The Impacts of Antivirals on the Coronavirus Genome Structure and Subsequent Pathogenicity, Virus Fitness and Antiviral Design
With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coro...
Saved in:
Published in | Biomedicines Vol. 8; no. 10; p. 376 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coronavirus (BCoV), which is in the same genus as SARS-CoV-2, was used as a test model and the findings were as follows. With the treatment of antiviral remdesivir, the selected BCoV variant with an altered genome structure developed resistance, but its pathogenicity was not increased in comparison to that of wild type (wt) BCoV. Under the selection pressure of innate immunity, the genome structure was also altered; however, neither resistance developed nor pathogenicity increased for the selected BCoV variant. Furthermore, both selected BCoV variants showed a better efficiency in adapting to alternative host cells than wt BCoV. In addition, the previously unidentified feature that the spike protein was a common target for mutations under different antiviral treatments might pose a problem for vaccine development because spike protein is a common target for antibody and vaccine designs. The findings derived from this fundamental research may contribute to the disease control and treatments against coronaviruses, including SARS-CoV-2. |
---|---|
AbstractList | With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coronavirus (BCoV), which is in the same genus as SARS-CoV-2, was used as a test model and the findings were as follows. With the treatment of antiviral remdesivir, the selected BCoV variant with an altered genome structure developed resistance, but its pathogenicity was not increased in comparison to that of wild type (wt) BCoV. Under the selection pressure of innate immunity, the genome structure was also altered; however, neither resistance developed nor pathogenicity increased for the selected BCoV variant. Furthermore, both selected BCoV variants showed a better efficiency in adapting to alternative host cells than wt BCoV. In addition, the previously unidentified feature that the spike protein was a common target for mutations under different antiviral treatments might pose a problem for vaccine development because spike protein is a common target for antibody and vaccine designs. The findings derived from this fundamental research may contribute to the disease control and treatments against coronaviruses, including SARS-CoV-2. With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coronavirus (BCoV), which is in the same genus as SARS-CoV-2, was used as a test model and the findings were as follows. With the treatment of antiviral remdesivir, the selected BCoV variant with an altered genome structure developed resistance, but its pathogenicity was not increased in comparison to that of wild type (wt) BCoV. Under the selection pressure of innate immunity, the genome structure was also altered; however, neither resistance developed nor pathogenicity increased for the selected BCoV variant. Furthermore, both selected BCoV variants showed a better efficiency in adapting to alternative host cells than wt BCoV. In addition, the previously unidentified feature that the spike protein was a common target for mutations under different antiviral treatments might pose a problem for vaccine development because spike protein is a common target for antibody and vaccine designs. The findings derived from this fundamental research may contribute to the disease control and treatments against coronaviruses, including SARS-CoV-2.With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and whether the surviving viruses have altered their characteristics are also unanswered questions with medical importance. To this end, bovine coronavirus (BCoV), which is in the same genus as SARS-CoV-2, was used as a test model and the findings were as follows. With the treatment of antiviral remdesivir, the selected BCoV variant with an altered genome structure developed resistance, but its pathogenicity was not increased in comparison to that of wild type (wt) BCoV. Under the selection pressure of innate immunity, the genome structure was also altered; however, neither resistance developed nor pathogenicity increased for the selected BCoV variant. Furthermore, both selected BCoV variants showed a better efficiency in adapting to alternative host cells than wt BCoV. In addition, the previously unidentified feature that the spike protein was a common target for mutations under different antiviral treatments might pose a problem for vaccine development because spike protein is a common target for antibody and vaccine designs. The findings derived from this fundamental research may contribute to the disease control and treatments against coronaviruses, including SARS-CoV-2. |
Author | Tsai, Tsung-Lin Wu, Hung-Yi Lo, Chen-Yu Wang, Meilin Ou, Shan-Chia Yang, Cheng-Yao Lin, Ching-Hung |
AuthorAffiliation | 3 Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; wml@csmu.edu.tw 1 Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; tw23whale@hotmail.com (C.-H.L.); yangchengyao@nchu.edu.tw (C.-Y.Y.); axfbji7917@gmail.com (C.-Y.L.); windtaker10@msn.com (T.-L.T.) 2 Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; scou@dragon.nchu.edu.tw |
AuthorAffiliation_xml | – name: 3 Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; wml@csmu.edu.tw – name: 2 Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; scou@dragon.nchu.edu.tw – name: 1 Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; tw23whale@hotmail.com (C.-H.L.); yangchengyao@nchu.edu.tw (C.-Y.Y.); axfbji7917@gmail.com (C.-Y.L.); windtaker10@msn.com (T.-L.T.) |
Author_xml | – sequence: 1 givenname: Ching-Hung orcidid: 0000-0003-3880-1148 surname: Lin fullname: Lin, Ching-Hung – sequence: 2 givenname: Cheng-Yao orcidid: 0000-0002-8694-9561 surname: Yang fullname: Yang, Cheng-Yao – sequence: 3 givenname: Shan-Chia orcidid: 0000-0002-0857-9008 surname: Ou fullname: Ou, Shan-Chia – sequence: 4 givenname: Meilin surname: Wang fullname: Wang, Meilin – sequence: 5 givenname: Chen-Yu surname: Lo fullname: Lo, Chen-Yu – sequence: 6 givenname: Tsung-Lin orcidid: 0000-0002-7585-0574 surname: Tsai fullname: Tsai, Tsung-Lin – sequence: 7 givenname: Hung-Yi orcidid: 0000-0002-1260-6259 surname: Wu fullname: Wu, Hung-Yi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32987828$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktrVDEUDlKxtfYXCBJw48LRk8d9ZCOU0daBgkKr23Bubu5MhplkTHIL3fjbzczUoS1iNknO-b7vPF-SIx-8JeQ1gw9CKPjYubC2vTPO29QyANHUz8gJ57yZKKjU0YP3MTlLaQnlKCZaJl-QY8FV27S8PSG_bxaWztYbNDnRMNBzn92ti7gqP09zcU5DDB6LbUz00voSll7nOJo8RkvR9_R67JL9NVqf6XfMizC3vuSV797TnzvShcslybTDHuTpZ5vc3L8iz4cSy57d36fkx8WXm-nXydW3y9n0_GpipFJ5ggq6wQgLEgbeSoucG8XrpoeuRVMPHYoaOEopWNsOrKv7vmUIjQDJJAgQp2S21-0DLvUmujXGOx3Q6Z0hxLnGmJ1ZWY1VXalBoh0aKQF5V_NqQDSdUqIBwKL1aa-1GbsyA1MKLwU9En3s8W6h5-FWNzWwiosi8O5eIIbSt5T12iVjVyv0NoxJcykbwZgUW-jbJ9BlGKMvrdK8krWqGuCyoN48zOiQyt8xF4DYA0wMKUU7HCAM9Haf9D_2qbDUE1YZK2YXtmW51X-5fwCQftX5 |
CitedBy_id | crossref_primary_10_3390_photonics8100414 crossref_primary_10_1186_s12985_023_02231_8 crossref_primary_10_1093_ofid_ofab217 crossref_primary_10_1099_jgv_0_001920 |
Cites_doi | 10.1128/JVI.76.1.463-465.2002 10.1016/j.chom.2012.10.008 10.1073/pnas.1809667116 10.1126/scitranslmed.aal3653 10.1111/j.1365-2893.2011.01494.x 10.1128/JVI.01162-18 10.1016/j.onehlt.2020.100128 10.1016/0092-8674(78)90223-4 10.1371/journal.ppat.1003343 10.1128/mBio.00221-18 10.1002/hep.20723 10.1007/s10096-016-2809-3 10.1080/03079459708419194 10.1111/j.1462-5822.2010.01475.x 10.1053/j.gastro.2006.12.008 10.1038/s41392-020-0190-2 10.1073/pnas.1922083117 10.1016/j.jcv.2011.03.009 10.1016/0042-6822(87)90312-6 10.1056/NEJMoa1211721 10.1073/pnas.1101515108 10.1128/JVI.01067-13 10.1086/650464 10.1128/jvi.66.2.1129-1138.1992 10.1128/jvi.42.2.700-707.1982 10.1056/NEJMoa2007764 10.1371/journal.pone.0007789 10.1128/jvi.71.2.1089-1096.1997 10.1016/j.vaccine.2008.01.006 10.1073/pnas.96.24.13910 10.1371/journal.pone.0070548 10.1073/pnas.1000378107 10.1038/s41422-020-0282-0 10.1093/jac/dkq387 10.1038/nature08694 10.1093/jac/dkp422 10.3892/mmr.2016.4848 10.1056/NEJMoa2001017 10.1128/JVI.06540-11 10.1128/JVI.00459-07 10.1038/s41467-017-00354-5 10.1128/JVI.80.5.2183-2193.2006 10.1093/jnci/52.4.1101 10.1128/JVI.01473-18 10.1126/science.1087139 10.3390/vaccines8020330 10.1517/13543784.17.3.303 10.1128/AAC.01578-13 10.1038/scientificamerican0793-42 10.1099/0022-1317-56-2-451 10.1016/S0065-3527(06)66005-3 10.1146/annurev-virology-100114-055218 10.1371/journal.pbio.0030381 10.1126/science.287.5453.646 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/biomedicines8100376 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_a5659f4aef7440a2b625faacb993700a PMC7601523 32987828 10_3390_biomedicines8100376 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: 106-2313-B-005-046-MY3 and 109-2313-B-005 -013 -MY3 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c499t-a90bfc3e040f284ea22c9267d0b8ac6fba3602a443188f1b6dd81a07304140303 |
IEDL.DBID | BENPR |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 13:16:50 EDT 2025 Fri Jul 11 04:56:47 EDT 2025 Fri Jul 25 12:02:11 EDT 2025 Mon Jul 21 05:51:37 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 03:16:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | pathogenicity innate immunity antiviral drug spike protein coronavirus genome structure remdesivir |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-a90bfc3e040f284ea22c9267d0b8ac6fba3602a443188f1b6dd81a07304140303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8694-9561 0000-0002-7585-0574 0000-0002-1260-6259 0000-0003-3880-1148 0000-0002-0857-9008 |
OpenAccessLink | https://www.proquest.com/docview/2546957024?pq-origsite=%requestingapplication% |
PMID | 32987828 |
PQID | 2546957024 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5659f4aef7440a2b625faacb993700a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7601523 proquest_miscellaneous_2447311433 proquest_journals_2546957024 pubmed_primary_32987828 crossref_primary_10_3390_biomedicines8100376 crossref_citationtrail_10_3390_biomedicines8100376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200924 |
PublicationDateYYYYMMDD | 2020-09-24 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200924 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cavanagh (ref_57) 1997; 26 Woo (ref_4) 2012; 86 Robinson (ref_19) 2011; 108 Sola (ref_6) 2015; 2 Zaki (ref_8) 2012; 367 Zhu (ref_9) 2020; 382 ref_58 Alonso (ref_27) 2011; 51 ref_53 Ellis (ref_56) 2018; 92 McKinley (ref_55) 2008; 26 Domingo (ref_39) 1978; 13 Draghi (ref_42) 2010; 463 Sheahan (ref_13) 2017; 9 ref_15 Wu (ref_47) 2006; 80 Xiao (ref_36) 2017; 8 Eigen (ref_40) 1993; 269 Brunelle (ref_22) 2005; 41 Tsai (ref_45) 2018; 92 Montville (ref_43) 2005; 3 Loo (ref_30) 2007; 27 Yoon (ref_34) 2007; 132 Wang (ref_14) 2020; 30 Hermisson (ref_41) 2003; 57 Schmolke (ref_32) 2010; 12 Guan (ref_7) 2003; 302 Vautherot (ref_52) 1981; 56 ref_26 Renzette (ref_29) 2014; 88 Brian (ref_2) 2005; 287 Cahn (ref_17) 2010; 65 Lauring (ref_44) 2012; 12 Masters (ref_5) 2006; 66 Agostini (ref_11) 2018; 9 King (ref_49) 1982; 42 ref_33 Kossyvakis (ref_25) 2017; 36 Wu (ref_46) 2010; 107 Hulswit (ref_54) 2019; 116 Amirian (ref_10) 2020; 9 Koev (ref_18) 2008; 17 Chen (ref_3) 2020; 5 Chotiyaputta (ref_16) 2012; 19 Falkowska (ref_35) 2007; 81 Bean (ref_31) 1992; 66 Domingo (ref_38) 2002; 76 Lapps (ref_50) 1987; 157 Jiang (ref_23) 2013; 57 Croteau (ref_24) 1997; 71 Drake (ref_37) 1999; 96 Chen (ref_51) 2016; 13 Tompkins (ref_48) 1974; 52 Sanders (ref_20) 2011; 66 ref_1 Feldmann (ref_12) 2020; 117 Hazuda (ref_21) 2000; 287 Baz (ref_28) 2010; 201 |
References_xml | – volume: 76 start-page: 463 year: 2002 ident: ref_38 article-title: Quasispecies theory in virology publication-title: J. Virol. doi: 10.1128/JVI.76.1.463-465.2002 – volume: 12 start-page: 623 year: 2012 ident: ref_44 article-title: Codon Usage Determines the Mutational Robustness, Evolutionary Capacity, and Virulence of an RNA Virus publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.10.008 – volume: 116 start-page: 2681 year: 2019 ident: ref_54 article-title: Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1809667116 – volume: 9 start-page: eaal3653 year: 2017 ident: ref_13 article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aal3653 – volume: 287 start-page: 1 year: 2005 ident: ref_2 article-title: Coronavirus genome structure and replication publication-title: Curr. Top Microbiol. Immunol. – volume: 19 start-page: 205 year: 2012 ident: ref_16 article-title: Adherence to nucleos(t)ide analogues for chronic hepatitis B in clinical practice and correlation with virological breakthroughs publication-title: J. Viral Hepat. doi: 10.1111/j.1365-2893.2011.01494.x – volume: 92 start-page: e011162-18 year: 2018 ident: ref_45 article-title: Interplay between the poly(A) tail, poly(A)-binding protein and coronavirus nucleocapsid protein regulates gene expression of the coronavirus and host cell publication-title: J. Virol. doi: 10.1128/JVI.01162-18 – volume: 9 start-page: 100128 year: 2020 ident: ref_10 article-title: Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses publication-title: One Health Amst. doi: 10.1016/j.onehlt.2020.100128 – ident: ref_1 – volume: 13 start-page: 735 year: 1978 ident: ref_39 article-title: Nucleotide-Sequence Heterogeneity of an Rna Phage Population publication-title: Cell doi: 10.1016/0092-8674(78)90223-4 – ident: ref_26 doi: 10.1371/journal.ppat.1003343 – volume: 9 start-page: e00221-18 year: 2018 ident: ref_11 article-title: Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease publication-title: Mbio doi: 10.1128/mBio.00221-18 – volume: 41 start-page: 1391 year: 2005 ident: ref_22 article-title: Susceptibility to antivirals of a human HBV strain with mutations conferring resistance to both lamivudine and adefovir publication-title: Hepatology doi: 10.1002/hep.20723 – volume: 36 start-page: 361 year: 2017 ident: ref_25 article-title: Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment publication-title: Eur. J. Clin. Microbiol. doi: 10.1007/s10096-016-2809-3 – volume: 26 start-page: 63 year: 1997 ident: ref_57 article-title: Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo publication-title: Avian Pathol. doi: 10.1080/03079459708419194 – volume: 12 start-page: 873 year: 2010 ident: ref_32 article-title: Evasion of innate and adaptive immune responses by influenza A virus publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2010.01475.x – volume: 132 start-page: 667 year: 2007 ident: ref_34 article-title: Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.12.008 – volume: 5 start-page: 89 year: 2020 ident: ref_3 article-title: Overview of lethal human coronaviruses publication-title: Signal Transduct. Target. doi: 10.1038/s41392-020-0190-2 – volume: 117 start-page: 6771 year: 2020 ident: ref_12 article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1922083117 – volume: 51 start-page: 150 year: 2011 ident: ref_27 article-title: Resistance and virulence mutations in patients with persistent infection by pandemic 2009 A/H1N1 influenza publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2011.03.009 – volume: 157 start-page: 47 year: 1987 ident: ref_50 article-title: Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes publication-title: Virology doi: 10.1016/0042-6822(87)90312-6 – volume: 367 start-page: 1814 year: 2012 ident: ref_8 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 108 start-page: 10290 year: 2011 ident: ref_19 article-title: Preexisting drug-resistance mutations reveal unique barriers to resistance for distinct antivirals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1101515108 – volume: 88 start-page: 272 year: 2014 ident: ref_29 article-title: Evolution of the Influenza A Virus Genome during Development of Oseltamivir Resistance In Vitro publication-title: J. Virol. doi: 10.1128/JVI.01067-13 – volume: 201 start-page: 740 year: 2010 ident: ref_28 article-title: Effect of the Neuraminidase Mutation H274Y Conferring Resistance to Oseltamivir on the Replicative Capacity and Virulence of Old and Recent Human Influenza A(H1N1) Viruses publication-title: J. Infect. Dis. doi: 10.1086/650464 – volume: 66 start-page: 1129 year: 1992 ident: ref_31 article-title: Evolution of the H3 Influenza-Virus Hemagglutinin from Human and Nonhuman Hosts publication-title: J. Virol. doi: 10.1128/jvi.66.2.1129-1138.1992 – volume: 42 start-page: 700 year: 1982 ident: ref_49 article-title: Bovine coronavirus structural proteins publication-title: J. Virol. doi: 10.1128/jvi.42.2.700-707.1982 – ident: ref_15 doi: 10.1056/NEJMoa2007764 – ident: ref_33 doi: 10.1371/journal.pone.0007789 – volume: 71 start-page: 1089 year: 1997 ident: ref_24 article-title: Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors publication-title: J. Virol. doi: 10.1128/jvi.71.2.1089-1096.1997 – volume: 26 start-page: 1274 year: 2008 ident: ref_55 article-title: Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination publication-title: Vaccine doi: 10.1016/j.vaccine.2008.01.006 – volume: 96 start-page: 13910 year: 1999 ident: ref_37 article-title: Mutation rates among RNA viruses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.24.13910 – ident: ref_53 doi: 10.1371/journal.pone.0070548 – volume: 107 start-page: 12257 year: 2010 ident: ref_46 article-title: Subgenomic messenger RNA amplification in coronaviruses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1000378107 – volume: 30 start-page: 269 year: 2020 ident: ref_14 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – volume: 66 start-page: 15 year: 2011 ident: ref_20 article-title: Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkq387 – volume: 463 start-page: 353 year: 2010 ident: ref_42 article-title: Mutational robustness can facilitate adaptation publication-title: Nature doi: 10.1038/nature08694 – volume: 65 start-page: 213 year: 2010 ident: ref_17 article-title: Resistance profile of the new nucleoside reverse transcriptase inhibitor apricitabine publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkp422 – volume: 13 start-page: 2689 year: 2016 ident: ref_51 article-title: Poly (I:C) transfection induces mitochondrial-mediated apoptosis in cervical cancer publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2016.4848 – volume: 57 start-page: 1959 year: 2003 ident: ref_41 article-title: Perspective: Evolution and detection of genetic robustness publication-title: Evolution – volume: 382 start-page: 727 year: 2020 ident: ref_9 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 86 start-page: 3995 year: 2012 ident: ref_4 article-title: Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus publication-title: J. Virol. doi: 10.1128/JVI.06540-11 – volume: 81 start-page: 8072 year: 2007 ident: ref_35 article-title: Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization publication-title: J. Virol. doi: 10.1128/JVI.00459-07 – volume: 8 start-page: 375 year: 2017 ident: ref_36 article-title: Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-017-00354-5 – volume: 80 start-page: 2183 year: 2006 ident: ref_47 article-title: Bovine coronavirus 5’-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide publication-title: J. Virol. doi: 10.1128/JVI.80.5.2183-2193.2006 – volume: 52 start-page: 1101 year: 1974 ident: ref_48 article-title: Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/52.4.1101 – volume: 92 start-page: e01473-18 year: 2018 ident: ref_56 article-title: Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo publication-title: J. Virol. doi: 10.1128/JVI.01473-18 – volume: 302 start-page: 276 year: 2003 ident: ref_7 article-title: Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China publication-title: Science doi: 10.1126/science.1087139 – ident: ref_58 doi: 10.3390/vaccines8020330 – volume: 17 start-page: 303 year: 2008 ident: ref_18 article-title: The emerging field of HCV drug resistance publication-title: Expert Opin. Investig. Drugs doi: 10.1517/13543784.17.3.303 – volume: 57 start-page: 6236 year: 2013 ident: ref_23 article-title: In Vitro Phenotypic Characterization of Hepatitis C Virus NS3 Protease Variants Observed in Clinical Studies of Telaprevir publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01578-13 – volume: 27 start-page: 697 year: 2007 ident: ref_30 article-title: Distinct RIG-I and MDA5 signaling regulation by RNA viruses in innate immunity publication-title: J. Virol. – volume: 269 start-page: 42 year: 1993 ident: ref_40 article-title: Viral quasispecies publication-title: Sci. Am. doi: 10.1038/scientificamerican0793-42 – volume: 56 start-page: 451 year: 1981 ident: ref_52 article-title: Plaque-Assay for Titration of Bovine Enteric Coronavirus publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-56-2-451 – volume: 66 start-page: 193 year: 2006 ident: ref_5 article-title: The molecular biology of coronaviruses publication-title: Adv. Virus Res. doi: 10.1016/S0065-3527(06)66005-3 – volume: 2 start-page: 265 year: 2015 ident: ref_6 article-title: Continuous and Discontinuous RNA Synthesis in Coronaviruses publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-100114-055218 – volume: 3 start-page: 1939 year: 2005 ident: ref_43 article-title: Evolution of mutational robustness in an RNA virus publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030381 – volume: 287 start-page: 646 year: 2000 ident: ref_21 article-title: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells publication-title: Science doi: 10.1126/science.287.5453.646 |
SSID | ssj0000913814 |
Score | 2.1432717 |
Snippet | With the global threat of SARS-CoV-2, much effort has been focused on treatment and disease control. However, how coronaviruses react to the treatments and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 376 |
SubjectTerms | Antiviral agents antiviral drug Coronaviridae coronavirus Coronaviruses COVID-19 Disease control genome structure Genomes Innate immunity Medical importance Medical treatment Middle East respiratory syndrome Mutation Pathogenicity remdesivir Severe acute respiratory syndrome coronavirus 2 Spike protein Vaccine development Vaccines Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM9AQUbi2KiJ7XXsYyksBQmEBEW9RX6KSpUXsdlDL_x2Zpw02kUVXDjGsR0_xp5v4vE3AK-8MV3ii1i3LqGBIlysEYWIOiD4SIjmQlMo8z9-Uqdn8sP54nwr1Bf5hI30wOPAHVlEHCZJGxNR2VnuELAna70jxdo0BRqhztsypsoejN_TrRxphgTa9UfjbfZyWr3WLdGuqB1VVBj7b4KZf3pLbqmf5T24O-FGdjy2dx9uxXwf7myxCT6AXzjl7H259bhmq8SOM0WGwLrwKTMEeuyE6Aospm3W7F3M2FT2pfDHbn5GZnNgtI0U3-qBfUZouELpwr4MV4fsWym0vBhoayx55-rZm-IF8hDOlm-_npzWU3iF2qOZM9TWNC55EXEZJ1RS0XLuDVddaJy2XiVnhWq4lQgxtE6tUyHo1tKWIInkrxGPYC-vcnwCzLgQLVl2wSvpZWdSS7xfxqdGBa1sBfx6pHs_cY9TCIzLHm0Qmp7-hump4HAu9GOk3vh79tc0hXNW4s0uCShN_SRN_b-kqYKDawHop8W87ilkgFl0iGYqeDm_xmVIZys2x9UG80jZCbQthajg8Sgvc0sENxqBmK6g25GknabuvskX3wvVN3ksLbh4-j_69gxuc_pZUI7UDmAP5Ss-R0Q1uBdl8fwGtTcjmg priority: 102 providerName: Directory of Open Access Journals |
Title | The Impacts of Antivirals on the Coronavirus Genome Structure and Subsequent Pathogenicity, Virus Fitness and Antiviral Design |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32987828 https://www.proquest.com/docview/2546957024 https://www.proquest.com/docview/2447311433 https://pubmed.ncbi.nlm.nih.gov/PMC7601523 https://doaj.org/article/a5659f4aef7440a2b625faacb993700a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KqYzEsVETO-vYJ9SWLgWJqgKKeov8LJWQ0zbZAxd-OzNONnRR1WMSJ3IyD38znnxDyDurVB3Y3OelCRCgcONzQCE8dwA-AqA5VyTK_C_H4ui0-nw2PxsTbt1YVrnyiclRu9ZijnwXedvVvIYl5f3lVY5do3B3dWyhcZ9sgAuWckY29g-PT75OWRZkvZRlNdANcYjvd4e_2tOudSdLpF8Ra0tSYu6_DW7-XzV5YxlaPCaPRvxI9waBPyH3fHxKHt5gFXxG_oDo6af092NH20D3InaIgGfBUaQA-OgB0hZoOLfs6EcfYar0W-KRXV57qqOj6E5SjXVPTwAitqBl8C797x36I920uOjRRaax0-Pph1QN8pycLg6_HxzlY5uF3EK40-daFSZY7sGcAyxWXjNmFRO1K4zUVgSjuSiYrgBqSBlKI5yTpUbXUCHZX8FfkFlso39FqDLOa4zwnBWVrWoVSuT_UjYUwkmhM8JWX7qxIwc5tsL41UAsguJpbhFPRnammy4HCo67h--jCKehyJ-dTrTX581ojo0GHKtCpX1AgkTNDISBQWtrEK4VBUx0a6UAzWjUXfNPBTPydroM5oh7LDr6dgljqqrmEGNynpGXg75MM-FMSQBkMiP1miatTXX9Srz4mSi_sXJpzvjm3dN6TR4wTAekTbMtMgPN8W8AM_VmezSM7ZRz-AtvFh0P |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4EChgJbo2a2NkkPiDU17JL21UFLeotdRybVqqS0mSFeuEn8RuZcbKhi6reekwysZzMw9_48Q3Aey1lYvnQ-GFuMUERufERhQi_QPBhEc0VgaPM35vG48Poy9HwaAn-zM_C0LbKeUx0gbqoNM2RrxFvuxwmOKR8Ov_pU9UoWl2dl9BozWLHXP7ClK3-ONlC_X7gfLR9sDn2u6oCvkZ03_hKBrnVwqD1WozNRnGuJY-TIshTpWObKxEHXEU4sqapDfO4KNJQkSdExG0XCGz3DixHJDWA5Y3t6f7XflaHWDbTMGrpjYSQwVp7it6tktdpSHQv8cIQ6CoFXAdv_9-leWXYGz2EBx1eZeutgT2CJVM-hvtXWAyfwG80NTZxpy1rVlm2XlJFCmwLr0qGAJNtEk2Cwnuzmn02JXaVfXO8tbMLw1RZMApfbk93w_YRklZo1fgtzeUq--5eGp02FJKdbN8823K7T57C4a0o4BkMyqo0L4DJvDCKMspCx5GOEmlD4huT2gZxkcbKAz7_05nuOM-p9MZZhrkPqSe7Rj0erPYvnbeUHzeLb5AKe1Hi63Y3qosfWef-mULcLG2kjCVCRsVzTDutUjoneBgE2NGVuQFkXRCps38m78G7_jG6P63pqNJUM5SJokRgTiuEB89be-l7IrhMEQCmHiQLlrTQ1cUn5emJoxinnVJDLl7e3K23cHd8sLeb7U6mO6_gHqepCLdgtwIDtCLzGvFak7_pnITB8W375V_bD1e7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAkuDXaxM4m8QGhttulS2G1Aop6C45jt5VQUrpZoV74Yfw6ZpwHXVT11mMSx5pkxuNv7PE3AK-1lInlI-OHucUAReTGRxQi_ALBh0U0VwSOMv_TLN47iD4cjg7X4E93FobSKjuf6Bx1UWlaIx8Sb7scJTilDG2bFjEfT96d_vSpghTttHblNBoT2TfnvzB8W7ydjlHXbzif7H7d2fPbCgO-RqRf-0oGudXCoCVb9NNGca4lj5MiyFOlY5srEQdcRTjLpqkN87go0lDRqIiI5y4Q2O8NWE8oKhrA-vbubP65X-Ehxs00jBqqIyFkMGxO1Lsd80UaEvVLvDIduqoBl0Hd_zM2L0yBk7twp8WubKsxtnuwZsr7cPsCo-ED-I1mx6bu5OWCVZZtlVSdAvvCq5Ih2GQ7RJmg8N5ywd6bEkVlXxyH7fLMMFUWjFyZy--u2RzhaYUWjt9Sn2-yb-6lyUlN7tm17btnY5eJ8hAOrkUBj2BQVqV5AkzmhVEUXRY6jnSUSBsS95jUNoiLNFYe8O5PZ7rlP6cyHD8yjINIPdkl6vFgs3_ptKH_uLr5Nqmwb0rc3e5GdXaUta4gU4ihpY2UsUTOqHiOIahVSucEFYMABd3oDCBrHcoi-2f-HrzqH6MroP0dVZpqiW2iKBEY3wrhwePGXnpJBJcpgsHUg2TFklZEXX1Snhw7unHKmhpx8fRqsV7CTRyP2cfpbP8Z3OK0KuH27jZggEZkniN0q_MX7Rhh8P26h-Vfl1Nb8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impacts+of+Antivirals+on+the+Coronavirus+Genome+Structure+and+Subsequent+Pathogenicity%2C+Virus+Fitness+and+Antiviral+Design&rft.jtitle=Biomedicines&rft.au=Lin%2C+Ching-Hung&rft.au=Yang%2C+Cheng-Yao&rft.au=Ou%2C+Shan-Chia&rft.au=Wang%2C+Meilin&rft.date=2020-09-24&rft.issn=2227-9059&rft.volume=8&rft.issue=10&rft_id=info:doi/10.3390%2Fbiomedicines8100376&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |