The Application of Microsampling Disks in Circular Dichroism Spectroscopy for Peptide and Nucleic Acid Drugs
In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their c...
Saved in:
Published in | Chemical & pharmaceutical bulletin Vol. 72; no. 7; pp. 658 - 663 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Pharmaceutical Society of Japan
11.07.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2–10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes. |
---|---|
AbstractList | In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2–10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes. In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2-10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes.In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2-10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes. |
ArticleNumber | c24-00244 |
Author | Misawa, Takashi Demizu, Yosuke Tsuji, Genichiro |
Author_xml | – sequence: 1 fullname: Tsuji, Genichiro organization: Division of Organic Chemistry, National Institute of Health Sciences – sequence: 2 fullname: Misawa, Takashi organization: Division of Organic Chemistry, National Institute of Health Sciences – sequence: 3 fullname: Demizu, Yosuke organization: Division of Organic Chemistry, National Institute of Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38987173$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c9v2yAUB3A0dVrTdsddJ6RddnHHr4A5Rmm3TuraSWvPCONHQmYbD-xD__uRps2kXUB6fECP9z1DJ0McAKEPlFxSJuovbmwuHRMVIUyIN2hBuVDVkjF-ghaEEF0xLvkpOst5V8iSKP4OnfJa14oqvkDdwxbwahy74OwU4oCjxz-CSzHbvhSHDb4K-XfGYcDrkNzc2VQqbptiyD3-NYKbinVxfMI-JvwTxim0gO3Q4rvZdRAcXrnQ4qs0b_IFeuttl-H9y36OHr9eP6xvqtv7b9_Xq9vKCa2nqlFcey4ZtZSBt0K7umFESem0VUvVekmJ16SRcskJbZXQ4IUHIr0XUoPl5-jz4d0xxT8z5Mn0ITvoOjtAnLPhRJXvC8l0oZ_-o7s4p6F0V5TmhBNZi6I-vqi56aE1Ywq9TU_mdY4FVAewn1xO4I-EErPPyZScTMnJPOdU_Prgd3myGzhqm6ZQpvasFTNqvxxv_Tvd2mRg4H8BYIScpw |
Cites_doi | 10.1016/j.omtn.2018.09.017 10.1007/s40265-013-0042-2 10.1039/C9CP05776E 10.1016/j.biochi.2017.10.006 10.1093/nar/gkad067 10.1517/13543784.16.11.1851 10.1038/s41589-023-01496-y 10.1039/D1SC00165E 10.1007/s40265-020-01269-0 10.1002/0471142700.nc0711s11 10.1038/s41565-021-00898-0 10.1136/dtb.2023.000007 10.1039/D3MD00487B 10.1016/j.bpj.2012.11.437 10.1021/jacs.3c03886 10.1016/j.addr.2023.114872 10.1016/S0014-4827(03)00257-X 10.1007/978-1-4939-9504-2_14 10.1007/978-1-4939-9504-2_11 |
ContentType | Journal Article |
Copyright | 2024 Author(s) This is an open access article distributed under the terms of Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/). Published by The Pharmaceutical Society of Japan 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 Author(s) This is an open access article distributed under the terms of Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/). Published by The Pharmaceutical Society of Japan – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 7U9 H94 K9. 7X8 |
DOI | 10.1248/cpb.c24-00244 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5223 |
EndPage | 663 |
ExternalDocumentID | 38987173 10_1248_cpb_c24_00244 article_cpb_72_7_72_c24_00244_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29B 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 L7B MOJWN OK1 P2P RJT RZJ TR2 XSB ZGI AAYXX CITATION .55 .GJ 3O- ABTAH AI. CGR CUY CVF ECM EIF NPM TKC VH1 X7J X7M ZE2 ZY4 7TK 7TM 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c499t-b739f3621a12efa49c8b20766c9a757df610f90b665301d749ef4fe06ff469ea3 |
ISSN | 0009-2363 1347-5223 |
IngestDate | Fri Jul 11 04:33:48 EDT 2025 Mon Jun 30 08:00:12 EDT 2025 Thu Jan 02 22:30:55 EST 2025 Tue Jul 01 01:28:32 EDT 2025 Thu Aug 01 16:58:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | secondary structure circular dichroism (CD) spectra microsampling disk peptide nucleic acid medium-sized drug |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-b739f3621a12efa49c8b20766c9a757df610f90b665301d749ef4fe06ff469ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/cpb/72/7/72_c24-00244/_article/-char/en |
PMID | 38987173 |
PQID | 3093030684 |
PQPubID | 1996362 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3078714629 proquest_journals_3093030684 pubmed_primary_38987173 crossref_primary_10_1248_cpb_c24_00244 jstage_primary_article_cpb_72_7_72_c24_00244_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-11 |
PublicationDateYYYYMMDD | 2024-07-11 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Chemical & pharmaceutical bulletin |
PublicationTitleAlternate | Chem. Pharm. Bull. |
PublicationYear | 2024 |
Publisher | The Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 13) Wilson A. C., Meethal S. V., Bowen R. L., Atwood C. S., Expert Opin. Investig. Drugs, 16, 1851–1863 (2007). 15) Lexchin J., Mintzes B., Drug Ther. Bull., 61, 182–188 (2023). 18) Food and Drug Administration. “Highlights of Prescribing Information (Macugen).” 3–12 (July 2007): ‹https://pi.bauschhealth.com/globalassets/BHC/PI/Macugen-PI.pdf?ver=2021-05-21-022911-740›, cited 16 April, 2024. 8) Kawamoto Y., Wu Y., Takahashi Y., Takakura Y., Adv. Drug Deliv. Rev., 199, 114872 (2023). 17) Hair P., Fiona Cameron F., McKeage K., Drugs, 73, 487–493 (2013). 9) Nornes S., Growth C., Camp E., Ey P., Lardelli M., Exp. Cell Res., 289, 124–132 (2003). 12) Kondo Y., Biophys. J., 104, 72a (2013). 20) Watanabe N., Nagata T., Satou Y., Masuda S., Saito T., Kitagawa H., Komaki H., Takagaki K., Takeda S., Mol. Ther. Nucleic Acids, 13, 442–449 (2018). 1) Cheng J., Zhou J., Kong L., Wang H., Zhang Y., Wang X., Liu G., Chu Q., RSC Med. Chem., 14, 2496–2508 (2023). 2) Nakamura Y., Biochimie, 145, 22–33 (2018). 7) Egli M., Manoharan M., Nucleic Acids Res., 51, 2529–2573 (2023). 3) Tsiamantas C., Otero–Ramirez M. E., Suga H., Methods Mol. Biol., 2001, 299–315 (2019). 4) Tanada M., Tamiya M., Matsuo A., et al., J. Am. Chem. Soc., 145, 16610–16620 (2023). 10) Wang H., Dawber R. S., Zhang P., Walko M., Wilson A. J., Wang X., Chem. Sci. (Camb.), 12, 5977–5993 (2021). 16) Weiss M. A., Vitam. Horm., 80, 33–49 (2009). 5) Merz M. L., Habeshian S., Li B., David J. G. L., Nielsen A. L., Ji X., Il Khwildy K., Duany Benitez M. M., Phothirath P., Heinis C., Nat. Chem. Biol., 20, 624–633 (2024). 11) Ministry of Health, Labour and Welfare. “Japanese Parmacopeia.”: ‹https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000066597.html›, cited 16 April, 2024. 19) Scott L. J., Drugs, 80, 335–339 (2020). 14) Wiśniewski K., Methods Mol. Biol., 2001, 235–271 (2019). 21) “Supplement I to The Japanese Pharmacopoeia,” 18th edition, 2022. 23) Bishop G. R., Chaires J. B., Curr. Protoc. Nucleic Acid Chem., Chapter 7, 7.11.1–7.11.8 (2003). 22) Migliore M., Bonvicini A., Tognetti V., Guilhaudis L., Baaden M., Oulyadi H., Joubert L., Ségalas-Milazzo I., Phys. Chem. Chem. Phys., 22, 1611–1623 (2020). 6) Kulkarni J. A., Witzigmann D., Thomson S. B., Chen S., Leavitt B. R., Cullis P. R., Meel R., Nat. Nanotechnol., 16, 630–643 (2021). 11 22 12 23 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 10) Wang H., Dawber R. S., Zhang P., Walko M., Wilson A. J., Wang X., Chem. Sci. (Camb.), 12, 5977–5993 (2021). – reference: 19) Scott L. J., Drugs, 80, 335–339 (2020). – reference: 17) Hair P., Fiona Cameron F., McKeage K., Drugs, 73, 487–493 (2013). – reference: 8) Kawamoto Y., Wu Y., Takahashi Y., Takakura Y., Adv. Drug Deliv. Rev., 199, 114872 (2023). – reference: 1) Cheng J., Zhou J., Kong L., Wang H., Zhang Y., Wang X., Liu G., Chu Q., RSC Med. Chem., 14, 2496–2508 (2023). – reference: 22) Migliore M., Bonvicini A., Tognetti V., Guilhaudis L., Baaden M., Oulyadi H., Joubert L., Ségalas-Milazzo I., Phys. Chem. Chem. Phys., 22, 1611–1623 (2020). – reference: 11) Ministry of Health, Labour and Welfare. “Japanese Parmacopeia.”: ‹https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000066597.html›, cited 16 April, 2024. – reference: 14) Wiśniewski K., Methods Mol. Biol., 2001, 235–271 (2019). – reference: 20) Watanabe N., Nagata T., Satou Y., Masuda S., Saito T., Kitagawa H., Komaki H., Takagaki K., Takeda S., Mol. Ther. Nucleic Acids, 13, 442–449 (2018). – reference: 7) Egli M., Manoharan M., Nucleic Acids Res., 51, 2529–2573 (2023). – reference: 15) Lexchin J., Mintzes B., Drug Ther. Bull., 61, 182–188 (2023). – reference: 23) Bishop G. R., Chaires J. B., Curr. Protoc. Nucleic Acid Chem., Chapter 7, 7.11.1–7.11.8 (2003). – reference: 2) Nakamura Y., Biochimie, 145, 22–33 (2018). – reference: 16) Weiss M. A., Vitam. Horm., 80, 33–49 (2009). – reference: 9) Nornes S., Growth C., Camp E., Ey P., Lardelli M., Exp. Cell Res., 289, 124–132 (2003). – reference: 21) “Supplement I to The Japanese Pharmacopoeia,” 18th edition, 2022. – reference: 4) Tanada M., Tamiya M., Matsuo A., et al., J. Am. Chem. Soc., 145, 16610–16620 (2023). – reference: 12) Kondo Y., Biophys. J., 104, 72a (2013). – reference: 18) Food and Drug Administration. “Highlights of Prescribing Information (Macugen).” 3–12 (July 2007): ‹https://pi.bauschhealth.com/globalassets/BHC/PI/Macugen-PI.pdf?ver=2021-05-21-022911-740›, cited 16 April, 2024. – reference: 5) Merz M. L., Habeshian S., Li B., David J. G. L., Nielsen A. L., Ji X., Il Khwildy K., Duany Benitez M. M., Phothirath P., Heinis C., Nat. Chem. Biol., 20, 624–633 (2024). – reference: 6) Kulkarni J. A., Witzigmann D., Thomson S. B., Chen S., Leavitt B. R., Cullis P. R., Meel R., Nat. Nanotechnol., 16, 630–643 (2021). – reference: 13) Wilson A. C., Meethal S. V., Bowen R. L., Atwood C. S., Expert Opin. Investig. Drugs, 16, 1851–1863 (2007). – reference: 3) Tsiamantas C., Otero–Ramirez M. E., Suga H., Methods Mol. Biol., 2001, 299–315 (2019). – ident: 18 – ident: 20 doi: 10.1016/j.omtn.2018.09.017 – ident: 17 doi: 10.1007/s40265-013-0042-2 – ident: 22 doi: 10.1039/C9CP05776E – ident: 2 doi: 10.1016/j.biochi.2017.10.006 – ident: 7 doi: 10.1093/nar/gkad067 – ident: 13 doi: 10.1517/13543784.16.11.1851 – ident: 5 doi: 10.1038/s41589-023-01496-y – ident: 10 doi: 10.1039/D1SC00165E – ident: 11 – ident: 19 doi: 10.1007/s40265-020-01269-0 – ident: 23 doi: 10.1002/0471142700.nc0711s11 – ident: 16 – ident: 6 doi: 10.1038/s41565-021-00898-0 – ident: 15 doi: 10.1136/dtb.2023.000007 – ident: 1 doi: 10.1039/D3MD00487B – ident: 12 doi: 10.1016/j.bpj.2012.11.437 – ident: 4 doi: 10.1021/jacs.3c03886 – ident: 8 doi: 10.1016/j.addr.2023.114872 – ident: 9 doi: 10.1016/S0014-4827(03)00257-X – ident: 3 doi: 10.1007/978-1-4939-9504-2_14 – ident: 14 doi: 10.1007/978-1-4939-9504-2_11 – ident: 21 |
SSID | ssj0025073 |
Score | 2.4025202 |
Snippet | In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 658 |
SubjectTerms | Circular Dichroism circular dichroism (CD) spectra Cost analysis Dichroism Drug development Drugs Effectiveness medium-sized drug microsampling disk nucleic acid Nucleic acids Nucleic Acids - analysis Nucleic Acids - chemistry peptide Peptides Peptides - analysis Peptides - chemistry Product safety Quality assessment Quality control secondary structure Spectroscopic analysis Spectroscopy Spectrum analysis Structural analysis Structural integrity |
Title | The Application of Microsampling Disks in Circular Dichroism Spectroscopy for Peptide and Nucleic Acid Drugs |
URI | https://www.jstage.jst.go.jp/article/cpb/72/7/72_c24-00244/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38987173 https://www.proquest.com/docview/3093030684 https://www.proquest.com/docview/3078714629 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Chemical and Pharmaceutical Bulletin, 2024/07/11, Vol.72(7), pp.658-663 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK4IEXxDeFgYyE-tIFGseNE4mXat00jVGKlEp7ixzH3rKipGoboe3f4R_lLt8VAwEvURW7Fze_X8939t2ZkHe-qyOXaWlxphyLR56xpFFjy9heJI3PotjDbOTPM_dkwU_Px-e93o9O1FK-jd6rm1vzSv4HVbgHuGKW7D8g2wiFG_AZ8IUrIAzXv8Z40u5AF-EsGGC3kRgnnl5gbc1lEfB6mKzLgNNpoi7XGZ6MgSfPb7GWZbYqgzbnGOASl9sJMyxznKjhRCXxcLrOq9X0uqRBXWUAebO63FkVj7r1vDGwR6fwyGSdDYNNfpVUwRWTZpckkEs8zwkGvpHf5S_NU3jSTV5MFNkmXzY0LIUVi_qV_O76BeO4MGq36xenYBO0igx_YbunMJwU-ac7-tu3mFOpRF2qbIcLcKfLrOVapwvW4a64dapgHNMf1ArIhoOCkfF2TqzjAGZfwuPF2VkYHJ0Hd8hdBr4IKtNPX5utKjAhRXNcHw6tKuQK4j_sCN8xfO5dge1_oX_v1hTmTfCQPKj8EjopSfaI9HT6mAzmJbbXBzRo8_Q2B3RA523J8-sn5Bs00w4TaWboDhNpwUSapLRmIm2YSLtMpMBEWjGRAk60YiJFJtKCiU_J4vgoODyxqnM8LAX-9NaKhOMbMJRsaTNtJPeVF7GRcF3lSzEWsQET3vijyHXHMN3EgvvacKNHrjHc9bV0npG9NEv1C0KlPY5HygW7NXa40nbEjG-UzY3tC_iq6pNB_ZLDVVmuJUQ3F9AIAY0Q0AgLNPrkYwlB0636FxfdBAsFXprubSu8XVA9fbJfAxdWCmETYlABuuAeSH_bNIO6xj04meosxz4wQ4J1wvw-eV4C3owAfAcPg2Je_ln4K3K__R_tk73tOtevwTLeRm8KZv4EXGO-9g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Microsampling+Disks+in+Circular+Dichroism+Spectroscopy+for+Peptide+and+Nucleic+Acid+Drugs&rft.jtitle=Chemical+%26+pharmaceutical+bulletin&rft.au=Genichiro+Tsuji%E2%80%A0&rft.au=Takashi+Misawa%E2%80%A0&rft.au=Demizu%2C+Yosuke&rft.au=Tsuji%2C+Genichiro&rft.date=2024-07-11&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0009-2363&rft.eissn=1347-5223&rft.volume=72&rft.issue=7&rft_id=info:doi/10.1248%2Fcpb.c24-00244&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2363&client=summon |