Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials

Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of...

Full description

Saved in:
Bibliographic Details
Published inEngineering (Beijing, China) Vol. 4; no. 4; pp. 559 - 566
Main Authors Cychosz, Katie A., Thommes, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2018
Engineering Sciences Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed.
AbstractList Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. In conclusion, the significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed.
Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed. Keywords: Adsorption, Characterization, High-pressure adsorption, Nanoporous materials
Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed.
Author Cychosz, Katie A.
Thommes, Matthias
Author_xml – sequence: 1
  givenname: Katie A.
  surname: Cychosz
  fullname: Cychosz, Katie A.
– sequence: 2
  givenname: Matthias
  surname: Thommes
  fullname: Thommes, Matthias
  email: matthias.thommes@quantachrome.com
BackLink https://www.osti.gov/servlets/purl/1460982$$D View this record in Osti.gov
BookMark eNp9UU1rGzEU1CGFpkl-QG9L794-bbSyRE_F5AvyRdqexbP0ZMu4kpHUQPLrq7XbSw45PRhm5g0zn9hRTJEY-8yh58Dl101PcdUPwFUPsgfgR-x4AD3OFGj9kZ2VsoGGjhzmoI7Z02NOq0yldCF2dU3d4_qlhJLyroYUu8UaM9pKObziHki-u8eYdimnP6W7wtL9qCnjiro7nGi4Lafsg2-Hzv7dE_br8uLn4np2-3B1s_h-O7NC6zpbagdeksXRoRJzOXqtnRqdGLTwDjiOUnHUfsClt24Aj1pbLVECCitJn5-wm4OvS7gxuxx-Y34xCYPZAymvDOYa7JYMCGutPOfaLblobxWSa304316RkKp5fTl4pVKDKTZUsmubYiRbDRcStBoaaX4g2ZxKyeRN4-1rqRnD1nAw0wRmY9oEZprAgDSt7Kbkb5T_476n-XbQUOvwOVCeYlG05EKeUrkU3lH_BZBIpA4
CitedBy_id crossref_primary_10_1039_D3RA07361K
crossref_primary_10_1016_j_mtsust_2021_100089
crossref_primary_10_1002_admi_202001841
crossref_primary_10_1021_acsomega_3c03752
crossref_primary_10_1016_j_fluid_2020_112700
crossref_primary_10_1016_j_jwpe_2023_104430
crossref_primary_10_1039_C8NJ06469E
crossref_primary_10_1002_cctc_202100479
crossref_primary_10_1088_2631_6331_abe284
crossref_primary_10_3390_nano12223975
crossref_primary_10_1080_14786419_2022_2118744
crossref_primary_10_1016_j_seppur_2024_126402
crossref_primary_10_1016_j_mtchem_2021_100446
crossref_primary_10_1039_D3DT04261H
crossref_primary_10_1002_sstr_202400311
crossref_primary_10_1016_j_cej_2023_141692
crossref_primary_10_1016_j_est_2022_106446
crossref_primary_10_1007_s10854_022_08689_6
crossref_primary_10_1016_j_mssp_2023_107458
crossref_primary_10_1016_j_eti_2023_103444
crossref_primary_10_1002_cctc_202100002
crossref_primary_10_1016_j_jece_2024_112202
crossref_primary_10_1016_j_optmat_2022_112297
crossref_primary_10_1021_acs_energyfuels_0c00746
crossref_primary_10_25046_aj060102
crossref_primary_10_1039_D1TA08021K
crossref_primary_10_1016_j_scca_2022_100006
crossref_primary_10_1021_acsami_4c07188
crossref_primary_10_1016_j_reactfunctpolym_2020_104670
crossref_primary_10_1016_j_micromeso_2020_110726
crossref_primary_10_1016_j_mtsust_2025_101076
crossref_primary_10_62638_ZasMat1045
crossref_primary_10_1016_j_scenv_2023_100040
crossref_primary_10_3390_nano11123260
crossref_primary_10_1007_s42823_021_00292_9
crossref_primary_10_1016_j_bcab_2023_102969
crossref_primary_10_1039_D0NJ02135K
crossref_primary_10_1021_acsaelm_2c00204
crossref_primary_10_1016_j_est_2023_106858
crossref_primary_10_1039_D4SU00479E
crossref_primary_10_1016_j_inoche_2025_114213
crossref_primary_10_1016_j_jcou_2021_101803
crossref_primary_10_2139_ssrn_4191023
crossref_primary_10_1007_s42823_023_00591_3
crossref_primary_10_1088_1361_648X_ab2c94
crossref_primary_10_1016_j_fuel_2023_128856
crossref_primary_10_1039_D4CP03955F
crossref_primary_10_1007_s13203_020_00247_7
crossref_primary_10_1007_s10904_020_01523_8
crossref_primary_10_1016_j_jelechem_2022_116680
crossref_primary_10_1007_s11356_022_21290_y
crossref_primary_10_1016_j_ensm_2023_102930
crossref_primary_10_1016_j_jclepro_2023_137406
crossref_primary_10_61435_ijred_2024_60054
crossref_primary_10_9767_bcrec_20181
crossref_primary_10_1016_j_cej_2020_126121
crossref_primary_10_1016_j_desal_2021_115445
crossref_primary_10_1039_D0SC03048A
crossref_primary_10_1016_j_cej_2025_159301
crossref_primary_10_1016_j_matpr_2022_11_015
crossref_primary_10_1002_adfm_202107922
crossref_primary_10_1007_s11356_021_16206_1
crossref_primary_10_1016_j_electacta_2021_138332
crossref_primary_10_1021_acsomega_1c05841
crossref_primary_10_1021_acsnano_4c02062
crossref_primary_10_1016_j_matchemphys_2025_130477
crossref_primary_10_1016_j_ijhydene_2022_10_055
crossref_primary_10_1016_j_indcrop_2023_117301
crossref_primary_10_1021_acsami_4c00779
crossref_primary_10_1021_acsami_4c00415
crossref_primary_10_1016_j_matchemphys_2025_130405
crossref_primary_10_1016_j_chroma_2023_464385
crossref_primary_10_1002_adma_202005433
crossref_primary_10_1039_D2RA01810A
crossref_primary_10_1016_j_micromeso_2025_113592
crossref_primary_10_1016_j_micromeso_2024_113195
crossref_primary_10_1021_acsami_3c08640
crossref_primary_10_1016_j_jssc_2023_123977
crossref_primary_10_1016_j_jwpe_2022_103385
crossref_primary_10_1155_2020_8880906
crossref_primary_10_4491_eer_2021_355
crossref_primary_10_1016_j_inoche_2023_111601
crossref_primary_10_1016_j_fuel_2023_127943
crossref_primary_10_1002_cite_202100069
crossref_primary_10_1021_acs_inorgchem_0c03598
crossref_primary_10_1016_j_jece_2020_104871
crossref_primary_10_1016_j_chemosphere_2023_139945
crossref_primary_10_1002_asia_202300780
crossref_primary_10_1016_j_microc_2024_109918
crossref_primary_10_1016_j_jtice_2021_02_021
crossref_primary_10_1016_j_micromeso_2022_112139
crossref_primary_10_1016_j_desal_2021_115389
crossref_primary_10_1039_D1CY00164G
crossref_primary_10_1016_j_colcom_2021_100525
crossref_primary_10_1002_adma_202105398
crossref_primary_10_1080_1536383X_2024_2413371
crossref_primary_10_1155_2022_5664344
crossref_primary_10_1007_s10967_021_08131_x
crossref_primary_10_1016_j_ijhydene_2023_03_350
crossref_primary_10_1149_1945_7111_acf6e4
crossref_primary_10_1016_j_jiec_2022_04_003
crossref_primary_10_1039_C9CS00315K
crossref_primary_10_3390_polym15143054
crossref_primary_10_1007_s13762_021_03160_1
crossref_primary_10_1002_asia_202001344
crossref_primary_10_1007_s10973_020_09308_4
crossref_primary_10_1016_j_micromeso_2023_112923
crossref_primary_10_1007_s00289_022_04261_8
crossref_primary_10_1039_D0TA10263F
crossref_primary_10_1016_j_micromeso_2024_113177
crossref_primary_10_1021_acs_jpclett_3c02740
crossref_primary_10_3390_ijms242115898
crossref_primary_10_3390_ma15238293
crossref_primary_10_3390_catal13020354
crossref_primary_10_1007_s10450_023_00398_8
crossref_primary_10_1007_s11426_022_1325_1
crossref_primary_10_1007_s10570_022_04707_2
crossref_primary_10_1007_s10934_022_01272_8
crossref_primary_10_1021_acs_energyfuels_4c00194
crossref_primary_10_1016_j_jcis_2022_04_068
crossref_primary_10_1039_D3RA02451B
crossref_primary_10_1016_j_nanoen_2024_109428
crossref_primary_10_1007_s10934_023_01521_4
crossref_primary_10_1016_j_ces_2024_119969
crossref_primary_10_1016_j_jngse_2021_103886
crossref_primary_10_3390_mining4010004
crossref_primary_10_3390_pharmaceutics14081579
crossref_primary_10_1007_s10450_023_00409_8
crossref_primary_10_1016_j_rechem_2023_101099
crossref_primary_10_1016_j_apradiso_2022_110342
crossref_primary_10_1021_acs_chemmater_2c01567
crossref_primary_10_1016_j_catcom_2023_106795
crossref_primary_10_1016_j_cis_2022_102831
crossref_primary_10_1016_j_saa_2022_122214
crossref_primary_10_1080_1536383X_2019_1593154
crossref_primary_10_1021_acsaem_2c00011
crossref_primary_10_3390_molecules29020361
crossref_primary_10_1021_acsaenm_3c00359
crossref_primary_10_1039_D0NJ04138F
crossref_primary_10_1016_j_cej_2020_126862
crossref_primary_10_1016_j_jcis_2019_07_032
crossref_primary_10_1016_j_colsurfa_2021_128102
crossref_primary_10_1016_j_est_2024_110418
crossref_primary_10_3390_en12234565
crossref_primary_10_3390_nano10010070
crossref_primary_10_1039_C9CC00206E
crossref_primary_10_1021_acs_chemmater_4c00080
crossref_primary_10_1021_acs_energyfuels_4c00720
crossref_primary_10_1002_ejic_202100231
crossref_primary_10_1016_j_cplett_2024_141162
crossref_primary_10_1016_j_surfcoat_2024_130578
crossref_primary_10_1016_j_apcata_2024_119883
crossref_primary_10_1016_j_jhazmat_2024_135237
crossref_primary_10_1016_j_jcis_2023_10_060
crossref_primary_10_1016_j_jiec_2021_12_036
crossref_primary_10_1007_s11244_023_01834_3
crossref_primary_10_1016_j_diamond_2023_110614
crossref_primary_10_1002_ange_202007064
crossref_primary_10_1007_s10934_022_01413_z
crossref_primary_10_1016_j_hazadv_2023_100300
crossref_primary_10_1007_s11144_021_01928_7
crossref_primary_10_1021_acssuschemeng_2c06621
crossref_primary_10_1039_D2NA00177B
crossref_primary_10_1007_s00894_020_04581_4
crossref_primary_10_3390_pr12122715
crossref_primary_10_1016_j_jallcom_2020_157129
crossref_primary_10_1039_D4TA04477K
crossref_primary_10_3390_catal14090594
crossref_primary_10_1016_j_cej_2025_161362
crossref_primary_10_1002_adfm_202405511
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1016_j_chemosphere_2024_142656
crossref_primary_10_1016_j_molliq_2023_123374
crossref_primary_10_1149_1945_7111_ada645
crossref_primary_10_1088_1361_648X_ac3101
crossref_primary_10_1155_2023_8884113
crossref_primary_10_1002_slct_202201970
crossref_primary_10_2166_wst_2021_340
crossref_primary_10_1007_s10853_022_07212_w
crossref_primary_10_1016_j_seppur_2024_128649
crossref_primary_10_1007_s12034_021_02647_4
crossref_primary_10_1016_j_jcou_2024_102945
crossref_primary_10_1039_D2RA08059A
crossref_primary_10_1016_j_jaap_2020_104974
crossref_primary_10_2217_nnm_2021_0235
crossref_primary_10_1016_j_optmat_2024_115709
crossref_primary_10_1016_j_jwpe_2024_106602
crossref_primary_10_1016_j_colsurfa_2022_128775
crossref_primary_10_1002_slct_202305119
crossref_primary_10_1016_j_jssc_2022_123409
crossref_primary_10_1039_D3TA04313D
crossref_primary_10_1080_1536383X_2023_2194637
crossref_primary_10_3389_fchem_2020_00710
crossref_primary_10_1007_s10553_024_01761_3
crossref_primary_10_1016_j_jhazmat_2021_127090
crossref_primary_10_1016_j_ijhydene_2024_06_372
crossref_primary_10_1016_j_jece_2021_106367
crossref_primary_10_1016_j_est_2023_109152
crossref_primary_10_1021_acsami_3c16849
crossref_primary_10_3390_molecules27092656
crossref_primary_10_1016_j_jece_2024_112014
crossref_primary_10_1016_j_matchemphys_2023_127519
crossref_primary_10_1021_acs_est_4c02015
crossref_primary_10_1016_j_ijhydene_2022_04_029
crossref_primary_10_1038_s41524_023_01080_x
crossref_primary_10_1016_j_chemosphere_2022_135467
crossref_primary_10_3390_toxics9080175
crossref_primary_10_1149_2_022816jes
crossref_primary_10_1016_j_jallcom_2024_173526
crossref_primary_10_1021_acsomega_3c00313
crossref_primary_10_1016_j_micromeso_2021_111166
crossref_primary_10_1016_j_scenv_2025_100232
crossref_primary_10_1016_j_jece_2022_108438
crossref_primary_10_1016_j_carbon_2023_118347
crossref_primary_10_1016_j_fluid_2022_113546
crossref_primary_10_1002_slct_202001219
crossref_primary_10_1007_s11356_022_22245_z
crossref_primary_10_1021_acs_chemmater_4c01366
crossref_primary_10_1002_cssc_202100545
crossref_primary_10_1016_j_chemosphere_2024_142687
crossref_primary_10_1016_j_cattod_2021_11_044
crossref_primary_10_1007_s42823_022_00348_4
crossref_primary_10_1016_j_jece_2024_113215
crossref_primary_10_1016_j_arabjc_2022_104074
crossref_primary_10_1016_j_envres_2022_115151
crossref_primary_10_3390_pharmaceutics14061230
crossref_primary_10_2166_wpt_2023_154
crossref_primary_10_1039_D4DT01457J
crossref_primary_10_3390_met10121641
crossref_primary_10_1002_admi_202001266
crossref_primary_10_1007_s11814_020_0692_1
crossref_primary_10_1016_j_scitotenv_2020_140761
crossref_primary_10_1007_s10450_021_00339_3
crossref_primary_10_1016_j_cej_2021_133022
crossref_primary_10_1021_acs_langmuir_3c01415
crossref_primary_10_3390_molecules28104026
crossref_primary_10_1007_s11244_023_01833_4
crossref_primary_10_1016_j_ijhydene_2024_08_032
crossref_primary_10_3390_polym13152409
crossref_primary_10_1016_j_cattod_2021_11_028
crossref_primary_10_1002_chem_202303673
crossref_primary_10_1021_acs_langmuir_0c02775
crossref_primary_10_1007_s11356_023_31565_7
crossref_primary_10_2166_ws_2023_334
crossref_primary_10_1007_s11244_019_01201_1
crossref_primary_10_1016_j_jiec_2023_08_026
crossref_primary_10_1016_j_jtice_2023_105168
crossref_primary_10_1088_1742_6596_2019_1_012094
crossref_primary_10_1016_j_carbon_2019_12_068
crossref_primary_10_1016_j_heliyon_2024_e33789
crossref_primary_10_1002_vjch_202300055
crossref_primary_10_1016_j_cej_2022_137913
crossref_primary_10_1016_j_inoche_2024_112609
crossref_primary_10_1016_j_micromeso_2023_112869
crossref_primary_10_3390_pr12122815
crossref_primary_10_1021_acsnano_2c09593
crossref_primary_10_1021_acsapm_3c00447
crossref_primary_10_1016_j_fuel_2024_131314
crossref_primary_10_1016_j_molstruc_2022_132680
crossref_primary_10_1016_j_cep_2021_108511
crossref_primary_10_1109_JSEN_2023_3242763
crossref_primary_10_3390_catal15020152
crossref_primary_10_1007_s10450_020_00228_1
crossref_primary_10_1039_D4EW00462K
crossref_primary_10_1016_j_jwpe_2024_105361
crossref_primary_10_3390_compounds3010020
crossref_primary_10_1039_D2RA04932E
crossref_primary_10_3390_nano11040893
crossref_primary_10_1002_app_52719
crossref_primary_10_1038_s41598_024_66457_4
crossref_primary_10_1002_cctc_202300120
crossref_primary_10_1016_j_seppur_2024_130582
crossref_primary_10_1016_j_seppur_2023_123650
crossref_primary_10_2109_jcersj2_21145
crossref_primary_10_1016_j_envres_2023_117399
crossref_primary_10_3390_catal14090625
crossref_primary_10_1016_j_apt_2021_02_002
crossref_primary_10_1016_j_fuel_2023_129350
crossref_primary_10_1002_adma_201901556
crossref_primary_10_1016_j_wasman_2023_10_019
crossref_primary_10_1063_5_0179870
crossref_primary_10_3390_coatings11101211
crossref_primary_10_1007_s10971_024_06363_3
crossref_primary_10_1016_j_molliq_2023_121441
crossref_primary_10_1021_acsomega_2c01016
crossref_primary_10_1016_j_colsurfa_2024_134471
crossref_primary_10_1002_slct_202302150
crossref_primary_10_1021_jacs_0c00270
crossref_primary_10_1088_1361_6528_abde00
crossref_primary_10_9767_bcrec_17_1_12700_135_145
crossref_primary_10_1016_j_jorganchem_2024_123405
crossref_primary_10_1038_s41598_022_25869_w
crossref_primary_10_1038_s41598_021_97712_7
crossref_primary_10_1016_j_jwpe_2023_104099
crossref_primary_10_1002_ep_13576
crossref_primary_10_1007_s11144_023_02484_y
crossref_primary_10_3390_ma15082915
crossref_primary_10_1016_j_memsci_2023_122229
crossref_primary_10_1016_j_molliq_2023_123890
crossref_primary_10_1039_D2RA00783E
crossref_primary_10_1016_j_ceja_2022_100315
crossref_primary_10_1002_ange_202012848
crossref_primary_10_1016_j_cej_2021_129234
crossref_primary_10_1016_j_seppur_2023_125614
crossref_primary_10_1007_s10562_020_03471_x
crossref_primary_10_1021_acs_energyfuels_2c01563
crossref_primary_10_1039_D1NJ04793K
crossref_primary_10_1016_j_cep_2019_04_013
crossref_primary_10_1016_j_desal_2022_116152
crossref_primary_10_1016_j_jcou_2020_101199
crossref_primary_10_1016_j_cattod_2024_114616
crossref_primary_10_1016_j_mssp_2022_106567
crossref_primary_10_1021_acsomega_4c01572
crossref_primary_10_3390_surfaces3030022
crossref_primary_10_1016_j_mtla_2022_101637
crossref_primary_10_1016_j_jallcom_2023_169585
crossref_primary_10_1016_j_cattod_2023_114392
crossref_primary_10_1016_j_crgsc_2023_100360
crossref_primary_10_1016_j_powtec_2021_04_061
crossref_primary_10_1007_s10853_021_06701_8
crossref_primary_10_3390_jcs6090254
crossref_primary_10_1002_anie_202012848
crossref_primary_10_1016_j_marstruc_2024_103684
crossref_primary_10_1016_j_micromeso_2020_110266
crossref_primary_10_1016_j_mseb_2023_116417
crossref_primary_10_1007_s10904_020_01704_5
crossref_primary_10_3390_nano12091458
crossref_primary_10_1021_acscatal_3c03394
crossref_primary_10_3390_nano10112213
crossref_primary_10_1016_j_jwpe_2024_106013
crossref_primary_10_1016_j_jece_2022_109129
crossref_primary_10_3390_molecules27217635
crossref_primary_10_1007_s00339_022_05369_4
crossref_primary_10_1080_09593330_2021_1994654
crossref_primary_10_3390_catal14110759
crossref_primary_10_1007_s10450_024_00554_8
crossref_primary_10_1016_j_cej_2021_129131
crossref_primary_10_1016_j_jclepro_2022_132178
crossref_primary_10_4491_eer_2024_564
crossref_primary_10_1016_j_ijbiomac_2023_123562
crossref_primary_10_1038_s41467_022_35372_5
crossref_primary_10_1039_D0CS00997K
crossref_primary_10_1002_eem2_12133
crossref_primary_10_1002_slct_202004326
crossref_primary_10_1016_j_jece_2022_108383
crossref_primary_10_1016_j_matchemphys_2021_125587
crossref_primary_10_1007_s11356_024_35262_x
crossref_primary_10_1016_j_jwpe_2021_102442
crossref_primary_10_1007_s11144_022_02334_3
crossref_primary_10_1016_j_ijhydene_2024_01_298
crossref_primary_10_1021_acsanm_1c03863
crossref_primary_10_1039_D3RA05774G
crossref_primary_10_1016_j_heliyon_2024_e26281
crossref_primary_10_1016_j_jece_2021_106303
crossref_primary_10_3389_fenrg_2022_1058412
crossref_primary_10_1007_s11144_021_02029_1
crossref_primary_10_1016_j_chemosphere_2020_128866
crossref_primary_10_3390_en14227671
crossref_primary_10_1016_j_jiec_2019_09_027
crossref_primary_10_1007_s13538_024_01467_1
crossref_primary_10_1002_ange_202409588
crossref_primary_10_3390_ijms22169076
crossref_primary_10_1111_jace_17298
crossref_primary_10_3390_su15065566
crossref_primary_10_1016_j_mtchem_2024_101916
crossref_primary_10_1021_acs_energyfuels_3c03374
crossref_primary_10_1021_acsaem_3c00113
crossref_primary_10_3390_ma13051183
crossref_primary_10_1007_s11244_022_01647_w
crossref_primary_10_1039_D4RA02687J
crossref_primary_10_1061_JOEEDU_EEENG_7418
crossref_primary_10_1016_j_cej_2023_146891
crossref_primary_10_1007_s10570_022_04481_1
crossref_primary_10_1016_j_cattod_2022_08_009
crossref_primary_10_1080_15226514_2021_1926911
crossref_primary_10_1080_10242422_2022_2068371
crossref_primary_10_1038_s41598_019_52857_4
crossref_primary_10_1002_anie_202409588
crossref_primary_10_1007_s13399_021_01515_9
crossref_primary_10_1021_acsomega_2c02485
crossref_primary_10_1038_s41598_021_93934_x
crossref_primary_10_1016_j_mtadv_2024_100510
crossref_primary_10_1016_j_rser_2021_111600
crossref_primary_10_1002_cssc_202000520
crossref_primary_10_1016_j_gsd_2021_100585
crossref_primary_10_1016_j_micromeso_2021_111579
crossref_primary_10_1016_j_microc_2025_112972
crossref_primary_10_1016_j_est_2024_115011
crossref_primary_10_1021_acs_iecr_3c02030
crossref_primary_10_1007_s13399_024_06185_x
crossref_primary_10_1007_s13726_023_01210_8
crossref_primary_10_1007_s11051_024_06002_6
crossref_primary_10_3390_inorganics12080217
crossref_primary_10_1002_cctc_202101046
crossref_primary_10_1016_j_seppur_2020_117657
crossref_primary_10_1007_s13369_022_07307_1
crossref_primary_10_1016_j_matchemphys_2022_125779
crossref_primary_10_1016_j_jwpe_2023_103976
crossref_primary_10_1021_acscatal_0c02278
crossref_primary_10_1038_s41598_021_82484_x
crossref_primary_10_3390_ma14061382
crossref_primary_10_1016_j_jece_2022_107707
crossref_primary_10_3390_nano11051263
crossref_primary_10_1021_acs_iecr_3c03895
crossref_primary_10_1016_j_fuproc_2020_106670
crossref_primary_10_1016_j_psep_2022_01_025
crossref_primary_10_1039_D1RA05912B
crossref_primary_10_1016_j_scp_2021_100385
crossref_primary_10_1016_j_jece_2023_111019
crossref_primary_10_1016_j_ceramint_2024_12_149
crossref_primary_10_1002_adhm_202000057
crossref_primary_10_3390_pr9040707
crossref_primary_10_3390_separations10080422
crossref_primary_10_1016_j_msec_2021_112438
crossref_primary_10_1016_j_jtice_2021_06_059
crossref_primary_10_1149_2162_8777_ad670e
crossref_primary_10_1021_acsomega_3c02288
crossref_primary_10_1016_j_est_2022_105166
crossref_primary_10_1039_D3RA01911J
crossref_primary_10_1140_epjp_i2019_12612_4
crossref_primary_10_15541_jim20240141
crossref_primary_10_1002_adfm_202401957
crossref_primary_10_3390_textiles4010008
crossref_primary_10_3390_pharmaceutics14010203
crossref_primary_10_1039_D2RA00864E
crossref_primary_10_1515_ntrev_2022_0055
crossref_primary_10_1002_sstr_202200031
crossref_primary_10_1007_s11270_024_07023_6
crossref_primary_10_1039_D2CC00278G
crossref_primary_10_1016_j_cej_2023_148348
crossref_primary_10_1007_s11356_022_20564_9
crossref_primary_10_1007_s10853_023_08377_8
crossref_primary_10_1016_j_chemosphere_2023_140861
crossref_primary_10_1007_s11270_023_06276_x
crossref_primary_10_2217_nnm_2019_0262
crossref_primary_10_31857_S0044457X22602206
crossref_primary_10_1007_s13203_020_00255_7
crossref_primary_10_1021_acs_cgd_4c00367
crossref_primary_10_1155_2023_8899160
crossref_primary_10_1016_j_chemosphere_2023_139636
crossref_primary_10_1021_acs_energyfuels_1c00357
crossref_primary_10_3390_en16207205
crossref_primary_10_1016_j_ijbiomac_2020_07_240
crossref_primary_10_3390_en14102880
crossref_primary_10_1021_jacs_2c05510
crossref_primary_10_1007_s40808_023_01911_2
crossref_primary_10_1016_j_seppur_2022_122005
crossref_primary_10_1002_smll_202403814
crossref_primary_10_1016_j_ceramint_2022_01_121
crossref_primary_10_1016_j_mtbio_2022_100507
crossref_primary_10_1002_smll_202301905
crossref_primary_10_1021_acs_langmuir_4c04557
crossref_primary_10_1007_s12649_024_02484_6
crossref_primary_10_1134_S0036023623600818
crossref_primary_10_3390_molecules28124776
crossref_primary_10_1016_j_bioadv_2022_213269
crossref_primary_10_1016_j_jece_2023_109367
crossref_primary_10_1016_j_reactfunctpolym_2021_105033
crossref_primary_10_3390_gels8070443
crossref_primary_10_1016_j_ceja_2022_100371
crossref_primary_10_1016_j_apsusc_2021_152388
crossref_primary_10_1016_j_ceramint_2022_01_252
crossref_primary_10_1016_j_cej_2023_146034
crossref_primary_10_1016_j_jobab_2023_06_003
crossref_primary_10_1002_slct_202203016
crossref_primary_10_1016_j_ica_2019_119313
crossref_primary_10_3390_catal12101200
crossref_primary_10_1002_er_5806
crossref_primary_10_1515_ijcre_2020_0203
crossref_primary_10_1016_j_eng_2021_11_014
crossref_primary_10_1016_j_cej_2023_141806
crossref_primary_10_1016_j_cej_2024_156234
crossref_primary_10_1007_s00217_021_03860_5
crossref_primary_10_3390_ijms22020577
crossref_primary_10_1007_s10934_021_01058_4
crossref_primary_10_1007_s11696_021_01511_3
crossref_primary_10_1016_j_est_2021_103912
crossref_primary_10_3390_ijms232314999
crossref_primary_10_1007_s10854_021_06361_z
crossref_primary_10_1007_s11581_024_05454_z
crossref_primary_10_1016_j_heliyon_2023_e15142
crossref_primary_10_1039_D2TA00929C
crossref_primary_10_1016_j_cej_2022_136493
crossref_primary_10_1021_acs_iecr_3c03529
crossref_primary_10_1021_acsabm_3c01179
crossref_primary_10_1039_D4NJ04856C
crossref_primary_10_1007_s11164_021_04606_4
crossref_primary_10_1016_j_seppur_2024_130248
crossref_primary_10_1007_s11164_024_05366_7
crossref_primary_10_1002_er_7097
crossref_primary_10_22159_ijap_2023_v15s1_47515
crossref_primary_10_1016_j_micromeso_2024_113447
crossref_primary_10_1016_j_colsurfa_2020_125040
crossref_primary_10_1016_j_colsurfa_2024_133728
crossref_primary_10_1016_j_electacta_2023_143075
crossref_primary_10_1016_j_ijhydene_2019_06_092
crossref_primary_10_1016_j_matchemphys_2024_129424
crossref_primary_10_1080_09593330_2022_2138557
crossref_primary_10_1021_acs_iecr_4c02772
crossref_primary_10_1016_j_matlet_2020_128620
crossref_primary_10_1016_j_rechem_2023_101137
crossref_primary_10_1021_jacs_9b08322
crossref_primary_10_1134_S0036023620020084
crossref_primary_10_1007_s10450_021_00342_8
crossref_primary_10_1080_01932691_2019_1674153
crossref_primary_10_1002_mren_202200020
crossref_primary_10_3390_catal13121481
crossref_primary_10_1002_anie_202007064
Cites_doi 10.1021/jz9003087
10.1021/jp9082147
10.1039/C6TA06251B
10.1039/C6CS00391E
10.1016/j.colsurfa.2013.01.007
10.1016/j.carbon.2009.01.050
10.1016/S0167-2991(08)63067-0
10.1007/s10450-014-9606-z
10.1016/j.micromeso.2015.08.005
10.1021/es200782s
10.1021/la051686h
10.1021/acs.chemmater.6b02817
10.1021/la0107594
10.1007/s10450-011-9344-4
10.1002/anie.201102329
10.1016/j.colsurfa.2013.03.025
10.1016/j.micromeso.2009.06.014
10.1021/la00010a090
10.1021/la302362h
10.1021/j100120a035
10.1039/c3ee41444b
10.1016/j.carbon.2011.09.005
10.1002/adfm.201100291
10.1021/la991581c
10.1021/la026140z
10.1021/la801972e
10.1016/S0169-4332(02)00062-4
10.1016/S1387-1811(98)00263-7
10.1021/la800351d
10.1515/pac-2014-1117
10.1016/j.carbon.2011.11.037
10.1021/la00023a051
10.1016/j.micromeso.2012.04.043
10.1002/zaac.18970130127
ContentType Journal Article
Copyright 2018 THE AUTHORS
Copyright_xml – notice: 2018 THE AUTHORS
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.1016/j.eng.2018.06.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 566
ExternalDocumentID oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468
1460982
10_1016_j_eng_2018_06_001
S2095809917308299
GroupedDBID 0R~
0SF
1-T
5VR
6I.
92H
92I
92R
93N
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACHIH
ADBBV
AEXQZ
AFTJW
AFUIB
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CEKLB
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
TCJ
TGT
-SC
-S~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CAJEC
CITATION
Q--
U1G
U5M
OIOZB
OTOTI
ID FETCH-LOGICAL-c499t-b9d0f6eca5da84765f99d85d4294fd01a5681a9f2abfcd20fa99c96a60a4c6e93
IEDL.DBID DOA
ISSN 2095-8099
IngestDate Wed Aug 27 01:28:42 EDT 2025
Mon Jul 03 03:56:51 EDT 2023
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 02:18:47 EDT 2025
Thu Jul 20 20:16:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Characterization
Nanoporous materials
Adsorption
High-pressure adsorption
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-b9d0f6eca5da84765f99d85d4294fd01a5681a9f2abfcd20fa99c96a60a4c6e93
Notes USDOE
AC05-76RL01830
OpenAccessLink https://doaj.org/article/04ccc6319db14d0f8aed809df94fe468
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468
osti_scitechconnect_1460982
crossref_citationtrail_10_1016_j_eng_2018_06_001
crossref_primary_10_1016_j_eng_2018_06_001
elsevier_sciencedirect_doi_10_1016_j_eng_2018_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Engineering (Beijing, China)
PublicationYear 2018
Publisher Elsevier Ltd
Engineering Sciences Press
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Engineering Sciences Press
– name: Elsevier
References Thomson, Gubbins (b0145) 2000; 16
Cychosz, Guillet-Nicolas, Garcia-Martinez, Thommes (b0020) 2017; 46
Neimark (b0130) 1995; 11
Lastoskie, Gubbins, Quirke (b0120) 1993; 97
Nguyen, Cohaut, Bae, Bhatia (b0150) 2008; 24
Monson (b0055) 2008; 24
Hu, Radosz, Cychosz, Thommes (b0175) 2011; 45
Everett (b0085) 1967
Monson (b0060) 2012; 160
Van Bemmelen (b0080) 1897; 13
Jelinek, Kovats (b0110) 1994; 10
Neimark, Coudert, Boutin, Fuchs (b0045) 2010; 1
Wu, Thibault, Wang, Cychosz, Thommes, Li (b0185) 2016; 219
Senkovska, Cychosz, Llewellyn, Thommes, Kaskel (b0030) 2016
Cychosz, Guo, Fan, Cimino, Gor, Tsapatsis (b0090) 2012; 28
Neimark, Lin, Ravikovitch, Thommes (b0165) 2009; 47
Moellmer, Celer, Luebke, Cairns, Staudt, Eddaoudi (b0135) 2010; 129
Thommes, Cychosz, Neimark (b0025) 2012
Gor, Thommes, Cychosz, Neimark (b0170) 2012; 50
Paraknowitsch, Thomas (b0190) 2013; 6
Thommes (b0010) 2007
Thommes, Cychosz (b0015) 2014; 20
Olivier, Conklin, Szombathely (b0125) 1994; 87
Cairns, Eckert, Wojtas, Thommes, Wallacher, Georgiev (b0180) 2016; 28
Jagiello, Olivier (b0160) 2009; 113
Thommes, Smarsly, Groenewolt, Ravikovitch, Neimark (b0075) 2006; 22
Landers, Gor, Neimark (b0050) 2013; 437
Bandosz, Briggs, Gubbins, Hattori, Iiyama, Kaneko (b0140) 2003
Ashourirad, Arab, Islamoglu, Cychosz, Thommes, El-Kaderi (b0200) 2016; 4
Thommes, Köhn, Fröba (b0115) 2002; 196
Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol (b0005) 2015; 87
Ravikovitch, Neimark (b0065) 2002; 18
Ravikovitch, Neimark (b0070) 2002; 18
Cimino, Cychosz, Thommes, Neimark (b0095) 2013; 437
Soares Maia, de Oliveria, Toso, Sapag, López, Azevedo (b0155) 2011; 17
Rouquerol, Rouquerol, Peres, Grillet, Boudellal (b0105) 1979
Lässig, Lincke, Moellmer, Reichenbach, Moeller, Gläser (b0035) 2011; 50
Galarneau, Desplantier, Dutartre, Di Renzo (b0100) 1999; 27
Sevilla, Valle-Vigón, Fuertes (b0195) 2011; 21
Silvestre-Albero, Silvestre-Albero, Rodriguez-Reinoso, Thommes (b0040) 2012; 50
Moellmer (10.1016/j.eng.2018.06.001_b0135) 2010; 129
Thommes (10.1016/j.eng.2018.06.001_b0010) 2007
Sevilla (10.1016/j.eng.2018.06.001_b0195) 2011; 21
Thomson (10.1016/j.eng.2018.06.001_b0145) 2000; 16
Nguyen (10.1016/j.eng.2018.06.001_b0150) 2008; 24
Everett (10.1016/j.eng.2018.06.001_b0085) 1967
Neimark (10.1016/j.eng.2018.06.001_b0045) 2010; 1
Landers (10.1016/j.eng.2018.06.001_b0050) 2013; 437
Galarneau (10.1016/j.eng.2018.06.001_b0100) 1999; 27
Neimark (10.1016/j.eng.2018.06.001_b0165) 2009; 47
Monson (10.1016/j.eng.2018.06.001_b0060) 2012; 160
Ravikovitch (10.1016/j.eng.2018.06.001_b0065) 2002; 18
Rouquerol (10.1016/j.eng.2018.06.001_b0105) 1979
Wu (10.1016/j.eng.2018.06.001_b0185) 2016; 219
Paraknowitsch (10.1016/j.eng.2018.06.001_b0190) 2013; 6
Ashourirad (10.1016/j.eng.2018.06.001_b0200) 2016; 4
Cychosz (10.1016/j.eng.2018.06.001_b0020) 2017; 46
Neimark (10.1016/j.eng.2018.06.001_b0130) 1995; 11
Thommes (10.1016/j.eng.2018.06.001_b0025) 2012
Monson (10.1016/j.eng.2018.06.001_b0055) 2008; 24
Senkovska (10.1016/j.eng.2018.06.001_b0030) 2016
Lastoskie (10.1016/j.eng.2018.06.001_b0120) 1993; 97
Silvestre-Albero (10.1016/j.eng.2018.06.001_b0040) 2012; 50
Olivier (10.1016/j.eng.2018.06.001_b0125) 1994; 87
Cychosz (10.1016/j.eng.2018.06.001_b0090) 2012; 28
Cairns (10.1016/j.eng.2018.06.001_b0180) 2016; 28
Thommes (10.1016/j.eng.2018.06.001_b0075) 2006; 22
Soares Maia (10.1016/j.eng.2018.06.001_b0155) 2011; 17
Gor (10.1016/j.eng.2018.06.001_b0170) 2012; 50
Hu (10.1016/j.eng.2018.06.001_b0175) 2011; 45
Ravikovitch (10.1016/j.eng.2018.06.001_b0070) 2002; 18
Jelinek (10.1016/j.eng.2018.06.001_b0110) 1994; 10
Lässig (10.1016/j.eng.2018.06.001_b0035) 2011; 50
Thommes (10.1016/j.eng.2018.06.001_b0115) 2002; 196
Bandosz (10.1016/j.eng.2018.06.001_b0140) 2003
Thommes (10.1016/j.eng.2018.06.001_b0015) 2014; 20
Jagiello (10.1016/j.eng.2018.06.001_b0160) 2009; 113
Thommes (10.1016/j.eng.2018.06.001_b0005) 2015; 87
Van Bemmelen (10.1016/j.eng.2018.06.001_b0080) 1897; 13
Cimino (10.1016/j.eng.2018.06.001_b0095) 2013; 437
References_xml – volume: 22
  start-page: 756
  year: 2006
  end-page: 764
  ident: b0075
  article-title: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas
  publication-title: Langmuir
– volume: 97
  start-page: 4786
  year: 1993
  end-page: 4796
  ident: b0120
  article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach
  publication-title: J Phys Chem
– volume: 24
  start-page: 7912
  year: 2008
  end-page: 7922
  ident: b0150
  article-title: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation
  publication-title: Langmuir
– volume: 17
  start-page: 853
  year: 2011
  end-page: 861
  ident: b0155
  article-title: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures
  publication-title: Adsorption
– volume: 113
  start-page: 19382
  year: 2009
  end-page: 19385
  ident: b0160
  article-title: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis
  publication-title: J Phys Chem C
– start-page: 495
  year: 2007
  end-page: 523
  ident: b0010
  article-title: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption
  publication-title: Introduction to zeolite science and practice
– volume: 50
  start-page: 3128
  year: 2012
  end-page: 3133
  ident: b0040
  article-title: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry
  publication-title: Carbon
– volume: 437
  start-page: 76
  year: 2013
  end-page: 89
  ident: b0095
  article-title: Experimental and theoretical studies of scanning adsorption-desorption isotherms
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 28
  start-page: 7353
  year: 2016
  end-page: 7361
  ident: b0180
  article-title: Gaining insights on the H
  publication-title: Chem Mater
– volume: 21
  start-page: 2781
  year: 2011
  end-page: 2787
  ident: b0195
  article-title: N-doped polypyrrole-based porous carbons for CO
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 4225
  year: 1994
  end-page: 4231
  ident: b0110
  article-title: True surface area from nitrogen adsorption experiments
  publication-title: Langmuir
– volume: 219
  start-page: 186
  year: 2016
  end-page: 189
  ident: b0185
  article-title: Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF
  publication-title: Microporous Mesoporous Mater
– volume: 4
  start-page: 14693
  year: 2016
  end-page: 14702
  ident: b0200
  article-title: A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO
  publication-title: J Mater Chem A Mater Energy Sustain
– volume: 11
  start-page: 4183
  year: 1995
  end-page: 4184
  ident: b0130
  article-title: The method of indeterminate Lagrange multipliers in nonlocal density functional theory
  publication-title: Langmuir
– volume: 16
  start-page: 5761
  year: 2000
  end-page: 5773
  ident: b0145
  article-title: Modeling structural morphology of microporous carbons by reverse monte carlo
  publication-title: Langmuir
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  ident: b0005
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)
  publication-title: Pure Appl Chem
– volume: 13
  start-page: 233
  year: 1897
  end-page: 356
  ident: b0080
  article-title: Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure
  publication-title: Anorg Allg Chem
– volume: 50
  start-page: 1583
  year: 2012
  end-page: 1590
  ident: b0170
  article-title: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption
  publication-title: Carbon
– volume: 6
  start-page: 2839
  year: 2013
  end-page: 2855
  ident: b0190
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications
  publication-title: Energy Environ Sci
– start-page: 107
  year: 1979
  end-page: 116
  ident: b0105
  article-title: Calorimetric study of nitrogen and argon adsorption on porous silicas
  publication-title: Characterization of porous solids
– volume: 87
  start-page: 81
  year: 1994
  end-page: 89
  ident: b0125
  article-title: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results
  publication-title: Stud Surf Sci Catal
– start-page: 41
  year: 2003
  end-page: 228
  ident: b0140
  article-title: Molecular models of porous carbons
  publication-title: Chemistry & physics of carbon
– volume: 47
  start-page: 1617
  year: 2009
  end-page: 1628
  ident: b0165
  article-title: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons
  publication-title: Carbon
– volume: 50
  start-page: 10344
  year: 2011
  end-page: 10348
  ident: b0035
  article-title: A microporous copper metal-organic framework with high H
  publication-title: Angew Chem Int Ed
– volume: 18
  start-page: 1550
  year: 2002
  end-page: 1560
  ident: b0065
  article-title: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures
  publication-title: Langmuir
– year: 1967
  ident: b0085
  article-title: The solid-gas interface
– volume: 27
  start-page: 297
  year: 1999
  end-page: 308
  ident: b0100
  article-title: Micelle-templated silicates as a test bed for methods of mesopore size evaluation
  publication-title: Microporous Mesoporous Mater
– start-page: 107
  year: 2012
  end-page: 145
  ident: b0025
  article-title: Advanced physical adsorption characterization of nanoporous carbons
  publication-title: Novel carbon adsorbents
– volume: 1
  start-page: 445
  year: 2010
  end-page: 449
  ident: b0045
  article-title: Stress-based model for the breathing of metal-organic frameworks
  publication-title: J Phys Chem Lett
– volume: 196
  start-page: 239
  year: 2002
  end-page: 249
  ident: b0115
  article-title: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point
  publication-title: Appl Surf Sci
– start-page: 575
  year: 2016
  end-page: 605
  ident: b0030
  article-title: Adsorption methodology
  publication-title: The chemistry of metal-organic frameworks: synthesis, characterization, and applications
– volume: 160
  start-page: 47
  year: 2012
  end-page: 66
  ident: b0060
  article-title: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory
  publication-title: Microporous Mesoporous Mater
– volume: 28
  start-page: 12647
  year: 2012
  end-page: 12654
  ident: b0090
  article-title: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption
  publication-title: Langmuir
– volume: 45
  start-page: 7068
  year: 2011
  end-page: 7074
  ident: b0175
  article-title: CO
  publication-title: Environ Sci Technol
– volume: 46
  start-page: 389
  year: 2017
  end-page: 414
  ident: b0020
  article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials
  publication-title: Chem Soc Rev
– volume: 20
  start-page: 233
  year: 2014
  end-page: 250
  ident: b0015
  article-title: Physical adsorption characterization of nanoporous materials: progress and challenges
  publication-title: Adsorption
– volume: 18
  start-page: 9830
  year: 2002
  end-page: 9837
  ident: b0070
  article-title: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation
  publication-title: Langmuir
– volume: 437
  start-page: 3
  year: 2013
  end-page: 32
  ident: b0050
  article-title: Density functional theory methods for characterization of porous materials
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 24
  start-page: 12295
  year: 2008
  end-page: 12302
  ident: b0055
  article-title: Contact angles, pore condensation, and hysteresis: insights from a simple molecular model
  publication-title: Langmuir
– volume: 129
  start-page: 345
  year: 2010
  end-page: 353
  ident: b0135
  article-title: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF
  publication-title: Microporous Mesoporous Mater
– volume: 1
  start-page: 445
  issue: 1
  year: 2010
  ident: 10.1016/j.eng.2018.06.001_b0045
  article-title: Stress-based model for the breathing of metal-organic frameworks
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz9003087
– volume: 113
  start-page: 19382
  issue: 45
  year: 2009
  ident: 10.1016/j.eng.2018.06.001_b0160
  article-title: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis
  publication-title: J Phys Chem C
  doi: 10.1021/jp9082147
– volume: 4
  start-page: 14693
  issue: 38
  year: 2016
  ident: 10.1016/j.eng.2018.06.001_b0200
  article-title: A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents
  publication-title: J Mater Chem A Mater Energy Sustain
  doi: 10.1039/C6TA06251B
– volume: 46
  start-page: 389
  issue: 2
  year: 2017
  ident: 10.1016/j.eng.2018.06.001_b0020
  article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00391E
– volume: 437
  start-page: 3
  year: 2013
  ident: 10.1016/j.eng.2018.06.001_b0050
  article-title: Density functional theory methods for characterization of porous materials
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2013.01.007
– volume: 47
  start-page: 1617
  issue: 7
  year: 2009
  ident: 10.1016/j.eng.2018.06.001_b0165
  article-title: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.01.050
– volume: 87
  start-page: 81
  year: 1994
  ident: 10.1016/j.eng.2018.06.001_b0125
  article-title: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results
  publication-title: Stud Surf Sci Catal
  doi: 10.1016/S0167-2991(08)63067-0
– volume: 20
  start-page: 233
  issue: 2–3
  year: 2014
  ident: 10.1016/j.eng.2018.06.001_b0015
  article-title: Physical adsorption characterization of nanoporous materials: progress and challenges
  publication-title: Adsorption
  doi: 10.1007/s10450-014-9606-z
– volume: 219
  start-page: 186
  year: 2016
  ident: 10.1016/j.eng.2018.06.001_b0185
  article-title: Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2015.08.005
– start-page: 575
  year: 2016
  ident: 10.1016/j.eng.2018.06.001_b0030
  article-title: Adsorption methodology
– volume: 45
  start-page: 7068
  issue: 16
  year: 2011
  ident: 10.1016/j.eng.2018.06.001_b0175
  article-title: CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT)
  publication-title: Environ Sci Technol
  doi: 10.1021/es200782s
– volume: 22
  start-page: 756
  issue: 2
  year: 2006
  ident: 10.1016/j.eng.2018.06.001_b0075
  article-title: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas
  publication-title: Langmuir
  doi: 10.1021/la051686h
– volume: 28
  start-page: 7353
  issue: 20
  year: 2016
  ident: 10.1016/j.eng.2018.06.001_b0180
  article-title: Gaining insights on the H2-sorbent interactions: robust soc-MOF platform as a case study
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b02817
– start-page: 495
  year: 2007
  ident: 10.1016/j.eng.2018.06.001_b0010
  article-title: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption
– volume: 18
  start-page: 1550
  issue: 5
  year: 2002
  ident: 10.1016/j.eng.2018.06.001_b0065
  article-title: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures
  publication-title: Langmuir
  doi: 10.1021/la0107594
– volume: 17
  start-page: 853
  issue: 5
  year: 2011
  ident: 10.1016/j.eng.2018.06.001_b0155
  article-title: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures
  publication-title: Adsorption
  doi: 10.1007/s10450-011-9344-4
– volume: 50
  start-page: 10344
  issue: 44
  year: 2011
  ident: 10.1016/j.eng.2018.06.001_b0035
  article-title: A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201102329
– volume: 437
  start-page: 76
  year: 2013
  ident: 10.1016/j.eng.2018.06.001_b0095
  article-title: Experimental and theoretical studies of scanning adsorption-desorption isotherms
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2013.03.025
– volume: 129
  start-page: 345
  issue: 3
  year: 2010
  ident: 10.1016/j.eng.2018.06.001_b0135
  article-title: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2009.06.014
– volume: 11
  start-page: 4183
  issue: 10
  year: 1995
  ident: 10.1016/j.eng.2018.06.001_b0130
  article-title: The method of indeterminate Lagrange multipliers in nonlocal density functional theory
  publication-title: Langmuir
  doi: 10.1021/la00010a090
– volume: 28
  start-page: 12647
  issue: 34
  year: 2012
  ident: 10.1016/j.eng.2018.06.001_b0090
  article-title: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption
  publication-title: Langmuir
  doi: 10.1021/la302362h
– volume: 97
  start-page: 4786
  issue: 18
  year: 1993
  ident: 10.1016/j.eng.2018.06.001_b0120
  article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach
  publication-title: J Phys Chem
  doi: 10.1021/j100120a035
– volume: 6
  start-page: 2839
  issue: 10
  year: 2013
  ident: 10.1016/j.eng.2018.06.001_b0190
  article-title: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee41444b
– volume: 50
  start-page: 3128
  issue: 9
  year: 2012
  ident: 10.1016/j.eng.2018.06.001_b0040
  article-title: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.09.005
– volume: 21
  start-page: 2781
  issue: 14
  year: 2011
  ident: 10.1016/j.eng.2018.06.001_b0195
  article-title: N-doped polypyrrole-based porous carbons for CO2 capture
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201100291
– volume: 16
  start-page: 5761
  issue: 13
  year: 2000
  ident: 10.1016/j.eng.2018.06.001_b0145
  article-title: Modeling structural morphology of microporous carbons by reverse monte carlo
  publication-title: Langmuir
  doi: 10.1021/la991581c
– volume: 18
  start-page: 9830
  issue: 25
  year: 2002
  ident: 10.1016/j.eng.2018.06.001_b0070
  article-title: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation
  publication-title: Langmuir
  doi: 10.1021/la026140z
– volume: 24
  start-page: 12295
  issue: 21
  year: 2008
  ident: 10.1016/j.eng.2018.06.001_b0055
  article-title: Contact angles, pore condensation, and hysteresis: insights from a simple molecular model
  publication-title: Langmuir
  doi: 10.1021/la801972e
– volume: 196
  start-page: 239
  issue: 1–4
  year: 2002
  ident: 10.1016/j.eng.2018.06.001_b0115
  article-title: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point
  publication-title: Appl Surf Sci
  doi: 10.1016/S0169-4332(02)00062-4
– start-page: 107
  year: 2012
  ident: 10.1016/j.eng.2018.06.001_b0025
  article-title: Advanced physical adsorption characterization of nanoporous carbons
– start-page: 107
  year: 1979
  ident: 10.1016/j.eng.2018.06.001_b0105
  article-title: Calorimetric study of nitrogen and argon adsorption on porous silicas
– volume: 27
  start-page: 297
  issue: 2–3
  year: 1999
  ident: 10.1016/j.eng.2018.06.001_b0100
  article-title: Micelle-templated silicates as a test bed for methods of mesopore size evaluation
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/S1387-1811(98)00263-7
– volume: 24
  start-page: 7912
  issue: 15
  year: 2008
  ident: 10.1016/j.eng.2018.06.001_b0150
  article-title: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation
  publication-title: Langmuir
  doi: 10.1021/la800351d
– volume: 87
  start-page: 1051
  issue: 9–10
  year: 2015
  ident: 10.1016/j.eng.2018.06.001_b0005
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2014-1117
– volume: 50
  start-page: 1583
  issue: 4
  year: 2012
  ident: 10.1016/j.eng.2018.06.001_b0170
  article-title: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.11.037
– volume: 10
  start-page: 4225
  issue: 11
  year: 1994
  ident: 10.1016/j.eng.2018.06.001_b0110
  article-title: True surface area from nitrogen adsorption experiments
  publication-title: Langmuir
  doi: 10.1021/la00023a051
– start-page: 41
  year: 2003
  ident: 10.1016/j.eng.2018.06.001_b0140
  article-title: Molecular models of porous carbons
– volume: 160
  start-page: 47
  year: 2012
  ident: 10.1016/j.eng.2018.06.001_b0060
  article-title: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2012.04.043
– year: 1967
  ident: 10.1016/j.eng.2018.06.001_b0085
– volume: 13
  start-page: 233
  issue: 1
  year: 1897
  ident: 10.1016/j.eng.2018.06.001_b0080
  article-title: Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure
  publication-title: Anorg Allg Chem
  doi: 10.1002/zaac.18970130127
SSID ssj0001510708
Score 2.5863855
SecondaryResourceType review_article
Snippet Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such...
SourceID doaj
osti
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 559
SubjectTerms Adsorption
Characterization
ENGINEERING
High-pressure adsorption
Nanoporous materials
Title Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials
URI https://dx.doi.org/10.1016/j.eng.2018.06.001
https://www.osti.gov/servlets/purl/1460982
https://doaj.org/article/04ccc6319db14d0f8aed809df94fe468
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7ET5xTycGTUEzbJG2OOpxDmIg62K2k-RgTaWWr_78vSTvmZV68lqQJLy_vg_ze7yF0DTaRxXBtIiMdqTbVKirBQEaaJEYynXLpH9onz3w8pU8zNtto9eUwYYEeOAjullClFAdF0WVMNbG5NDonQltBraHcl_mCz9tIpkJ9MKQ1oR0dxBBghoXonjQ9uMtUcwfrCtydbUOYzil57v5fvqlXw3XbcDujA7Tfxov4LuzzEO2Y6gjtbbAIHqPXF4exAouFFxWGeA57VOeqXnprgIdrSuZQcYlri8Gm1hB4Q9aPH-UKv0HiDXYFT2QTFPIETUcP78Nx1LZKiBSkLE1UChANNwrEK8HfcGaF0DnT4G2o1SSWjmdMCpvI0iqdECuFUIJLTiRV3Ij0FPWqujJnCGdWC8ZYlpFMU5YqaUstDc0Fo7Fmqe0j0smqUC2PuGtn8Vl0gLEPuHHzwom3CKC5PrpZT_kKJBrbBt-7A1gPdPzX_gNoRdFqRfGXVvQR7Y6vaEOJECLArxbb1h64o3ZTHIWuclgjmAPehIg8Of-PnQ3QrlswYAgvUK9ZfptLiGua8sqr8A8sVfVM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+the+Physisorption+Characterization+of+Nanoporous+Gas+Storage+Materials&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Katie+A.+Cychosz&rft.au=Matthias+Thommes&rft.date=2018-08-01&rft.pub=Elsevier&rft.issn=2095-8099&rft.volume=4&rft.issue=4&rft.spage=559&rft.epage=566&rft_id=info:doi/10.1016%2Fj.eng.2018.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_04ccc6319db14d0f8aed809df94fe468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8099&client=summon