ident: b0050
  article-title: Efficient probabilistic representation of tibiofemoral soft tissue constraint
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 105
  start-page: 145
  year: 1983
  end-page: 153
  ident: b0180
  article-title: An analytical technique for modeling knee joint stiffness—Part II: Ligamentous geometric nonlinearities
  publication-title: J. Biomech. Eng.
– volume: 65
  start-page: 109
  year: 2002
  end-page: 126
  ident: b0340
  article-title: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint
  publication-title: Arch. Histol. Cytol.
– volume: 38
  start-page: 1123
  year: 2016
  end-page: 1130
  ident: b0255
  article-title: A comparison between dynamic implicit and explicit finite element simulations of the native knee joint
  publication-title: Med. Eng. Phys.
– volume: 129
  start-page: 405
  year: 2012
  end-page: 412
  ident: b0040
  article-title: Equivalence between short-time biphasic and incompressible elastic material responses
  publication-title: J. Biomech. Eng.
– volume: 61
  start-page: 1
  year: 2000
  end-page: 48
  ident: b0185
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elast.
– volume: 13
  start-page: 785
  year: 1980
  end-page: 794
  ident: b0295
  article-title: The function of the primary ligaments of the knee in varus-valgus and axial rotation
  publication-title: J. Biomech.
– volume: 47
  start-page: 1696
  year: 2014
  end-page: 1703
  ident: b0015
  article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment
  publication-title: J. Biomech.
– volume: 54
  start-page: 141
  year: 2016
  end-page: 148
  ident: b0090
  article-title: Material and structural tensile properties of the human medial patello-femoral ligament
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 19
  start-page: 217
  year: 1991
  end-page: 225
  ident: b0370
  article-title: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation
  publication-title: Am. J. Sports Med.
– volume: 14
  start-page: 257
  year: 2006
  end-page: 263
  ident: b0030
  article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
– volume: 9
  start-page: 201
  year: 2006
  end-page: 209
  ident: b0230
  article-title: Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction
  publication-title: Comput. Meth. Biomech. Biomed. Engin.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0265
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 44
  start-page: 413
  year: 2011
  end-page: 418
  ident: b0010
  article-title: Hyperelastic properties of human meniscal attachments
  publication-title: J. Biomech.
– volume: 113
  start-page: 94
  year: 1991
  end-page: 103
  ident: b0075
  article-title: Recruitment of knee joint ligaments
  publication-title: J. Biomech. Eng.
– volume: 40
  start-page: 2569
  year: 2007
  end-page: 2572
  ident: b0105
  article-title: Accuracy of circular contact area measurements with thin-film pressure sensors
  publication-title: J. Biomech.
– volume: 45
  start-page: 579
  year: 2012
  end-page: 587
  ident: b0245
  article-title: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis
  publication-title: J. Biomech.
– volume: 13
  start-page: 625
  year: 1998
  end-page: 633
  ident: b0065
  article-title: Biomechanical response of the passive human knee joint under anterior-posterior forces
  publication-title: Clin. Biomech.
– volume: 29
  start-page: 363
  year: 2014
  end-page: 372
  ident: b0135
  article-title: Finite element modeling of soft tissues: material models, tissue interaction and challenges
  publication-title: Clin. Biomech.
– volume: 24
  start-page: 1019
  year: 1991
  end-page: 1031
  ident: b0080
  article-title: Articular contact in a three-dimensional model of the knee
  publication-title: J. Biomech.
– volume: 36
  start-page: 19
  year: 2003
  end-page: 34
  ident: b0170
  article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint
  publication-title: J. Biomech.
– volume: 28
  start-page: 411
  year: 1995
  end-page: 422
  ident: b0330
  article-title: Tensile stress-strain characteristics of the human meniscal material
  publication-title: J. Biomech.
– volume: 41
  start-page: 3340
  year: 2008
  end-page: 3348
  ident: b0305
  article-title: Role of cartilage collagen fibrils networks in knee joint biomechanics under compression
  publication-title: J. Biomech.
– volume: 48
  start-page: 1444
  year: 2015
  end-page: 1453
  ident: b0165
  article-title: A statistically-augmented computational platform for evaluating meniscal function
  publication-title: J. Biomech.
– reference: Trent, P.S., Walker, P.S., Wolf, B., 1976. Ligament length patterns, strength, and rotational axes of the knee joint. Clin. Orthop. Relat. Res.
– volume: 7
  year: 1974
  ident: b0110
  article-title: Biomechanics of normal and abnormal knee joint
  publication-title: J. Biomech.
– volume: 48
  start-page: 1397
  year: 2015
  end-page: 1406
  ident: b0325
  article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking
  publication-title: J. Biomech.
– volume: 113
  start-page: 263
  year: 1991
  end-page: 269
  ident: b0070
  article-title: Ligament-bone interaction in a three-dimensional model of the knee
  publication-title: J. Biomech. Eng.
– volume: 16
  start-page: 23
  year: 1983
  end-page: 29
  ident: b0035
  article-title: Model studies of the stiffness characteristics of the human knee joint
  publication-title: J. Biomech.
– volume: 21
  start-page: 1098
  year: 2003
  end-page: 1106
  ident: b0150
  article-title: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading
  publication-title: J. Orthop. Res.
– volume: 28
  start-page: 483
  year: 2006
  end-page: 488
  ident: b0045
  article-title: Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems
  publication-title: Med. Eng. Phys.
– volume: 13
  year: 1980
  ident: b0365
  article-title: A three-dimensional mathematical model of the knee-joint
  publication-title: J. Biomech.
– volume: 45
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: b0025
  article-title: Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses
  publication-title: J. Biomech.
– start-page: 58
  year: 1976
  ident: b0205
  article-title: Stiffness and laxity of the knee - the contributions of the supporting structures
– volume: 48
  start-page: 1499
  year: 2015
  end-page: 1507
  ident: b0095
  article-title: Characterization of site-specific biomechanical properties of human meniscus—importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
– volume: 47
  start-page: 592
  year: 2014
  end-page: 595
  ident: b0210
  article-title: Tensile properties of the medial patellofemoral ligament: the effect of specimen orientation
  publication-title: J. Biomech.
– volume: 38
  start-page: 349
  year: 2005
  end-page: 355
  ident: b0360
  article-title: The effect of valgus/varus malalignment on load distribution in total knee replacements
  publication-title: J. Biomech.
– reference: Abaqus, A., Simulia, 2011. ABAQUS 6.11 Documentation. Dassault Syst. Simulia 1100.
– volume: 10
  start-page: 339
  year: 1995
  end-page: 344
  ident: b0200
  article-title: Mechanical properties of the human anterior cruciate ligament
  publication-title: Clin. Biomech.
– reference: Galbusera, F., Freutel, M., Dürselen, L., Dâ€TMAiuto, M., Croce, D., Villa, T., Sansone, V., Innocenti, B., 2014a. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Front. Bioeng. Biotechnol. 2, 1–11.
– volume: 135
  start-page: 41008
  year: 2013
  ident: b0320
  article-title: Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 383
  year: 2004
  end-page: 390
  ident: b0310
  article-title: A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation
  publication-title: J. Biomech.
– volume: 135
  start-page: 107
  year: 1996
  end-page: 128
  ident: b0355
  article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: b0160
  article-title: A joint coordinate system for the clinical description of three-dimensional motions applications to the knee
  publication-title: J. Biomech. Eng.
– volume: 29
  start-page: 151
  year: 1996
  end-page: 160
  ident: b0240
  article-title: Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach
  publication-title: J. Biomech.
– volume: 48
  start-page: 1343
  year: 2015
  end-page: 1349
  ident: b0130
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
– volume: 46
  start-page: 619
  year: 2013
  end-page: 624
  ident: b0020
  article-title: Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait
  publication-title: J. Biomech.
– volume: 11
  start-page: 89
  year: 2004
  end-page: 94
  ident: b0120
  article-title: The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability – an in-vitro study
  publication-title: Knee
– volume: 2
  start-page: 234
  year: 1994
  end-page: 237
  ident: b0215
  article-title: Anatomical and biomechanical characteristics of human meniscofemoral ligaments
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
– reference: Mootanah, R., Reisse, F., Carpanen, D., Walker, R., Hillstrom, H.J., 2012. The effects of the material properties of bones and soft tissues on knee joint contact stress, in: 10th International Symposium on Biomechanics and Biomedical Engineering, Berlin.
– year: 1997
  ident: b0285
  article-title: An Analysis of the Musculotendon Dynamics of Hill-Based Models
– volume: 45
  start-page: 2315
  year: 2012
  end-page: 2323
  ident: b0275
  article-title: Tibio-femoral kinematics in different total knee arthroplasty designs during a loaded squat: a numerical sensitivity study
  publication-title: J. Biomech.
– volume: 38
  start-page: 1067
  year: 2005
  end-page: 1074
  ident: b0280
  article-title: Structural properties of the medial collateral ligament complex of the human knee
  publication-title: J. Biomech.
– volume: 43
  start-page: 2538
  year: 2015
  end-page: 2544
  ident: b0290
  article-title: Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions
  publication-title: Am. J. Sports Med.
– volume: 49
  start-page: 1111
  year: 2016
  end-page: 1120
  ident: b0345
  article-title: Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading
  publication-title: J. Biomech.
– volume: 19
  start-page: 425
  year: 1986
  end-page: 432
  ident: b0085
  article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
  publication-title: J. Biomech.
– volume: 16
  start-page: 136
  year: 1998
  end-page: 143
  ident: b0115
  article-title: Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint
  publication-title: J. Orthop. Res.
– volume: 38
  start-page: 124
  year: 1999
  end-page: 132
  ident: b0300
  article-title: The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb
  publication-title: Rheumatology (Oxford)
– volume: 36
  start-page: 609
  year: 2003
  end-page: 613
  ident: b0125
  article-title: Estimation of discretization errors in contact pressure measurements
  publication-title: J. Biomech.
– reference: .
– volume: 86
  start-page: 450
  year: 2004
  end-page: 456
  ident: b0260
  article-title: The posterior cruciate ligament during flexion of the normal knee
  publication-title: J. Bone Joint Surg. Br.
– reference: Imran, A., 2012. Anterior Cruciate Ligament Fibres – Effects of Tibial Translation During Flexion at the Knee, in: Proceedings of the World Congress on Engineering, London.
– volume: 16
  start-page: 415
  year: 2001
  end-page: 423
  ident: b0175
  article-title: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment
  publication-title: Clin. Biomech.
– volume: 42
  start-page: 2323
  year: 2009
  end-page: 2329
  ident: b0225
  article-title: The structural properties of the lateral retinaculum and capsular complex of the knee
  publication-title: J. Biomech.
– volume: 12
  start-page: 139
  year: 1997
  end-page: 148
  ident: b0060
  article-title: Finite element analysis of human knee joint in varus-valgus
  publication-title: Clin. Biomech.
– volume: 2
  start-page: 54
  year: 2014
  ident: b0145
  article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review
  publication-title: Front. Bioeng. Biotechnol.
– volume: 44
  start-page: 1573
  year: 2011
  end-page: 1581
  ident: b0195
  article-title: Contact forces in several TKA designs during squatting: a numerical sensitivity analysis
  publication-title: J. Biomech.
– volume: 124
  start-page: 273
  year: 2002
  end-page: 280
  ident: b0100
  article-title: A finite element model of the human knee joint for the study of tibio-femoral contact
  publication-title: J. Biomech. Eng.
– volume: 45
  start-page: 2149
  year: 2012
  ident: 10.1016/j.jbiomech.2017.08.030_b0025
  article-title: Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.040
– volume: 24
  start-page: 1019
  year: 1991
  ident: 10.1016/j.jbiomech.2017.08.030_b0080
  article-title: Articular contact in a three-dimensional model of the knee
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90019-J
– volume: 44
  start-page: 1573
  year: 2011
  ident: 10.1016/j.jbiomech.2017.08.030_b0195
  article-title: Contact forces in several TKA designs during squatting: a numerical sensitivity analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.02.081
– volume: 38
  start-page: 349
  year: 2005
  ident: 10.1016/j.jbiomech.2017.08.030_b0360
  article-title: The effect of valgus/varus malalignment on load distribution in total knee replacements
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.024
– volume: 13
  year: 1980
  ident: 10.1016/j.jbiomech.2017.08.030_b0365
  article-title: A three-dimensional mathematical model of the knee-joint
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(80)90354-1
– volume: 29
  start-page: 151
  year: 1996
  ident: 10.1016/j.jbiomech.2017.08.030_b0240
  article-title: Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00040-2
– volume: 28
  start-page: 411
  year: 1995
  ident: 10.1016/j.jbiomech.2017.08.030_b0330
  article-title: Tensile stress-strain characteristics of the human meniscal material
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00081-E
– volume: 124
  start-page: 273
  year: 2002
  ident: 10.1016/j.jbiomech.2017.08.030_b0100
  article-title: A finite element model of the human knee joint for the study of tibio-femoral contact
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1470171
– volume: 135
  start-page: 107
  year: 1996
  ident: 10.1016/j.jbiomech.2017.08.030_b0355
  article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(96)01035-3
– volume: 2
  start-page: 234
  year: 1994
  ident: 10.1016/j.jbiomech.2017.08.030_b0215
  article-title: Anatomical and biomechanical characteristics of human meniscofemoral ligaments
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
  doi: 10.1007/BF01845594
– ident: 10.1016/j.jbiomech.2017.08.030_b0335
  doi: 10.1097/00003086-197606000-00034
– volume: 48
  start-page: 1444
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0165
  article-title: A statistically-augmented computational platform for evaluating meniscal function
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.031
– volume: 45
  start-page: 2315
  year: 2012
  ident: 10.1016/j.jbiomech.2017.08.030_b0275
  article-title: Tibio-femoral kinematics in different total knee arthroplasty designs during a loaded squat: a numerical sensitivity study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.06.014
– volume: 19
  start-page: 425
  year: 1986
  ident: 10.1016/j.jbiomech.2017.08.030_b0085
  article-title: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(86)90019-9
– start-page: 58
  year: 1976
  ident: 10.1016/j.jbiomech.2017.08.030_b0205
– ident: 10.1016/j.jbiomech.2017.08.030_b0250
– year: 1997
  ident: 10.1016/j.jbiomech.2017.08.030_b0285
– volume: 36
  start-page: 609
  year: 2003
  ident: 10.1016/j.jbiomech.2017.08.030_b0125
  article-title: Estimation of discretization errors in contact pressure measurements
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00436-0
– volume: 50
  start-page: 255
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0350
  article-title: An update on the constitutive relation of ligament tissues with the effects of collagen types
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.06.018
– volume: 16
  start-page: 23
  year: 1983
  ident: 10.1016/j.jbiomech.2017.08.030_b0035
  article-title: Model studies of the stiffness characteristics of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(83)90043-X
– ident: 10.1016/j.jbiomech.2017.08.030_b0190
  doi: 10.1016/S0021-9290(12)70374-3
– volume: 38
  start-page: 1067
  year: 2005
  ident: 10.1016/j.jbiomech.2017.08.030_b0280
  article-title: Structural properties of the medial collateral ligament complex of the human knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.034
– volume: 13
  start-page: 785
  year: 1980
  ident: 10.1016/j.jbiomech.2017.08.030_b0295
  article-title: The function of the primary ligaments of the knee in varus-valgus and axial rotation
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(80)90240-7
– volume: 14
  start-page: 257
  year: 2006
  ident: 10.1016/j.jbiomech.2017.08.030_b0030
  article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments
  publication-title: Knee Surg. Sport. Traumatol. Arthrosc.
  doi: 10.1007/s00167-005-0686-x
– volume: 44
  start-page: 413
  year: 2011
  ident: 10.1016/j.jbiomech.2017.08.030_b0010
  article-title: Hyperelastic properties of human meniscal attachments
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.10.001
– volume: 38
  start-page: 1123
  year: 2016
  ident: 10.1016/j.jbiomech.2017.08.030_b0255
  article-title: A comparison between dynamic implicit and explicit finite element simulations of the native knee joint
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.06.001
– volume: 36
  start-page: 19
  year: 2003
  ident: 10.1016/j.jbiomech.2017.08.030_b0170
  article-title: How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00305-6
– volume: 10
  start-page: 339
  year: 1995
  ident: 10.1016/j.jbiomech.2017.08.030_b0200
  article-title: Mechanical properties of the human anterior cruciate ligament
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)98193-X
– volume: 135
  start-page: 41008
  year: 2013
  ident: 10.1016/j.jbiomech.2017.08.030_b0320
  article-title: Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023982
– volume: 41
  start-page: 3340
  year: 2008
  ident: 10.1016/j.jbiomech.2017.08.030_b0305
  article-title: Role of cartilage collagen fibrils networks in knee joint biomechanics under compression
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.09.033
– volume: 47
  start-page: 1353
  year: 2014
  ident: 10.1016/j.jbiomech.2017.08.030_b0220
  article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.01.055
– volume: 65
  start-page: 109
  year: 2002
  ident: 10.1016/j.jbiomech.2017.08.030_b0340
  article-title: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint
  publication-title: Arch. Histol. Cytol.
  doi: 10.1679/aohc.65.109
– volume: 38
  start-page: 338
  year: 2011
  ident: 10.1016/j.jbiomech.2017.08.030_b0315
  article-title: Anatomic study of the double-bundle of the anterior cruciate ligament with the knee in 90o flexion
  publication-title: Rev. Col. Bras. Cir.
  doi: 10.1590/S0100-69912011000500010
– volume: 47
  start-page: 1696
  year: 2014
  ident: 10.1016/j.jbiomech.2017.08.030_b0015
  article-title: Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.02.028
– volume: 13
  start-page: 625
  year: 1998
  ident: 10.1016/j.jbiomech.2017.08.030_b0065
  article-title: Biomechanical response of the passive human knee joint under anterior-posterior forces
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00035-7
– volume: 113
  start-page: 94
  year: 1991
  ident: 10.1016/j.jbiomech.2017.08.030_b0075
  article-title: Recruitment of knee joint ligaments
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894090
– volume: 29
  start-page: 363
  year: 2014
  ident: 10.1016/j.jbiomech.2017.08.030_b0135
  article-title: Finite element modeling of soft tissues: material models, tissue interaction and challenges
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2014.01.006
– ident: 10.1016/j.jbiomech.2017.08.030_b0140
  doi: 10.3389/fbioe.2014.00054
– volume: 18
  start-page: 751
  year: 2003
  ident: 10.1016/j.jbiomech.2017.08.030_b0235
  article-title: On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(03)00140-2
– volume: 43
  start-page: 2538
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0290
  article-title: Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546515594447
– ident: 10.1016/j.jbiomech.2017.08.030_b0005
– volume: 129
  start-page: 405
  year: 2012
  ident: 10.1016/j.jbiomech.2017.08.030_b0040
  article-title: Equivalence between short-time biphasic and incompressible elastic material responses
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2720918
– volume: 12
  start-page: 139
  year: 1997
  ident: 10.1016/j.jbiomech.2017.08.030_b0060
  article-title: Finite element analysis of human knee joint in varus-valgus
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)00072-7
– volume: 47
  start-page: 592
  year: 2014
  ident: 10.1016/j.jbiomech.2017.08.030_b0210
  article-title: Tensile properties of the medial patellofemoral ligament: the effect of specimen orientation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.11.026
– volume: 61
  start-page: 1
  year: 2000
  ident: 10.1016/j.jbiomech.2017.08.030_b0185
  article-title: A new constitutive framework for arterial wall mechanics and a comparative study of material models
  publication-title: J. Elast.
  doi: 10.1023/A:1010835316564
– volume: 42
  start-page: 2323
  year: 2009
  ident: 10.1016/j.jbiomech.2017.08.030_b0225
  article-title: The structural properties of the lateral retinaculum and capsular complex of the knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.049
– volume: 46
  start-page: 619
  year: 2013
  ident: 10.1016/j.jbiomech.2017.08.030_b0020
  article-title: Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.09.035
– volume: 9
  start-page: 201
  year: 2006
  ident: 10.1016/j.jbiomech.2017.08.030_b0230
  article-title: Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction
  publication-title: Comput. Meth. Biomech. Biomed. Engin.
  doi: 10.1080/10255840600795959
– volume: 16
  start-page: 415
  year: 2001
  ident: 10.1016/j.jbiomech.2017.08.030_b0175
  article-title: A computer model to simulate patellar biomechanics following total knee replacement: the effects of femoral component alignment
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(01)00020-1
– volume: 28
  start-page: 483
  year: 2006
  ident: 10.1016/j.jbiomech.2017.08.030_b0045
  article-title: Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.07.022
– volume: 40
  start-page: 2569
  year: 2007
  ident: 10.1016/j.jbiomech.2017.08.030_b0105
  article-title: Accuracy of circular contact area measurements with thin-film pressure sensors
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.12.002
– volume: 48
  start-page: 1499
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0095
  article-title: Characterization of site-specific biomechanical properties of human meniscus—importance of collagen and fluid on mechanical nonlinearities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.048
– volume: 7
  year: 1974
  ident: 10.1016/j.jbiomech.2017.08.030_b0110
  article-title: Biomechanics of normal and abnormal knee joint
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(74)90027-X
– volume: 16
  start-page: 136
  year: 1998
  ident: 10.1016/j.jbiomech.2017.08.030_b0115
  article-title: Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100160123
– volume: 105
  start-page: 136
  year: 1983
  ident: 10.1016/j.jbiomech.2017.08.030_b0160
  article-title: A joint coordinate system for the clinical description of three-dimensional motions applications to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 2
  start-page: 54
  year: 2014
  ident: 10.1016/j.jbiomech.2017.08.030_b0145
  article-title: Material models and properties in the finite element analysis of knee ligaments: a literature review
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2014.00054
– volume: 21
  start-page: 1098
  year: 2003
  ident: 10.1016/j.jbiomech.2017.08.030_b0150
  article-title: Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(03)00113-X
– volume: 48
  start-page: 1397
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0325
  article-title: A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.043
– volume: 105
  start-page: 145
  year: 1983
  ident: 10.1016/j.jbiomech.2017.08.030_b0180
  article-title: An analytical technique for modeling knee joint stiffness—Part II: Ligamentous geometric nonlinearities
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138398
– volume: 54
  start-page: 141
  year: 2016
  ident: 10.1016/j.jbiomech.2017.08.030_b0090
  article-title: Material and structural tensile properties of the human medial patello-femoral ligament
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.09.030
– volume: 12
  start-page: 651
  year: 2009
  ident: 10.1016/j.jbiomech.2017.08.030_b0050
  article-title: Efficient probabilistic representation of tibiofemoral soft tissue constraint
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255840902822550
– volume: 113
  start-page: 263
  year: 1991
  ident: 10.1016/j.jbiomech.2017.08.030_b0070
  article-title: Ligament-bone interaction in a three-dimensional model of the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2894883
– volume: 48
  start-page: 1343
  year: 2015
  ident: 10.1016/j.jbiomech.2017.08.030_b0130
  article-title: Material properties of individual menisci and their attachments obtained through inverse FE-analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.03.014
– volume: 86
  start-page: 450
  year: 2004
  ident: 10.1016/j.jbiomech.2017.08.030_b0260
  article-title: The posterior cruciate ligament during flexion of the normal knee
  publication-title: J. Bone Joint Surg. Br.
  doi: 10.1302/0301-620X.86B3.14330
– volume: 38
  start-page: 124
  year: 1999
  ident: 10.1016/j.jbiomech.2017.08.030_b0300
  article-title: The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/38.2.124
– volume: 39
  start-page: 1686
  year: 2006
  ident: 10.1016/j.jbiomech.2017.08.030_b0270
  article-title: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.030
– volume: 11
  start-page: 89
  year: 2004
  ident: 10.1016/j.jbiomech.2017.08.030_b0120
  article-title: The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability – an in-vitro study
  publication-title: Knee
  doi: 10.1016/j.knee.2003.10.004
– volume: 69
  start-page: 233
  year: 1987
  ident: 10.1016/j.jbiomech.2017.08.030_b0155
  article-title: The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-198769020-00010
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.jbiomech.2017.08.030_b0265
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 45
  start-page: 579
  year: 2012
  ident: 10.1016/j.jbiomech.2017.08.030_b0245
  article-title: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.003
– volume: 49
  start-page: 1111
  year: 2016
  ident: 10.1016/j.jbiomech.2017.08.030_b0345
  article-title: Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.033
– volume: 37
  start-page: 383
  year: 2004
  ident: 10.1016/j.jbiomech.2017.08.030_b0310
  article-title: A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00261-6
– volume: 19
  start-page: 217
  year: 1991
  ident: 10.1016/j.jbiomech.2017.08.030_b0370
  article-title: Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354659101900303
– volume: 26
  start-page: 673
  year: 2008
  ident: 10.1016/j.jbiomech.2017.08.030_b0375
  article-title: Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20553
– volume: 45
  start-page: 474
  year: 2012
  ident: 10.1016/j.jbiomech.2017.08.030_b0055
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.052
SSID ssj0007479
Score 2.4869726
Snippet In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biomechanical Phenomena
Biomechanics
Collagen
Computational model validation
Contact pressure
Continuum modeling
Finite Element Analysis
Finite element method
Human performance
Humans
Kinematics
Knee
Knee contact pressure
Knee Joint - physiology
Knee ligament
Ligaments
Ligaments, Articular - physiology
Mathematical models
Mechanical properties
Modelling
Models, Biological
Predictions
Representations
Sensors
Springs
Stiffness
Subject-specific model
Three dimensional models
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BkRAcEGz5WCjISIib6aZ24viEKkRVIcGpSHuzHMdGu7TJ0k0PlfrjO-PYoQegnJOxkngyfuMZvwfwrrDaHmCezFUTBJeu1dyWSnLbyMpWoiFWMOq2-FYdf5dfluUybbhtU1tljokxULe9oz3yfWK-I7ksoT5ufnFSjaLqapLQuAv3InUZ-rNaTgkXccOnFo-CIwxY3DghvP6wjufbY0GiUJHGkzqh_7w4_Q18xkXo6DE8SuiRHY7T_QTu-G4Gu4cdZs5nl-w9i_2ccaN8Bg9vUA3O4P7XVETfhSt0DbbK4iSsD-x09cPSLiGLujh0QJ1th8whwfqOIUpkm3MagaIjc7jCxqbaS7IOK8KtzI-N6OMYW7pAVlEDkP3E52DrftUNT-Hk6PPJp2OeRBi4w2Ro4M4jBtDWh7rUwSmnXaiVPmhbIReNVFIXiDAQg-Fi62Wora1K2wZM4holg6jEM9jp-s6_ANZWdSNIj7NoiXxU6JrI5UVTeku11HIOZf74xiWCctLJODW5E21t8qQZmjRDAppiMYf9yW4zUnTcaqHy3Jp8ABVDpsFV5FZLPVkmiDJCj_-y3ctuZFKg2Jrfbj2Ht9Nl_MWpbmM731_QPZgEI44vizk8H91velHMlxEA1ouX_x78FTygJ4l9OPUe7AznF_41oqmheRN_mWtVHx4b
  priority: 102
  providerName: ProQuest
Title The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017304529
https://dx.doi.org/10.1016/j.jbiomech.2017.08.030
https://www.ncbi.nlm.nih.gov/pubmed/28917580
https://www.proquest.com/docview/1965441737
https://www.proquest.com/docview/1940199151
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7aFMb6ULZ0P7J2RYOxNzdxJFvWY1paso2FMTrIm5FtuTjr7NC4D4Wyv713smQ62OhgLzGJfUaxpLvvfN_dAbwPtdJT9JMDmZU8EHmhAh1JEehMxDrmGVUFI7bFIp5_F5-W0XILTn0uDNEqne7vdLrV1u6XsXua43VVUY4v7jYKA0qK9k3VNuxMuYqjAezMPn6eL3qFjIjZMT3CgAQeJAqvjlc2zd3GJUJpq3kSIfrPNupvGNTaovNnsOdAJJt143wOW6Yewv6sRgf65y37wCyt074vH8Lug4qDQ3jyxcXS9-EOVwirfI8S1pTsqrrU9LKQ2fY4lKfONq0vJcGamiFYZOtrugMpSZajobXc2luSLiuCr8x0fPTuHhs6QVK2FSD7geNgq6aq2xdwcX52cToPXC-GIEefqA1yg1BAaVMmkSpzmau8TKSaFgUXk0xIoUIEGgjF0OYaUSZax5EuSvTlMilKHvOXMKib2rwGVsRJxqktZ1hQDVKuEqoxz7PIaAqpRiOI_MNPc1ennNplXKWekLZK_aSlNGkp9dHkkxGMe7l1V6njUQnp5zb1eaioOVM0Jo9Kql7yt9X6T7KHfhmlTl9sUqrrSM3guBzBu_407nQK3-jaNDd0DfrCCOejcASvuuXX_1F0mxEHJpM3_zGwA3hK3yxXJzmEQXt9Y94i4mqzI9g-_hXip1zKI7e78Hhytvj67R6rKy1b
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToLxgKDjozDASMBbWFM7Xw8IDdjUsa1CqEh7sxzHRu1GUtZMqBL_Ev8jd04c9gCMlz0nZ6W9893v7Lv7ATwPVaZGmCcHSW55IHSRBSpKRKByEauY5zQVjKotJvH4s_hwHB2vwU_fC0Nlld4nOkddVJrOyLdp8h3RZfHkzeJbQKxRdLvqKTQaszgwq--Ysi1f779H_b4YjfZ2p-_GQcsqEGhE93WgDQa1TBmbRpnVic60TZNsVBRcDHORiCzEkImgAqOHETZVKo5UYTEryRNhecxx2WuwLqihtQfrb3cnHz91rh-xeVtTEgaIO4YXWpLnr-auod7dgISJmxtKpdd_joZ_Q7su6u3dhlstXGU7jX3dgTVT9mFzp8RU_euKvWSugNSdzPfh5oXZhn24ftTe2m_CD7RFNvNsKKyy7HT2RdGxJHNEPNQRz5a1H1rBqpIhLGWLM1qB3DHTGNJdFe-KpO2MgDIzTeV7s8aSHpCUIx1kJ_gdbF7NyvouTK9CP_egV1aleQCsiNOcEwFoWNC0U56lNM2e55FRdHkbDSDyf77U7UR0IuY4lb70bS690iQpTRJjJx8OYLuTWzQzQS6VSLxupe94RR8tMWxdKpl1ki0marDOf8lueTOSrWdayt_7aADPusfoU-iiSJWmOqd3MOvGxCEKB3C_Mb_uh2KCjogzHT789-JP4cZ4enQoD_cnB49gg77KFQGlW9Crz87NY4Rydf6k3UAM5BVv2V9FSFyC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQ5rggKCDURhgJOAW2tRJHB8QmhjVxmDiMKTeLMexUctIypoJVeIf47_jPScOOwDjsnPyrLTv6_f8vgCexVrqCcbJkSgcjxJTykinIol0kWQ64wVNBaNqi-Ps4FPybpbONuBn6IWhsspgE72hLmtDd-QjmnxH67K4GLmuLOLj_vT18ltEG6Qo0xrWabQicmTX3zF8W7063EdeP59Mpm9P3hxE3YaByCDSbyJj0cFJbV2eSmeEkcblQk7KkifjIhGJjNF9IsBAT2ITl2udpbp0GKEUInE843jsNbguOIIqVCUx62M9GkvfVZfEESKQ8YXm5MXLhW-t97mQWPgJolSE_We_-Dfc6_3f9Dbc6oAr22sl7Q5s2GoA23sVBu1f1-wF86Wk_o5-ADcvTDkcwNaHLn-_DT9QKtk87EVhtWOn88-aLiiZX8lDvfFs1YTxFayuGAJUtjyjE8gwM4PO3dfzronazQkyM9vWwLdnrOgBUfn1g-wLfgdb1POquQsnV8Gde7BZ1ZW9D6zM8oLTKtC4pLmnXOY0154XqdWUxk2HkIY_X5luNjqt6DhVoQhuoQLTFDFN0e5OPh7CqKdbttNBLqUQgbcq9L6itVbowC6llD1lh45a1PNftLtBjFRno1bqt0YN4Wn_GK0LpYx0Zetzegfjbwwh0ngIO6349T8UQ3XEnvn4wb8PfwJbqKjq_eHx0UO4QR_lq4HyXdhszs7tI8R0TfHYaw8DdcXa-gtqHl9J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+ligament+modelling+strategies+on+the+predictive+capability+of+finite+element+models+of+the+human+knee+joint&rft.jtitle=Journal+of+biomechanics&rft.au=Naghibi+Beidokhti%2C+Hamid&rft.au=Janssen%2C+Dennis&rft.au=van+de+Groes%2C+Sebastiaan&rft.au=Hazrati%2C+Javad&rft.date=2017-12-08&rft.issn=0021-9290&rft.volume=65&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.08.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2017_08_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon