OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice

The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 67; no. 3; pp. 947 - 960
Main Authors Dai, Xiaoyan, Wang, Yuanyuan, Zhang, Wen-Hao
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.02.2016
Subjects
Online AccessGet full text
ISSN0022-0957
1460-2431
1460-2431
DOI10.1093/jxb/erv515

Cover

Loading…
Abstract The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
AbstractList The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
Highlight The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain weight and phosphorus concentration under phosphate-deprived conditions in rice.The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain weight and phosphorus concentration under phosphate-deprived conditions in rice. The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74 -overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74 -overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74 -overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74 -overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74 -overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.
Author Wang, Yuanyuan
Zhang, Wen-Hao
Dai, Xiaoyan
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Dai
  fullname: Dai, Xiaoyan
– sequence: 2
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 3
  givenname: Wen-Hao
  surname: Zhang
  fullname: Zhang, Wen-Hao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26663563$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtLXDEQxkOx6Gp98b0lj0U8mvvlpVDEXqgglBbRl5CTk9PNcvbkmGSX9r9v1rViSx98yjD5zcw38-2DnTGOHoAjjE4x0vRs8bM982nNMX8BZpgJ1BBG8Q6YIURIgzSXe2A_5wVCiCPOd8EeEUJQLugM3F7l669fbiQ7gRZuIliSHbNLYSohjrC3rsR0ApexWw22-AxLHHxFnK8RnOYxT_Oah7nYtLb3NWGEKTj_Crzs7ZD94cN7AL5_uPh2_qm5vPr4-fz9ZeOY1qVxgiupHG6V1b7rCe4s673FlJFO2ZYRLjmjlHCHe0Flpyn3PVOeS21bV1MH4N2277Rql75zfqwrDGZKYWnTLxNtMH__jGFufsS1YZJKpHht8PahQYp3K5-LWYbs_DDY0cdVNlgqTjjBHD0DFUQopPRG1punsh71_Ll9BY63gEsx5-T7RwQjszHWVGPN1tgKo39gF8r9uetKYfh_yettySJXC5_MpxoJrOlv70WyAQ
CitedBy_id crossref_primary_10_3390_ijms25136845
crossref_primary_10_1186_s12870_018_1235_3
crossref_primary_10_1007_s11032_019_1059_3
crossref_primary_10_1016_j_ygeno_2021_03_035
crossref_primary_10_1016_j_molp_2021_12_005
crossref_primary_10_1016_j_plantsci_2021_111154
crossref_primary_10_3390_genes13081379
crossref_primary_10_3390_cimb45040187
crossref_primary_10_3390_ijms24065107
crossref_primary_10_1111_nph_16931
crossref_primary_10_1371_journal_pone_0156414
crossref_primary_10_1038_s41598_017_07872_8
crossref_primary_10_3389_fpls_2016_00550
crossref_primary_10_1080_03650340_2017_1373764
crossref_primary_10_1007_s11105_024_01512_y
crossref_primary_10_12677_HJAS_2020_108094
crossref_primary_10_1111_pce_14567
crossref_primary_10_1016_j_plantsci_2021_111148
crossref_primary_10_7717_peerj_10207
crossref_primary_10_1016_j_plaphy_2019_12_037
crossref_primary_10_1093_jxb_erx174
crossref_primary_10_1371_journal_pone_0183261
crossref_primary_10_1016_j_envexpbot_2020_104243
crossref_primary_10_1093_jxb_eraa211
crossref_primary_10_1111_nph_15143
crossref_primary_10_1111_nph_19189
crossref_primary_10_1007_s00709_022_01794_7
crossref_primary_10_1016_j_jplph_2018_04_007
crossref_primary_10_1007_s11032_022_01301_z
crossref_primary_10_1007_s00425_023_04120_4
crossref_primary_10_1007_s11032_019_1073_5
crossref_primary_10_1111_jipb_13670
crossref_primary_10_3390_ijms241914840
crossref_primary_10_1016_j_plaphy_2018_06_017
crossref_primary_10_36899_JAPS_2022_3_0462
crossref_primary_10_3389_fpls_2017_01396
crossref_primary_10_1007_s10725_020_00688_z
crossref_primary_10_1016_j_plaphy_2019_12_004
crossref_primary_10_1016_j_plaphy_2024_109232
crossref_primary_10_1016_j_plgene_2019_100191
crossref_primary_10_1007_s13205_022_03299_9
crossref_primary_10_3389_fpls_2022_932926
crossref_primary_10_1111_plb_13262
crossref_primary_10_3390_genes11030241
crossref_primary_10_1016_j_semcdb_2017_09_016
crossref_primary_10_3389_fpls_2016_00760
crossref_primary_10_1080_15427528_2018_1542365
crossref_primary_10_1007_s10725_023_01038_5
crossref_primary_10_3389_fpls_2023_1082496
crossref_primary_10_3389_fpls_2018_01186
crossref_primary_10_1038_srep30794
crossref_primary_10_3390_ijms241612786
crossref_primary_10_1071_FP20028
crossref_primary_10_1111_jipb_13053
crossref_primary_10_3389_fpls_2018_01979
crossref_primary_10_1111_mpp_12916
crossref_primary_10_3389_fpls_2023_1126567
crossref_primary_10_1016_j_envexpbot_2023_105241
crossref_primary_10_1021_acs_jafc_8b02175
crossref_primary_10_1186_s12870_016_0927_9
crossref_primary_10_1371_journal_pone_0188625
crossref_primary_10_1093_plphys_kiad064
crossref_primary_10_1360_SSV_2023_0048
crossref_primary_10_7717_peerj_13887
crossref_primary_10_1007_s12892_018_0089_0
crossref_primary_10_1111_jipb_12513
crossref_primary_10_1371_journal_pone_0185118
crossref_primary_10_1016_j_cj_2023_04_002
crossref_primary_10_1007_s44279_024_00086_3
crossref_primary_10_3390_cimb44100301
crossref_primary_10_3389_fpls_2022_863283
crossref_primary_10_1080_17429145_2023_2299865
crossref_primary_10_3389_fpls_2019_01714
crossref_primary_10_1016_j_envexpbot_2023_105257
crossref_primary_10_1016_j_ijbiomac_2023_128769
crossref_primary_10_1080_07352689_2022_2109866
crossref_primary_10_1016_j_jplph_2022_153815
crossref_primary_10_1111_plb_12524
crossref_primary_10_3389_fpls_2020_607878
crossref_primary_10_3390_agronomy13020578
crossref_primary_10_3389_fpls_2020_585561
crossref_primary_10_1016_j_envexpbot_2022_104892
crossref_primary_10_1007_s10142_024_01301_6
crossref_primary_10_1093_plphys_kiac404
crossref_primary_10_1038_s41598_024_61767_z
crossref_primary_10_3390_plants12112146
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_3389_fpls_2022_833326
crossref_primary_10_1093_g3journal_jkab227
crossref_primary_10_1016_j_jplph_2020_153340
crossref_primary_10_1007_s00425_019_03201_7
crossref_primary_10_1186_s12870_016_0903_4
crossref_primary_10_1007_s11103_022_01254_z
crossref_primary_10_3389_fpls_2017_00425
crossref_primary_10_9787_PBB_2024_12_82
crossref_primary_10_1016_j_scienta_2023_111956
crossref_primary_10_1093_jxb_ery163
crossref_primary_10_1111_jipb_13860
crossref_primary_10_1016_j_plaphy_2023_107997
crossref_primary_10_1186_s12870_024_05405_w
crossref_primary_10_1007_s10142_023_01067_3
crossref_primary_10_1093_jxb_erx436
crossref_primary_10_1186_s12284_018_0199_0
crossref_primary_10_3389_fpls_2021_663477
crossref_primary_10_7717_peerj_7817
crossref_primary_10_7717_peerj_10982
crossref_primary_10_3389_fpls_2021_676432
crossref_primary_10_3390_plants12183260
crossref_primary_10_1111_pce_14031
crossref_primary_10_1080_07352689_2018_1441103
crossref_primary_10_1111_pbi_13833
crossref_primary_10_1007_s11738_021_03282_6
crossref_primary_10_1186_s12864_022_08378_y
crossref_primary_10_1007_s00344_020_10161_w
crossref_primary_10_1002_jpln_201800465
crossref_primary_10_1371_journal_pone_0192362
crossref_primary_10_1016_j_biori_2017_08_001
crossref_primary_10_1590_1678_4685_gmb_2017_0232
crossref_primary_10_1038_s41438_020_0326_0
crossref_primary_10_1111_pce_15016
crossref_primary_10_3389_fpls_2023_1303667
crossref_primary_10_1093_pcp_pcab010
crossref_primary_10_1186_s12870_018_1486_z
crossref_primary_10_1186_s12870_024_05320_0
crossref_primary_10_1007_s00344_021_10382_7
crossref_primary_10_1093_jxb_erad326
crossref_primary_10_1111_pbi_13288
crossref_primary_10_1186_s12870_021_03015_4
crossref_primary_10_1016_j_ecoenv_2021_112406
crossref_primary_10_3390_ijms20225803
crossref_primary_10_3389_fpls_2018_00346
crossref_primary_10_1016_j_devcel_2019_01_002
crossref_primary_10_1016_j_plaphy_2020_09_015
crossref_primary_10_1016_j_semcdb_2019_03_010
crossref_primary_10_3390_agronomy11071301
crossref_primary_10_1111_jipb_13828
crossref_primary_10_1007_s11033_022_07294_4
crossref_primary_10_1038_s41598_020_72985_6
crossref_primary_10_1016_j_plaphy_2019_01_009
crossref_primary_10_1007_s11816_018_0490_y
crossref_primary_10_1016_j_plaphy_2023_108006
crossref_primary_10_1007_s00122_019_03527_6
crossref_primary_10_1016_j_envexpbot_2023_105431
crossref_primary_10_1038_s41598_021_99206_y
crossref_primary_10_1186_s12870_016_0853_x
crossref_primary_10_1007_s11105_020_01222_1
crossref_primary_10_1111_nph_15240
crossref_primary_10_3389_fpls_2022_1039329
crossref_primary_10_1186_s12870_024_05562_y
crossref_primary_10_1016_j_semcdb_2017_06_013
crossref_primary_10_1007_s12041_018_1026_5
crossref_primary_10_1021_acs_jafc_1c04316
crossref_primary_10_1016_j_envexpbot_2023_105641
crossref_primary_10_1007_s00299_017_2190_4
crossref_primary_10_1007_s00425_022_03830_5
crossref_primary_10_1186_s12870_019_1914_8
crossref_primary_10_1038_s41598_019_55276_7
crossref_primary_10_1111_nph_17534
crossref_primary_10_1186_s12284_021_00495_8
crossref_primary_10_3390_agronomy14112661
crossref_primary_10_1007_s00344_024_11364_1
crossref_primary_10_1021_acs_jafc_2c05969
crossref_primary_10_3389_fpls_2021_700651
crossref_primary_10_3389_fpls_2020_565339
crossref_primary_10_1111_tpj_15922
crossref_primary_10_1186_s12870_023_04695_w
crossref_primary_10_1016_j_stress_2024_100526
crossref_primary_10_1186_s40659_018_0155_x
crossref_primary_10_1016_j_ncrops_2024_100064
crossref_primary_10_1080_13102818_2019_1604157
crossref_primary_10_1111_tpj_14038
crossref_primary_10_1016_j_indcrop_2024_118158
crossref_primary_10_1016_j_scienta_2022_111715
crossref_primary_10_1177_11769343241312740
crossref_primary_10_1016_S2095_3119_15_61306_5
crossref_primary_10_1016_j_jhazmat_2020_124831
crossref_primary_10_3389_fpls_2017_00817
crossref_primary_10_1007_s12374_018_0198_0
crossref_primary_10_1111_pce_14457
crossref_primary_10_1111_jipb_13470
crossref_primary_10_3390_ijms21218365
crossref_primary_10_1007_s00425_023_04232_x
crossref_primary_10_1002_tpg2_20362
crossref_primary_10_1016_j_pbi_2018_07_007
crossref_primary_10_1007_s13205_020_02249_7
crossref_primary_10_1371_journal_pone_0171958
crossref_primary_10_1093_jxb_ery313
crossref_primary_10_3390_genes10020131
crossref_primary_10_3390_ijms23042353
crossref_primary_10_1371_journal_pone_0214149
crossref_primary_10_3390_plants9111515
crossref_primary_10_1016_j_cj_2021_03_020
crossref_primary_10_3390_genes10020139
crossref_primary_10_1007_s00122_018_3108_4
crossref_primary_10_1038_s41598_023_31154_1
crossref_primary_10_1080_13102818_2022_2103448
crossref_primary_10_1186_s12864_018_4506_3
Cites_doi 10.1104/pp.103.029306
10.1111/j.1399-3054.2010.01349.x
10.1111/j.1365-3040.2005.01422.x
10.1007/s00425-005-0015-0
10.1042/BJ20070102
10.1105/tpc.004861
10.1104/pp.106.092130
10.1016/j.tplants.2010.02.006
10.1093/jxb/ert298
10.1016/j.biochi.2006.05.007
10.1111/j.1365-313X.2008.03734.x
10.1104/pp.107.111443
10.1016/S1369-5266(03)00035-9
10.1094/MPMI.2003.16.4.295
10.1093/aob/mcq015
10.1105/tpc.105.038943
10.1186/1471-2164-12-367
10.1105/tpc.108.064980
10.1038/ng2041
10.1023/A:1020780022549
10.1104/pp.113.231183
10.1104/pp.107.101691
10.1104/pp.110.153015
10.1104/pp.111.175414
10.1016/j.cub.2005.10.016
10.1111/j.1365-3040.2005.01272.x
10.1073/pnas.082696499
10.1104/pp.109.141051
10.1104/pp.103.036459
10.1074/jbc.M113.482281
10.1105/tpc.113.114009
10.1104/pp.116.1.91
10.1101/gad.204401
10.1034/j.1399-3054.2002.1150101.x
10.1016/j.bbagrm.2011.09.002
10.1104/pp.106.079707
10.1101/gad.222702
10.1146/annurev.arplant.58.032806.103750
10.1104/pp.114.253799
10.1046/j.1365-313X.2003.01661.x
10.1046/j.1365-3040.2003.01074.x
10.1073/pnas.0505266102
10.1007/s00425-011-1403-2
10.1073/pnas.95.4.1950
10.1016/j.tplants.2004.09.003
10.1111/j.1744-7909.2007.00504.x
10.1016/j.tplants.2011.05.006
10.1104/pp.109.145532
10.1104/pp.111.175380
10.1126/science.1070721
10.1104/pp.106.093971
10.1093/pcp/pci230
10.1093/mp/ssn081
10.1104/pp.103.020941
10.1093/jxb/err144
10.1104/pp.111.175331
10.1146/annurev.arplant.50.1.665
10.1073/pnas.202474599
10.1104/pp.111.175281
10.1104/pp.104.041996
10.1104/pp.106.078063
10.1093/pcp/pcn061
10.1104/pp.113.235077
10.1038/nature11346
10.1016/S1369-5266(00)80063-1
10.1016/0003-2697(76)90527-3
10.1007/BF02374895
10.1046/j.1469-8137.2003.00695.x
10.3389/fpls.2015.00188
10.1104/pp.020007
10.1104/pp.111.175265
10.1007/s11103-004-1965-5
10.1111/j.1399-3054.2010.01356.x
10.1093/mp/ssp120
10.1111/j.1365-3040.2007.01734.x
10.1016/j.pbi.2004.07.012
10.1023/A:1004356007312
10.1111/j.1365-313X.2010.04170.x
10.1071/CP07125
10.1104/pp.112.194217
10.1104/pp.126.2.875
10.1016/S1360-1385(00)01600-9
10.1104/pp.105.063115
ContentType Journal Article
Copyright The Author 2015
The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2015
Copyright_xml – notice: The Author 2015
– notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
– notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
5PM
DOI 10.1093/jxb/erv515
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Nucleic Acids Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 960
ExternalDocumentID PMC4737085
26663563
10_1093_jxb_erv515
26390619
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
D-I
DAKXR
DATOO
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
IPSME
J21
JENOY
JLS
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SA0
TEORI
TLC
TN5
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
3O-
53G
AAWDT
AAYXX
ABDPE
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AETEA
AFSHK
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CITATION
COF
CXTWN
DFGAJ
ELUNK
FEDTE
HVGLF
H~9
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
MBTAY
MVM
NEJ
NTWIH
O0~
OHT
O~Y
PB-
RIG
RNI
RZF
RZO
TCN
UKR
VH1
XOL
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
5PM
ID FETCH-LOGICAL-c499t-c65878c1b8a9edf21da4fea1342d8ab4257543325c1f637d935ef48e579abcf63
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 14:08:01 EDT 2025
Fri Jul 11 12:35:48 EDT 2025
Fri Jul 11 07:19:55 EDT 2025
Mon Jul 21 05:43:22 EDT 2025
Tue Jul 01 03:05:30 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Thu Jun 19 23:16:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords rice (Oryza sativa)
transgenic
phosphate starvation
OsWRKY74
root system architecture
Language English
License The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-c65878c1b8a9edf21da4fea1342d8ab4257543325c1f637d935ef48e579abcf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Editor: Karl-Josef Dietz, Bielefeld University
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4737085
PMID 26663563
PQID 1762680896
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4737085
proquest_miscellaneous_1785252150
proquest_miscellaneous_1762680896
pubmed_primary_26663563
crossref_primary_10_1093_jxb_erv515
crossref_citationtrail_10_1093_jxb_erv515
jstor_primary_26390619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: UK
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016020304480267000_67.3.947.1
2016020304480267000_67.3.947.3
2016020304480267000_67.3.947.2
2016020304480267000_67.3.947.5
2016020304480267000_67.3.947.4
2016020304480267000_67.3.947.7
2016020304480267000_67.3.947.6
2016020304480267000_67.3.947.52
2016020304480267000_67.3.947.51
2016020304480267000_67.3.947.10
2016020304480267000_67.3.947.54
2016020304480267000_67.3.947.53
2016020304480267000_67.3.947.50
2016020304480267000_67.3.947.16
2016020304480267000_67.3.947.15
2016020304480267000_67.3.947.59
2016020304480267000_67.3.947.18
2016020304480267000_67.3.947.17
2016020304480267000_67.3.947.12
2016020304480267000_67.3.947.56
2016020304480267000_67.3.947.11
2016020304480267000_67.3.947.55
2016020304480267000_67.3.947.14
2016020304480267000_67.3.947.58
2016020304480267000_67.3.947.13
2016020304480267000_67.3.947.57
2016020304480267000_67.3.947.19
2016020304480267000_67.3.947.63
2016020304480267000_67.3.947.62
2016020304480267000_67.3.947.21
2016020304480267000_67.3.947.65
2016020304480267000_67.3.947.20
2016020304480267000_67.3.947.64
2016020304480267000_67.3.947.61
2016020304480267000_67.3.947.60
2016020304480267000_67.3.947.27
2016020304480267000_67.3.947.26
2016020304480267000_67.3.947.29
2016020304480267000_67.3.947.28
2016020304480267000_67.3.947.23
2016020304480267000_67.3.947.67
2016020304480267000_67.3.947.22
2016020304480267000_67.3.947.66
2016020304480267000_67.3.947.25
2016020304480267000_67.3.947.69
2016020304480267000_67.3.947.24
2016020304480267000_67.3.947.68
Kasajima (2016020304480267000_67.3.947.39) 2007; 48
2016020304480267000_67.3.947.30
2016020304480267000_67.3.947.74
2016020304480267000_67.3.947.73
2016020304480267000_67.3.947.32
2016020304480267000_67.3.947.76
2016020304480267000_67.3.947.31
2016020304480267000_67.3.947.75
2016020304480267000_67.3.947.70
2016020304480267000_67.3.947.72
2016020304480267000_67.3.947.71
2016020304480267000_67.3.947.38
2016020304480267000_67.3.947.37
2016020304480267000_67.3.947.34
2016020304480267000_67.3.947.78
2016020304480267000_67.3.947.33
2016020304480267000_67.3.947.77
2016020304480267000_67.3.947.36
2016020304480267000_67.3.947.35
2016020304480267000_67.3.947.79
2016020304480267000_67.3.947.41
2016020304480267000_67.3.947.85
2016020304480267000_67.3.947.40
2016020304480267000_67.3.947.84
2016020304480267000_67.3.947.43
2016020304480267000_67.3.947.42
2016020304480267000_67.3.947.86
2016020304480267000_67.3.947.81
2016020304480267000_67.3.947.80
2016020304480267000_67.3.947.83
2016020304480267000_67.3.947.82
2016020304480267000_67.3.947.9
2016020304480267000_67.3.947.49
2016020304480267000_67.3.947.8
2016020304480267000_67.3.947.48
2016020304480267000_67.3.947.45
2016020304480267000_67.3.947.44
2016020304480267000_67.3.947.47
2016020304480267000_67.3.947.46
References_xml – ident: 2016020304480267000_67.3.947.80
  doi: 10.1104/pp.103.029306
– ident: 2016020304480267000_67.3.947.40
  doi: 10.1111/j.1399-3054.2010.01349.x
– ident: 2016020304480267000_67.3.947.4
  doi: 10.1111/j.1365-3040.2005.01422.x
– ident: 2016020304480267000_67.3.947.24
  doi: 10.1007/s00425-005-0015-0
– ident: 2016020304480267000_67.3.947.11
  doi: 10.1042/BJ20070102
– ident: 2016020304480267000_67.3.947.27
  doi: 10.1105/tpc.004861
– ident: 2016020304480267000_67.3.947.35
  doi: 10.1104/pp.106.092130
– ident: 2016020304480267000_67.3.947.63
  doi: 10.1016/j.tplants.2010.02.006
– ident: 2016020304480267000_67.3.947.83
  doi: 10.1093/jxb/ert298
– ident: 2016020304480267000_67.3.947.29
  doi: 10.1016/j.biochi.2006.05.007
– ident: 2016020304480267000_67.3.947.75
  doi: 10.1111/j.1365-313X.2008.03734.x
– ident: 2016020304480267000_67.3.947.86
  doi: 10.1104/pp.107.111443
– ident: 2016020304480267000_67.3.947.44
  doi: 10.1016/S1369-5266(03)00035-9
– ident: 2016020304480267000_67.3.947.37
  doi: 10.1094/MPMI.2003.16.4.295
– ident: 2016020304480267000_67.3.947.81
  doi: 10.1093/aob/mcq015
– ident: 2016020304480267000_67.3.947.12
  doi: 10.1105/tpc.105.038943
– ident: 2016020304480267000_67.3.947.76
  doi: 10.1186/1471-2164-12-367
– ident: 2016020304480267000_67.3.947.10
  doi: 10.1105/tpc.108.064980
– ident: 2016020304480267000_67.3.947.69
  doi: 10.1038/ng2041
– ident: 2016020304480267000_67.3.947.17
  doi: 10.1023/A:1020780022549
– ident: 2016020304480267000_67.3.947.56
  doi: 10.1104/pp.113.231183
– ident: 2016020304480267000_67.3.947.15
  doi: 10.1104/pp.107.101691
– ident: 2016020304480267000_67.3.947.67
  doi: 10.1104/pp.110.153015
– ident: 2016020304480267000_67.3.947.45
  doi: 10.1104/pp.111.175414
– ident: 2016020304480267000_67.3.947.21
  doi: 10.1016/j.cub.2005.10.016
– ident: 2016020304480267000_67.3.947.30
  doi: 10.1111/j.1365-3040.2005.01272.x
– ident: 2016020304480267000_67.3.947.84
  doi: 10.1073/pnas.082696499
– ident: 2016020304480267000_67.3.947.85
  doi: 10.1104/pp.109.141051
– ident: 2016020304480267000_67.3.947.72
  doi: 10.1104/pp.103.036459
– ident: 2016020304480267000_67.3.947.5
  doi: 10.1074/jbc.M113.482281
– ident: 2016020304480267000_67.3.947.8
  doi: 10.1105/tpc.113.114009
– ident: 2016020304480267000_67.3.947.42
  doi: 10.1104/pp.116.1.91
– ident: 2016020304480267000_67.3.947.62
  doi: 10.1101/gad.204401
– ident: 2016020304480267000_67.3.947.1
  doi: 10.1034/j.1399-3054.2002.1150101.x
– ident: 2016020304480267000_67.3.947.9
  doi: 10.1016/j.bbagrm.2011.09.002
– ident: 2016020304480267000_67.3.947.3
  doi: 10.1104/pp.106.079707
– ident: 2016020304480267000_67.3.947.46
– volume: 48
  start-page: 117
  year: 2007
  ident: 2016020304480267000_67.3.947.39
  article-title: Micoarray analysis of B nutrient response: identification of several high-B inducible genes and roles of WRKY6 in low-B response
  publication-title: Plant and Cell Physiology
– ident: 2016020304480267000_67.3.947.59
  doi: 10.1101/gad.222702
– ident: 2016020304480267000_67.3.947.64
  doi: 10.1146/annurev.arplant.58.032806.103750
– ident: 2016020304480267000_67.3.947.68
  doi: 10.1104/pp.114.253799
– ident: 2016020304480267000_67.3.947.18
  doi: 10.1046/j.1365-313X.2003.01661.x
– ident: 2016020304480267000_67.3.947.78
  doi: 10.1046/j.1365-3040.2003.01074.x
– ident: 2016020304480267000_67.3.947.47
  doi: 10.1073/pnas.0505266102
– ident: 2016020304480267000_67.3.947.32
– ident: 2016020304480267000_67.3.947.66
  doi: 10.1007/s00425-011-1403-2
– ident: 2016020304480267000_67.3.947.19
  doi: 10.1073/pnas.95.4.1950
– ident: 2016020304480267000_67.3.947.71
  doi: 10.1016/j.tplants.2004.09.003
– ident: 2016020304480267000_67.3.947.60
  doi: 10.1111/j.1744-7909.2007.00504.x
– ident: 2016020304480267000_67.3.947.52
  doi: 10.1016/j.tplants.2011.05.006
– ident: 2016020304480267000_67.3.947.65
  doi: 10.1104/pp.109.145532
– ident: 2016020304480267000_67.3.947.26
  doi: 10.1104/pp.111.175380
– ident: 2016020304480267000_67.3.947.7
  doi: 10.1126/science.1070721
– ident: 2016020304480267000_67.3.947.14
  doi: 10.1104/pp.106.093971
– ident: 2016020304480267000_67.3.947.33
  doi: 10.1093/pcp/pci230
– ident: 2016020304480267000_67.3.947.16
  doi: 10.1093/mp/ssn081
– ident: 2016020304480267000_67.3.947.25
  doi: 10.1104/pp.103.020941
– ident: 2016020304480267000_67.3.947.70
  doi: 10.1093/jxb/err144
– ident: 2016020304480267000_67.3.947.28
  doi: 10.1104/pp.111.175331
– ident: 2016020304480267000_67.3.947.54
  doi: 10.1146/annurev.arplant.50.1.665
– ident: 2016020304480267000_67.3.947.51
  doi: 10.1073/pnas.202474599
– ident: 2016020304480267000_67.3.947.53
  doi: 10.1104/pp.111.175281
– ident: 2016020304480267000_67.3.947.23
  doi: 10.1104/pp.104.041996
– ident: 2016020304480267000_67.3.947.2
  doi: 10.1104/pp.106.078063
– ident: 2016020304480267000_67.3.947.57
  doi: 10.1093/pcp/pcn061
– ident: 2016020304480267000_67.3.947.77
  doi: 10.1104/pp.113.235077
– ident: 2016020304480267000_67.3.947.22
  doi: 10.1038/nature11346
– ident: 2016020304480267000_67.3.947.55
  doi: 10.1016/S1369-5266(00)80063-1
– ident: 2016020304480267000_67.3.947.6
  doi: 10.1016/0003-2697(76)90527-3
– ident: 2016020304480267000_67.3.947.34
  doi: 10.1007/BF02374895
– ident: 2016020304480267000_67.3.947.74
  doi: 10.1046/j.1469-8137.2003.00695.x
– ident: 2016020304480267000_67.3.947.31
  doi: 10.3389/fpls.2015.00188
– ident: 2016020304480267000_67.3.947.38
  doi: 10.1104/pp.020007
– ident: 2016020304480267000_67.3.947.41
  doi: 10.1104/pp.111.175265
– ident: 2016020304480267000_67.3.947.48
  doi: 10.1007/s11103-004-1965-5
– ident: 2016020304480267000_67.3.947.50
  doi: 10.1111/j.1399-3054.2010.01356.x
– ident: 2016020304480267000_67.3.947.61
  doi: 10.1093/mp/ssp120
– ident: 2016020304480267000_67.3.947.49
  doi: 10.1111/j.1365-3040.2007.01734.x
– ident: 2016020304480267000_67.3.947.73
  doi: 10.1016/j.pbi.2004.07.012
– ident: 2016020304480267000_67.3.947.36
  doi: 10.1023/A:1004356007312
– ident: 2016020304480267000_67.3.947.43
  doi: 10.1111/j.1365-313X.2010.04170.x
– ident: 2016020304480267000_67.3.947.58
  doi: 10.1071/CP07125
– ident: 2016020304480267000_67.3.947.13
  doi: 10.1104/pp.112.194217
– ident: 2016020304480267000_67.3.947.79
  doi: 10.1104/pp.126.2.875
– ident: 2016020304480267000_67.3.947.20
  doi: 10.1016/S1360-1385(00)01600-9
– ident: 2016020304480267000_67.3.947.82
  doi: 10.1104/pp.105.063115
SSID ssj0005055
Score 2.5893095
Snippet The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in...
Highlight The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller...
The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 947
SubjectTerms Acid Phosphatase - metabolism
Adaptation, Physiological - drug effects
Biomass
Gene Expression Regulation, Plant - drug effects
Gene Knockdown Techniques
Genes, Plant
Hydroponics
Iron - metabolism
Oryza - drug effects
Oryza - genetics
Oryza - metabolism
Oryza - physiology
Phenotype
Phosphates - deficiency
Phosphates - pharmacology
Phylogeny
Plant Proteins - metabolism
Plant Roots - anatomy & histology
Plant Roots - drug effects
Plant Roots - metabolism
Plant Shoots - drug effects
Plant Shoots - metabolism
Plants, Genetically Modified
Protein Transport - drug effects
RESEARCH PAPER
RNA Interference - drug effects
Subcellular Fractions - drug effects
Subcellular Fractions - metabolism
Transcription Factors - metabolism
Title OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice
URI https://www.jstor.org/stable/26390619
https://www.ncbi.nlm.nih.gov/pubmed/26663563
https://www.proquest.com/docview/1762680896
https://www.proquest.com/docview/1785252150
https://pubmed.ncbi.nlm.nih.gov/PMC4737085
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXxG2s4yIjeEEsLIntOH4EtFHB2CRo1YyXKIkdtWhLqjZFwK_n2E7SBCo0eIks58hJ_Z0cf3bPBaHnXLh5TlXmUCKZQ1MdrAwrj0NY5tGcE8lN1PvH02A0oe8jFg0GnzteS-sqfZX93BpX8j-oQh_gqqNk_wHZdlDogDbgC1dAGK5XwvhsNf304ZxT44L5Urd1yYdiYwlsNR19-7KUulCXSehwoZYmUABo52JWrhYz6NdnCvXxrAlxqV3itvDWXk2AtKwaa2KOu41vQDRPyh8brZvWR9LnaxBdb_rbs-qpKpxRUnYPILzWZznvBgQAU7PrprJ2lAau49PawNeG1tbdqBWKdKymoLyzAAtbYOAP227zXn39nmqsl9-YDQPtp9A-PYuPJycn8fgoGl9D133YO-iyFu-ijt-Py1iTQl6_dZOzVpBDGPvQjtxjKdZRddsW5HdP2g41Gd9Gt2ps8GurIHfQQBV30Y03Bpp76EujJQc4wbqFezqCrY4c4FZDcKsh0MKthuCNhuB5gbWG3EeT46Px25FTV9RwMtjZVk4GfJOHmZeGiVAy9z2Z0FwlHqG-DJNU22-mE9rBh5oHhEtBmMppqBgXSZpB1y7aKcpC7SEsPKrCkEjppoQq5YZKSj8VMgBKCIORIXrRzGCc1enmddWTi9i6PZAYZju2sz1Ez1rZhU2yslVq1wDRivjAroGOiiF62iATg3HU_3glhSrXq9iDpV7XlhHB32RC5gOJZe4QPbBodp6gCXkAP4b3cG4FdHL2_p1iPjNJ2iknHLYz-1d47kN0c_NdPUI71XKtHgPVrdInRnV_AXmcrm4
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsWRKY74%2C+a+WRKY+transcription+factor%2C+modulates+tolerance+to+phosphate+starvation+in+rice&rft.jtitle=Journal+of+experimental+botany&rft.au=Dai%2C+Xiaoyan&rft.au=Wang%2C+Yuanyuan&rft.au=Zhang%2C+Wen-Hao&rft.date=2016-02-01&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=67&rft.issue=3&rft.spage=947&rft.epage=960&rft_id=info:doi/10.1093%2Fjxb%2Ferv515&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon