Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials
Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of...
Saved in:
Published in | Engineering (Beijing, China) Vol. 4; no. 4; pp. 559 - 566 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2018
Engineering Sciences Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. |
---|---|
AbstractList | Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. In conclusion, the significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. Keywords: Adsorption, Characterization, High-pressure adsorption, Nanoporous materials Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. |
Author | Cychosz, Katie A. Thommes, Matthias |
Author_xml | – sequence: 1 givenname: Katie A. surname: Cychosz fullname: Cychosz, Katie A. – sequence: 2 givenname: Matthias surname: Thommes fullname: Thommes, Matthias email: matthias.thommes@quantachrome.com |
BackLink | https://www.osti.gov/servlets/purl/1460982$$D View this record in Osti.gov |
BookMark | eNp9UU1rGzEU1CGFpkl-QG9L794-bbSyRE_F5AvyRdqexbP0ZMu4kpHUQPLrq7XbSw45PRhm5g0zn9hRTJEY-8yh58Dl101PcdUPwFUPsgfgR-x4AD3OFGj9kZ2VsoGGjhzmoI7Z02NOq0yldCF2dU3d4_qlhJLyroYUu8UaM9pKObziHki-u8eYdimnP6W7wtL9qCnjiro7nGi4Lafsg2-Hzv7dE_br8uLn4np2-3B1s_h-O7NC6zpbagdeksXRoRJzOXqtnRqdGLTwDjiOUnHUfsClt24Aj1pbLVECCitJn5-wm4OvS7gxuxx-Y34xCYPZAymvDOYa7JYMCGutPOfaLblobxWSa304316RkKp5fTl4pVKDKTZUsmubYiRbDRcStBoaaX4g2ZxKyeRN4-1rqRnD1nAw0wRmY9oEZprAgDSt7Kbkb5T_476n-XbQUOvwOVCeYlG05EKeUrkU3lH_BZBIpA4 |
CitedBy_id | crossref_primary_10_1039_D3RA07361K crossref_primary_10_1016_j_mtsust_2021_100089 crossref_primary_10_1002_admi_202001841 crossref_primary_10_1021_acsomega_3c03752 crossref_primary_10_1016_j_fluid_2020_112700 crossref_primary_10_1016_j_jwpe_2023_104430 crossref_primary_10_1039_C8NJ06469E crossref_primary_10_1002_cctc_202100479 crossref_primary_10_1088_2631_6331_abe284 crossref_primary_10_3390_nano12223975 crossref_primary_10_1080_14786419_2022_2118744 crossref_primary_10_1016_j_seppur_2024_126402 crossref_primary_10_1016_j_mtchem_2021_100446 crossref_primary_10_1039_D3DT04261H crossref_primary_10_1002_sstr_202400311 crossref_primary_10_1016_j_cej_2023_141692 crossref_primary_10_1016_j_est_2022_106446 crossref_primary_10_1007_s10854_022_08689_6 crossref_primary_10_1016_j_mssp_2023_107458 crossref_primary_10_1016_j_eti_2023_103444 crossref_primary_10_1002_cctc_202100002 crossref_primary_10_1016_j_jece_2024_112202 crossref_primary_10_1016_j_optmat_2022_112297 crossref_primary_10_1021_acs_energyfuels_0c00746 crossref_primary_10_25046_aj060102 crossref_primary_10_1039_D1TA08021K crossref_primary_10_1016_j_scca_2022_100006 crossref_primary_10_1021_acsami_4c07188 crossref_primary_10_1016_j_reactfunctpolym_2020_104670 crossref_primary_10_1016_j_micromeso_2020_110726 crossref_primary_10_1016_j_mtsust_2025_101076 crossref_primary_10_62638_ZasMat1045 crossref_primary_10_1016_j_scenv_2023_100040 crossref_primary_10_3390_nano11123260 crossref_primary_10_1007_s42823_021_00292_9 crossref_primary_10_1016_j_bcab_2023_102969 crossref_primary_10_1039_D0NJ02135K crossref_primary_10_1021_acsaelm_2c00204 crossref_primary_10_1016_j_est_2023_106858 crossref_primary_10_1039_D4SU00479E crossref_primary_10_1016_j_inoche_2025_114213 crossref_primary_10_1016_j_jcou_2021_101803 crossref_primary_10_2139_ssrn_4191023 crossref_primary_10_1007_s42823_023_00591_3 crossref_primary_10_1088_1361_648X_ab2c94 crossref_primary_10_1016_j_fuel_2023_128856 crossref_primary_10_1039_D4CP03955F crossref_primary_10_1007_s13203_020_00247_7 crossref_primary_10_1007_s10904_020_01523_8 crossref_primary_10_1016_j_jelechem_2022_116680 crossref_primary_10_1007_s11356_022_21290_y crossref_primary_10_1016_j_ensm_2023_102930 crossref_primary_10_1016_j_jclepro_2023_137406 crossref_primary_10_61435_ijred_2024_60054 crossref_primary_10_9767_bcrec_20181 crossref_primary_10_1016_j_cej_2020_126121 crossref_primary_10_1016_j_desal_2021_115445 crossref_primary_10_1039_D0SC03048A crossref_primary_10_1016_j_cej_2025_159301 crossref_primary_10_1016_j_matpr_2022_11_015 crossref_primary_10_1002_adfm_202107922 crossref_primary_10_1007_s11356_021_16206_1 crossref_primary_10_1016_j_electacta_2021_138332 crossref_primary_10_1021_acsomega_1c05841 crossref_primary_10_1021_acsnano_4c02062 crossref_primary_10_1016_j_matchemphys_2025_130477 crossref_primary_10_1016_j_ijhydene_2022_10_055 crossref_primary_10_1016_j_indcrop_2023_117301 crossref_primary_10_1021_acsami_4c00779 crossref_primary_10_1021_acsami_4c00415 crossref_primary_10_1016_j_matchemphys_2025_130405 crossref_primary_10_1016_j_chroma_2023_464385 crossref_primary_10_1002_adma_202005433 crossref_primary_10_1039_D2RA01810A crossref_primary_10_1016_j_micromeso_2025_113592 crossref_primary_10_1016_j_micromeso_2024_113195 crossref_primary_10_1021_acsami_3c08640 crossref_primary_10_1016_j_jssc_2023_123977 crossref_primary_10_1016_j_jwpe_2022_103385 crossref_primary_10_1155_2020_8880906 crossref_primary_10_4491_eer_2021_355 crossref_primary_10_1016_j_inoche_2023_111601 crossref_primary_10_1016_j_fuel_2023_127943 crossref_primary_10_1002_cite_202100069 crossref_primary_10_1021_acs_inorgchem_0c03598 crossref_primary_10_1016_j_jece_2020_104871 crossref_primary_10_1016_j_chemosphere_2023_139945 crossref_primary_10_1002_asia_202300780 crossref_primary_10_1016_j_microc_2024_109918 crossref_primary_10_1016_j_jtice_2021_02_021 crossref_primary_10_1016_j_micromeso_2022_112139 crossref_primary_10_1016_j_desal_2021_115389 crossref_primary_10_1039_D1CY00164G crossref_primary_10_1016_j_colcom_2021_100525 crossref_primary_10_1002_adma_202105398 crossref_primary_10_1080_1536383X_2024_2413371 crossref_primary_10_1155_2022_5664344 crossref_primary_10_1007_s10967_021_08131_x crossref_primary_10_1016_j_ijhydene_2023_03_350 crossref_primary_10_1149_1945_7111_acf6e4 crossref_primary_10_1016_j_jiec_2022_04_003 crossref_primary_10_1039_C9CS00315K crossref_primary_10_3390_polym15143054 crossref_primary_10_1007_s13762_021_03160_1 crossref_primary_10_1002_asia_202001344 crossref_primary_10_1007_s10973_020_09308_4 crossref_primary_10_1016_j_micromeso_2023_112923 crossref_primary_10_1007_s00289_022_04261_8 crossref_primary_10_1039_D0TA10263F crossref_primary_10_1016_j_micromeso_2024_113177 crossref_primary_10_1021_acs_jpclett_3c02740 crossref_primary_10_3390_ijms242115898 crossref_primary_10_3390_ma15238293 crossref_primary_10_3390_catal13020354 crossref_primary_10_1007_s10450_023_00398_8 crossref_primary_10_1007_s11426_022_1325_1 crossref_primary_10_1007_s10570_022_04707_2 crossref_primary_10_1007_s10934_022_01272_8 crossref_primary_10_1021_acs_energyfuels_4c00194 crossref_primary_10_1016_j_jcis_2022_04_068 crossref_primary_10_1039_D3RA02451B crossref_primary_10_1016_j_nanoen_2024_109428 crossref_primary_10_1007_s10934_023_01521_4 crossref_primary_10_1016_j_ces_2024_119969 crossref_primary_10_1016_j_jngse_2021_103886 crossref_primary_10_3390_mining4010004 crossref_primary_10_3390_pharmaceutics14081579 crossref_primary_10_1007_s10450_023_00409_8 crossref_primary_10_1016_j_rechem_2023_101099 crossref_primary_10_1016_j_apradiso_2022_110342 crossref_primary_10_1021_acs_chemmater_2c01567 crossref_primary_10_1016_j_catcom_2023_106795 crossref_primary_10_1016_j_cis_2022_102831 crossref_primary_10_1016_j_saa_2022_122214 crossref_primary_10_1080_1536383X_2019_1593154 crossref_primary_10_1021_acsaem_2c00011 crossref_primary_10_3390_molecules29020361 crossref_primary_10_1021_acsaenm_3c00359 crossref_primary_10_1039_D0NJ04138F crossref_primary_10_1016_j_cej_2020_126862 crossref_primary_10_1016_j_jcis_2019_07_032 crossref_primary_10_1016_j_colsurfa_2021_128102 crossref_primary_10_1016_j_est_2024_110418 crossref_primary_10_3390_en12234565 crossref_primary_10_3390_nano10010070 crossref_primary_10_1039_C9CC00206E crossref_primary_10_1021_acs_chemmater_4c00080 crossref_primary_10_1021_acs_energyfuels_4c00720 crossref_primary_10_1002_ejic_202100231 crossref_primary_10_1016_j_cplett_2024_141162 crossref_primary_10_1016_j_surfcoat_2024_130578 crossref_primary_10_1016_j_apcata_2024_119883 crossref_primary_10_1016_j_jhazmat_2024_135237 crossref_primary_10_1016_j_jcis_2023_10_060 crossref_primary_10_1016_j_jiec_2021_12_036 crossref_primary_10_1007_s11244_023_01834_3 crossref_primary_10_1016_j_diamond_2023_110614 crossref_primary_10_1002_ange_202007064 crossref_primary_10_1007_s10934_022_01413_z crossref_primary_10_1016_j_hazadv_2023_100300 crossref_primary_10_1007_s11144_021_01928_7 crossref_primary_10_1021_acssuschemeng_2c06621 crossref_primary_10_1039_D2NA00177B crossref_primary_10_1007_s00894_020_04581_4 crossref_primary_10_3390_pr12122715 crossref_primary_10_1016_j_jallcom_2020_157129 crossref_primary_10_1039_D4TA04477K crossref_primary_10_3390_catal14090594 crossref_primary_10_1016_j_cej_2025_161362 crossref_primary_10_1002_adfm_202405511 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1016_j_chemosphere_2024_142656 crossref_primary_10_1016_j_molliq_2023_123374 crossref_primary_10_1149_1945_7111_ada645 crossref_primary_10_1088_1361_648X_ac3101 crossref_primary_10_1155_2023_8884113 crossref_primary_10_1002_slct_202201970 crossref_primary_10_2166_wst_2021_340 crossref_primary_10_1007_s10853_022_07212_w crossref_primary_10_1016_j_seppur_2024_128649 crossref_primary_10_1007_s12034_021_02647_4 crossref_primary_10_1016_j_jcou_2024_102945 crossref_primary_10_1039_D2RA08059A crossref_primary_10_1016_j_jaap_2020_104974 crossref_primary_10_2217_nnm_2021_0235 crossref_primary_10_1016_j_optmat_2024_115709 crossref_primary_10_1016_j_jwpe_2024_106602 crossref_primary_10_1016_j_colsurfa_2022_128775 crossref_primary_10_1002_slct_202305119 crossref_primary_10_1016_j_jssc_2022_123409 crossref_primary_10_1039_D3TA04313D crossref_primary_10_1080_1536383X_2023_2194637 crossref_primary_10_3389_fchem_2020_00710 crossref_primary_10_1007_s10553_024_01761_3 crossref_primary_10_1016_j_jhazmat_2021_127090 crossref_primary_10_1016_j_ijhydene_2024_06_372 crossref_primary_10_1016_j_jece_2021_106367 crossref_primary_10_1016_j_est_2023_109152 crossref_primary_10_1021_acsami_3c16849 crossref_primary_10_3390_molecules27092656 crossref_primary_10_1016_j_jece_2024_112014 crossref_primary_10_1016_j_matchemphys_2023_127519 crossref_primary_10_1021_acs_est_4c02015 crossref_primary_10_1016_j_ijhydene_2022_04_029 crossref_primary_10_1038_s41524_023_01080_x crossref_primary_10_1016_j_chemosphere_2022_135467 crossref_primary_10_3390_toxics9080175 crossref_primary_10_1149_2_022816jes crossref_primary_10_1016_j_jallcom_2024_173526 crossref_primary_10_1021_acsomega_3c00313 crossref_primary_10_1016_j_micromeso_2021_111166 crossref_primary_10_1016_j_scenv_2025_100232 crossref_primary_10_1016_j_jece_2022_108438 crossref_primary_10_1016_j_carbon_2023_118347 crossref_primary_10_1016_j_fluid_2022_113546 crossref_primary_10_1002_slct_202001219 crossref_primary_10_1007_s11356_022_22245_z crossref_primary_10_1021_acs_chemmater_4c01366 crossref_primary_10_1002_cssc_202100545 crossref_primary_10_1016_j_chemosphere_2024_142687 crossref_primary_10_1016_j_cattod_2021_11_044 crossref_primary_10_1007_s42823_022_00348_4 crossref_primary_10_1016_j_jece_2024_113215 crossref_primary_10_1016_j_arabjc_2022_104074 crossref_primary_10_1016_j_envres_2022_115151 crossref_primary_10_3390_pharmaceutics14061230 crossref_primary_10_2166_wpt_2023_154 crossref_primary_10_1039_D4DT01457J crossref_primary_10_3390_met10121641 crossref_primary_10_1002_admi_202001266 crossref_primary_10_1007_s11814_020_0692_1 crossref_primary_10_1016_j_scitotenv_2020_140761 crossref_primary_10_1007_s10450_021_00339_3 crossref_primary_10_1016_j_cej_2021_133022 crossref_primary_10_1021_acs_langmuir_3c01415 crossref_primary_10_3390_molecules28104026 crossref_primary_10_1007_s11244_023_01833_4 crossref_primary_10_1016_j_ijhydene_2024_08_032 crossref_primary_10_3390_polym13152409 crossref_primary_10_1016_j_cattod_2021_11_028 crossref_primary_10_1002_chem_202303673 crossref_primary_10_1021_acs_langmuir_0c02775 crossref_primary_10_1007_s11356_023_31565_7 crossref_primary_10_2166_ws_2023_334 crossref_primary_10_1007_s11244_019_01201_1 crossref_primary_10_1016_j_jiec_2023_08_026 crossref_primary_10_1016_j_jtice_2023_105168 crossref_primary_10_1088_1742_6596_2019_1_012094 crossref_primary_10_1016_j_carbon_2019_12_068 crossref_primary_10_1016_j_heliyon_2024_e33789 crossref_primary_10_1002_vjch_202300055 crossref_primary_10_1016_j_cej_2022_137913 crossref_primary_10_1016_j_inoche_2024_112609 crossref_primary_10_1016_j_micromeso_2023_112869 crossref_primary_10_3390_pr12122815 crossref_primary_10_1021_acsnano_2c09593 crossref_primary_10_1021_acsapm_3c00447 crossref_primary_10_1016_j_fuel_2024_131314 crossref_primary_10_1016_j_molstruc_2022_132680 crossref_primary_10_1016_j_cep_2021_108511 crossref_primary_10_1109_JSEN_2023_3242763 crossref_primary_10_3390_catal15020152 crossref_primary_10_1007_s10450_020_00228_1 crossref_primary_10_1039_D4EW00462K crossref_primary_10_1016_j_jwpe_2024_105361 crossref_primary_10_3390_compounds3010020 crossref_primary_10_1039_D2RA04932E crossref_primary_10_3390_nano11040893 crossref_primary_10_1002_app_52719 crossref_primary_10_1038_s41598_024_66457_4 crossref_primary_10_1002_cctc_202300120 crossref_primary_10_1016_j_seppur_2024_130582 crossref_primary_10_1016_j_seppur_2023_123650 crossref_primary_10_2109_jcersj2_21145 crossref_primary_10_1016_j_envres_2023_117399 crossref_primary_10_3390_catal14090625 crossref_primary_10_1016_j_apt_2021_02_002 crossref_primary_10_1016_j_fuel_2023_129350 crossref_primary_10_1002_adma_201901556 crossref_primary_10_1016_j_wasman_2023_10_019 crossref_primary_10_1063_5_0179870 crossref_primary_10_3390_coatings11101211 crossref_primary_10_1007_s10971_024_06363_3 crossref_primary_10_1016_j_molliq_2023_121441 crossref_primary_10_1021_acsomega_2c01016 crossref_primary_10_1016_j_colsurfa_2024_134471 crossref_primary_10_1002_slct_202302150 crossref_primary_10_1021_jacs_0c00270 crossref_primary_10_1088_1361_6528_abde00 crossref_primary_10_9767_bcrec_17_1_12700_135_145 crossref_primary_10_1016_j_jorganchem_2024_123405 crossref_primary_10_1038_s41598_022_25869_w crossref_primary_10_1038_s41598_021_97712_7 crossref_primary_10_1016_j_jwpe_2023_104099 crossref_primary_10_1002_ep_13576 crossref_primary_10_1007_s11144_023_02484_y crossref_primary_10_3390_ma15082915 crossref_primary_10_1016_j_memsci_2023_122229 crossref_primary_10_1016_j_molliq_2023_123890 crossref_primary_10_1039_D2RA00783E crossref_primary_10_1016_j_ceja_2022_100315 crossref_primary_10_1002_ange_202012848 crossref_primary_10_1016_j_cej_2021_129234 crossref_primary_10_1016_j_seppur_2023_125614 crossref_primary_10_1007_s10562_020_03471_x crossref_primary_10_1021_acs_energyfuels_2c01563 crossref_primary_10_1039_D1NJ04793K crossref_primary_10_1016_j_cep_2019_04_013 crossref_primary_10_1016_j_desal_2022_116152 crossref_primary_10_1016_j_jcou_2020_101199 crossref_primary_10_1016_j_cattod_2024_114616 crossref_primary_10_1016_j_mssp_2022_106567 crossref_primary_10_1021_acsomega_4c01572 crossref_primary_10_3390_surfaces3030022 crossref_primary_10_1016_j_mtla_2022_101637 crossref_primary_10_1016_j_jallcom_2023_169585 crossref_primary_10_1016_j_cattod_2023_114392 crossref_primary_10_1016_j_crgsc_2023_100360 crossref_primary_10_1016_j_powtec_2021_04_061 crossref_primary_10_1007_s10853_021_06701_8 crossref_primary_10_3390_jcs6090254 crossref_primary_10_1002_anie_202012848 crossref_primary_10_1016_j_marstruc_2024_103684 crossref_primary_10_1016_j_micromeso_2020_110266 crossref_primary_10_1016_j_mseb_2023_116417 crossref_primary_10_1007_s10904_020_01704_5 crossref_primary_10_3390_nano12091458 crossref_primary_10_1021_acscatal_3c03394 crossref_primary_10_3390_nano10112213 crossref_primary_10_1016_j_jwpe_2024_106013 crossref_primary_10_1016_j_jece_2022_109129 crossref_primary_10_3390_molecules27217635 crossref_primary_10_1007_s00339_022_05369_4 crossref_primary_10_1080_09593330_2021_1994654 crossref_primary_10_3390_catal14110759 crossref_primary_10_1007_s10450_024_00554_8 crossref_primary_10_1016_j_cej_2021_129131 crossref_primary_10_1016_j_jclepro_2022_132178 crossref_primary_10_4491_eer_2024_564 crossref_primary_10_1016_j_ijbiomac_2023_123562 crossref_primary_10_1038_s41467_022_35372_5 crossref_primary_10_1039_D0CS00997K crossref_primary_10_1002_eem2_12133 crossref_primary_10_1002_slct_202004326 crossref_primary_10_1016_j_jece_2022_108383 crossref_primary_10_1016_j_matchemphys_2021_125587 crossref_primary_10_1007_s11356_024_35262_x crossref_primary_10_1016_j_jwpe_2021_102442 crossref_primary_10_1007_s11144_022_02334_3 crossref_primary_10_1016_j_ijhydene_2024_01_298 crossref_primary_10_1021_acsanm_1c03863 crossref_primary_10_1039_D3RA05774G crossref_primary_10_1016_j_heliyon_2024_e26281 crossref_primary_10_1016_j_jece_2021_106303 crossref_primary_10_3389_fenrg_2022_1058412 crossref_primary_10_1007_s11144_021_02029_1 crossref_primary_10_1016_j_chemosphere_2020_128866 crossref_primary_10_3390_en14227671 crossref_primary_10_1016_j_jiec_2019_09_027 crossref_primary_10_1007_s13538_024_01467_1 crossref_primary_10_1002_ange_202409588 crossref_primary_10_3390_ijms22169076 crossref_primary_10_1111_jace_17298 crossref_primary_10_3390_su15065566 crossref_primary_10_1016_j_mtchem_2024_101916 crossref_primary_10_1021_acs_energyfuels_3c03374 crossref_primary_10_1021_acsaem_3c00113 crossref_primary_10_3390_ma13051183 crossref_primary_10_1007_s11244_022_01647_w crossref_primary_10_1039_D4RA02687J crossref_primary_10_1061_JOEEDU_EEENG_7418 crossref_primary_10_1016_j_cej_2023_146891 crossref_primary_10_1007_s10570_022_04481_1 crossref_primary_10_1016_j_cattod_2022_08_009 crossref_primary_10_1080_15226514_2021_1926911 crossref_primary_10_1080_10242422_2022_2068371 crossref_primary_10_1038_s41598_019_52857_4 crossref_primary_10_1002_anie_202409588 crossref_primary_10_1007_s13399_021_01515_9 crossref_primary_10_1021_acsomega_2c02485 crossref_primary_10_1038_s41598_021_93934_x crossref_primary_10_1016_j_mtadv_2024_100510 crossref_primary_10_1016_j_rser_2021_111600 crossref_primary_10_1002_cssc_202000520 crossref_primary_10_1016_j_gsd_2021_100585 crossref_primary_10_1016_j_micromeso_2021_111579 crossref_primary_10_1016_j_microc_2025_112972 crossref_primary_10_1016_j_est_2024_115011 crossref_primary_10_1021_acs_iecr_3c02030 crossref_primary_10_1007_s13399_024_06185_x crossref_primary_10_1007_s13726_023_01210_8 crossref_primary_10_1007_s11051_024_06002_6 crossref_primary_10_3390_inorganics12080217 crossref_primary_10_1002_cctc_202101046 crossref_primary_10_1016_j_seppur_2020_117657 crossref_primary_10_1007_s13369_022_07307_1 crossref_primary_10_1016_j_matchemphys_2022_125779 crossref_primary_10_1016_j_jwpe_2023_103976 crossref_primary_10_1021_acscatal_0c02278 crossref_primary_10_1038_s41598_021_82484_x crossref_primary_10_3390_ma14061382 crossref_primary_10_1016_j_jece_2022_107707 crossref_primary_10_3390_nano11051263 crossref_primary_10_1021_acs_iecr_3c03895 crossref_primary_10_1016_j_fuproc_2020_106670 crossref_primary_10_1016_j_psep_2022_01_025 crossref_primary_10_1039_D1RA05912B crossref_primary_10_1016_j_scp_2021_100385 crossref_primary_10_1016_j_jece_2023_111019 crossref_primary_10_1016_j_ceramint_2024_12_149 crossref_primary_10_1002_adhm_202000057 crossref_primary_10_3390_pr9040707 crossref_primary_10_3390_separations10080422 crossref_primary_10_1016_j_msec_2021_112438 crossref_primary_10_1016_j_jtice_2021_06_059 crossref_primary_10_1149_2162_8777_ad670e crossref_primary_10_1021_acsomega_3c02288 crossref_primary_10_1016_j_est_2022_105166 crossref_primary_10_1039_D3RA01911J crossref_primary_10_1140_epjp_i2019_12612_4 crossref_primary_10_15541_jim20240141 crossref_primary_10_1002_adfm_202401957 crossref_primary_10_3390_textiles4010008 crossref_primary_10_3390_pharmaceutics14010203 crossref_primary_10_1039_D2RA00864E crossref_primary_10_1515_ntrev_2022_0055 crossref_primary_10_1002_sstr_202200031 crossref_primary_10_1007_s11270_024_07023_6 crossref_primary_10_1039_D2CC00278G crossref_primary_10_1016_j_cej_2023_148348 crossref_primary_10_1007_s11356_022_20564_9 crossref_primary_10_1007_s10853_023_08377_8 crossref_primary_10_1016_j_chemosphere_2023_140861 crossref_primary_10_1007_s11270_023_06276_x crossref_primary_10_2217_nnm_2019_0262 crossref_primary_10_31857_S0044457X22602206 crossref_primary_10_1007_s13203_020_00255_7 crossref_primary_10_1021_acs_cgd_4c00367 crossref_primary_10_1155_2023_8899160 crossref_primary_10_1016_j_chemosphere_2023_139636 crossref_primary_10_1021_acs_energyfuels_1c00357 crossref_primary_10_3390_en16207205 crossref_primary_10_1016_j_ijbiomac_2020_07_240 crossref_primary_10_3390_en14102880 crossref_primary_10_1021_jacs_2c05510 crossref_primary_10_1007_s40808_023_01911_2 crossref_primary_10_1016_j_seppur_2022_122005 crossref_primary_10_1002_smll_202403814 crossref_primary_10_1016_j_ceramint_2022_01_121 crossref_primary_10_1016_j_mtbio_2022_100507 crossref_primary_10_1002_smll_202301905 crossref_primary_10_1021_acs_langmuir_4c04557 crossref_primary_10_1007_s12649_024_02484_6 crossref_primary_10_1134_S0036023623600818 crossref_primary_10_3390_molecules28124776 crossref_primary_10_1016_j_bioadv_2022_213269 crossref_primary_10_1016_j_jece_2023_109367 crossref_primary_10_1016_j_reactfunctpolym_2021_105033 crossref_primary_10_3390_gels8070443 crossref_primary_10_1016_j_ceja_2022_100371 crossref_primary_10_1016_j_apsusc_2021_152388 crossref_primary_10_1016_j_ceramint_2022_01_252 crossref_primary_10_1016_j_cej_2023_146034 crossref_primary_10_1016_j_jobab_2023_06_003 crossref_primary_10_1002_slct_202203016 crossref_primary_10_1016_j_ica_2019_119313 crossref_primary_10_3390_catal12101200 crossref_primary_10_1002_er_5806 crossref_primary_10_1515_ijcre_2020_0203 crossref_primary_10_1016_j_eng_2021_11_014 crossref_primary_10_1016_j_cej_2023_141806 crossref_primary_10_1016_j_cej_2024_156234 crossref_primary_10_1007_s00217_021_03860_5 crossref_primary_10_3390_ijms22020577 crossref_primary_10_1007_s10934_021_01058_4 crossref_primary_10_1007_s11696_021_01511_3 crossref_primary_10_1016_j_est_2021_103912 crossref_primary_10_3390_ijms232314999 crossref_primary_10_1007_s10854_021_06361_z crossref_primary_10_1007_s11581_024_05454_z crossref_primary_10_1016_j_heliyon_2023_e15142 crossref_primary_10_1039_D2TA00929C crossref_primary_10_1016_j_cej_2022_136493 crossref_primary_10_1021_acs_iecr_3c03529 crossref_primary_10_1021_acsabm_3c01179 crossref_primary_10_1039_D4NJ04856C crossref_primary_10_1007_s11164_021_04606_4 crossref_primary_10_1016_j_seppur_2024_130248 crossref_primary_10_1007_s11164_024_05366_7 crossref_primary_10_1002_er_7097 crossref_primary_10_22159_ijap_2023_v15s1_47515 crossref_primary_10_1016_j_micromeso_2024_113447 crossref_primary_10_1016_j_colsurfa_2020_125040 crossref_primary_10_1016_j_colsurfa_2024_133728 crossref_primary_10_1016_j_electacta_2023_143075 crossref_primary_10_1016_j_ijhydene_2019_06_092 crossref_primary_10_1016_j_matchemphys_2024_129424 crossref_primary_10_1080_09593330_2022_2138557 crossref_primary_10_1021_acs_iecr_4c02772 crossref_primary_10_1016_j_matlet_2020_128620 crossref_primary_10_1016_j_rechem_2023_101137 crossref_primary_10_1021_jacs_9b08322 crossref_primary_10_1134_S0036023620020084 crossref_primary_10_1007_s10450_021_00342_8 crossref_primary_10_1080_01932691_2019_1674153 crossref_primary_10_1002_mren_202200020 crossref_primary_10_3390_catal13121481 crossref_primary_10_1002_anie_202007064 |
Cites_doi | 10.1021/jz9003087 10.1021/jp9082147 10.1039/C6TA06251B 10.1039/C6CS00391E 10.1016/j.colsurfa.2013.01.007 10.1016/j.carbon.2009.01.050 10.1016/S0167-2991(08)63067-0 10.1007/s10450-014-9606-z 10.1016/j.micromeso.2015.08.005 10.1021/es200782s 10.1021/la051686h 10.1021/acs.chemmater.6b02817 10.1021/la0107594 10.1007/s10450-011-9344-4 10.1002/anie.201102329 10.1016/j.colsurfa.2013.03.025 10.1016/j.micromeso.2009.06.014 10.1021/la00010a090 10.1021/la302362h 10.1021/j100120a035 10.1039/c3ee41444b 10.1016/j.carbon.2011.09.005 10.1002/adfm.201100291 10.1021/la991581c 10.1021/la026140z 10.1021/la801972e 10.1016/S0169-4332(02)00062-4 10.1016/S1387-1811(98)00263-7 10.1021/la800351d 10.1515/pac-2014-1117 10.1016/j.carbon.2011.11.037 10.1021/la00023a051 10.1016/j.micromeso.2012.04.043 10.1002/zaac.18970130127 |
ContentType | Journal Article |
Copyright | 2018 THE AUTHORS |
Copyright_xml | – notice: 2018 THE AUTHORS |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | 6I. AAFTH AAYXX CITATION OIOZB OTOTI DOA |
DOI | 10.1016/j.eng.2018.06.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 566 |
ExternalDocumentID | oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468 1460982 10_1016_j_eng_2018_06_001 S2095809917308299 |
GroupedDBID | 0R~ 0SF 1-T 5VR 6I. 92H 92I 92R 93N AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACHIH ADBBV AEXQZ AFTJW AFUIB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG ROL SSZ TCJ TGT -SC -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CAJEC CITATION Q-- U1G U5M OIOZB OTOTI |
ID | FETCH-LOGICAL-c499t-b9d0f6eca5da84765f99d85d4294fd01a5681a9f2abfcd20fa99c96a60a4c6e93 |
IEDL.DBID | DOA |
ISSN | 2095-8099 |
IngestDate | Wed Aug 27 01:28:42 EDT 2025 Mon Jul 03 03:56:51 EDT 2023 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 02:18:47 EDT 2025 Thu Jul 20 20:16:28 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Characterization Nanoporous materials Adsorption High-pressure adsorption |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-b9d0f6eca5da84765f99d85d4294fd01a5681a9f2abfcd20fa99c96a60a4c6e93 |
Notes | USDOE AC05-76RL01830 |
OpenAccessLink | https://doaj.org/article/04ccc6319db14d0f8aed809df94fe468 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468 osti_scitechconnect_1460982 crossref_citationtrail_10_1016_j_eng_2018_06_001 crossref_primary_10_1016_j_eng_2018_06_001 elsevier_sciencedirect_doi_10_1016_j_eng_2018_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Engineering (Beijing, China) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Engineering Sciences Press Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Engineering Sciences Press – name: Elsevier |
References | Thomson, Gubbins (b0145) 2000; 16 Cychosz, Guillet-Nicolas, Garcia-Martinez, Thommes (b0020) 2017; 46 Neimark (b0130) 1995; 11 Lastoskie, Gubbins, Quirke (b0120) 1993; 97 Nguyen, Cohaut, Bae, Bhatia (b0150) 2008; 24 Monson (b0055) 2008; 24 Hu, Radosz, Cychosz, Thommes (b0175) 2011; 45 Everett (b0085) 1967 Monson (b0060) 2012; 160 Van Bemmelen (b0080) 1897; 13 Jelinek, Kovats (b0110) 1994; 10 Neimark, Coudert, Boutin, Fuchs (b0045) 2010; 1 Wu, Thibault, Wang, Cychosz, Thommes, Li (b0185) 2016; 219 Senkovska, Cychosz, Llewellyn, Thommes, Kaskel (b0030) 2016 Cychosz, Guo, Fan, Cimino, Gor, Tsapatsis (b0090) 2012; 28 Neimark, Lin, Ravikovitch, Thommes (b0165) 2009; 47 Moellmer, Celer, Luebke, Cairns, Staudt, Eddaoudi (b0135) 2010; 129 Thommes, Cychosz, Neimark (b0025) 2012 Gor, Thommes, Cychosz, Neimark (b0170) 2012; 50 Paraknowitsch, Thomas (b0190) 2013; 6 Thommes (b0010) 2007 Thommes, Cychosz (b0015) 2014; 20 Olivier, Conklin, Szombathely (b0125) 1994; 87 Cairns, Eckert, Wojtas, Thommes, Wallacher, Georgiev (b0180) 2016; 28 Jagiello, Olivier (b0160) 2009; 113 Thommes, Smarsly, Groenewolt, Ravikovitch, Neimark (b0075) 2006; 22 Landers, Gor, Neimark (b0050) 2013; 437 Bandosz, Briggs, Gubbins, Hattori, Iiyama, Kaneko (b0140) 2003 Ashourirad, Arab, Islamoglu, Cychosz, Thommes, El-Kaderi (b0200) 2016; 4 Thommes, Köhn, Fröba (b0115) 2002; 196 Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol (b0005) 2015; 87 Ravikovitch, Neimark (b0065) 2002; 18 Ravikovitch, Neimark (b0070) 2002; 18 Cimino, Cychosz, Thommes, Neimark (b0095) 2013; 437 Soares Maia, de Oliveria, Toso, Sapag, López, Azevedo (b0155) 2011; 17 Rouquerol, Rouquerol, Peres, Grillet, Boudellal (b0105) 1979 Lässig, Lincke, Moellmer, Reichenbach, Moeller, Gläser (b0035) 2011; 50 Galarneau, Desplantier, Dutartre, Di Renzo (b0100) 1999; 27 Sevilla, Valle-Vigón, Fuertes (b0195) 2011; 21 Silvestre-Albero, Silvestre-Albero, Rodriguez-Reinoso, Thommes (b0040) 2012; 50 Moellmer (10.1016/j.eng.2018.06.001_b0135) 2010; 129 Thommes (10.1016/j.eng.2018.06.001_b0010) 2007 Sevilla (10.1016/j.eng.2018.06.001_b0195) 2011; 21 Thomson (10.1016/j.eng.2018.06.001_b0145) 2000; 16 Nguyen (10.1016/j.eng.2018.06.001_b0150) 2008; 24 Everett (10.1016/j.eng.2018.06.001_b0085) 1967 Neimark (10.1016/j.eng.2018.06.001_b0045) 2010; 1 Landers (10.1016/j.eng.2018.06.001_b0050) 2013; 437 Galarneau (10.1016/j.eng.2018.06.001_b0100) 1999; 27 Neimark (10.1016/j.eng.2018.06.001_b0165) 2009; 47 Monson (10.1016/j.eng.2018.06.001_b0060) 2012; 160 Ravikovitch (10.1016/j.eng.2018.06.001_b0065) 2002; 18 Rouquerol (10.1016/j.eng.2018.06.001_b0105) 1979 Wu (10.1016/j.eng.2018.06.001_b0185) 2016; 219 Paraknowitsch (10.1016/j.eng.2018.06.001_b0190) 2013; 6 Ashourirad (10.1016/j.eng.2018.06.001_b0200) 2016; 4 Cychosz (10.1016/j.eng.2018.06.001_b0020) 2017; 46 Neimark (10.1016/j.eng.2018.06.001_b0130) 1995; 11 Thommes (10.1016/j.eng.2018.06.001_b0025) 2012 Monson (10.1016/j.eng.2018.06.001_b0055) 2008; 24 Senkovska (10.1016/j.eng.2018.06.001_b0030) 2016 Lastoskie (10.1016/j.eng.2018.06.001_b0120) 1993; 97 Silvestre-Albero (10.1016/j.eng.2018.06.001_b0040) 2012; 50 Olivier (10.1016/j.eng.2018.06.001_b0125) 1994; 87 Cychosz (10.1016/j.eng.2018.06.001_b0090) 2012; 28 Cairns (10.1016/j.eng.2018.06.001_b0180) 2016; 28 Thommes (10.1016/j.eng.2018.06.001_b0075) 2006; 22 Soares Maia (10.1016/j.eng.2018.06.001_b0155) 2011; 17 Gor (10.1016/j.eng.2018.06.001_b0170) 2012; 50 Hu (10.1016/j.eng.2018.06.001_b0175) 2011; 45 Ravikovitch (10.1016/j.eng.2018.06.001_b0070) 2002; 18 Jelinek (10.1016/j.eng.2018.06.001_b0110) 1994; 10 Lässig (10.1016/j.eng.2018.06.001_b0035) 2011; 50 Thommes (10.1016/j.eng.2018.06.001_b0115) 2002; 196 Bandosz (10.1016/j.eng.2018.06.001_b0140) 2003 Thommes (10.1016/j.eng.2018.06.001_b0015) 2014; 20 Jagiello (10.1016/j.eng.2018.06.001_b0160) 2009; 113 Thommes (10.1016/j.eng.2018.06.001_b0005) 2015; 87 Van Bemmelen (10.1016/j.eng.2018.06.001_b0080) 1897; 13 Cimino (10.1016/j.eng.2018.06.001_b0095) 2013; 437 |
References_xml | – volume: 22 start-page: 756 year: 2006 end-page: 764 ident: b0075 article-title: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas publication-title: Langmuir – volume: 97 start-page: 4786 year: 1993 end-page: 4796 ident: b0120 article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach publication-title: J Phys Chem – volume: 24 start-page: 7912 year: 2008 end-page: 7922 ident: b0150 article-title: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation publication-title: Langmuir – volume: 17 start-page: 853 year: 2011 end-page: 861 ident: b0155 article-title: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures publication-title: Adsorption – volume: 113 start-page: 19382 year: 2009 end-page: 19385 ident: b0160 article-title: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis publication-title: J Phys Chem C – start-page: 495 year: 2007 end-page: 523 ident: b0010 article-title: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption publication-title: Introduction to zeolite science and practice – volume: 50 start-page: 3128 year: 2012 end-page: 3133 ident: b0040 article-title: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry publication-title: Carbon – volume: 437 start-page: 76 year: 2013 end-page: 89 ident: b0095 article-title: Experimental and theoretical studies of scanning adsorption-desorption isotherms publication-title: Colloids Surf A Physicochem Eng Asp – volume: 28 start-page: 7353 year: 2016 end-page: 7361 ident: b0180 article-title: Gaining insights on the H publication-title: Chem Mater – volume: 21 start-page: 2781 year: 2011 end-page: 2787 ident: b0195 article-title: N-doped polypyrrole-based porous carbons for CO publication-title: Adv Funct Mater – volume: 10 start-page: 4225 year: 1994 end-page: 4231 ident: b0110 article-title: True surface area from nitrogen adsorption experiments publication-title: Langmuir – volume: 219 start-page: 186 year: 2016 end-page: 189 ident: b0185 article-title: Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF publication-title: Microporous Mesoporous Mater – volume: 4 start-page: 14693 year: 2016 end-page: 14702 ident: b0200 article-title: A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO publication-title: J Mater Chem A Mater Energy Sustain – volume: 11 start-page: 4183 year: 1995 end-page: 4184 ident: b0130 article-title: The method of indeterminate Lagrange multipliers in nonlocal density functional theory publication-title: Langmuir – volume: 16 start-page: 5761 year: 2000 end-page: 5773 ident: b0145 article-title: Modeling structural morphology of microporous carbons by reverse monte carlo publication-title: Langmuir – volume: 87 start-page: 1051 year: 2015 end-page: 1069 ident: b0005 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) publication-title: Pure Appl Chem – volume: 13 start-page: 233 year: 1897 end-page: 356 ident: b0080 article-title: Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure publication-title: Anorg Allg Chem – volume: 50 start-page: 1583 year: 2012 end-page: 1590 ident: b0170 article-title: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption publication-title: Carbon – volume: 6 start-page: 2839 year: 2013 end-page: 2855 ident: b0190 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications publication-title: Energy Environ Sci – start-page: 107 year: 1979 end-page: 116 ident: b0105 article-title: Calorimetric study of nitrogen and argon adsorption on porous silicas publication-title: Characterization of porous solids – volume: 87 start-page: 81 year: 1994 end-page: 89 ident: b0125 article-title: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results publication-title: Stud Surf Sci Catal – start-page: 41 year: 2003 end-page: 228 ident: b0140 article-title: Molecular models of porous carbons publication-title: Chemistry & physics of carbon – volume: 47 start-page: 1617 year: 2009 end-page: 1628 ident: b0165 article-title: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons publication-title: Carbon – volume: 50 start-page: 10344 year: 2011 end-page: 10348 ident: b0035 article-title: A microporous copper metal-organic framework with high H publication-title: Angew Chem Int Ed – volume: 18 start-page: 1550 year: 2002 end-page: 1560 ident: b0065 article-title: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures publication-title: Langmuir – year: 1967 ident: b0085 article-title: The solid-gas interface – volume: 27 start-page: 297 year: 1999 end-page: 308 ident: b0100 article-title: Micelle-templated silicates as a test bed for methods of mesopore size evaluation publication-title: Microporous Mesoporous Mater – start-page: 107 year: 2012 end-page: 145 ident: b0025 article-title: Advanced physical adsorption characterization of nanoporous carbons publication-title: Novel carbon adsorbents – volume: 1 start-page: 445 year: 2010 end-page: 449 ident: b0045 article-title: Stress-based model for the breathing of metal-organic frameworks publication-title: J Phys Chem Lett – volume: 196 start-page: 239 year: 2002 end-page: 249 ident: b0115 article-title: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point publication-title: Appl Surf Sci – start-page: 575 year: 2016 end-page: 605 ident: b0030 article-title: Adsorption methodology publication-title: The chemistry of metal-organic frameworks: synthesis, characterization, and applications – volume: 160 start-page: 47 year: 2012 end-page: 66 ident: b0060 article-title: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory publication-title: Microporous Mesoporous Mater – volume: 28 start-page: 12647 year: 2012 end-page: 12654 ident: b0090 article-title: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption publication-title: Langmuir – volume: 45 start-page: 7068 year: 2011 end-page: 7074 ident: b0175 article-title: CO publication-title: Environ Sci Technol – volume: 46 start-page: 389 year: 2017 end-page: 414 ident: b0020 article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials publication-title: Chem Soc Rev – volume: 20 start-page: 233 year: 2014 end-page: 250 ident: b0015 article-title: Physical adsorption characterization of nanoporous materials: progress and challenges publication-title: Adsorption – volume: 18 start-page: 9830 year: 2002 end-page: 9837 ident: b0070 article-title: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation publication-title: Langmuir – volume: 437 start-page: 3 year: 2013 end-page: 32 ident: b0050 article-title: Density functional theory methods for characterization of porous materials publication-title: Colloids Surf A Physicochem Eng Asp – volume: 24 start-page: 12295 year: 2008 end-page: 12302 ident: b0055 article-title: Contact angles, pore condensation, and hysteresis: insights from a simple molecular model publication-title: Langmuir – volume: 129 start-page: 345 year: 2010 end-page: 353 ident: b0135 article-title: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF publication-title: Microporous Mesoporous Mater – volume: 1 start-page: 445 issue: 1 year: 2010 ident: 10.1016/j.eng.2018.06.001_b0045 article-title: Stress-based model for the breathing of metal-organic frameworks publication-title: J Phys Chem Lett doi: 10.1021/jz9003087 – volume: 113 start-page: 19382 issue: 45 year: 2009 ident: 10.1016/j.eng.2018.06.001_b0160 article-title: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis publication-title: J Phys Chem C doi: 10.1021/jp9082147 – volume: 4 start-page: 14693 issue: 38 year: 2016 ident: 10.1016/j.eng.2018.06.001_b0200 article-title: A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents publication-title: J Mater Chem A Mater Energy Sustain doi: 10.1039/C6TA06251B – volume: 46 start-page: 389 issue: 2 year: 2017 ident: 10.1016/j.eng.2018.06.001_b0020 article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials publication-title: Chem Soc Rev doi: 10.1039/C6CS00391E – volume: 437 start-page: 3 year: 2013 ident: 10.1016/j.eng.2018.06.001_b0050 article-title: Density functional theory methods for characterization of porous materials publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2013.01.007 – volume: 47 start-page: 1617 issue: 7 year: 2009 ident: 10.1016/j.eng.2018.06.001_b0165 article-title: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons publication-title: Carbon doi: 10.1016/j.carbon.2009.01.050 – volume: 87 start-page: 81 year: 1994 ident: 10.1016/j.eng.2018.06.001_b0125 article-title: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results publication-title: Stud Surf Sci Catal doi: 10.1016/S0167-2991(08)63067-0 – volume: 20 start-page: 233 issue: 2–3 year: 2014 ident: 10.1016/j.eng.2018.06.001_b0015 article-title: Physical adsorption characterization of nanoporous materials: progress and challenges publication-title: Adsorption doi: 10.1007/s10450-014-9606-z – volume: 219 start-page: 186 year: 2016 ident: 10.1016/j.eng.2018.06.001_b0185 article-title: Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2015.08.005 – start-page: 575 year: 2016 ident: 10.1016/j.eng.2018.06.001_b0030 article-title: Adsorption methodology – volume: 45 start-page: 7068 issue: 16 year: 2011 ident: 10.1016/j.eng.2018.06.001_b0175 article-title: CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT) publication-title: Environ Sci Technol doi: 10.1021/es200782s – volume: 22 start-page: 756 issue: 2 year: 2006 ident: 10.1016/j.eng.2018.06.001_b0075 article-title: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas publication-title: Langmuir doi: 10.1021/la051686h – volume: 28 start-page: 7353 issue: 20 year: 2016 ident: 10.1016/j.eng.2018.06.001_b0180 article-title: Gaining insights on the H2-sorbent interactions: robust soc-MOF platform as a case study publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b02817 – start-page: 495 year: 2007 ident: 10.1016/j.eng.2018.06.001_b0010 article-title: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption – volume: 18 start-page: 1550 issue: 5 year: 2002 ident: 10.1016/j.eng.2018.06.001_b0065 article-title: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures publication-title: Langmuir doi: 10.1021/la0107594 – volume: 17 start-page: 853 issue: 5 year: 2011 ident: 10.1016/j.eng.2018.06.001_b0155 article-title: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures publication-title: Adsorption doi: 10.1007/s10450-011-9344-4 – volume: 50 start-page: 10344 issue: 44 year: 2011 ident: 10.1016/j.eng.2018.06.001_b0035 article-title: A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure publication-title: Angew Chem Int Ed doi: 10.1002/anie.201102329 – volume: 437 start-page: 76 year: 2013 ident: 10.1016/j.eng.2018.06.001_b0095 article-title: Experimental and theoretical studies of scanning adsorption-desorption isotherms publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2013.03.025 – volume: 129 start-page: 345 issue: 3 year: 2010 ident: 10.1016/j.eng.2018.06.001_b0135 article-title: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2009.06.014 – volume: 11 start-page: 4183 issue: 10 year: 1995 ident: 10.1016/j.eng.2018.06.001_b0130 article-title: The method of indeterminate Lagrange multipliers in nonlocal density functional theory publication-title: Langmuir doi: 10.1021/la00010a090 – volume: 28 start-page: 12647 issue: 34 year: 2012 ident: 10.1016/j.eng.2018.06.001_b0090 article-title: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption publication-title: Langmuir doi: 10.1021/la302362h – volume: 97 start-page: 4786 issue: 18 year: 1993 ident: 10.1016/j.eng.2018.06.001_b0120 article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach publication-title: J Phys Chem doi: 10.1021/j100120a035 – volume: 6 start-page: 2839 issue: 10 year: 2013 ident: 10.1016/j.eng.2018.06.001_b0190 article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications publication-title: Energy Environ Sci doi: 10.1039/c3ee41444b – volume: 50 start-page: 3128 issue: 9 year: 2012 ident: 10.1016/j.eng.2018.06.001_b0040 article-title: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry publication-title: Carbon doi: 10.1016/j.carbon.2011.09.005 – volume: 21 start-page: 2781 issue: 14 year: 2011 ident: 10.1016/j.eng.2018.06.001_b0195 article-title: N-doped polypyrrole-based porous carbons for CO2 capture publication-title: Adv Funct Mater doi: 10.1002/adfm.201100291 – volume: 16 start-page: 5761 issue: 13 year: 2000 ident: 10.1016/j.eng.2018.06.001_b0145 article-title: Modeling structural morphology of microporous carbons by reverse monte carlo publication-title: Langmuir doi: 10.1021/la991581c – volume: 18 start-page: 9830 issue: 25 year: 2002 ident: 10.1016/j.eng.2018.06.001_b0070 article-title: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation publication-title: Langmuir doi: 10.1021/la026140z – volume: 24 start-page: 12295 issue: 21 year: 2008 ident: 10.1016/j.eng.2018.06.001_b0055 article-title: Contact angles, pore condensation, and hysteresis: insights from a simple molecular model publication-title: Langmuir doi: 10.1021/la801972e – volume: 196 start-page: 239 issue: 1–4 year: 2002 ident: 10.1016/j.eng.2018.06.001_b0115 article-title: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(02)00062-4 – start-page: 107 year: 2012 ident: 10.1016/j.eng.2018.06.001_b0025 article-title: Advanced physical adsorption characterization of nanoporous carbons – start-page: 107 year: 1979 ident: 10.1016/j.eng.2018.06.001_b0105 article-title: Calorimetric study of nitrogen and argon adsorption on porous silicas – volume: 27 start-page: 297 issue: 2–3 year: 1999 ident: 10.1016/j.eng.2018.06.001_b0100 article-title: Micelle-templated silicates as a test bed for methods of mesopore size evaluation publication-title: Microporous Mesoporous Mater doi: 10.1016/S1387-1811(98)00263-7 – volume: 24 start-page: 7912 issue: 15 year: 2008 ident: 10.1016/j.eng.2018.06.001_b0150 article-title: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation publication-title: Langmuir doi: 10.1021/la800351d – volume: 87 start-page: 1051 issue: 9–10 year: 2015 ident: 10.1016/j.eng.2018.06.001_b0005 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) publication-title: Pure Appl Chem doi: 10.1515/pac-2014-1117 – volume: 50 start-page: 1583 issue: 4 year: 2012 ident: 10.1016/j.eng.2018.06.001_b0170 article-title: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption publication-title: Carbon doi: 10.1016/j.carbon.2011.11.037 – volume: 10 start-page: 4225 issue: 11 year: 1994 ident: 10.1016/j.eng.2018.06.001_b0110 article-title: True surface area from nitrogen adsorption experiments publication-title: Langmuir doi: 10.1021/la00023a051 – start-page: 41 year: 2003 ident: 10.1016/j.eng.2018.06.001_b0140 article-title: Molecular models of porous carbons – volume: 160 start-page: 47 year: 2012 ident: 10.1016/j.eng.2018.06.001_b0060 article-title: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2012.04.043 – year: 1967 ident: 10.1016/j.eng.2018.06.001_b0085 – volume: 13 start-page: 233 issue: 1 year: 1897 ident: 10.1016/j.eng.2018.06.001_b0080 article-title: Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure publication-title: Anorg Allg Chem doi: 10.1002/zaac.18970130127 |
SSID | ssj0001510708 |
Score | 2.5863855 |
SecondaryResourceType | review_article |
Snippet | Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such... |
SourceID | doaj osti crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 559 |
SubjectTerms | Adsorption Characterization ENGINEERING High-pressure adsorption Nanoporous materials |
Title | Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials |
URI | https://dx.doi.org/10.1016/j.eng.2018.06.001 https://www.osti.gov/servlets/purl/1460982 https://doaj.org/article/04ccc6319db14d0f8aed809df94fe468 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET5xTycGTUEzbJG2OOpxDmIg62K2k-RgTaWWr_78vSTvmZV68lqQJLy_vg_ze7yF0DTaRxXBtIiMdqTbVKirBQEaaJEYynXLpH9onz3w8pU8zNtto9eUwYYEeOAjullClFAdF0WVMNbG5NDonQltBraHcl_mCz9tIpkJ9MKQ1oR0dxBBghoXonjQ9uMtUcwfrCtydbUOYzil57v5fvqlXw3XbcDujA7Tfxov4LuzzEO2Y6gjtbbAIHqPXF4exAouFFxWGeA57VOeqXnprgIdrSuZQcYlri8Gm1hB4Q9aPH-UKv0HiDXYFT2QTFPIETUcP78Nx1LZKiBSkLE1UChANNwrEK8HfcGaF0DnT4G2o1SSWjmdMCpvI0iqdECuFUIJLTiRV3Ij0FPWqujJnCGdWC8ZYlpFMU5YqaUstDc0Fo7Fmqe0j0smqUC2PuGtn8Vl0gLEPuHHzwom3CKC5PrpZT_kKJBrbBt-7A1gPdPzX_gNoRdFqRfGXVvQR7Y6vaEOJECLArxbb1h64o3ZTHIWuclgjmAPehIg8Of-PnQ3QrlswYAgvUK9ZfptLiGua8sqr8A8sVfVM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+the+Physisorption+Characterization+of+Nanoporous+Gas+Storage+Materials&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Katie+A.+Cychosz&rft.au=Matthias+Thommes&rft.date=2018-08-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=4&rft.issue=4&rft.spage=559&rft.epage=566&rft_id=info:doi/10.1016%2Fj.eng.2018.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8099&client=summon |