Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic reso...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 184; no. 13; pp. 3542 - 3558.e16
Main Authors Qin, Peng, Lu, Hongwei, Du, Huilong, Wang, Hao, Chen, Weilan, Chen, Zhuo, He, Qiang, Ou, Shujun, Zhang, Hongyu, Li, Xuanzhao, Li, Xiuxiu, Li, Yan, Liao, Yi, Gao, Qiang, Tu, Bin, Yuan, Hua, Ma, Bingtian, Wang, Yuping, Qian, Yangwen, Fan, Shijun, Li, Weitao, Wang, Jing, He, Min, Yin, Junjie, Li, Ting, Jiang, Ning, Chen, Xuewei, Liang, Chengzhi, Li, Shigui
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research. [Display omitted] •De novo assembly of 31 high-quality genomes for genetically diverse accessions•Pan-genome-scale resources and a graph-based genome reveal hidden SVs and gCNVs•The derived state of O. sativa SVs was inferred using the O. glaberrima assembly•SVs and gCNVs have shaped gene expression profiles and agronomic trait variations A high-quality rice pan-genome of genetically diverse rice accessions is constructed through de novo genome assemblies, demonstrating the impact of structural variation and gene copy number variations on environmental adaptations and agronomic traits.
AbstractList Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.
Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.
Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research. [Display omitted] •De novo assembly of 31 high-quality genomes for genetically diverse accessions•Pan-genome-scale resources and a graph-based genome reveal hidden SVs and gCNVs•The derived state of O. sativa SVs was inferred using the O. glaberrima assembly•SVs and gCNVs have shaped gene expression profiles and agronomic trait variations A high-quality rice pan-genome of genetically diverse rice accessions is constructed through de novo genome assemblies, demonstrating the impact of structural variation and gene copy number variations on environmental adaptations and agronomic traits.
Author Chen, Zhuo
Li, Weitao
Du, Huilong
Liao, Yi
Li, Xuanzhao
He, Min
Qin, Peng
Li, Yan
He, Qiang
Wang, Yuping
Li, Ting
Chen, Weilan
Fan, Shijun
Yin, Junjie
Gao, Qiang
Chen, Xuewei
Tu, Bin
Zhang, Hongyu
Li, Shigui
Ou, Shujun
Liang, Chengzhi
Qian, Yangwen
Jiang, Ning
Wang, Jing
Li, Xiuxiu
Yuan, Hua
Lu, Hongwei
Ma, Bingtian
Wang, Hao
Author_xml – sequence: 1
  givenname: Peng
  surname: Qin
  fullname: Qin, Peng
  email: qinpeng@sicau.edu.cn
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Hongwei
  surname: Lu
  fullname: Lu, Hongwei
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Huilong
  surname: Du
  fullname: Du, Huilong
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Weilan
  surname: Chen
  fullname: Chen, Weilan
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Zhuo
  surname: Chen
  fullname: Chen, Zhuo
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Qiang
  surname: He
  fullname: He, Qiang
  organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
– sequence: 8
  givenname: Shujun
  surname: Ou
  fullname: Ou, Shujun
  organization: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
– sequence: 9
  givenname: Hongyu
  surname: Zhang
  fullname: Zhang, Hongyu
  organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
– sequence: 10
  givenname: Xuanzhao
  surname: Li
  fullname: Li, Xuanzhao
  organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
– sequence: 11
  givenname: Xiuxiu
  surname: Li
  fullname: Li, Xiuxiu
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 12
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 13
  givenname: Yi
  orcidid: 0000-0002-7724-1799
  surname: Liao
  fullname: Liao, Yi
  organization: Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
– sequence: 14
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 15
  givenname: Bin
  surname: Tu
  fullname: Tu, Bin
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 16
  givenname: Hua
  surname: Yuan
  fullname: Yuan, Hua
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 17
  givenname: Bingtian
  surname: Ma
  fullname: Ma, Bingtian
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 18
  givenname: Yuping
  surname: Wang
  fullname: Wang, Yuping
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 19
  givenname: Yangwen
  surname: Qian
  fullname: Qian, Yangwen
  organization: Biogle Genome Editing Center, Changzhou, Jiangsu, China
– sequence: 20
  givenname: Shijun
  surname: Fan
  fullname: Fan, Shijun
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 21
  givenname: Weitao
  surname: Li
  fullname: Li, Weitao
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 22
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 23
  givenname: Min
  surname: He
  fullname: He, Min
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 24
  givenname: Junjie
  surname: Yin
  fullname: Yin, Junjie
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 25
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 26
  givenname: Ning
  surname: Jiang
  fullname: Jiang, Ning
  organization: Department of Horticulture, Michigan State University, East Lansing, MI, USA
– sequence: 27
  givenname: Xuewei
  surname: Chen
  fullname: Chen, Xuewei
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
– sequence: 28
  givenname: Chengzhi
  orcidid: 0000-0001-8913-3552
  surname: Liang
  fullname: Liang, Chengzhi
  email: cliang@genetics.ac.cn
  organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
– sequence: 29
  givenname: Shigui
  surname: Li
  fullname: Li, Shigui
  email: lishigui@sicau.edu.cn
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34051138$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVIaTZp_0AORcdevNW3ZcglhPQDAu0hdyGPxokWr5xK3oX995GzyaWHFAYGhud9h3nnnJymKSEhl5ytOePm22YNOI5rwQRfM1XLnJAVZ13bKN6KU7JirBONNa06I-elbBhjVmv9kZxJxTTn0q6I--NT84Bp2iL1yY-HEgudBiolrVOcI_hxPNAQ95gL0hyhcgBYSpxSoRn36MdCH2MImOiLUQS69zn6eSE-kQ9DBfDza78g999v729-Nne_f_y6ub5rQHXd3HjLUfYd75Vse279IEQwxrCWmxC0lLaz2GvgagAwhusgLbRes84PTCDIC_L1aPuUp787LLPbxrKk4xNOu-KEkUZJ3bX2_6iWyvC6cEG_vKK7fovBPeW49fng3uKrgD0CkKdSMg4O4vxy-Jx9HB1nbvmU27hlgVs-5ZiqZapU_CN9c39XdHUUYY1yHzG7AhETYIgZYXZhiu_JnwHLHaw9
CitedBy_id crossref_primary_10_1038_s41477_022_01238_3
crossref_primary_10_1093_genetics_iyac019
crossref_primary_10_1111_tpj_15553
crossref_primary_10_1016_j_tplants_2024_03_007
crossref_primary_10_1007_s00122_021_03965_1
crossref_primary_10_1016_j_tplants_2022_03_002
crossref_primary_10_1038_s41477_024_01866_x
crossref_primary_10_1111_pce_14557
crossref_primary_10_3390_ijms23179705
crossref_primary_10_1007_s11427_022_2233_x
crossref_primary_10_3389_fpls_2021_729560
crossref_primary_10_1038_s41588_024_01760_4
crossref_primary_10_1186_s13100_025_00347_y
crossref_primary_10_1016_j_gene_2022_147081
crossref_primary_10_1111_jipb_13413
crossref_primary_10_1038_s41467_023_43009_4
crossref_primary_10_1038_s41477_025_01905_1
crossref_primary_10_1016_j_jgg_2023_05_009
crossref_primary_10_1038_s41588_024_01964_8
crossref_primary_10_1038_s41467_024_53718_z
crossref_primary_10_1016_j_csbj_2022_01_030
crossref_primary_10_3389_fpls_2023_1134308
crossref_primary_10_3389_fpls_2022_1059804
crossref_primary_10_1016_j_agrcom_2024_100039
crossref_primary_10_1093_hr_uhad197
crossref_primary_10_1016_j_hpj_2024_05_005
crossref_primary_10_1111_mec_17088
crossref_primary_10_1186_s13059_024_03288_6
crossref_primary_10_1038_s41467_024_52376_5
crossref_primary_10_1093_plphys_kiae357
crossref_primary_10_1270_jsbbs_23077
crossref_primary_10_3390_biology11030369
crossref_primary_10_1016_j_jare_2024_11_005
crossref_primary_10_3390_ijms25179677
crossref_primary_10_3390_plants11111498
crossref_primary_10_1099_mgen_0_001328
crossref_primary_10_3390_genes14101850
crossref_primary_10_1093_bioinformatics_btad121
crossref_primary_10_1038_s41467_023_41220_x
crossref_primary_10_1016_j_forsciint_2025_112370
crossref_primary_10_3389_fpls_2024_1371222
crossref_primary_10_1111_jse_13007
crossref_primary_10_1111_pce_14889
crossref_primary_10_1038_s41467_023_43270_7
crossref_primary_10_3390_plants12040899
crossref_primary_10_1038_s41467_024_45244_9
crossref_primary_10_3389_fgene_2022_1029879
crossref_primary_10_1126_science_adm8762
crossref_primary_10_1038_s41598_024_58224_2
crossref_primary_10_3390_genes13071112
crossref_primary_10_1111_age_13288
crossref_primary_10_1002_advs_202401549
crossref_primary_10_3389_fpls_2023_1216505
crossref_primary_10_3389_fpls_2022_979540
crossref_primary_10_1016_j_tplants_2021_10_006
crossref_primary_10_1111_ppl_14392
crossref_primary_10_1186_s12864_023_09137_3
crossref_primary_10_1016_j_csbj_2023_06_012
crossref_primary_10_1038_s41467_023_40189_x
crossref_primary_10_1146_annurev_genet_022123_110824
crossref_primary_10_1093_pcp_pcac073
crossref_primary_10_1186_s13059_024_03359_8
crossref_primary_10_3390_ijms22169040
crossref_primary_10_1007_s10722_024_02262_2
crossref_primary_10_1186_s13059_023_03017_5
crossref_primary_10_1016_j_jia_2024_07_047
crossref_primary_10_1016_j_xplc_2024_101071
crossref_primary_10_1038_s41467_023_42394_0
crossref_primary_10_1038_s42003_025_07749_x
crossref_primary_10_7554_eLife_86324
crossref_primary_10_1016_j_molp_2022_10_009
crossref_primary_10_1016_j_xplc_2024_101196
crossref_primary_10_1111_tpj_16070
crossref_primary_10_1111_tpj_17011
crossref_primary_10_1186_s12870_022_03846_9
crossref_primary_10_1093_jxb_erac412
crossref_primary_10_1016_j_rsci_2024_02_001
crossref_primary_10_1186_s13059_024_03470_w
crossref_primary_10_1016_j_cj_2022_02_006
crossref_primary_10_1038_s43016_023_00742_9
crossref_primary_10_1016_j_tplants_2025_02_005
crossref_primary_10_1093_hr_uhad200
crossref_primary_10_1016_j_molp_2023_03_002
crossref_primary_10_1016_j_xplc_2024_101044
crossref_primary_10_1038_s41467_022_33366_x
crossref_primary_10_1016_j_molp_2024_03_009
crossref_primary_10_1093_nar_gkad840
crossref_primary_10_1016_j_xplc_2022_100352
crossref_primary_10_3390_genes13050834
crossref_primary_10_1016_j_molp_2023_07_009
crossref_primary_10_1093_hr_uhad202
crossref_primary_10_1093_hr_uhad203
crossref_primary_10_1016_j_xplc_2023_100599
crossref_primary_10_3389_fpls_2022_1065449
crossref_primary_10_1038_s41477_025_01942_w
crossref_primary_10_3390_genes13040598
crossref_primary_10_1111_nph_19799
crossref_primary_10_3389_fpls_2022_905982
crossref_primary_10_1016_j_rsci_2024_12_004
crossref_primary_10_1038_s41477_021_01019_4
crossref_primary_10_3390_agronomy12010218
crossref_primary_10_1111_tpj_15646
crossref_primary_10_3389_fpls_2022_856880
crossref_primary_10_3389_fpls_2021_743782
crossref_primary_10_3390_ijms231911864
crossref_primary_10_1016_j_plantsci_2023_111748
crossref_primary_10_1186_s13007_024_01250_y
crossref_primary_10_1093_hr_uhac100
crossref_primary_10_1093_gbe_evad121
crossref_primary_10_1093_nsr_nwac131
crossref_primary_10_1111_pbi_13880
crossref_primary_10_3389_fpls_2023_1232466
crossref_primary_10_1016_j_rsci_2022_07_001
crossref_primary_10_1186_s12864_023_09739_x
crossref_primary_10_1016_j_molp_2022_01_008
crossref_primary_10_1016_j_pbi_2021_102167
crossref_primary_10_1007_s11427_023_2398_y
crossref_primary_10_1038_s41586_024_08277_0
crossref_primary_10_1111_tpj_16021
crossref_primary_10_1007_s00122_023_04348_4
crossref_primary_10_1016_j_celrep_2024_114745
crossref_primary_10_1111_tpj_16023
crossref_primary_10_1038_s42003_023_05620_5
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_3389_fvets_2024_1413504
crossref_primary_10_3389_fpls_2022_891860
crossref_primary_10_1016_j_ygeno_2024_110915
crossref_primary_10_1016_j_xplc_2023_100571
crossref_primary_10_3389_fpls_2022_995634
crossref_primary_10_3390_ijms23105587
crossref_primary_10_1016_j_molp_2022_12_022
crossref_primary_10_1038_s41576_021_00413_0
crossref_primary_10_1101_gr_277515_122
crossref_primary_10_1016_j_jgg_2024_03_005
crossref_primary_10_1016_j_molp_2025_01_017
crossref_primary_10_1016_j_molp_2023_02_004
crossref_primary_10_3390_ijms23052671
crossref_primary_10_1038_s41588_024_01655_4
crossref_primary_10_3390_cells11071144
crossref_primary_10_15252_msb_202311686
crossref_primary_10_1111_tpj_16955
crossref_primary_10_1038_s41467_024_51854_0
crossref_primary_10_1007_s10142_024_01424_w
crossref_primary_10_1186_s13059_023_02861_9
crossref_primary_10_3389_fpls_2023_1259462
crossref_primary_10_3390_cells12040543
crossref_primary_10_1002_csc2_21334
crossref_primary_10_1007_s42994_023_00130_8
crossref_primary_10_3389_fgene_2022_1006288
crossref_primary_10_1016_j_cell_2024_11_005
crossref_primary_10_1038_s41588_024_01715_9
crossref_primary_10_1073_pnas_2208759119
crossref_primary_10_1038_s41467_024_54427_3
crossref_primary_10_1080_21501203_2024_2358868
crossref_primary_10_1038_s41588_024_02029_6
crossref_primary_10_1093_nargab_lqad013
crossref_primary_10_1016_j_molp_2022_04_004
crossref_primary_10_1111_tpj_17218
crossref_primary_10_3389_fpls_2022_984072
crossref_primary_10_1186_s40104_023_00860_1
crossref_primary_10_1038_s41422_022_00685_z
crossref_primary_10_1186_s40104_023_00944_y
crossref_primary_10_1093_plphys_kiad319
crossref_primary_10_1186_s12864_022_08391_1
crossref_primary_10_1016_j_molp_2022_12_009
crossref_primary_10_1186_s12915_024_02002_z
crossref_primary_10_1016_j_xplc_2023_100791
crossref_primary_10_1093_hr_uhae338
crossref_primary_10_32604_phyton_2024_048151
crossref_primary_10_1016_j_jare_2024_08_010
crossref_primary_10_1146_annurev_genom_021623_081639
crossref_primary_10_1093_bioinformatics_btac308
crossref_primary_10_1186_s12864_024_11178_1
crossref_primary_10_1186_s12915_024_01962_6
crossref_primary_10_1038_s41588_023_01423_w
crossref_primary_10_1016_j_tplants_2023_07_005
crossref_primary_10_3390_genes15030378
crossref_primary_10_1007_s10681_022_03044_6
crossref_primary_10_3390_genes15050645
crossref_primary_10_1016_j_tplants_2024_05_004
crossref_primary_10_1016_j_cj_2024_05_010
crossref_primary_10_3389_fpls_2023_1133986
crossref_primary_10_1016_j_ncrops_2024_100020
crossref_primary_10_3389_fgene_2022_1060898
crossref_primary_10_1038_s41467_023_43077_6
crossref_primary_10_1016_j_xplc_2024_101137
crossref_primary_10_1038_s41467_023_37004_y
crossref_primary_10_1016_j_pbi_2024_102664
crossref_primary_10_1093_nar_gkae1061
crossref_primary_10_1093_nsr_nwad029
crossref_primary_10_1016_j_jare_2023_03_006
crossref_primary_10_1111_tpj_16464
crossref_primary_10_1002_csc2_21019
crossref_primary_10_1016_j_xplc_2024_100816
crossref_primary_10_1007_s00239_024_10198_5
crossref_primary_10_1186_s12915_023_01512_6
crossref_primary_10_1007_s42994_024_00195_z
crossref_primary_10_1186_s12284_022_00569_1
crossref_primary_10_1038_s41477_024_01655_6
crossref_primary_10_1101_gr_278131_123
crossref_primary_10_1038_s41588_024_01823_6
crossref_primary_10_1111_1755_0998_13905
crossref_primary_10_1007_s00299_023_03006_9
crossref_primary_10_3389_fpls_2022_1062952
crossref_primary_10_3390_plants14050807
crossref_primary_10_1016_j_xplc_2024_101226
crossref_primary_10_1360_SSV_2023_0068
crossref_primary_10_1038_s41467_024_48845_6
crossref_primary_10_1007_s00122_021_03951_7
crossref_primary_10_1186_s12863_024_01227_9
crossref_primary_10_3390_horticulturae10090908
crossref_primary_10_1038_s41467_024_46691_0
crossref_primary_10_1186_s43897_024_00123_1
crossref_primary_10_1038_s41576_024_00691_4
crossref_primary_10_1016_j_xplc_2024_101231
crossref_primary_10_1016_j_xplc_2024_101230
crossref_primary_10_3389_fpls_2022_863789
crossref_primary_10_1007_s11033_024_09854_2
crossref_primary_10_1016_j_jare_2024_05_019
crossref_primary_10_1016_j_pbi_2023_102387
crossref_primary_10_1021_acs_jafc_1c08028
crossref_primary_10_1111_pbi_14437
crossref_primary_10_1038_s41586_022_04808_9
crossref_primary_10_1016_j_celrep_2024_114928
crossref_primary_10_1111_pbi_14433
crossref_primary_10_3390_plants12183336
crossref_primary_10_3390_ijms24054414
crossref_primary_10_3390_jof8121238
crossref_primary_10_1016_j_cell_2022_04_036
crossref_primary_10_3389_fpls_2021_769700
crossref_primary_10_3389_fpls_2024_1345708
crossref_primary_10_1016_j_gpb_2021_09_001
crossref_primary_10_1038_s41588_023_01459_y
crossref_primary_10_1016_j_ncrops_2024_100057
crossref_primary_10_1007_s42994_022_00089_y
crossref_primary_10_1186_s12284_023_00621_8
crossref_primary_10_1111_jipb_13576
crossref_primary_10_1016_j_molp_2022_03_009
crossref_primary_10_3389_fpls_2021_605799
crossref_primary_10_1007_s11427_022_2178_7
crossref_primary_10_3389_fgene_2022_991900
crossref_primary_10_1016_j_pbi_2022_102195
crossref_primary_10_1186_s13059_023_03124_3
crossref_primary_10_1016_j_pbi_2022_102193
crossref_primary_10_1186_s12711_022_00766_y
crossref_primary_10_1093_nar_gkac1115
crossref_primary_10_1186_s12864_024_10931_w
crossref_primary_10_3389_fpls_2024_1391334
crossref_primary_10_1038_s41467_023_38670_8
crossref_primary_10_1186_s12915_024_01820_5
crossref_primary_10_1007_s00253_023_12814_8
crossref_primary_10_3390_ani14111617
crossref_primary_10_1002_tpg2_20456
crossref_primary_10_1093_plphys_kiac378
crossref_primary_10_1111_pbi_14570
crossref_primary_10_1093_nar_gkac121
crossref_primary_10_1007_s11427_022_2144_9
crossref_primary_10_1038_s41477_024_01902_w
crossref_primary_10_1111_tpj_15690
crossref_primary_10_1126_sciadv_adm7452
crossref_primary_10_1038_s41467_024_49679_y
crossref_primary_10_1111_pbi_14215
crossref_primary_10_1038_s41588_023_01495_8
crossref_primary_10_1038_s41467_024_46420_7
crossref_primary_10_1111_pbi_13807
crossref_primary_10_3389_fpls_2023_1294033
crossref_primary_10_1073_pnas_2102914118
crossref_primary_10_7554_eLife_86324_3
crossref_primary_10_1038_s41588_023_01302_4
crossref_primary_10_1038_s41588_023_01571_z
crossref_primary_10_1093_nsr_nwae188
crossref_primary_10_1186_s13059_024_03239_1
crossref_primary_10_1038_s41477_023_01565_z
crossref_primary_10_1016_j_molp_2022_07_005
crossref_primary_10_1038_s41467_022_32164_9
crossref_primary_10_1101_gr_277372_122
crossref_primary_10_1111_pbi_14224
crossref_primary_10_1093_plphys_kiad440
crossref_primary_10_1111_pbi_13938
crossref_primary_10_3389_fpls_2024_1454615
crossref_primary_10_1016_j_jgg_2022_06_004
crossref_primary_10_3390_plants12152754
crossref_primary_10_1007_s11427_022_2160_6
crossref_primary_10_1038_s41467_023_43015_6
crossref_primary_10_3390_ijms232112804
crossref_primary_10_3389_fpls_2021_774994
crossref_primary_10_1093_g3journal_jkad246
crossref_primary_10_1016_j_xplc_2022_100300
Cites_doi 10.1186/s13100-019-0193-0
10.1038/s41576-018-0024-z
10.1038/s41588-018-0040-0
10.1016/j.molp.2019.02.008
10.1186/s13059-019-1911-0
10.1073/pnas.0403715101
10.1093/bioinformatics/btv351
10.1038/s41477-019-0507-8
10.1038/s41477-019-0577-7
10.1038/s41586-020-2961-x
10.1038/ncomms15324
10.1038/s41588-018-0182-0
10.1073/pnas.1317360111
10.1038/s41467-019-13355-3
10.1093/bioinformatics/btu031
10.1186/s12284-018-0207-4
10.1093/nar/gkr1293
10.1038/nplants.2017.43
10.1105/tpc.15.00310
10.1186/s13059-019-1905-y
10.1038/nmeth.3317
10.1038/s41467-019-14197-9
10.1093/nar/gki458
10.1038/ng.548
10.1186/1939-8433-6-4
10.1038/nbt.4227
10.1371/journal.pcbi.1005944
10.1038/s41587-019-0201-4
10.1038/s41588-018-0041-z
10.1016/j.cell.2018.12.019
10.1186/s13059-020-1941-7
10.1016/j.cels.2015.07.012
10.1093/bioinformatics/btu077
10.1093/bioinformatics/btp352
10.1038/s41592-018-0001-7
10.1038/sdata.2018.79
10.1038/s41467-020-14779-y
10.1038/nplants.2015.124
10.1101/gr.241240.118
10.1073/pnas.1410068111
10.1007/s00299-015-1931-5
10.1038/nature03608
10.1038/s41588-018-0316-4
10.1101/gr.215087.116
10.1146/annurev-arplant-050718-100320
10.1016/j.molp.2018.11.005
10.1038/s41586-020-2947-8
10.1016/j.jgg.2017.05.003
10.1038/ng0508-491
10.1104/pp.20.00253
10.1534/genetics.105.044891
10.1038/nrg3373
10.1186/s12870-016-0711-x
10.3390/ijms21041344
10.1038/ng.3346
10.1038/s41467-017-01400-y
10.1104/pp.16.01177
10.1038/nrg.2015.25
10.1038/416701a
10.1038/s41588-018-0282-x
10.1038/s41586-018-0063-9
10.1038/s41597-020-0438-2
10.1016/j.cell.2010.10.027
10.1038/nbt.1621
10.1038/s41588-019-0427-6
10.1016/j.jgg.2018.10.007
10.1016/j.cell.2020.05.023
10.1111/tpj.13925
10.1093/jxb/erz198
10.1016/j.molp.2017.03.009
10.1126/science.aal3327
10.1038/s41576-019-0180-9
10.1104/pp.19.00386
10.1093/gigascience/gix119
10.1186/1471-2105-9-18
10.1101/gr.088997.108
10.1016/j.jgg.2020.10.006
10.1146/annurev-phyto-073009-114453
10.1093/bioinformatics/btp324
10.1104/pp.17.01310
10.1093/bib/bbs017
10.1270/jsbbs.18172
10.1016/j.cell.2013.04.010
10.1186/1471-2164-14-649
10.1016/j.cell.2020.05.021
10.1038/s41467-019-10820-x
10.1093/nar/gkq862
10.1016/j.tplants.2019.01.003
10.1007/s11103-016-0544-x
10.1101/gr.094052.109
10.1038/ng.806
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.cell.2021.04.046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 1097-4172
EndPage 3558.e16
ExternalDocumentID 34051138
10_1016_j_cell_2021_04_046
S009286742100581X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c499t-a81e3b91b437b18af22d6660716dd533898eb5c14fcc6615d38c7a509af02ec3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Tue Aug 05 10:56:55 EDT 2025
Tue Aug 05 11:03:36 EDT 2025
Wed Feb 19 02:27:43 EST 2025
Tue Jul 01 02:17:09 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Fri Feb 23 02:44:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Graph-based genome
High-quality assembly
Pan-genome
Structural variation
Gene copy number variation
Rice
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-a81e3b91b437b18af22d6660716dd533898eb5c14fcc6615d38c7a509af02ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8913-3552
0000-0002-7724-1799
OpenAccessLink http://www.cell.com/article/S009286742100581X/pdf
PMID 34051138
PQID 2534618988
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2636435978
proquest_miscellaneous_2534618988
pubmed_primary_34051138
crossref_citationtrail_10_1016_j_cell_2021_04_046
crossref_primary_10_1016_j_cell_2021_04_046
elsevier_sciencedirect_doi_10_1016_j_cell_2021_04_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-24
PublicationDateYYYYMMDD 2021-06-24
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, Bennetzen (bib49) 2004; 101
Ou, Chen, Jiang (bib55) 2018; 46
Fuentes, Chebotarov, Duitama, Smith, De la Hoz, Mohiyuddin, Wing, McNally, Tatarinova, Grigoriev (bib19) 2019; 29
Kawahara, de la Bastide, Hamilton, Kanamori, McCombie, Ouyang, Schwartz, Tanaka, Wu, Zhou (bib34) 2013; 6
Hickey, Heller, Monlong, Sibbesen, Sirén, Eizenga, Dawson, Garrison, Novak, Paten (bib24) 2020; 21
Xie, Yoneyama, Yoneyama (bib84) 2010; 48
Ellinghaus, Kurtz, Willhoeft (bib18) 2008; 9
Kang, Sul, Service, Zaitlen, Kong, Freimer, Sabatti, Eskin (bib33) 2010; 42
Shen, Wang, Liu, Wu, Jin, Zhao, Xie, Zhu, Tang, Li (bib63) 2017; 8
Sasaki, Ashikari, Ueguchi-Tanaka, Itoh, Nishimura, Swapan, Ishiyama, Saito, Kobayashi, Khush (bib60) 2002; 416
Kidd, Graves, Newman, Fulton, Hayden, Malig, Kallicki, Kaul, Wilson, Eichler (bib36) 2010; 143
Wang, Mauleon, Hu, Chebotarov, Tai, Wu, Li, Zheng, Fuentes, Zhang (bib78) 2018; 557
Yao, Li, Yu, Ouyang (bib90) 2018; 7
Du, Liang (bib13) 2019; 10
Stanke, Morgenstern (bib68) 2005; 33
Alonge, Wang, Benoit, Soyk, Pereira, Zhang, Suresh, Ramakrishnan, Maumus, Ciren (bib3) 2020; 182
Yu, Wang, Xu, Feng, Yuan, Yu, Wang, Tang, Wei (bib92) 2013; 14
Du, Yu, Ma, Gao, Cao, Chen, Ma, Qi, Li, Zhao (bib14) 2017; 8
Walkowiak, Gao, Monat, Haberer, Kassa, Brinton, Ramirez-Gonzalez, Kolodziej, Delorean, Thambugala (bib74) 2020; 588
Stein, Yu, Copetti, Zwickl, Zhang, Zhang, Chougule, Gao, Iwata, Goicoechea (bib69) 2018; 50
Liu, Du, Li, Shen, Peng, Liu, Zhou, Zhang, Liu, Shi (bib47) 2020; 182
Goel, Sun, Jiao, Schneeberger (bib21) 2019; 20
Zhao, Feng, Lu, Li, Wang, Tian, Zhan, Lu, Zhang, Huang (bib96) 2018; 50
Jukes, Cantor (bib32) 1969
Wang, Tang, Debarry, Tan, Li, Wang, Lee, Jin, Marler, Guo (bib75) 2012; 40
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib43) 2009; 25
Garrison, Sirén, Novak, Hickey, Eizenga, Dawson, Jones, Garg, Markello, Lin (bib20) 2018; 36
Li, Durbin (bib42) 2009; 25
Weischenfeldt, Symmons, Spitz, Korbel (bib81) 2013; 14
Hu, Wang, Wu, Sun, Li, Lu, Fu, Shi, Xu, Ruan (bib26) 2018; 5
Lye, Purugganan (bib48) 2019; 24
Zhang, Chen, Xing, Kudrna, Yao, Copetti, Mu, Li, Song, Xie (bib94) 2016; 113
Delteil, Gobbato, Cayrol, Estevan, Michel-Romiti, Dievart, Kroj, Morel (bib10) 2016; 16
Jones, Binns, Chang, Fraser, Li, McAnulla, McWilliam, Maslen, Mitchell, Nuka (bib31) 2014; 30
Simão, Waterhouse, Ioannidis, Kriventseva, Zdobnov (bib65) 2015; 31
Wang, Xiong, Hu, Jiang, Yu, Xu, Fang, Zeng, Xu, Xu (bib76) 2015; 47
Shi, Liang (bib64) 2019; 180
Yang, Ge, Yang, Qin, Sun, Wang, Li, Liu, Wu, Wang (bib89) 2019; 10
Yang, Liu, Gao, Gui, Chen, Yang, Huang, Deng, Luo, He (bib88) 2019; 51
Sun, Zhou, Chen, Shi, Zhao, Zhao, Song, Zhang, Cui, Dong (bib71) 2018; 50
Su, Gu, Peterson (bib70) 2019; 12
Thorvaldsdóttir, Robinson, Mesirov (bib72) 2013; 14
He, Wang, Wu, Chen, Lin, Cheng, Liu, Chen, Liao (bib23) 2014; 20
Chen, Huang, Tian, Wing, Han (bib8) 2019; 70
Kim, Paggi, Park, Bennett, Salzberg (bib38) 2019; 37
Marçais, Delcher, Phillippy, Coston, Salzberg, Zimin (bib50) 2018; 14
Ou, Jiang (bib53) 2018; 176
Audano, Sulovari, Graves-Lindsay, Cantsilieris, Sorensen, Welch, Dougherty, Nelson, Shah, Dutcher (bib4) 2019; 176
Duan, Xu, Zeng, Zhang, Geng, Zhang, Huang, Huang, Xu, Ge (bib15) 2017; 10
Yang, Luquette, Gehlenborg, Xi, Haseley, Hsieh, Zhang, Ren, Protopopov, Chin (bib87) 2013; 153
Oikawa, Maeda, Oguchi, Yamaguchi, Tanabe, Ebana, Yano, Ebitani, Izawa (bib52) 2015; 27
Rakocevic, Semenyuk, Lee, Spencer, Browning, Johnson, Arsenijevic, Nadj, Ghose, Suciu (bib58) 2019; 51
Dudchenko, Batra, Omer, Nyquist, Hoeger, Durand, Shamim, Machol, Lander, Aiden, Aiden (bib16) 2017; 356
Zhou, Chebotarov, Kudrna, Llaca, Lee, Rajasekar, Mohammed, Al-Bader, Sobel-Sorenson, Parakkal (bib98) 2020; 7
Zhou, Minio, Massonnet, Solares, Lv, Beridze, Cantu, Gaut (bib97) 2019; 5
Wing, Purugganan, Zhang (bib82) 2018; 19
Xiong, He, Lai, Dooner, Du (bib86) 2014; 111
Wang, Zhang, Xiao, Zhang, Wang, Chen, Fang (bib80) 2020; 183
Kent (bib35) 2002; 12
Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib73) 2010; 28
Jiao, Schneeberger (bib30) 2020; 11
Kretzschmar, Pelayo, Trijatmiko, Gabunada, Alam, Jimenez, Mendioro, Slamet-Loedin, Sreenivasulu, Bailey-Serres (bib41) 2015; 1
Alexander, Novembre, Lange (bib2) 2009; 19
Qu, Liu, Zhou, Bellizzi, Zeng, Dai, Han, Wang (bib57) 2006; 172
Sedlazeck, Rescheneder, Smolka, Fang, Nattestad, von Haeseler, Schatz (bib62) 2018; 15
Chen, Zhao, Zhu, Zou, Yin, Chern, Zhou, Ying, Jiang, Li (bib7) 2018; 45
Reich, Price, Patterson (bib59) 2008; 40
Han, Wessler (bib22) 2010; 38
Durand, Robinson, Shamim, Machol, Mesirov, Lander, Aiden (bib17) 2016; 3
Wang, Tu, Yuan, Zhu, Shen, Li, Liu, Pei, Wang, Zhao (bib79) 2019; 51
DePristo, Banks, Poplin, Garimella, Maguire, Hartl, Philippakis, del Angel, Rivas, Hanna (bib11) 2011; 43
Chen, Li, Lu, Gao, Du, Peng, Qin, Liang (bib9) 2020; 47
Carvalho, Lupski (bib6) 2016; 17
Schatz, Maron, Stein, Hernandez Wences, Gurtowski, Biggers, Lee, Kramer, Antoniou, Ghiban (bib61) 2014; 15
Hufnagel, Marques, Soriano, Marquès, Divol, Doumas, Sallet, Mancinotti, Carrere, Marande (bib27) 2020; 11
Jayakodi, Padmarasu, Haberer, Bonthala, Gundlach, Monat, Lux, Kamal, Lang, Himmelbach (bib28) 2020; 588
Li, Han, Chen, Yang, Liu, Li, Ding, Chu (bib44) 2017; 93
Xia, Zou, Sang, Xu, Yin, Li, Wu, Hu, Hao, Zhang (bib83) 2017; 44
Cardoso, Zhang, Jamil, Hepworth, Charnikhova, Dimkpa, Meharg, Wright, Liu, Meng (bib5) 2014; 111
Dong, Li, Li, Yuan, Xie, Wang, Li, Yu, Wang, Ding (bib12) 2018; 94
Xie, Wu, Tang, Luo, Patterson, Liu, Huang, He, Gu, Li (bib85) 2014; 30
Nonoue, Hori, Ono, Shibaya, Ogiso-Tanaka, Mizobuchi, Fukuoka, Yano (bib51) 2019; 69
Zhang, Liang, Cui, Ji, Li, Zhang, Liu, Riaz, Yao, Liu (bib95) 2018; 11
Song, Guan, Hu, Guo, Yang, Wang, Liu, Wang, Lu, Zhou (bib67) 2020; 6
Ou, Jiang (bib54) 2019; 10
Kim, Langmead, Salzberg (bib37) 2015; 12
Ou, Su, Liao, Chougule, Agda, Hellinga, Lugo, Elliott, Ware, Peterson (bib56) 2019; 20
Ho, Urban, Mills (bib25) 2020; 21
Liu, Chen, Zheng, Wu, Lin, Heng, Tian, Cheng, Yu, Zhou (bib46) 2017; 3
Akiyama, Matsuzaki, Hayashi (bib1) 2005; 435
Koren, Walenz, Berlin, Miller, Bergman, Phillippy (bib40) 2017; 27
Smit, Hubley, Green (bib66) 2013-2015
Jeong, Yang, Cho, An (bib29) 2016; 35
Liang, Mao, Ware, Stein (bib45) 2009; 19
Yin, Liu, Xu, Lu, Dong, Yang, Ye, Feng, Wu (bib91) 2019; 70
Kobayashi, Hori, Yamamoto, Yano (bib39) 2018; 11
Yuan, Wang, Zhang, He, Yu (bib93) 2020; 21
Wang, Tao, Marowsky, Fan (bib77) 2016; 172
Hickey (10.1016/j.cell.2021.04.046_bib24) 2020; 21
Weischenfeldt (10.1016/j.cell.2021.04.046_bib81) 2013; 14
Reich (10.1016/j.cell.2021.04.046_bib59) 2008; 40
Ou (10.1016/j.cell.2021.04.046_bib56) 2019; 20
Kent (10.1016/j.cell.2021.04.046_bib35) 2002; 12
Goel (10.1016/j.cell.2021.04.046_bib21) 2019; 20
Wing (10.1016/j.cell.2021.04.046_bib82) 2018; 19
Koren (10.1016/j.cell.2021.04.046_bib40) 2017; 27
Du (10.1016/j.cell.2021.04.046_bib13) 2019; 10
Li (10.1016/j.cell.2021.04.046_bib42) 2009; 25
Kretzschmar (10.1016/j.cell.2021.04.046_bib41) 2015; 1
Chen (10.1016/j.cell.2021.04.046_bib8) 2019; 70
Marçais (10.1016/j.cell.2021.04.046_bib50) 2018; 14
Wang (10.1016/j.cell.2021.04.046_bib78) 2018; 557
Xie (10.1016/j.cell.2021.04.046_bib84) 2010; 48
Dudchenko (10.1016/j.cell.2021.04.046_bib16) 2017; 356
Zhao (10.1016/j.cell.2021.04.046_bib96) 2018; 50
Kang (10.1016/j.cell.2021.04.046_bib33) 2010; 42
Yang (10.1016/j.cell.2021.04.046_bib88) 2019; 51
Ou (10.1016/j.cell.2021.04.046_bib55) 2018; 46
Yin (10.1016/j.cell.2021.04.046_bib91) 2019; 70
Yu (10.1016/j.cell.2021.04.046_bib92) 2013; 14
Ou (10.1016/j.cell.2021.04.046_bib54) 2019; 10
Ou (10.1016/j.cell.2021.04.046_bib53) 2018; 176
Jiao (10.1016/j.cell.2021.04.046_bib30) 2020; 11
Ma (10.1016/j.cell.2021.04.046_bib49) 2004; 101
Sedlazeck (10.1016/j.cell.2021.04.046_bib62) 2018; 15
Han (10.1016/j.cell.2021.04.046_bib22) 2010; 38
Jones (10.1016/j.cell.2021.04.046_bib31) 2014; 30
Qu (10.1016/j.cell.2021.04.046_bib57) 2006; 172
Yuan (10.1016/j.cell.2021.04.046_bib93) 2020; 21
Li (10.1016/j.cell.2021.04.046_bib43) 2009; 25
Zhou (10.1016/j.cell.2021.04.046_bib98) 2020; 7
Chen (10.1016/j.cell.2021.04.046_bib7) 2018; 45
Audano (10.1016/j.cell.2021.04.046_bib4) 2019; 176
Shi (10.1016/j.cell.2021.04.046_bib64) 2019; 180
Hu (10.1016/j.cell.2021.04.046_bib26) 2018; 5
Hufnagel (10.1016/j.cell.2021.04.046_bib27) 2020; 11
Wang (10.1016/j.cell.2021.04.046_bib79) 2019; 51
Stanke (10.1016/j.cell.2021.04.046_bib68) 2005; 33
Walkowiak (10.1016/j.cell.2021.04.046_bib74) 2020; 588
Song (10.1016/j.cell.2021.04.046_bib67) 2020; 6
Sun (10.1016/j.cell.2021.04.046_bib71) 2018; 50
Liu (10.1016/j.cell.2021.04.046_bib46) 2017; 3
Nonoue (10.1016/j.cell.2021.04.046_bib51) 2019; 69
Yang (10.1016/j.cell.2021.04.046_bib89) 2019; 10
Stein (10.1016/j.cell.2021.04.046_bib69) 2018; 50
Delteil (10.1016/j.cell.2021.04.046_bib10) 2016; 16
Oikawa (10.1016/j.cell.2021.04.046_bib52) 2015; 27
Akiyama (10.1016/j.cell.2021.04.046_bib1) 2005; 435
Kobayashi (10.1016/j.cell.2021.04.046_bib39) 2018; 11
Cardoso (10.1016/j.cell.2021.04.046_bib5) 2014; 111
Lye (10.1016/j.cell.2021.04.046_bib48) 2019; 24
Simão (10.1016/j.cell.2021.04.046_bib65) 2015; 31
Ellinghaus (10.1016/j.cell.2021.04.046_bib18) 2008; 9
Smit (10.1016/j.cell.2021.04.046_bib66) 2013
Thorvaldsdóttir (10.1016/j.cell.2021.04.046_bib72) 2013; 14
Sasaki (10.1016/j.cell.2021.04.046_bib60) 2002; 416
Wang (10.1016/j.cell.2021.04.046_bib76) 2015; 47
Carvalho (10.1016/j.cell.2021.04.046_bib6) 2016; 17
Trapnell (10.1016/j.cell.2021.04.046_bib73) 2010; 28
Duan (10.1016/j.cell.2021.04.046_bib15) 2017; 10
Li (10.1016/j.cell.2021.04.046_bib44) 2017; 93
Xiong (10.1016/j.cell.2021.04.046_bib86) 2014; 111
DePristo (10.1016/j.cell.2021.04.046_bib11) 2011; 43
Alonge (10.1016/j.cell.2021.04.046_bib3) 2020; 182
Du (10.1016/j.cell.2021.04.046_bib14) 2017; 8
Dong (10.1016/j.cell.2021.04.046_bib12) 2018; 94
Ho (10.1016/j.cell.2021.04.046_bib25) 2020; 21
Jayakodi (10.1016/j.cell.2021.04.046_bib28) 2020; 588
Chen (10.1016/j.cell.2021.04.046_bib9) 2020; 47
Durand (10.1016/j.cell.2021.04.046_bib17) 2016; 3
Yang (10.1016/j.cell.2021.04.046_bib87) 2013; 153
Kawahara (10.1016/j.cell.2021.04.046_bib34) 2013; 6
Kim (10.1016/j.cell.2021.04.046_bib38) 2019; 37
Shen (10.1016/j.cell.2021.04.046_bib63) 2017; 8
Wang (10.1016/j.cell.2021.04.046_bib77) 2016; 172
Su (10.1016/j.cell.2021.04.046_bib70) 2019; 12
Alexander (10.1016/j.cell.2021.04.046_bib2) 2009; 19
Jukes (10.1016/j.cell.2021.04.046_bib32) 1969
Fuentes (10.1016/j.cell.2021.04.046_bib19) 2019; 29
Jeong (10.1016/j.cell.2021.04.046_bib29) 2016; 35
Kim (10.1016/j.cell.2021.04.046_bib37) 2015; 12
Xie (10.1016/j.cell.2021.04.046_bib85) 2014; 30
Zhang (10.1016/j.cell.2021.04.046_bib95) 2018; 11
Wang (10.1016/j.cell.2021.04.046_bib75) 2012; 40
Kidd (10.1016/j.cell.2021.04.046_bib36) 2010; 143
Liang (10.1016/j.cell.2021.04.046_bib45) 2009; 19
Xia (10.1016/j.cell.2021.04.046_bib83) 2017; 44
Garrison (10.1016/j.cell.2021.04.046_bib20) 2018; 36
He (10.1016/j.cell.2021.04.046_bib23) 2014; 20
Rakocevic (10.1016/j.cell.2021.04.046_bib58) 2019; 51
Liu (10.1016/j.cell.2021.04.046_bib47) 2020; 182
Wang (10.1016/j.cell.2021.04.046_bib80) 2020; 183
Yao (10.1016/j.cell.2021.04.046_bib90) 2018; 7
Schatz (10.1016/j.cell.2021.04.046_bib61) 2014; 15
Zhou (10.1016/j.cell.2021.04.046_bib97) 2019; 5
Zhang (10.1016/j.cell.2021.04.046_bib94) 2016; 113
References_xml – volume: 30
  start-page: 1660
  year: 2014
  end-page: 1666
  ident: bib85
  article-title: SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads
  publication-title: Bioinformatics
– volume: 10
  start-page: 48
  year: 2019
  ident: bib54
  article-title: LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons
  publication-title: Mob. DNA
– volume: 51
  start-page: 1052
  year: 2019
  end-page: 1059
  ident: bib88
  article-title: Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement
  publication-title: Nat. Genet.
– volume: 47
  start-page: 637
  year: 2020
  end-page: 649
  ident: bib9
  article-title: Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice
  publication-title: J. Genet. Genomics
– volume: 435
  start-page: 824
  year: 2005
  end-page: 827
  ident: bib1
  article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
  publication-title: Nature
– volume: 48
  start-page: 93
  year: 2010
  end-page: 117
  ident: bib84
  article-title: The strigolactone story
  publication-title: Annu. Rev. Phytopathol.
– volume: 46
  start-page: e126
  year: 2018
  ident: bib55
  article-title: Assessing genome assembly quality using the LTR Assembly Index (LAI)
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: 944
  year: 2015
  end-page: 948
  ident: bib76
  article-title: Copy number variation at the GL7 locus contributes to grain size diversity in rice
  publication-title: Nat. Genet.
– volume: 172
  start-page: 1901
  year: 2006
  end-page: 1914
  ident: bib57
  article-title: The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice
  publication-title: Genetics
– volume: 6
  start-page: 34
  year: 2020
  end-page: 45
  ident: bib67
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus
  publication-title: Nat. Plants
– volume: 70
  start-page: 639
  year: 2019
  end-page: 665
  ident: bib8
  article-title: The Genomics of
  publication-title: Annu. Rev. Plant Biol.
– volume: 50
  start-page: 1289
  year: 2018
  end-page: 1295
  ident: bib71
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
– volume: 588
  start-page: 284
  year: 2020
  end-page: 289
  ident: bib28
  article-title: The barley pan-genome reveals the hidden legacy of mutation breeding
  publication-title: Nature
– volume: 101
  start-page: 12404
  year: 2004
  end-page: 12410
  ident: bib49
  article-title: Rapid recent growth and divergence of rice nuclear genomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 275
  year: 2019
  ident: bib56
  article-title: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline
  publication-title: Genome Biol.
– volume: 44
  start-page: 235
  year: 2017
  end-page: 241
  ident: bib83
  article-title: Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice
  publication-title: J. Genet. Genomics
– volume: 14
  start-page: e1005944
  year: 2018
  ident: bib50
  article-title: MUMmer4: A fast and versatile genome alignment system
  publication-title: PLoS Comput. Biol.
– volume: 11
  start-page: 492
  year: 2020
  ident: bib27
  article-title: High-quality genome sequence of white lupin provides insight into soil exploration and seed quality
  publication-title: Nat. Commun.
– volume: 94
  start-page: 1141
  year: 2018
  end-page: 1156
  ident: bib12
  article-title: Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice
  publication-title: Plant J.
– volume: 11
  start-page: 1492
  year: 2018
  end-page: 1508
  ident: bib95
  article-title: N
  publication-title: Mol. Plant
– volume: 11
  start-page: 15
  year: 2018
  ident: bib39
  article-title: Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan
  publication-title: Rice (N. Y.)
– volume: 111
  start-page: 2379
  year: 2014
  end-page: 2384
  ident: bib5
  article-title: Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 506
  year: 2014
  ident: bib61
  article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica
  publication-title: Genome Biol.
– volume: 36
  start-page: 875
  year: 2018
  end-page: 879
  ident: bib20
  article-title: Variation graph toolkit improves read mapping by representing genetic variation in the reference
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 447
  year: 2019
  end-page: 460
  ident: bib70
  article-title: TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome
  publication-title: Mol. Plant
– volume: 27
  start-page: 722
  year: 2017
  end-page: 736
  ident: bib40
  article-title: Canu: scalable and accurate long-read assembly via adaptive
  publication-title: Genome Res.
– volume: 3
  start-page: 99
  year: 2016
  end-page: 101
  ident: bib17
  article-title: Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom
  publication-title: Cell Syst.
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  ident: bib37
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– volume: 27
  start-page: 2401
  year: 2015
  end-page: 2414
  ident: bib52
  article-title: The Birth of a Black Rice Gene and Its Local Spread by Introgression
  publication-title: Plant Cell
– year: 2013-2015
  ident: bib66
  article-title: RepeatMasker Open-4.0
– volume: 182
  start-page: 162
  year: 2020
  end-page: 176.e13
  ident: bib47
  article-title: Pan-Genome of Wild and Cultivated Soybeans
  publication-title: Cell
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib43
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 7
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib90
  article-title: funRiceGenes dataset for comprehensive understanding and application of rice functional genes
  publication-title: Gigascience
– volume: 7
  start-page: 113
  year: 2020
  ident: bib98
  article-title: A platinum standard pan-genome resource that represents the population structure of Asian rice
  publication-title: Sci. Data
– volume: 176
  start-page: 663
  year: 2019
  end-page: 675.e19
  ident: bib4
  article-title: Characterizing the Major Structural Variant Alleles of the Human Genome
  publication-title: Cell
– volume: 19
  start-page: 1912
  year: 2009
  end-page: 1923
  ident: bib45
  article-title: Evidence-based gene predictions in plant genomes
  publication-title: Genome Res.
– volume: 19
  start-page: 505
  year: 2018
  end-page: 517
  ident: bib82
  article-title: The rice genome revolution: from an ancient grain to Green Super Rice
  publication-title: Nat. Rev. Genet.
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  ident: bib33
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat. Genet.
– volume: 29
  start-page: 870
  year: 2019
  end-page: 880
  ident: bib19
  article-title: Structural variants in 3000 rice genomes
  publication-title: Genome Res.
– volume: 11
  start-page: 989
  year: 2020
  ident: bib30
  article-title: Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics
  publication-title: Nat. Commun.
– volume: 33
  start-page: W465-7
  year: 2005
  ident: bib68
  article-title: AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints
  publication-title: Nucleic Acids Res.
– volume: 416
  start-page: 701
  year: 2002
  end-page: 702
  ident: bib60
  article-title: Green revolution: a mutant gibberellin-synthesis gene in rice
  publication-title: Nature
– volume: 588
  start-page: 277
  year: 2020
  end-page: 283
  ident: bib74
  article-title: Multiple wheat genomes reveal global variation in modern breeding
  publication-title: Nature
– volume: 3
  start-page: 17043
  year: 2017
  ident: bib46
  article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice
  publication-title: Nat. Plants
– volume: 183
  start-page: 1157
  year: 2020
  end-page: 1170
  ident: bib80
  article-title: Rice
  publication-title: Plant Physiol.
– volume: 21
  start-page: 35
  year: 2020
  ident: bib24
  article-title: Genotyping structural variants in pangenome graphs using the vg toolkit
  publication-title: Genome Biol.
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: bib73
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
– volume: 557
  start-page: 43
  year: 2018
  end-page: 49
  ident: bib78
  article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice
  publication-title: Nature
– volume: 35
  start-page: 905
  year: 2016
  end-page: 920
  ident: bib29
  article-title: OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days
  publication-title: Plant Cell Rep.
– volume: 143
  start-page: 837
  year: 2010
  end-page: 847
  ident: bib36
  article-title: A human genome structural variation sequencing resource reveals insights into mutational mechanisms
  publication-title: Cell
– volume: 17
  start-page: 224
  year: 2016
  end-page: 238
  ident: bib6
  article-title: Mechanisms underlying structural variant formation in genomic disorders
  publication-title: Nat. Rev. Genet.
– volume: 172
  start-page: 427
  year: 2016
  end-page: 440
  ident: bib77
  article-title: Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes
  publication-title: Plant Physiol.
– volume: 21
  start-page: 1344
  year: 2020
  ident: bib93
  article-title: Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice (
  publication-title: Int. J. Mol. Sci.
– volume: 5
  start-page: 965
  year: 2019
  end-page: 979
  ident: bib97
  article-title: The population genetics of structural variants in grapevine domestication
  publication-title: Nat. Plants
– volume: 180
  start-page: 1803
  year: 2019
  end-page: 1815
  ident: bib64
  article-title: Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection
  publication-title: Plant Physiol.
– volume: 8
  start-page: 1310
  year: 2017
  ident: bib63
  article-title: Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice
  publication-title: Nat. Commun.
– volume: 356
  start-page: 92
  year: 2017
  end-page: 95
  ident: bib16
  article-title: De novo assembly of the
  publication-title: Science
– volume: 153
  start-page: 919
  year: 2013
  end-page: 929
  ident: bib87
  article-title: Diverse mechanisms of somatic structural variations in human cancer genomes
  publication-title: Cell
– volume: 24
  start-page: 352
  year: 2019
  end-page: 365
  ident: bib48
  article-title: Copy Number Variation in Domestication
  publication-title: Trends Plant Sci.
– volume: 14
  start-page: 649
  year: 2013
  ident: bib92
  article-title: Genome-wide copy number variations in Oryza sativa L
  publication-title: BMC Genomics
– volume: 10
  start-page: 685
  year: 2017
  end-page: 694
  ident: bib15
  article-title: Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice
  publication-title: Mol. Plant
– volume: 40
  start-page: 491
  year: 2008
  end-page: 492
  ident: bib59
  article-title: Principal component analysis of genetic data
  publication-title: Nat. Genet.
– volume: 31
  start-page: 3210
  year: 2015
  end-page: 3212
  ident: bib65
  article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
– volume: 10
  start-page: 2989
  year: 2019
  ident: bib89
  article-title: Extensive intraspecific gene order and gene structural variations in upland cotton cultivars
  publication-title: Nat. Commun.
– volume: 38
  start-page: e199
  year: 2010
  ident: bib22
  article-title: MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: 663
  year: 2018
  end-page: 672
  ident: bib7
  article-title: Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis
  publication-title: J. Genet. Genomics
– volume: 50
  start-page: 285
  year: 2018
  end-page: 296
  ident: bib69
  article-title: Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza
  publication-title: Nat. Genet.
– volume: 14
  start-page: 125
  year: 2013
  end-page: 138
  ident: bib81
  article-title: Phenotypic impact of genomic structural variation: insights from and for human disease
  publication-title: Nat. Rev. Genet.
– volume: 8
  start-page: 15324
  year: 2017
  ident: bib14
  article-title: Sequencing and de novo assembly of a near complete indica rice genome
  publication-title: Nat. Commun.
– volume: 43
  start-page: 491
  year: 2011
  end-page: 498
  ident: bib11
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat. Genet.
– volume: 14
  start-page: 178
  year: 2013
  end-page: 192
  ident: bib72
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Brief. Bioinform.
– volume: 16
  start-page: 17
  year: 2016
  ident: bib10
  article-title: Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus
  publication-title: BMC Plant Biol.
– volume: 21
  start-page: 171
  year: 2020
  end-page: 189
  ident: bib25
  article-title: Structural variation in the sequencing era
  publication-title: Nat. Rev. Genet.
– volume: 10
  start-page: 5360
  year: 2019
  ident: bib13
  article-title: Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib42
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– volume: 5
  start-page: 180079
  year: 2018
  ident: bib26
  article-title: Novel sequences, structural variations and gene presence variations of Asian cultivated rice
  publication-title: Sci. Data
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib38
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
– volume: 93
  start-page: 21
  year: 2017
  end-page: 34
  ident: bib44
  article-title: Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice
  publication-title: Plant Mol. Biol.
– volume: 182
  start-page: 145
  year: 2020
  end-page: 161.e23
  ident: bib3
  article-title: Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato
  publication-title: Cell
– volume: 40
  start-page: e49
  year: 2012
  ident: bib75
  article-title: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 656
  year: 2002
  end-page: 664
  ident: bib35
  article-title: BLAT--the BLAST-like alignment tool
  publication-title: Genome Res.
– volume: 176
  start-page: 1410
  year: 2018
  end-page: 1422
  ident: bib53
  article-title: LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons
  publication-title: Plant Physiol.
– volume: 6
  start-page: 4
  year: 2013
  ident: bib34
  article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data
  publication-title: Rice (N. Y.)
– volume: 113
  start-page: E5163
  year: 2016
  end-page: E5171
  ident: bib94
  article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 18
  year: 2008
  ident: bib18
  article-title: LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
  publication-title: BMC Bioinformatics
– volume: 15
  start-page: 461
  year: 2018
  end-page: 468
  ident: bib62
  article-title: Accurate detection of complex structural variations using single-molecule sequencing
  publication-title: Nat. Methods
– volume: 1
  start-page: 15124
  year: 2015
  ident: bib41
  article-title: A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice
  publication-title: Nat. Plants
– volume: 51
  start-page: 354
  year: 2019
  end-page: 362
  ident: bib58
  article-title: Fast and accurate genomic analyses using genome graphs
  publication-title: Nat. Genet.
– volume: 20
  start-page: 417
  year: 2014
  end-page: 425
  ident: bib23
  article-title: The progress of mapping, isolation of the genes resisting to blast and their breeding application in rice
  publication-title: Zhongguo Nongxue Tongbao
– volume: 30
  start-page: 1236
  year: 2014
  end-page: 1240
  ident: bib31
  article-title: InterProScan 5: genome-scale protein function classification
  publication-title: Bioinformatics
– volume: 51
  start-page: 224
  year: 2019
  end-page: 229
  ident: bib79
  article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
  publication-title: Nat. Genet.
– start-page: 21
  year: 1969
  end-page: 132
  ident: bib32
  article-title: Evolution of protein molecules
  publication-title: Mammalian Protein Metabolism
– volume: 70
  start-page: 3895
  year: 2019
  end-page: 3909
  ident: bib91
  article-title: OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice
  publication-title: J. Exp. Bot.
– volume: 19
  start-page: 1655
  year: 2009
  end-page: 1664
  ident: bib2
  article-title: Fast model-based estimation of ancestry in unrelated individuals
  publication-title: Genome Res.
– volume: 111
  start-page: 10263
  year: 2014
  end-page: 10268
  ident: bib86
  article-title: HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 69
  start-page: 352
  year: 2019
  end-page: 358
  ident: bib51
  article-title: Detection of heading date QTLs in advanced-backcross populations of an elite
  publication-title: Breed. Sci.
– volume: 50
  start-page: 278
  year: 2018
  end-page: 284
  ident: bib96
  article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice
  publication-title: Nat. Genet.
– volume: 20
  start-page: 277
  year: 2019
  ident: bib21
  article-title: SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies
  publication-title: Genome Biol.
– volume: 10
  start-page: 48
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib54
  article-title: LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons
  publication-title: Mob. DNA
  doi: 10.1186/s13100-019-0193-0
– volume: 19
  start-page: 505
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib82
  article-title: The rice genome revolution: from an ancient grain to Green Super Rice
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0024-z
– volume: 50
  start-page: 285
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib69
  article-title: Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0040-0
– volume: 12
  start-page: 447
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib70
  article-title: TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.02.008
– volume: 20
  start-page: 277
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib21
  article-title: SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1911-0
– volume: 101
  start-page: 12404
  year: 2004
  ident: 10.1016/j.cell.2021.04.046_bib49
  article-title: Rapid recent growth and divergence of rice nuclear genomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403715101
– volume: 31
  start-page: 3210
  year: 2015
  ident: 10.1016/j.cell.2021.04.046_bib65
  article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 5
  start-page: 965
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib97
  article-title: The population genetics of structural variants in grapevine domestication
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0507-8
– volume: 6
  start-page: 34
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib67
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0577-7
– volume: 588
  start-page: 277
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib74
  article-title: Multiple wheat genomes reveal global variation in modern breeding
  publication-title: Nature
  doi: 10.1038/s41586-020-2961-x
– volume: 8
  start-page: 15324
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib14
  article-title: Sequencing and de novo assembly of a near complete indica rice genome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15324
– volume: 50
  start-page: 1289
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib71
  article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0182-0
– volume: 111
  start-page: 2379
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib5
  article-title: Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1317360111
– volume: 10
  start-page: 5360
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib13
  article-title: Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13355-3
– volume: 30
  start-page: 1236
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib31
  article-title: InterProScan 5: genome-scale protein function classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu031
– volume: 11
  start-page: 15
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib39
  article-title: Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan
  publication-title: Rice (N. Y.)
  doi: 10.1186/s12284-018-0207-4
– volume: 40
  start-page: e49
  year: 2012
  ident: 10.1016/j.cell.2021.04.046_bib75
  article-title: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1293
– volume: 3
  start-page: 17043
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib46
  article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.43
– volume: 27
  start-page: 2401
  year: 2015
  ident: 10.1016/j.cell.2021.04.046_bib52
  article-title: The Birth of a Black Rice Gene and Its Local Spread by Introgression
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00310
– volume: 20
  start-page: 275
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib56
  article-title: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1905-y
– volume: 12
  start-page: 357
  year: 2015
  ident: 10.1016/j.cell.2021.04.046_bib37
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 11
  start-page: 492
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib27
  article-title: High-quality genome sequence of white lupin provides insight into soil exploration and seed quality
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14197-9
– volume: 33
  start-page: W465-7
  year: 2005
  ident: 10.1016/j.cell.2021.04.046_bib68
  article-title: AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki458
– volume: 42
  start-page: 348
  year: 2010
  ident: 10.1016/j.cell.2021.04.046_bib33
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 6
  start-page: 4
  year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib34
  article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data
  publication-title: Rice (N. Y.)
  doi: 10.1186/1939-8433-6-4
– volume: 36
  start-page: 875
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib20
  article-title: Variation graph toolkit improves read mapping by representing genetic variation in the reference
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4227
– volume: 12
  start-page: 656
  year: 2002
  ident: 10.1016/j.cell.2021.04.046_bib35
  article-title: BLAT--the BLAST-like alignment tool
  publication-title: Genome Res.
– volume: 14
  start-page: e1005944
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib50
  article-title: MUMmer4: A fast and versatile genome alignment system
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005944
– volume: 37
  start-page: 907
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib38
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 50
  start-page: 278
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib96
  article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0041-z
– volume: 176
  start-page: 663
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib4
  article-title: Characterizing the Major Structural Variant Alleles of the Human Genome
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.019
– volume: 21
  start-page: 35
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib24
  article-title: Genotyping structural variants in pangenome graphs using the vg toolkit
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1941-7
– volume: 3
  start-page: 99
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib17
  article-title: Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.07.012
– volume: 30
  start-page: 1660
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib85
  article-title: SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu077
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.cell.2021.04.046_bib43
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 15
  start-page: 461
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib62
  article-title: Accurate detection of complex structural variations using single-molecule sequencing
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0001-7
– volume: 5
  start-page: 180079
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib26
  article-title: Novel sequences, structural variations and gene presence variations of Asian cultivated rice
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.79
– volume: 11
  start-page: 989
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib30
  article-title: Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14779-y
– volume: 1
  start-page: 15124
  year: 2015
  ident: 10.1016/j.cell.2021.04.046_bib41
  article-title: A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.124
– volume: 29
  start-page: 870
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib19
  article-title: Structural variants in 3000 rice genomes
  publication-title: Genome Res.
  doi: 10.1101/gr.241240.118
– volume: 111
  start-page: 10263
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib86
  article-title: HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1410068111
– volume: 35
  start-page: 905
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib29
  article-title: OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-015-1931-5
– volume: 20
  start-page: 417
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib23
  article-title: The progress of mapping, isolation of the genes resisting to blast and their breeding application in rice
  publication-title: Zhongguo Nongxue Tongbao
– volume: 435
  start-page: 824
  year: 2005
  ident: 10.1016/j.cell.2021.04.046_bib1
  article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
  publication-title: Nature
  doi: 10.1038/nature03608
– volume: 51
  start-page: 354
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib58
  article-title: Fast and accurate genomic analyses using genome graphs
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0316-4
– volume: 27
  start-page: 722
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib40
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
  doi: 10.1101/gr.215087.116
– volume: 70
  start-page: 639
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib8
  article-title: The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100320
– volume: 11
  start-page: 1492
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib95
  article-title: N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.11.005
– volume: 588
  start-page: 284
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib28
  article-title: The barley pan-genome reveals the hidden legacy of mutation breeding
  publication-title: Nature
  doi: 10.1038/s41586-020-2947-8
– volume: 44
  start-page: 235
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib83
  article-title: Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2017.05.003
– volume: 40
  start-page: 491
  year: 2008
  ident: 10.1016/j.cell.2021.04.046_bib59
  article-title: Principal component analysis of genetic data
  publication-title: Nat. Genet.
  doi: 10.1038/ng0508-491
– volume: 183
  start-page: 1157
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib80
  article-title: Rice GERMIN-LIKE PROTEIN 2-1 Functions in Seed Dormancy under the Control of Abscisic Acid and Gibberellic Acid Signaling Pathways
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00253
– volume: 172
  start-page: 1901
  year: 2006
  ident: 10.1016/j.cell.2021.04.046_bib57
  article-title: The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice
  publication-title: Genetics
  doi: 10.1534/genetics.105.044891
– volume: 14
  start-page: 125
  year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib81
  article-title: Phenotypic impact of genomic structural variation: insights from and for human disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3373
– volume: 16
  start-page: 17
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib10
  article-title: Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0711-x
– volume: 21
  start-page: 1344
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib93
  article-title: Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice (Oryza sativa L.)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041344
– volume: 47
  start-page: 944
  year: 2015
  ident: 10.1016/j.cell.2021.04.046_bib76
  article-title: Copy number variation at the GL7 locus contributes to grain size diversity in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3346
– volume: 8
  start-page: 1310
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib63
  article-title: Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01400-y
– volume: 172
  start-page: 427
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib77
  article-title: Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01177
– volume: 17
  start-page: 224
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib6
  article-title: Mechanisms underlying structural variant formation in genomic disorders
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2015.25
– start-page: 21
  year: 1969
  ident: 10.1016/j.cell.2021.04.046_bib32
  article-title: Evolution of protein molecules
– volume: 113
  start-page: E5163
  year: 2016
  ident: 10.1016/j.cell.2021.04.046_bib94
  article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 416
  start-page: 701
  year: 2002
  ident: 10.1016/j.cell.2021.04.046_bib60
  article-title: Green revolution: a mutant gibberellin-synthesis gene in rice
  publication-title: Nature
  doi: 10.1038/416701a
– volume: 51
  start-page: 224
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib79
  article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0282-x
– volume: 557
  start-page: 43
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib78
  article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice
  publication-title: Nature
  doi: 10.1038/s41586-018-0063-9
– volume: 7
  start-page: 113
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib98
  article-title: A platinum standard pan-genome resource that represents the population structure of Asian rice
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0438-2
– volume: 143
  start-page: 837
  year: 2010
  ident: 10.1016/j.cell.2021.04.046_bib36
  article-title: A human genome structural variation sequencing resource reveals insights into mutational mechanisms
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.027
– volume: 28
  start-page: 511
  year: 2010
  ident: 10.1016/j.cell.2021.04.046_bib73
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 51
  start-page: 1052
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib88
  article-title: Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0427-6
– volume: 45
  start-page: 663
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib7
  article-title: Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2018.10.007
– volume: 182
  start-page: 162
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib47
  article-title: Pan-Genome of Wild and Cultivated Soybeans
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.023
– volume: 94
  start-page: 1141
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib12
  article-title: Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice
  publication-title: Plant J.
  doi: 10.1111/tpj.13925
– volume: 70
  start-page: 3895
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib91
  article-title: OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz198
– volume: 10
  start-page: 685
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib15
  article-title: Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.03.009
– volume: 356
  start-page: 92
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib16
  article-title: De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds
  publication-title: Science
  doi: 10.1126/science.aal3327
– volume: 21
  start-page: 171
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib25
  article-title: Structural variation in the sequencing era
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0180-9
– volume: 15
  start-page: 506
  year: 2014
  ident: 10.1016/j.cell.2021.04.046_bib61
  article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica
  publication-title: Genome Biol.
– volume: 180
  start-page: 1803
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib64
  article-title: Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00386
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib90
  article-title: funRiceGenes dataset for comprehensive understanding and application of rice functional genes
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix119
– volume: 9
  start-page: 18
  year: 2008
  ident: 10.1016/j.cell.2021.04.046_bib18
  article-title: LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-18
– volume: 19
  start-page: 1912
  year: 2009
  ident: 10.1016/j.cell.2021.04.046_bib45
  article-title: Evidence-based gene predictions in plant genomes
  publication-title: Genome Res.
  doi: 10.1101/gr.088997.108
– volume: 47
  start-page: 637
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib9
  article-title: Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2020.10.006
– volume: 48
  start-page: 93
  year: 2010
  ident: 10.1016/j.cell.2021.04.046_bib84
  article-title: The strigolactone story
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-073009-114453
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.cell.2021.04.046_bib42
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 176
  start-page: 1410
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib53
  article-title: LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01310
– volume: 14
  start-page: 178
  year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib72
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs017
– volume: 69
  start-page: 352
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib51
  article-title: Detection of heading date QTLs in advanced-backcross populations of an elite indica rice cultivar, IR64
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.18172
– volume: 153
  start-page: 919
  year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib87
  article-title: Diverse mechanisms of somatic structural variations in human cancer genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.010
– volume: 14
  start-page: 649
  year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib92
  article-title: Genome-wide copy number variations in Oryza sativa L
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-649
– volume: 182
  start-page: 145
  year: 2020
  ident: 10.1016/j.cell.2021.04.046_bib3
  article-title: Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.021
– volume: 10
  start-page: 2989
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib89
  article-title: Extensive intraspecific gene order and gene structural variations in upland cotton cultivars
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10820-x
– volume: 38
  start-page: e199
  year: 2010
  ident: 10.1016/j.cell.2021.04.046_bib22
  article-title: MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq862
– volume: 24
  start-page: 352
  year: 2019
  ident: 10.1016/j.cell.2021.04.046_bib48
  article-title: Copy Number Variation in Domestication
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.01.003
– volume: 93
  start-page: 21
  year: 2017
  ident: 10.1016/j.cell.2021.04.046_bib44
  article-title: Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-016-0544-x
– volume: 46
  start-page: e126
  year: 2018
  ident: 10.1016/j.cell.2021.04.046_bib55
  article-title: Assessing genome assembly quality using the LTR Assembly Index (LAI)
  publication-title: Nucleic Acids Res.
– year: 2013
  ident: 10.1016/j.cell.2021.04.046_bib66
– volume: 19
  start-page: 1655
  year: 2009
  ident: 10.1016/j.cell.2021.04.046_bib2
  article-title: Fast model-based estimation of ancestry in unrelated individuals
  publication-title: Genome Res.
  doi: 10.1101/gr.094052.109
– volume: 43
  start-page: 491
  year: 2011
  ident: 10.1016/j.cell.2021.04.046_bib11
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat. Genet.
  doi: 10.1038/ng.806
SSID ssj0008555
Score 2.70901
Snippet Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3542
SubjectTerms Adaptation, Physiological - genetics
Agriculture
Domestication
Ecotype
evolution
Gene copy number variation
gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes, Plant
Genetic Variation
genome
Genome, Plant
genome-wide association study
Genomic Structural Variation
genomics
Graph-based genome
High-quality assembly
Molecular Sequence Annotation
Oryza - genetics
Oryza glaberrima
Oryza sativa
Pan-genome
Phenotype
Rice
Structural variation
Title Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations
URI https://dx.doi.org/10.1016/j.cell.2021.04.046
https://www.ncbi.nlm.nih.gov/pubmed/34051138
https://www.proquest.com/docview/2534618988
https://www.proquest.com/docview/2636435978
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOCblC0fbdNHHY4hKD5M2FtIkxQnsxu6CfvvvWvagaB7EPrS9lLC5XL3u_Q-CLl2NnXKMvyr27ORZN5HxkgTceNjZxKweTnmDj8-JcMX-TCOxy3Sb3JhMKyy1v1Bp1faun7SrbnZnU8mmOObcZWAa8ewNx4bgx4WUlVJfOO7tTZWcRy6GGSw84G6TpwJMV54OA4-ImdVuVMEwb8bp7_AZ2WEBrtkp0aP9DZMcI-0fLlPtkI_ydUB0c-mjLDq6runpq42QmcFFYLC05CuOF1RV8VieIr1hKipOiai8FGs5gTSSF-xrEhJqw9NLP0Cdzqc6x2S0eB-1B9GdQeFyIIns4iMYl7kGculSHOmTMG5A38FYEXiHAA9lSmfx5bJwlow1LETyqYGMIQpetxbcUTa5az0J4RyDqpBMM8zoJapyLnLElOALRMmY4XoENZwTtu6ujg2uZjqJozsTSO3NXJb9yRcSYfcrMfMQ22NjdRxsyD6h4RoUP4bx101q6dh6-BrU_rZ8lPzWMiEAQ_UBppEAGYDrwtojsPSr-cqAOwyJtTpP2d2RrbxDgPPuDwn7cXH0l8AxFnkl5UMfwMn1_iP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7ShNJcStNnmjZRoT0Vk9XDtnzIoY-E3bzoYQt7E7Ikky2pNySblv1b_YWdseSFQruHQsAnaSTESJr5Rp4HwFvvSq8dp7-6A5cpHkJmrbKZsCH3tkCdV1Ps8Nl5Mfyqjif5ZA1-9bEw5FaZZH-U6Z20Ti37iZv7V9MpxfhWQhdo2nGqjccnybPyJCx-ot12czD6jJv8Toijw_GnYZZKC2QOIf48s5oHWVe8VrKsubaNEB6BPOrbwntEQLrSoc4dV41zqMFyL7UrLSpX2wxEcBKnvQcbCD5KEgajycel9Nd5HqsmVChpcHUpUCf6lNFjPNqkgnfpVQl0_10Z_gvsdkrv6BE8TGiVfYgM2YK10D6G-7F-5eIJmC-2zSjL6_fAbMpuwmYNk5JhawyPvFww3_l-BEb5i5jtKjTSYWeUPQpPP7ugNCYt6yaaOvYDzff4jvgUxnfB1mew3s7a8AKYECiKJA-iQmpVylr4qrAN6k5pK97IbeA954xL2cypqMal6d3WvhnitiFum4HCr9iG98sxVzGXx0rqvN8Q88eJNKhsVo570--ewatK3bYNs9sbI3KpCo480CtoCokYEa08pHket365VongmnOpX_7nyvbgwXB8dmpOR-cnO7BJPeT0JtQrWJ9f34bXCK_m9W53nhmYO74_vwHjQTTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pan-genome+analysis+of+33+genetically+diverse+rice+accessions+reveals+hidden+genomic+variations&rft.jtitle=Cell&rft.au=Qin%2C+Peng&rft.au=Lu%2C+Hongwei&rft.au=Du%2C+Huilong&rft.au=Wang%2C+Hao&rft.date=2021-06-24&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=184&rft.issue=13&rft.spage=3542&rft.epage=3558.e16&rft_id=info:doi/10.1016%2Fj.cell.2021.04.046&rft.externalDocID=S009286742100581X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon