OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice
The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance...
Saved in:
Published in | Journal of experimental botany Vol. 67; no. 3; pp. 947 - 960 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0957 1460-2431 1460-2431 |
DOI | 10.1093/jxb/erv515 |
Cover
Loading…
Abstract | The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. |
---|---|
AbstractList | The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice.The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. Highlight The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain weight and phosphorus concentration under phosphate-deprived conditions in rice.The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain weight and phosphorus concentration under phosphate-deprived conditions in rice. The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74 -overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74 -overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74 -overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74 -overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74 -overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. |
Author | Wang, Yuanyuan Zhang, Wen-Hao Dai, Xiaoyan |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Dai fullname: Dai, Xiaoyan – sequence: 2 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan – sequence: 3 givenname: Wen-Hao surname: Zhang fullname: Zhang, Wen-Hao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26663563$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkdtLXDEQxkOx6Gp98b0lj0U8mvvlpVDEXqgglBbRl5CTk9PNcvbkmGSX9r9v1rViSx98yjD5zcw38-2DnTGOHoAjjE4x0vRs8bM982nNMX8BZpgJ1BBG8Q6YIURIgzSXe2A_5wVCiCPOd8EeEUJQLugM3F7l669fbiQ7gRZuIliSHbNLYSohjrC3rsR0ApexWw22-AxLHHxFnK8RnOYxT_Oah7nYtLb3NWGEKTj_Crzs7ZD94cN7AL5_uPh2_qm5vPr4-fz9ZeOY1qVxgiupHG6V1b7rCe4s673FlJFO2ZYRLjmjlHCHe0Flpyn3PVOeS21bV1MH4N2277Rql75zfqwrDGZKYWnTLxNtMH__jGFufsS1YZJKpHht8PahQYp3K5-LWYbs_DDY0cdVNlgqTjjBHD0DFUQopPRG1punsh71_Ll9BY63gEsx5-T7RwQjszHWVGPN1tgKo39gF8r9uetKYfh_yettySJXC5_MpxoJrOlv70WyAQ |
CitedBy_id | crossref_primary_10_3390_ijms25136845 crossref_primary_10_1186_s12870_018_1235_3 crossref_primary_10_1007_s11032_019_1059_3 crossref_primary_10_1016_j_ygeno_2021_03_035 crossref_primary_10_1016_j_molp_2021_12_005 crossref_primary_10_1016_j_plantsci_2021_111154 crossref_primary_10_3390_genes13081379 crossref_primary_10_3390_cimb45040187 crossref_primary_10_3390_ijms24065107 crossref_primary_10_1111_nph_16931 crossref_primary_10_1371_journal_pone_0156414 crossref_primary_10_1038_s41598_017_07872_8 crossref_primary_10_3389_fpls_2016_00550 crossref_primary_10_1080_03650340_2017_1373764 crossref_primary_10_1007_s11105_024_01512_y crossref_primary_10_12677_HJAS_2020_108094 crossref_primary_10_1111_pce_14567 crossref_primary_10_1016_j_plantsci_2021_111148 crossref_primary_10_7717_peerj_10207 crossref_primary_10_1016_j_plaphy_2019_12_037 crossref_primary_10_1093_jxb_erx174 crossref_primary_10_1371_journal_pone_0183261 crossref_primary_10_1016_j_envexpbot_2020_104243 crossref_primary_10_1093_jxb_eraa211 crossref_primary_10_1111_nph_15143 crossref_primary_10_1111_nph_19189 crossref_primary_10_1007_s00709_022_01794_7 crossref_primary_10_1016_j_jplph_2018_04_007 crossref_primary_10_1007_s11032_022_01301_z crossref_primary_10_1007_s00425_023_04120_4 crossref_primary_10_1007_s11032_019_1073_5 crossref_primary_10_1111_jipb_13670 crossref_primary_10_3390_ijms241914840 crossref_primary_10_1016_j_plaphy_2018_06_017 crossref_primary_10_36899_JAPS_2022_3_0462 crossref_primary_10_3389_fpls_2017_01396 crossref_primary_10_1007_s10725_020_00688_z crossref_primary_10_1016_j_plaphy_2019_12_004 crossref_primary_10_1016_j_plaphy_2024_109232 crossref_primary_10_1016_j_plgene_2019_100191 crossref_primary_10_1007_s13205_022_03299_9 crossref_primary_10_3389_fpls_2022_932926 crossref_primary_10_1111_plb_13262 crossref_primary_10_3390_genes11030241 crossref_primary_10_1016_j_semcdb_2017_09_016 crossref_primary_10_3389_fpls_2016_00760 crossref_primary_10_1080_15427528_2018_1542365 crossref_primary_10_1007_s10725_023_01038_5 crossref_primary_10_3389_fpls_2023_1082496 crossref_primary_10_3389_fpls_2018_01186 crossref_primary_10_1038_srep30794 crossref_primary_10_3390_ijms241612786 crossref_primary_10_1071_FP20028 crossref_primary_10_1111_jipb_13053 crossref_primary_10_3389_fpls_2018_01979 crossref_primary_10_1111_mpp_12916 crossref_primary_10_3389_fpls_2023_1126567 crossref_primary_10_1016_j_envexpbot_2023_105241 crossref_primary_10_1021_acs_jafc_8b02175 crossref_primary_10_1186_s12870_016_0927_9 crossref_primary_10_1371_journal_pone_0188625 crossref_primary_10_1093_plphys_kiad064 crossref_primary_10_1360_SSV_2023_0048 crossref_primary_10_7717_peerj_13887 crossref_primary_10_1007_s12892_018_0089_0 crossref_primary_10_1111_jipb_12513 crossref_primary_10_1371_journal_pone_0185118 crossref_primary_10_1016_j_cj_2023_04_002 crossref_primary_10_1007_s44279_024_00086_3 crossref_primary_10_3390_cimb44100301 crossref_primary_10_3389_fpls_2022_863283 crossref_primary_10_1080_17429145_2023_2299865 crossref_primary_10_3389_fpls_2019_01714 crossref_primary_10_1016_j_envexpbot_2023_105257 crossref_primary_10_1016_j_ijbiomac_2023_128769 crossref_primary_10_1080_07352689_2022_2109866 crossref_primary_10_1016_j_jplph_2022_153815 crossref_primary_10_1111_plb_12524 crossref_primary_10_3389_fpls_2020_607878 crossref_primary_10_3390_agronomy13020578 crossref_primary_10_3389_fpls_2020_585561 crossref_primary_10_1016_j_envexpbot_2022_104892 crossref_primary_10_1007_s10142_024_01301_6 crossref_primary_10_1093_plphys_kiac404 crossref_primary_10_1038_s41598_024_61767_z crossref_primary_10_3390_plants12112146 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_3389_fpls_2022_833326 crossref_primary_10_1093_g3journal_jkab227 crossref_primary_10_1016_j_jplph_2020_153340 crossref_primary_10_1007_s00425_019_03201_7 crossref_primary_10_1186_s12870_016_0903_4 crossref_primary_10_1007_s11103_022_01254_z crossref_primary_10_3389_fpls_2017_00425 crossref_primary_10_9787_PBB_2024_12_82 crossref_primary_10_1016_j_scienta_2023_111956 crossref_primary_10_1093_jxb_ery163 crossref_primary_10_1111_jipb_13860 crossref_primary_10_1016_j_plaphy_2023_107997 crossref_primary_10_1186_s12870_024_05405_w crossref_primary_10_1007_s10142_023_01067_3 crossref_primary_10_1093_jxb_erx436 crossref_primary_10_1186_s12284_018_0199_0 crossref_primary_10_3389_fpls_2021_663477 crossref_primary_10_7717_peerj_7817 crossref_primary_10_7717_peerj_10982 crossref_primary_10_3389_fpls_2021_676432 crossref_primary_10_3390_plants12183260 crossref_primary_10_1111_pce_14031 crossref_primary_10_1080_07352689_2018_1441103 crossref_primary_10_1111_pbi_13833 crossref_primary_10_1007_s11738_021_03282_6 crossref_primary_10_1186_s12864_022_08378_y crossref_primary_10_1007_s00344_020_10161_w crossref_primary_10_1002_jpln_201800465 crossref_primary_10_1371_journal_pone_0192362 crossref_primary_10_1016_j_biori_2017_08_001 crossref_primary_10_1590_1678_4685_gmb_2017_0232 crossref_primary_10_1038_s41438_020_0326_0 crossref_primary_10_1111_pce_15016 crossref_primary_10_3389_fpls_2023_1303667 crossref_primary_10_1093_pcp_pcab010 crossref_primary_10_1186_s12870_018_1486_z crossref_primary_10_1186_s12870_024_05320_0 crossref_primary_10_1007_s00344_021_10382_7 crossref_primary_10_1093_jxb_erad326 crossref_primary_10_1111_pbi_13288 crossref_primary_10_1186_s12870_021_03015_4 crossref_primary_10_1016_j_ecoenv_2021_112406 crossref_primary_10_3390_ijms20225803 crossref_primary_10_3389_fpls_2018_00346 crossref_primary_10_1016_j_devcel_2019_01_002 crossref_primary_10_1016_j_plaphy_2020_09_015 crossref_primary_10_1016_j_semcdb_2019_03_010 crossref_primary_10_3390_agronomy11071301 crossref_primary_10_1111_jipb_13828 crossref_primary_10_1007_s11033_022_07294_4 crossref_primary_10_1038_s41598_020_72985_6 crossref_primary_10_1016_j_plaphy_2019_01_009 crossref_primary_10_1007_s11816_018_0490_y crossref_primary_10_1016_j_plaphy_2023_108006 crossref_primary_10_1007_s00122_019_03527_6 crossref_primary_10_1016_j_envexpbot_2023_105431 crossref_primary_10_1038_s41598_021_99206_y crossref_primary_10_1186_s12870_016_0853_x crossref_primary_10_1007_s11105_020_01222_1 crossref_primary_10_1111_nph_15240 crossref_primary_10_3389_fpls_2022_1039329 crossref_primary_10_1186_s12870_024_05562_y crossref_primary_10_1016_j_semcdb_2017_06_013 crossref_primary_10_1007_s12041_018_1026_5 crossref_primary_10_1021_acs_jafc_1c04316 crossref_primary_10_1016_j_envexpbot_2023_105641 crossref_primary_10_1007_s00299_017_2190_4 crossref_primary_10_1007_s00425_022_03830_5 crossref_primary_10_1186_s12870_019_1914_8 crossref_primary_10_1038_s41598_019_55276_7 crossref_primary_10_1111_nph_17534 crossref_primary_10_1186_s12284_021_00495_8 crossref_primary_10_3390_agronomy14112661 crossref_primary_10_1007_s00344_024_11364_1 crossref_primary_10_1021_acs_jafc_2c05969 crossref_primary_10_3389_fpls_2021_700651 crossref_primary_10_3389_fpls_2020_565339 crossref_primary_10_1111_tpj_15922 crossref_primary_10_1186_s12870_023_04695_w crossref_primary_10_1016_j_stress_2024_100526 crossref_primary_10_1186_s40659_018_0155_x crossref_primary_10_1016_j_ncrops_2024_100064 crossref_primary_10_1080_13102818_2019_1604157 crossref_primary_10_1111_tpj_14038 crossref_primary_10_1016_j_indcrop_2024_118158 crossref_primary_10_1016_j_scienta_2022_111715 crossref_primary_10_1177_11769343241312740 crossref_primary_10_1016_S2095_3119_15_61306_5 crossref_primary_10_1016_j_jhazmat_2020_124831 crossref_primary_10_3389_fpls_2017_00817 crossref_primary_10_1007_s12374_018_0198_0 crossref_primary_10_1111_pce_14457 crossref_primary_10_1111_jipb_13470 crossref_primary_10_3390_ijms21218365 crossref_primary_10_1007_s00425_023_04232_x crossref_primary_10_1002_tpg2_20362 crossref_primary_10_1016_j_pbi_2018_07_007 crossref_primary_10_1007_s13205_020_02249_7 crossref_primary_10_1371_journal_pone_0171958 crossref_primary_10_1093_jxb_ery313 crossref_primary_10_3390_genes10020131 crossref_primary_10_3390_ijms23042353 crossref_primary_10_1371_journal_pone_0214149 crossref_primary_10_3390_plants9111515 crossref_primary_10_1016_j_cj_2021_03_020 crossref_primary_10_3390_genes10020139 crossref_primary_10_1007_s00122_018_3108_4 crossref_primary_10_1038_s41598_023_31154_1 crossref_primary_10_1080_13102818_2022_2103448 crossref_primary_10_1186_s12864_018_4506_3 |
Cites_doi | 10.1104/pp.103.029306 10.1111/j.1399-3054.2010.01349.x 10.1111/j.1365-3040.2005.01422.x 10.1007/s00425-005-0015-0 10.1042/BJ20070102 10.1105/tpc.004861 10.1104/pp.106.092130 10.1016/j.tplants.2010.02.006 10.1093/jxb/ert298 10.1016/j.biochi.2006.05.007 10.1111/j.1365-313X.2008.03734.x 10.1104/pp.107.111443 10.1016/S1369-5266(03)00035-9 10.1094/MPMI.2003.16.4.295 10.1093/aob/mcq015 10.1105/tpc.105.038943 10.1186/1471-2164-12-367 10.1105/tpc.108.064980 10.1038/ng2041 10.1023/A:1020780022549 10.1104/pp.113.231183 10.1104/pp.107.101691 10.1104/pp.110.153015 10.1104/pp.111.175414 10.1016/j.cub.2005.10.016 10.1111/j.1365-3040.2005.01272.x 10.1073/pnas.082696499 10.1104/pp.109.141051 10.1104/pp.103.036459 10.1074/jbc.M113.482281 10.1105/tpc.113.114009 10.1104/pp.116.1.91 10.1101/gad.204401 10.1034/j.1399-3054.2002.1150101.x 10.1016/j.bbagrm.2011.09.002 10.1104/pp.106.079707 10.1101/gad.222702 10.1146/annurev.arplant.58.032806.103750 10.1104/pp.114.253799 10.1046/j.1365-313X.2003.01661.x 10.1046/j.1365-3040.2003.01074.x 10.1073/pnas.0505266102 10.1007/s00425-011-1403-2 10.1073/pnas.95.4.1950 10.1016/j.tplants.2004.09.003 10.1111/j.1744-7909.2007.00504.x 10.1016/j.tplants.2011.05.006 10.1104/pp.109.145532 10.1104/pp.111.175380 10.1126/science.1070721 10.1104/pp.106.093971 10.1093/pcp/pci230 10.1093/mp/ssn081 10.1104/pp.103.020941 10.1093/jxb/err144 10.1104/pp.111.175331 10.1146/annurev.arplant.50.1.665 10.1073/pnas.202474599 10.1104/pp.111.175281 10.1104/pp.104.041996 10.1104/pp.106.078063 10.1093/pcp/pcn061 10.1104/pp.113.235077 10.1038/nature11346 10.1016/S1369-5266(00)80063-1 10.1016/0003-2697(76)90527-3 10.1007/BF02374895 10.1046/j.1469-8137.2003.00695.x 10.3389/fpls.2015.00188 10.1104/pp.020007 10.1104/pp.111.175265 10.1007/s11103-004-1965-5 10.1111/j.1399-3054.2010.01356.x 10.1093/mp/ssp120 10.1111/j.1365-3040.2007.01734.x 10.1016/j.pbi.2004.07.012 10.1023/A:1004356007312 10.1111/j.1365-313X.2010.04170.x 10.1071/CP07125 10.1104/pp.112.194217 10.1104/pp.126.2.875 10.1016/S1360-1385(00)01600-9 10.1104/pp.105.063115 |
ContentType | Journal Article |
Copyright | The Author 2015 The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2015 |
Copyright_xml | – notice: The Author 2015 – notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. – notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 5PM |
DOI | 10.1093/jxb/erv515 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 960 |
ExternalDocumentID | PMC4737085 26663563 10_1093_jxb_erv515 26390619 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACHIC ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CS3 CZ4 D-I DAKXR DATOO DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX IPSME J21 JENOY JLS JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NU- NVLIB O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SA0 TEORI TLC TN5 TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZKX ~02 ~91 ~KM 3O- 53G AAWDT AAYXX ABDPE ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AETEA AFSHK AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CITATION COF CXTWN DFGAJ ELUNK FEDTE HVGLF H~9 JAAYA JBMMH JHFFW JKQEH JLXEF MBTAY MVM NEJ NTWIH O0~ OHT O~Y PB- RIG RNI RZF RZO TCN UKR VH1 XOL ZCG CGR CUY CVF ECM EIF NPM 7X8 7TM 5PM |
ID | FETCH-LOGICAL-c499t-c65878c1b8a9edf21da4fea1342d8ab4257543325c1f637d935ef48e579abcf63 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 14:08:01 EDT 2025 Fri Jul 11 12:35:48 EDT 2025 Fri Jul 11 07:19:55 EDT 2025 Mon Jul 21 05:43:22 EDT 2025 Tue Jul 01 03:05:30 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Thu Jun 19 23:16:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | rice (Oryza sativa) transgenic phosphate starvation OsWRKY74 root system architecture |
Language | English |
License | The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-c65878c1b8a9edf21da4fea1342d8ab4257543325c1f637d935ef48e579abcf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Editor: Karl-Josef Dietz, Bielefeld University |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4737085 |
PMID | 26663563 |
PQID | 1762680896 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4737085 proquest_miscellaneous_1785252150 proquest_miscellaneous_1762680896 pubmed_primary_26663563 crossref_primary_10_1093_jxb_erv515 crossref_citationtrail_10_1093_jxb_erv515 jstor_primary_26390619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016020304480267000_67.3.947.1 2016020304480267000_67.3.947.3 2016020304480267000_67.3.947.2 2016020304480267000_67.3.947.5 2016020304480267000_67.3.947.4 2016020304480267000_67.3.947.7 2016020304480267000_67.3.947.6 2016020304480267000_67.3.947.52 2016020304480267000_67.3.947.51 2016020304480267000_67.3.947.10 2016020304480267000_67.3.947.54 2016020304480267000_67.3.947.53 2016020304480267000_67.3.947.50 2016020304480267000_67.3.947.16 2016020304480267000_67.3.947.15 2016020304480267000_67.3.947.59 2016020304480267000_67.3.947.18 2016020304480267000_67.3.947.17 2016020304480267000_67.3.947.12 2016020304480267000_67.3.947.56 2016020304480267000_67.3.947.11 2016020304480267000_67.3.947.55 2016020304480267000_67.3.947.14 2016020304480267000_67.3.947.58 2016020304480267000_67.3.947.13 2016020304480267000_67.3.947.57 2016020304480267000_67.3.947.19 2016020304480267000_67.3.947.63 2016020304480267000_67.3.947.62 2016020304480267000_67.3.947.21 2016020304480267000_67.3.947.65 2016020304480267000_67.3.947.20 2016020304480267000_67.3.947.64 2016020304480267000_67.3.947.61 2016020304480267000_67.3.947.60 2016020304480267000_67.3.947.27 2016020304480267000_67.3.947.26 2016020304480267000_67.3.947.29 2016020304480267000_67.3.947.28 2016020304480267000_67.3.947.23 2016020304480267000_67.3.947.67 2016020304480267000_67.3.947.22 2016020304480267000_67.3.947.66 2016020304480267000_67.3.947.25 2016020304480267000_67.3.947.69 2016020304480267000_67.3.947.24 2016020304480267000_67.3.947.68 Kasajima (2016020304480267000_67.3.947.39) 2007; 48 2016020304480267000_67.3.947.30 2016020304480267000_67.3.947.74 2016020304480267000_67.3.947.73 2016020304480267000_67.3.947.32 2016020304480267000_67.3.947.76 2016020304480267000_67.3.947.31 2016020304480267000_67.3.947.75 2016020304480267000_67.3.947.70 2016020304480267000_67.3.947.72 2016020304480267000_67.3.947.71 2016020304480267000_67.3.947.38 2016020304480267000_67.3.947.37 2016020304480267000_67.3.947.34 2016020304480267000_67.3.947.78 2016020304480267000_67.3.947.33 2016020304480267000_67.3.947.77 2016020304480267000_67.3.947.36 2016020304480267000_67.3.947.35 2016020304480267000_67.3.947.79 2016020304480267000_67.3.947.41 2016020304480267000_67.3.947.85 2016020304480267000_67.3.947.40 2016020304480267000_67.3.947.84 2016020304480267000_67.3.947.43 2016020304480267000_67.3.947.42 2016020304480267000_67.3.947.86 2016020304480267000_67.3.947.81 2016020304480267000_67.3.947.80 2016020304480267000_67.3.947.83 2016020304480267000_67.3.947.82 2016020304480267000_67.3.947.9 2016020304480267000_67.3.947.49 2016020304480267000_67.3.947.8 2016020304480267000_67.3.947.48 2016020304480267000_67.3.947.45 2016020304480267000_67.3.947.44 2016020304480267000_67.3.947.47 2016020304480267000_67.3.947.46 |
References_xml | – ident: 2016020304480267000_67.3.947.80 doi: 10.1104/pp.103.029306 – ident: 2016020304480267000_67.3.947.40 doi: 10.1111/j.1399-3054.2010.01349.x – ident: 2016020304480267000_67.3.947.4 doi: 10.1111/j.1365-3040.2005.01422.x – ident: 2016020304480267000_67.3.947.24 doi: 10.1007/s00425-005-0015-0 – ident: 2016020304480267000_67.3.947.11 doi: 10.1042/BJ20070102 – ident: 2016020304480267000_67.3.947.27 doi: 10.1105/tpc.004861 – ident: 2016020304480267000_67.3.947.35 doi: 10.1104/pp.106.092130 – ident: 2016020304480267000_67.3.947.63 doi: 10.1016/j.tplants.2010.02.006 – ident: 2016020304480267000_67.3.947.83 doi: 10.1093/jxb/ert298 – ident: 2016020304480267000_67.3.947.29 doi: 10.1016/j.biochi.2006.05.007 – ident: 2016020304480267000_67.3.947.75 doi: 10.1111/j.1365-313X.2008.03734.x – ident: 2016020304480267000_67.3.947.86 doi: 10.1104/pp.107.111443 – ident: 2016020304480267000_67.3.947.44 doi: 10.1016/S1369-5266(03)00035-9 – ident: 2016020304480267000_67.3.947.37 doi: 10.1094/MPMI.2003.16.4.295 – ident: 2016020304480267000_67.3.947.81 doi: 10.1093/aob/mcq015 – ident: 2016020304480267000_67.3.947.12 doi: 10.1105/tpc.105.038943 – ident: 2016020304480267000_67.3.947.76 doi: 10.1186/1471-2164-12-367 – ident: 2016020304480267000_67.3.947.10 doi: 10.1105/tpc.108.064980 – ident: 2016020304480267000_67.3.947.69 doi: 10.1038/ng2041 – ident: 2016020304480267000_67.3.947.17 doi: 10.1023/A:1020780022549 – ident: 2016020304480267000_67.3.947.56 doi: 10.1104/pp.113.231183 – ident: 2016020304480267000_67.3.947.15 doi: 10.1104/pp.107.101691 – ident: 2016020304480267000_67.3.947.67 doi: 10.1104/pp.110.153015 – ident: 2016020304480267000_67.3.947.45 doi: 10.1104/pp.111.175414 – ident: 2016020304480267000_67.3.947.21 doi: 10.1016/j.cub.2005.10.016 – ident: 2016020304480267000_67.3.947.30 doi: 10.1111/j.1365-3040.2005.01272.x – ident: 2016020304480267000_67.3.947.84 doi: 10.1073/pnas.082696499 – ident: 2016020304480267000_67.3.947.85 doi: 10.1104/pp.109.141051 – ident: 2016020304480267000_67.3.947.72 doi: 10.1104/pp.103.036459 – ident: 2016020304480267000_67.3.947.5 doi: 10.1074/jbc.M113.482281 – ident: 2016020304480267000_67.3.947.8 doi: 10.1105/tpc.113.114009 – ident: 2016020304480267000_67.3.947.42 doi: 10.1104/pp.116.1.91 – ident: 2016020304480267000_67.3.947.62 doi: 10.1101/gad.204401 – ident: 2016020304480267000_67.3.947.1 doi: 10.1034/j.1399-3054.2002.1150101.x – ident: 2016020304480267000_67.3.947.9 doi: 10.1016/j.bbagrm.2011.09.002 – ident: 2016020304480267000_67.3.947.3 doi: 10.1104/pp.106.079707 – ident: 2016020304480267000_67.3.947.46 – volume: 48 start-page: 117 year: 2007 ident: 2016020304480267000_67.3.947.39 article-title: Micoarray analysis of B nutrient response: identification of several high-B inducible genes and roles of WRKY6 in low-B response publication-title: Plant and Cell Physiology – ident: 2016020304480267000_67.3.947.59 doi: 10.1101/gad.222702 – ident: 2016020304480267000_67.3.947.64 doi: 10.1146/annurev.arplant.58.032806.103750 – ident: 2016020304480267000_67.3.947.68 doi: 10.1104/pp.114.253799 – ident: 2016020304480267000_67.3.947.18 doi: 10.1046/j.1365-313X.2003.01661.x – ident: 2016020304480267000_67.3.947.78 doi: 10.1046/j.1365-3040.2003.01074.x – ident: 2016020304480267000_67.3.947.47 doi: 10.1073/pnas.0505266102 – ident: 2016020304480267000_67.3.947.32 – ident: 2016020304480267000_67.3.947.66 doi: 10.1007/s00425-011-1403-2 – ident: 2016020304480267000_67.3.947.19 doi: 10.1073/pnas.95.4.1950 – ident: 2016020304480267000_67.3.947.71 doi: 10.1016/j.tplants.2004.09.003 – ident: 2016020304480267000_67.3.947.60 doi: 10.1111/j.1744-7909.2007.00504.x – ident: 2016020304480267000_67.3.947.52 doi: 10.1016/j.tplants.2011.05.006 – ident: 2016020304480267000_67.3.947.65 doi: 10.1104/pp.109.145532 – ident: 2016020304480267000_67.3.947.26 doi: 10.1104/pp.111.175380 – ident: 2016020304480267000_67.3.947.7 doi: 10.1126/science.1070721 – ident: 2016020304480267000_67.3.947.14 doi: 10.1104/pp.106.093971 – ident: 2016020304480267000_67.3.947.33 doi: 10.1093/pcp/pci230 – ident: 2016020304480267000_67.3.947.16 doi: 10.1093/mp/ssn081 – ident: 2016020304480267000_67.3.947.25 doi: 10.1104/pp.103.020941 – ident: 2016020304480267000_67.3.947.70 doi: 10.1093/jxb/err144 – ident: 2016020304480267000_67.3.947.28 doi: 10.1104/pp.111.175331 – ident: 2016020304480267000_67.3.947.54 doi: 10.1146/annurev.arplant.50.1.665 – ident: 2016020304480267000_67.3.947.51 doi: 10.1073/pnas.202474599 – ident: 2016020304480267000_67.3.947.53 doi: 10.1104/pp.111.175281 – ident: 2016020304480267000_67.3.947.23 doi: 10.1104/pp.104.041996 – ident: 2016020304480267000_67.3.947.2 doi: 10.1104/pp.106.078063 – ident: 2016020304480267000_67.3.947.57 doi: 10.1093/pcp/pcn061 – ident: 2016020304480267000_67.3.947.77 doi: 10.1104/pp.113.235077 – ident: 2016020304480267000_67.3.947.22 doi: 10.1038/nature11346 – ident: 2016020304480267000_67.3.947.55 doi: 10.1016/S1369-5266(00)80063-1 – ident: 2016020304480267000_67.3.947.6 doi: 10.1016/0003-2697(76)90527-3 – ident: 2016020304480267000_67.3.947.34 doi: 10.1007/BF02374895 – ident: 2016020304480267000_67.3.947.74 doi: 10.1046/j.1469-8137.2003.00695.x – ident: 2016020304480267000_67.3.947.31 doi: 10.3389/fpls.2015.00188 – ident: 2016020304480267000_67.3.947.38 doi: 10.1104/pp.020007 – ident: 2016020304480267000_67.3.947.41 doi: 10.1104/pp.111.175265 – ident: 2016020304480267000_67.3.947.48 doi: 10.1007/s11103-004-1965-5 – ident: 2016020304480267000_67.3.947.50 doi: 10.1111/j.1399-3054.2010.01356.x – ident: 2016020304480267000_67.3.947.61 doi: 10.1093/mp/ssp120 – ident: 2016020304480267000_67.3.947.49 doi: 10.1111/j.1365-3040.2007.01734.x – ident: 2016020304480267000_67.3.947.73 doi: 10.1016/j.pbi.2004.07.012 – ident: 2016020304480267000_67.3.947.36 doi: 10.1023/A:1004356007312 – ident: 2016020304480267000_67.3.947.43 doi: 10.1111/j.1365-313X.2010.04170.x – ident: 2016020304480267000_67.3.947.58 doi: 10.1071/CP07125 – ident: 2016020304480267000_67.3.947.13 doi: 10.1104/pp.112.194217 – ident: 2016020304480267000_67.3.947.79 doi: 10.1104/pp.126.2.875 – ident: 2016020304480267000_67.3.947.20 doi: 10.1016/S1360-1385(00)01600-9 – ident: 2016020304480267000_67.3.947.82 doi: 10.1104/pp.105.063115 |
SSID | ssj0005055 |
Score | 2.5893095 |
Snippet | The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in... Highlight The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller... The WRKY transcription factor family in rice is functionally diverse. We demonstrate that WRKY74 overexpression enhances growth, increases tiller number, grain... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 947 |
SubjectTerms | Acid Phosphatase - metabolism Adaptation, Physiological - drug effects Biomass Gene Expression Regulation, Plant - drug effects Gene Knockdown Techniques Genes, Plant Hydroponics Iron - metabolism Oryza - drug effects Oryza - genetics Oryza - metabolism Oryza - physiology Phenotype Phosphates - deficiency Phosphates - pharmacology Phylogeny Plant Proteins - metabolism Plant Roots - anatomy & histology Plant Roots - drug effects Plant Roots - metabolism Plant Shoots - drug effects Plant Shoots - metabolism Plants, Genetically Modified Protein Transport - drug effects RESEARCH PAPER RNA Interference - drug effects Subcellular Fractions - drug effects Subcellular Fractions - metabolism Transcription Factors - metabolism |
Title | OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice |
URI | https://www.jstor.org/stable/26390619 https://www.ncbi.nlm.nih.gov/pubmed/26663563 https://www.proquest.com/docview/1762680896 https://www.proquest.com/docview/1785252150 https://pubmed.ncbi.nlm.nih.gov/PMC4737085 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXxG2s4yIjeEEsLIntOH4EtFHB2CRo1YyXKIkdtWhLqjZFwK_n2E7SBCo0eIks58hJ_Z0cf3bPBaHnXLh5TlXmUCKZQ1MdrAwrj0NY5tGcE8lN1PvH02A0oe8jFg0GnzteS-sqfZX93BpX8j-oQh_gqqNk_wHZdlDogDbgC1dAGK5XwvhsNf304ZxT44L5Urd1yYdiYwlsNR19-7KUulCXSehwoZYmUABo52JWrhYz6NdnCvXxrAlxqV3itvDWXk2AtKwaa2KOu41vQDRPyh8brZvWR9LnaxBdb_rbs-qpKpxRUnYPILzWZznvBgQAU7PrprJ2lAau49PawNeG1tbdqBWKdKymoLyzAAtbYOAP227zXn39nmqsl9-YDQPtp9A-PYuPJycn8fgoGl9D133YO-iyFu-ijt-Py1iTQl6_dZOzVpBDGPvQjtxjKdZRddsW5HdP2g41Gd9Gt2ps8GurIHfQQBV30Y03Bpp76EujJQc4wbqFezqCrY4c4FZDcKsh0MKthuCNhuB5gbWG3EeT46Px25FTV9RwMtjZVk4GfJOHmZeGiVAy9z2Z0FwlHqG-DJNU22-mE9rBh5oHhEtBmMppqBgXSZpB1y7aKcpC7SEsPKrCkEjppoQq5YZKSj8VMgBKCIORIXrRzGCc1enmddWTi9i6PZAYZju2sz1Ez1rZhU2yslVq1wDRivjAroGOiiF62iATg3HU_3glhSrXq9iDpV7XlhHB32RC5gOJZe4QPbBodp6gCXkAP4b3cG4FdHL2_p1iPjNJ2iknHLYz-1d47kN0c_NdPUI71XKtHgPVrdInRnV_AXmcrm4 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsWRKY74%2C+a+WRKY+transcription+factor%2C+modulates+tolerance+to+phosphate+starvation+in+rice&rft.jtitle=Journal+of+experimental+botany&rft.au=Dai%2C+Xiaoyan&rft.au=Wang%2C+Yuanyuan&rft.au=Zhang%2C+Wen-Hao&rft.date=2016-02-01&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=67&rft.issue=3&rft.spage=947&rft.epage=960&rft_id=info:doi/10.1093%2Fjxb%2Ferv515&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |