Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations
Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic reso...
Saved in:
Published in | Cell Vol. 184; no. 13; pp. 3542 - 3558.e16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.
[Display omitted]
•De novo assembly of 31 high-quality genomes for genetically diverse accessions•Pan-genome-scale resources and a graph-based genome reveal hidden SVs and gCNVs•The derived state of O. sativa SVs was inferred using the O. glaberrima assembly•SVs and gCNVs have shaped gene expression profiles and agronomic trait variations
A high-quality rice pan-genome of genetically diverse rice accessions is constructed through de novo genome assemblies, demonstrating the impact of structural variation and gene copy number variations on environmental adaptations and agronomic traits. |
---|---|
AbstractList | Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research. Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research. Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research. [Display omitted] •De novo assembly of 31 high-quality genomes for genetically diverse accessions•Pan-genome-scale resources and a graph-based genome reveal hidden SVs and gCNVs•The derived state of O. sativa SVs was inferred using the O. glaberrima assembly•SVs and gCNVs have shaped gene expression profiles and agronomic trait variations A high-quality rice pan-genome of genetically diverse rice accessions is constructed through de novo genome assemblies, demonstrating the impact of structural variation and gene copy number variations on environmental adaptations and agronomic traits. |
Author | Chen, Zhuo Li, Weitao Du, Huilong Liao, Yi Li, Xuanzhao He, Min Qin, Peng Li, Yan He, Qiang Wang, Yuping Li, Ting Chen, Weilan Fan, Shijun Yin, Junjie Gao, Qiang Chen, Xuewei Tu, Bin Zhang, Hongyu Li, Shigui Ou, Shujun Liang, Chengzhi Qian, Yangwen Jiang, Ning Wang, Jing Li, Xiuxiu Yuan, Hua Lu, Hongwei Ma, Bingtian Wang, Hao |
Author_xml | – sequence: 1 givenname: Peng surname: Qin fullname: Qin, Peng email: qinpeng@sicau.edu.cn organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 2 givenname: Hongwei surname: Lu fullname: Lu, Hongwei organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Huilong surname: Du fullname: Du, Huilong organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Hao surname: Wang fullname: Wang, Hao organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 5 givenname: Weilan surname: Chen fullname: Chen, Weilan organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 6 givenname: Zhuo surname: Chen fullname: Chen, Zhuo organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Qiang surname: He fullname: He, Qiang organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China – sequence: 8 givenname: Shujun surname: Ou fullname: Ou, Shujun organization: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA – sequence: 9 givenname: Hongyu surname: Zhang fullname: Zhang, Hongyu organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China – sequence: 10 givenname: Xuanzhao surname: Li fullname: Li, Xuanzhao organization: School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China – sequence: 11 givenname: Xiuxiu surname: Li fullname: Li, Xiuxiu organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 12 givenname: Yan surname: Li fullname: Li, Yan organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 13 givenname: Yi orcidid: 0000-0002-7724-1799 surname: Liao fullname: Liao, Yi organization: Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA – sequence: 14 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 15 givenname: Bin surname: Tu fullname: Tu, Bin organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 16 givenname: Hua surname: Yuan fullname: Yuan, Hua organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 17 givenname: Bingtian surname: Ma fullname: Ma, Bingtian organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 18 givenname: Yuping surname: Wang fullname: Wang, Yuping organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 19 givenname: Yangwen surname: Qian fullname: Qian, Yangwen organization: Biogle Genome Editing Center, Changzhou, Jiangsu, China – sequence: 20 givenname: Shijun surname: Fan fullname: Fan, Shijun organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 21 givenname: Weitao surname: Li fullname: Li, Weitao organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 22 givenname: Jing surname: Wang fullname: Wang, Jing organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 23 givenname: Min surname: He fullname: He, Min organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 24 givenname: Junjie surname: Yin fullname: Yin, Junjie organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 25 givenname: Ting surname: Li fullname: Li, Ting organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 26 givenname: Ning surname: Jiang fullname: Jiang, Ning organization: Department of Horticulture, Michigan State University, East Lansing, MI, USA – sequence: 27 givenname: Xuewei surname: Chen fullname: Chen, Xuewei organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China – sequence: 28 givenname: Chengzhi orcidid: 0000-0001-8913-3552 surname: Liang fullname: Liang, Chengzhi email: cliang@genetics.ac.cn organization: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China – sequence: 29 givenname: Shigui surname: Li fullname: Li, Shigui email: lishigui@sicau.edu.cn organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34051138$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVIaTZp_0AORcdevNW3ZcglhPQDAu0hdyGPxokWr5xK3oX995GzyaWHFAYGhud9h3nnnJymKSEhl5ytOePm22YNOI5rwQRfM1XLnJAVZ13bKN6KU7JirBONNa06I-elbBhjVmv9kZxJxTTn0q6I--NT84Bp2iL1yY-HEgudBiolrVOcI_hxPNAQ95gL0hyhcgBYSpxSoRn36MdCH2MImOiLUQS69zn6eSE-kQ9DBfDza78g999v729-Nne_f_y6ub5rQHXd3HjLUfYd75Vse279IEQwxrCWmxC0lLaz2GvgagAwhusgLbRes84PTCDIC_L1aPuUp787LLPbxrKk4xNOu-KEkUZJ3bX2_6iWyvC6cEG_vKK7fovBPeW49fng3uKrgD0CkKdSMg4O4vxy-Jx9HB1nbvmU27hlgVs-5ZiqZapU_CN9c39XdHUUYY1yHzG7AhETYIgZYXZhiu_JnwHLHaw9 |
CitedBy_id | crossref_primary_10_1038_s41477_022_01238_3 crossref_primary_10_1093_genetics_iyac019 crossref_primary_10_1111_tpj_15553 crossref_primary_10_1016_j_tplants_2024_03_007 crossref_primary_10_1007_s00122_021_03965_1 crossref_primary_10_1016_j_tplants_2022_03_002 crossref_primary_10_1038_s41477_024_01866_x crossref_primary_10_1111_pce_14557 crossref_primary_10_3390_ijms23179705 crossref_primary_10_1007_s11427_022_2233_x crossref_primary_10_3389_fpls_2021_729560 crossref_primary_10_1038_s41588_024_01760_4 crossref_primary_10_1186_s13100_025_00347_y crossref_primary_10_1016_j_gene_2022_147081 crossref_primary_10_1111_jipb_13413 crossref_primary_10_1038_s41467_023_43009_4 crossref_primary_10_1038_s41477_025_01905_1 crossref_primary_10_1016_j_jgg_2023_05_009 crossref_primary_10_1038_s41588_024_01964_8 crossref_primary_10_1038_s41467_024_53718_z crossref_primary_10_1016_j_csbj_2022_01_030 crossref_primary_10_3389_fpls_2023_1134308 crossref_primary_10_3389_fpls_2022_1059804 crossref_primary_10_1016_j_agrcom_2024_100039 crossref_primary_10_1093_hr_uhad197 crossref_primary_10_1016_j_hpj_2024_05_005 crossref_primary_10_1111_mec_17088 crossref_primary_10_1186_s13059_024_03288_6 crossref_primary_10_1038_s41467_024_52376_5 crossref_primary_10_1093_plphys_kiae357 crossref_primary_10_1270_jsbbs_23077 crossref_primary_10_3390_biology11030369 crossref_primary_10_1016_j_jare_2024_11_005 crossref_primary_10_3390_ijms25179677 crossref_primary_10_3390_plants11111498 crossref_primary_10_1099_mgen_0_001328 crossref_primary_10_3390_genes14101850 crossref_primary_10_1093_bioinformatics_btad121 crossref_primary_10_1038_s41467_023_41220_x crossref_primary_10_1016_j_forsciint_2025_112370 crossref_primary_10_3389_fpls_2024_1371222 crossref_primary_10_1111_jse_13007 crossref_primary_10_1111_pce_14889 crossref_primary_10_1038_s41467_023_43270_7 crossref_primary_10_3390_plants12040899 crossref_primary_10_1038_s41467_024_45244_9 crossref_primary_10_3389_fgene_2022_1029879 crossref_primary_10_1126_science_adm8762 crossref_primary_10_1038_s41598_024_58224_2 crossref_primary_10_3390_genes13071112 crossref_primary_10_1111_age_13288 crossref_primary_10_1002_advs_202401549 crossref_primary_10_3389_fpls_2023_1216505 crossref_primary_10_3389_fpls_2022_979540 crossref_primary_10_1016_j_tplants_2021_10_006 crossref_primary_10_1111_ppl_14392 crossref_primary_10_1186_s12864_023_09137_3 crossref_primary_10_1016_j_csbj_2023_06_012 crossref_primary_10_1038_s41467_023_40189_x crossref_primary_10_1146_annurev_genet_022123_110824 crossref_primary_10_1093_pcp_pcac073 crossref_primary_10_1186_s13059_024_03359_8 crossref_primary_10_3390_ijms22169040 crossref_primary_10_1007_s10722_024_02262_2 crossref_primary_10_1186_s13059_023_03017_5 crossref_primary_10_1016_j_jia_2024_07_047 crossref_primary_10_1016_j_xplc_2024_101071 crossref_primary_10_1038_s41467_023_42394_0 crossref_primary_10_1038_s42003_025_07749_x crossref_primary_10_7554_eLife_86324 crossref_primary_10_1016_j_molp_2022_10_009 crossref_primary_10_1016_j_xplc_2024_101196 crossref_primary_10_1111_tpj_16070 crossref_primary_10_1111_tpj_17011 crossref_primary_10_1186_s12870_022_03846_9 crossref_primary_10_1093_jxb_erac412 crossref_primary_10_1016_j_rsci_2024_02_001 crossref_primary_10_1186_s13059_024_03470_w crossref_primary_10_1016_j_cj_2022_02_006 crossref_primary_10_1038_s43016_023_00742_9 crossref_primary_10_1016_j_tplants_2025_02_005 crossref_primary_10_1093_hr_uhad200 crossref_primary_10_1016_j_molp_2023_03_002 crossref_primary_10_1016_j_xplc_2024_101044 crossref_primary_10_1038_s41467_022_33366_x crossref_primary_10_1016_j_molp_2024_03_009 crossref_primary_10_1093_nar_gkad840 crossref_primary_10_1016_j_xplc_2022_100352 crossref_primary_10_3390_genes13050834 crossref_primary_10_1016_j_molp_2023_07_009 crossref_primary_10_1093_hr_uhad202 crossref_primary_10_1093_hr_uhad203 crossref_primary_10_1016_j_xplc_2023_100599 crossref_primary_10_3389_fpls_2022_1065449 crossref_primary_10_1038_s41477_025_01942_w crossref_primary_10_3390_genes13040598 crossref_primary_10_1111_nph_19799 crossref_primary_10_3389_fpls_2022_905982 crossref_primary_10_1016_j_rsci_2024_12_004 crossref_primary_10_1038_s41477_021_01019_4 crossref_primary_10_3390_agronomy12010218 crossref_primary_10_1111_tpj_15646 crossref_primary_10_3389_fpls_2022_856880 crossref_primary_10_3389_fpls_2021_743782 crossref_primary_10_3390_ijms231911864 crossref_primary_10_1016_j_plantsci_2023_111748 crossref_primary_10_1186_s13007_024_01250_y crossref_primary_10_1093_hr_uhac100 crossref_primary_10_1093_gbe_evad121 crossref_primary_10_1093_nsr_nwac131 crossref_primary_10_1111_pbi_13880 crossref_primary_10_3389_fpls_2023_1232466 crossref_primary_10_1016_j_rsci_2022_07_001 crossref_primary_10_1186_s12864_023_09739_x crossref_primary_10_1016_j_molp_2022_01_008 crossref_primary_10_1016_j_pbi_2021_102167 crossref_primary_10_1007_s11427_023_2398_y crossref_primary_10_1038_s41586_024_08277_0 crossref_primary_10_1111_tpj_16021 crossref_primary_10_1007_s00122_023_04348_4 crossref_primary_10_1016_j_celrep_2024_114745 crossref_primary_10_1111_tpj_16023 crossref_primary_10_1038_s42003_023_05620_5 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_3389_fvets_2024_1413504 crossref_primary_10_3389_fpls_2022_891860 crossref_primary_10_1016_j_ygeno_2024_110915 crossref_primary_10_1016_j_xplc_2023_100571 crossref_primary_10_3389_fpls_2022_995634 crossref_primary_10_3390_ijms23105587 crossref_primary_10_1016_j_molp_2022_12_022 crossref_primary_10_1038_s41576_021_00413_0 crossref_primary_10_1101_gr_277515_122 crossref_primary_10_1016_j_jgg_2024_03_005 crossref_primary_10_1016_j_molp_2025_01_017 crossref_primary_10_1016_j_molp_2023_02_004 crossref_primary_10_3390_ijms23052671 crossref_primary_10_1038_s41588_024_01655_4 crossref_primary_10_3390_cells11071144 crossref_primary_10_15252_msb_202311686 crossref_primary_10_1111_tpj_16955 crossref_primary_10_1038_s41467_024_51854_0 crossref_primary_10_1007_s10142_024_01424_w crossref_primary_10_1186_s13059_023_02861_9 crossref_primary_10_3389_fpls_2023_1259462 crossref_primary_10_3390_cells12040543 crossref_primary_10_1002_csc2_21334 crossref_primary_10_1007_s42994_023_00130_8 crossref_primary_10_3389_fgene_2022_1006288 crossref_primary_10_1016_j_cell_2024_11_005 crossref_primary_10_1038_s41588_024_01715_9 crossref_primary_10_1073_pnas_2208759119 crossref_primary_10_1038_s41467_024_54427_3 crossref_primary_10_1080_21501203_2024_2358868 crossref_primary_10_1038_s41588_024_02029_6 crossref_primary_10_1093_nargab_lqad013 crossref_primary_10_1016_j_molp_2022_04_004 crossref_primary_10_1111_tpj_17218 crossref_primary_10_3389_fpls_2022_984072 crossref_primary_10_1186_s40104_023_00860_1 crossref_primary_10_1038_s41422_022_00685_z crossref_primary_10_1186_s40104_023_00944_y crossref_primary_10_1093_plphys_kiad319 crossref_primary_10_1186_s12864_022_08391_1 crossref_primary_10_1016_j_molp_2022_12_009 crossref_primary_10_1186_s12915_024_02002_z crossref_primary_10_1016_j_xplc_2023_100791 crossref_primary_10_1093_hr_uhae338 crossref_primary_10_32604_phyton_2024_048151 crossref_primary_10_1016_j_jare_2024_08_010 crossref_primary_10_1146_annurev_genom_021623_081639 crossref_primary_10_1093_bioinformatics_btac308 crossref_primary_10_1186_s12864_024_11178_1 crossref_primary_10_1186_s12915_024_01962_6 crossref_primary_10_1038_s41588_023_01423_w crossref_primary_10_1016_j_tplants_2023_07_005 crossref_primary_10_3390_genes15030378 crossref_primary_10_1007_s10681_022_03044_6 crossref_primary_10_3390_genes15050645 crossref_primary_10_1016_j_tplants_2024_05_004 crossref_primary_10_1016_j_cj_2024_05_010 crossref_primary_10_3389_fpls_2023_1133986 crossref_primary_10_1016_j_ncrops_2024_100020 crossref_primary_10_3389_fgene_2022_1060898 crossref_primary_10_1038_s41467_023_43077_6 crossref_primary_10_1016_j_xplc_2024_101137 crossref_primary_10_1038_s41467_023_37004_y crossref_primary_10_1016_j_pbi_2024_102664 crossref_primary_10_1093_nar_gkae1061 crossref_primary_10_1093_nsr_nwad029 crossref_primary_10_1016_j_jare_2023_03_006 crossref_primary_10_1111_tpj_16464 crossref_primary_10_1002_csc2_21019 crossref_primary_10_1016_j_xplc_2024_100816 crossref_primary_10_1007_s00239_024_10198_5 crossref_primary_10_1186_s12915_023_01512_6 crossref_primary_10_1007_s42994_024_00195_z crossref_primary_10_1186_s12284_022_00569_1 crossref_primary_10_1038_s41477_024_01655_6 crossref_primary_10_1101_gr_278131_123 crossref_primary_10_1038_s41588_024_01823_6 crossref_primary_10_1111_1755_0998_13905 crossref_primary_10_1007_s00299_023_03006_9 crossref_primary_10_3389_fpls_2022_1062952 crossref_primary_10_3390_plants14050807 crossref_primary_10_1016_j_xplc_2024_101226 crossref_primary_10_1360_SSV_2023_0068 crossref_primary_10_1038_s41467_024_48845_6 crossref_primary_10_1007_s00122_021_03951_7 crossref_primary_10_1186_s12863_024_01227_9 crossref_primary_10_3390_horticulturae10090908 crossref_primary_10_1038_s41467_024_46691_0 crossref_primary_10_1186_s43897_024_00123_1 crossref_primary_10_1038_s41576_024_00691_4 crossref_primary_10_1016_j_xplc_2024_101231 crossref_primary_10_1016_j_xplc_2024_101230 crossref_primary_10_3389_fpls_2022_863789 crossref_primary_10_1007_s11033_024_09854_2 crossref_primary_10_1016_j_jare_2024_05_019 crossref_primary_10_1016_j_pbi_2023_102387 crossref_primary_10_1021_acs_jafc_1c08028 crossref_primary_10_1111_pbi_14437 crossref_primary_10_1038_s41586_022_04808_9 crossref_primary_10_1016_j_celrep_2024_114928 crossref_primary_10_1111_pbi_14433 crossref_primary_10_3390_plants12183336 crossref_primary_10_3390_ijms24054414 crossref_primary_10_3390_jof8121238 crossref_primary_10_1016_j_cell_2022_04_036 crossref_primary_10_3389_fpls_2021_769700 crossref_primary_10_3389_fpls_2024_1345708 crossref_primary_10_1016_j_gpb_2021_09_001 crossref_primary_10_1038_s41588_023_01459_y crossref_primary_10_1016_j_ncrops_2024_100057 crossref_primary_10_1007_s42994_022_00089_y crossref_primary_10_1186_s12284_023_00621_8 crossref_primary_10_1111_jipb_13576 crossref_primary_10_1016_j_molp_2022_03_009 crossref_primary_10_3389_fpls_2021_605799 crossref_primary_10_1007_s11427_022_2178_7 crossref_primary_10_3389_fgene_2022_991900 crossref_primary_10_1016_j_pbi_2022_102195 crossref_primary_10_1186_s13059_023_03124_3 crossref_primary_10_1016_j_pbi_2022_102193 crossref_primary_10_1186_s12711_022_00766_y crossref_primary_10_1093_nar_gkac1115 crossref_primary_10_1186_s12864_024_10931_w crossref_primary_10_3389_fpls_2024_1391334 crossref_primary_10_1038_s41467_023_38670_8 crossref_primary_10_1186_s12915_024_01820_5 crossref_primary_10_1007_s00253_023_12814_8 crossref_primary_10_3390_ani14111617 crossref_primary_10_1002_tpg2_20456 crossref_primary_10_1093_plphys_kiac378 crossref_primary_10_1111_pbi_14570 crossref_primary_10_1093_nar_gkac121 crossref_primary_10_1007_s11427_022_2144_9 crossref_primary_10_1038_s41477_024_01902_w crossref_primary_10_1111_tpj_15690 crossref_primary_10_1126_sciadv_adm7452 crossref_primary_10_1038_s41467_024_49679_y crossref_primary_10_1111_pbi_14215 crossref_primary_10_1038_s41588_023_01495_8 crossref_primary_10_1038_s41467_024_46420_7 crossref_primary_10_1111_pbi_13807 crossref_primary_10_3389_fpls_2023_1294033 crossref_primary_10_1073_pnas_2102914118 crossref_primary_10_7554_eLife_86324_3 crossref_primary_10_1038_s41588_023_01302_4 crossref_primary_10_1038_s41588_023_01571_z crossref_primary_10_1093_nsr_nwae188 crossref_primary_10_1186_s13059_024_03239_1 crossref_primary_10_1038_s41477_023_01565_z crossref_primary_10_1016_j_molp_2022_07_005 crossref_primary_10_1038_s41467_022_32164_9 crossref_primary_10_1101_gr_277372_122 crossref_primary_10_1111_pbi_14224 crossref_primary_10_1093_plphys_kiad440 crossref_primary_10_1111_pbi_13938 crossref_primary_10_3389_fpls_2024_1454615 crossref_primary_10_1016_j_jgg_2022_06_004 crossref_primary_10_3390_plants12152754 crossref_primary_10_1007_s11427_022_2160_6 crossref_primary_10_1038_s41467_023_43015_6 crossref_primary_10_3390_ijms232112804 crossref_primary_10_3389_fpls_2021_774994 crossref_primary_10_1093_g3journal_jkad246 crossref_primary_10_1016_j_xplc_2022_100300 |
Cites_doi | 10.1186/s13100-019-0193-0 10.1038/s41576-018-0024-z 10.1038/s41588-018-0040-0 10.1016/j.molp.2019.02.008 10.1186/s13059-019-1911-0 10.1073/pnas.0403715101 10.1093/bioinformatics/btv351 10.1038/s41477-019-0507-8 10.1038/s41477-019-0577-7 10.1038/s41586-020-2961-x 10.1038/ncomms15324 10.1038/s41588-018-0182-0 10.1073/pnas.1317360111 10.1038/s41467-019-13355-3 10.1093/bioinformatics/btu031 10.1186/s12284-018-0207-4 10.1093/nar/gkr1293 10.1038/nplants.2017.43 10.1105/tpc.15.00310 10.1186/s13059-019-1905-y 10.1038/nmeth.3317 10.1038/s41467-019-14197-9 10.1093/nar/gki458 10.1038/ng.548 10.1186/1939-8433-6-4 10.1038/nbt.4227 10.1371/journal.pcbi.1005944 10.1038/s41587-019-0201-4 10.1038/s41588-018-0041-z 10.1016/j.cell.2018.12.019 10.1186/s13059-020-1941-7 10.1016/j.cels.2015.07.012 10.1093/bioinformatics/btu077 10.1093/bioinformatics/btp352 10.1038/s41592-018-0001-7 10.1038/sdata.2018.79 10.1038/s41467-020-14779-y 10.1038/nplants.2015.124 10.1101/gr.241240.118 10.1073/pnas.1410068111 10.1007/s00299-015-1931-5 10.1038/nature03608 10.1038/s41588-018-0316-4 10.1101/gr.215087.116 10.1146/annurev-arplant-050718-100320 10.1016/j.molp.2018.11.005 10.1038/s41586-020-2947-8 10.1016/j.jgg.2017.05.003 10.1038/ng0508-491 10.1104/pp.20.00253 10.1534/genetics.105.044891 10.1038/nrg3373 10.1186/s12870-016-0711-x 10.3390/ijms21041344 10.1038/ng.3346 10.1038/s41467-017-01400-y 10.1104/pp.16.01177 10.1038/nrg.2015.25 10.1038/416701a 10.1038/s41588-018-0282-x 10.1038/s41586-018-0063-9 10.1038/s41597-020-0438-2 10.1016/j.cell.2010.10.027 10.1038/nbt.1621 10.1038/s41588-019-0427-6 10.1016/j.jgg.2018.10.007 10.1016/j.cell.2020.05.023 10.1111/tpj.13925 10.1093/jxb/erz198 10.1016/j.molp.2017.03.009 10.1126/science.aal3327 10.1038/s41576-019-0180-9 10.1104/pp.19.00386 10.1093/gigascience/gix119 10.1186/1471-2105-9-18 10.1101/gr.088997.108 10.1016/j.jgg.2020.10.006 10.1146/annurev-phyto-073009-114453 10.1093/bioinformatics/btp324 10.1104/pp.17.01310 10.1093/bib/bbs017 10.1270/jsbbs.18172 10.1016/j.cell.2013.04.010 10.1186/1471-2164-14-649 10.1016/j.cell.2020.05.021 10.1038/s41467-019-10820-x 10.1093/nar/gkq862 10.1016/j.tplants.2019.01.003 10.1007/s11103-016-0544-x 10.1101/gr.094052.109 10.1038/ng.806 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.cell.2021.04.046 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Agriculture |
EISSN | 1097-4172 |
EndPage | 3558.e16 |
ExternalDocumentID | 34051138 10_1016_j_cell_2021_04_046 S009286742100581X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-a81e3b91b437b18af22d6660716dd533898eb5c14fcc6615d38c7a509af02ec3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Tue Aug 05 10:56:55 EDT 2025 Tue Aug 05 11:03:36 EDT 2025 Wed Feb 19 02:27:43 EST 2025 Tue Jul 01 02:17:09 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Fri Feb 23 02:44:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Graph-based genome High-quality assembly Pan-genome Structural variation Gene copy number variation Rice |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-a81e3b91b437b18af22d6660716dd533898eb5c14fcc6615d38c7a509af02ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8913-3552 0000-0002-7724-1799 |
OpenAccessLink | http://www.cell.com/article/S009286742100581X/pdf |
PMID | 34051138 |
PQID | 2534618988 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2636435978 proquest_miscellaneous_2534618988 pubmed_primary_34051138 crossref_citationtrail_10_1016_j_cell_2021_04_046 crossref_primary_10_1016_j_cell_2021_04_046 elsevier_sciencedirect_doi_10_1016_j_cell_2021_04_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-24 |
PublicationDateYYYYMMDD | 2021-06-24 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ma, Bennetzen (bib49) 2004; 101 Ou, Chen, Jiang (bib55) 2018; 46 Fuentes, Chebotarov, Duitama, Smith, De la Hoz, Mohiyuddin, Wing, McNally, Tatarinova, Grigoriev (bib19) 2019; 29 Kawahara, de la Bastide, Hamilton, Kanamori, McCombie, Ouyang, Schwartz, Tanaka, Wu, Zhou (bib34) 2013; 6 Hickey, Heller, Monlong, Sibbesen, Sirén, Eizenga, Dawson, Garrison, Novak, Paten (bib24) 2020; 21 Xie, Yoneyama, Yoneyama (bib84) 2010; 48 Ellinghaus, Kurtz, Willhoeft (bib18) 2008; 9 Kang, Sul, Service, Zaitlen, Kong, Freimer, Sabatti, Eskin (bib33) 2010; 42 Shen, Wang, Liu, Wu, Jin, Zhao, Xie, Zhu, Tang, Li (bib63) 2017; 8 Sasaki, Ashikari, Ueguchi-Tanaka, Itoh, Nishimura, Swapan, Ishiyama, Saito, Kobayashi, Khush (bib60) 2002; 416 Kidd, Graves, Newman, Fulton, Hayden, Malig, Kallicki, Kaul, Wilson, Eichler (bib36) 2010; 143 Wang, Mauleon, Hu, Chebotarov, Tai, Wu, Li, Zheng, Fuentes, Zhang (bib78) 2018; 557 Yao, Li, Yu, Ouyang (bib90) 2018; 7 Du, Liang (bib13) 2019; 10 Stanke, Morgenstern (bib68) 2005; 33 Alonge, Wang, Benoit, Soyk, Pereira, Zhang, Suresh, Ramakrishnan, Maumus, Ciren (bib3) 2020; 182 Yu, Wang, Xu, Feng, Yuan, Yu, Wang, Tang, Wei (bib92) 2013; 14 Du, Yu, Ma, Gao, Cao, Chen, Ma, Qi, Li, Zhao (bib14) 2017; 8 Walkowiak, Gao, Monat, Haberer, Kassa, Brinton, Ramirez-Gonzalez, Kolodziej, Delorean, Thambugala (bib74) 2020; 588 Stein, Yu, Copetti, Zwickl, Zhang, Zhang, Chougule, Gao, Iwata, Goicoechea (bib69) 2018; 50 Liu, Du, Li, Shen, Peng, Liu, Zhou, Zhang, Liu, Shi (bib47) 2020; 182 Goel, Sun, Jiao, Schneeberger (bib21) 2019; 20 Zhao, Feng, Lu, Li, Wang, Tian, Zhan, Lu, Zhang, Huang (bib96) 2018; 50 Jukes, Cantor (bib32) 1969 Wang, Tang, Debarry, Tan, Li, Wang, Lee, Jin, Marler, Guo (bib75) 2012; 40 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib43) 2009; 25 Garrison, Sirén, Novak, Hickey, Eizenga, Dawson, Jones, Garg, Markello, Lin (bib20) 2018; 36 Li, Durbin (bib42) 2009; 25 Weischenfeldt, Symmons, Spitz, Korbel (bib81) 2013; 14 Hu, Wang, Wu, Sun, Li, Lu, Fu, Shi, Xu, Ruan (bib26) 2018; 5 Lye, Purugganan (bib48) 2019; 24 Zhang, Chen, Xing, Kudrna, Yao, Copetti, Mu, Li, Song, Xie (bib94) 2016; 113 Delteil, Gobbato, Cayrol, Estevan, Michel-Romiti, Dievart, Kroj, Morel (bib10) 2016; 16 Jones, Binns, Chang, Fraser, Li, McAnulla, McWilliam, Maslen, Mitchell, Nuka (bib31) 2014; 30 Simão, Waterhouse, Ioannidis, Kriventseva, Zdobnov (bib65) 2015; 31 Wang, Xiong, Hu, Jiang, Yu, Xu, Fang, Zeng, Xu, Xu (bib76) 2015; 47 Shi, Liang (bib64) 2019; 180 Yang, Ge, Yang, Qin, Sun, Wang, Li, Liu, Wu, Wang (bib89) 2019; 10 Yang, Liu, Gao, Gui, Chen, Yang, Huang, Deng, Luo, He (bib88) 2019; 51 Sun, Zhou, Chen, Shi, Zhao, Zhao, Song, Zhang, Cui, Dong (bib71) 2018; 50 Su, Gu, Peterson (bib70) 2019; 12 Thorvaldsdóttir, Robinson, Mesirov (bib72) 2013; 14 He, Wang, Wu, Chen, Lin, Cheng, Liu, Chen, Liao (bib23) 2014; 20 Chen, Huang, Tian, Wing, Han (bib8) 2019; 70 Kim, Paggi, Park, Bennett, Salzberg (bib38) 2019; 37 Marçais, Delcher, Phillippy, Coston, Salzberg, Zimin (bib50) 2018; 14 Ou, Jiang (bib53) 2018; 176 Audano, Sulovari, Graves-Lindsay, Cantsilieris, Sorensen, Welch, Dougherty, Nelson, Shah, Dutcher (bib4) 2019; 176 Duan, Xu, Zeng, Zhang, Geng, Zhang, Huang, Huang, Xu, Ge (bib15) 2017; 10 Yang, Luquette, Gehlenborg, Xi, Haseley, Hsieh, Zhang, Ren, Protopopov, Chin (bib87) 2013; 153 Oikawa, Maeda, Oguchi, Yamaguchi, Tanabe, Ebana, Yano, Ebitani, Izawa (bib52) 2015; 27 Rakocevic, Semenyuk, Lee, Spencer, Browning, Johnson, Arsenijevic, Nadj, Ghose, Suciu (bib58) 2019; 51 Dudchenko, Batra, Omer, Nyquist, Hoeger, Durand, Shamim, Machol, Lander, Aiden, Aiden (bib16) 2017; 356 Zhou, Chebotarov, Kudrna, Llaca, Lee, Rajasekar, Mohammed, Al-Bader, Sobel-Sorenson, Parakkal (bib98) 2020; 7 Zhou, Minio, Massonnet, Solares, Lv, Beridze, Cantu, Gaut (bib97) 2019; 5 Wing, Purugganan, Zhang (bib82) 2018; 19 Xiong, He, Lai, Dooner, Du (bib86) 2014; 111 Wang, Zhang, Xiao, Zhang, Wang, Chen, Fang (bib80) 2020; 183 Kent (bib35) 2002; 12 Trapnell, Williams, Pertea, Mortazavi, Kwan, van Baren, Salzberg, Wold, Pachter (bib73) 2010; 28 Jiao, Schneeberger (bib30) 2020; 11 Kretzschmar, Pelayo, Trijatmiko, Gabunada, Alam, Jimenez, Mendioro, Slamet-Loedin, Sreenivasulu, Bailey-Serres (bib41) 2015; 1 Alexander, Novembre, Lange (bib2) 2009; 19 Qu, Liu, Zhou, Bellizzi, Zeng, Dai, Han, Wang (bib57) 2006; 172 Sedlazeck, Rescheneder, Smolka, Fang, Nattestad, von Haeseler, Schatz (bib62) 2018; 15 Chen, Zhao, Zhu, Zou, Yin, Chern, Zhou, Ying, Jiang, Li (bib7) 2018; 45 Reich, Price, Patterson (bib59) 2008; 40 Han, Wessler (bib22) 2010; 38 Durand, Robinson, Shamim, Machol, Mesirov, Lander, Aiden (bib17) 2016; 3 Wang, Tu, Yuan, Zhu, Shen, Li, Liu, Pei, Wang, Zhao (bib79) 2019; 51 DePristo, Banks, Poplin, Garimella, Maguire, Hartl, Philippakis, del Angel, Rivas, Hanna (bib11) 2011; 43 Chen, Li, Lu, Gao, Du, Peng, Qin, Liang (bib9) 2020; 47 Carvalho, Lupski (bib6) 2016; 17 Schatz, Maron, Stein, Hernandez Wences, Gurtowski, Biggers, Lee, Kramer, Antoniou, Ghiban (bib61) 2014; 15 Hufnagel, Marques, Soriano, Marquès, Divol, Doumas, Sallet, Mancinotti, Carrere, Marande (bib27) 2020; 11 Jayakodi, Padmarasu, Haberer, Bonthala, Gundlach, Monat, Lux, Kamal, Lang, Himmelbach (bib28) 2020; 588 Li, Han, Chen, Yang, Liu, Li, Ding, Chu (bib44) 2017; 93 Xia, Zou, Sang, Xu, Yin, Li, Wu, Hu, Hao, Zhang (bib83) 2017; 44 Cardoso, Zhang, Jamil, Hepworth, Charnikhova, Dimkpa, Meharg, Wright, Liu, Meng (bib5) 2014; 111 Dong, Li, Li, Yuan, Xie, Wang, Li, Yu, Wang, Ding (bib12) 2018; 94 Xie, Wu, Tang, Luo, Patterson, Liu, Huang, He, Gu, Li (bib85) 2014; 30 Nonoue, Hori, Ono, Shibaya, Ogiso-Tanaka, Mizobuchi, Fukuoka, Yano (bib51) 2019; 69 Zhang, Liang, Cui, Ji, Li, Zhang, Liu, Riaz, Yao, Liu (bib95) 2018; 11 Song, Guan, Hu, Guo, Yang, Wang, Liu, Wang, Lu, Zhou (bib67) 2020; 6 Ou, Jiang (bib54) 2019; 10 Kim, Langmead, Salzberg (bib37) 2015; 12 Ou, Su, Liao, Chougule, Agda, Hellinga, Lugo, Elliott, Ware, Peterson (bib56) 2019; 20 Ho, Urban, Mills (bib25) 2020; 21 Liu, Chen, Zheng, Wu, Lin, Heng, Tian, Cheng, Yu, Zhou (bib46) 2017; 3 Akiyama, Matsuzaki, Hayashi (bib1) 2005; 435 Koren, Walenz, Berlin, Miller, Bergman, Phillippy (bib40) 2017; 27 Smit, Hubley, Green (bib66) 2013-2015 Jeong, Yang, Cho, An (bib29) 2016; 35 Liang, Mao, Ware, Stein (bib45) 2009; 19 Yin, Liu, Xu, Lu, Dong, Yang, Ye, Feng, Wu (bib91) 2019; 70 Kobayashi, Hori, Yamamoto, Yano (bib39) 2018; 11 Yuan, Wang, Zhang, He, Yu (bib93) 2020; 21 Wang, Tao, Marowsky, Fan (bib77) 2016; 172 Hickey (10.1016/j.cell.2021.04.046_bib24) 2020; 21 Weischenfeldt (10.1016/j.cell.2021.04.046_bib81) 2013; 14 Reich (10.1016/j.cell.2021.04.046_bib59) 2008; 40 Ou (10.1016/j.cell.2021.04.046_bib56) 2019; 20 Kent (10.1016/j.cell.2021.04.046_bib35) 2002; 12 Goel (10.1016/j.cell.2021.04.046_bib21) 2019; 20 Wing (10.1016/j.cell.2021.04.046_bib82) 2018; 19 Koren (10.1016/j.cell.2021.04.046_bib40) 2017; 27 Du (10.1016/j.cell.2021.04.046_bib13) 2019; 10 Li (10.1016/j.cell.2021.04.046_bib42) 2009; 25 Kretzschmar (10.1016/j.cell.2021.04.046_bib41) 2015; 1 Chen (10.1016/j.cell.2021.04.046_bib8) 2019; 70 Marçais (10.1016/j.cell.2021.04.046_bib50) 2018; 14 Wang (10.1016/j.cell.2021.04.046_bib78) 2018; 557 Xie (10.1016/j.cell.2021.04.046_bib84) 2010; 48 Dudchenko (10.1016/j.cell.2021.04.046_bib16) 2017; 356 Zhao (10.1016/j.cell.2021.04.046_bib96) 2018; 50 Kang (10.1016/j.cell.2021.04.046_bib33) 2010; 42 Yang (10.1016/j.cell.2021.04.046_bib88) 2019; 51 Ou (10.1016/j.cell.2021.04.046_bib55) 2018; 46 Yin (10.1016/j.cell.2021.04.046_bib91) 2019; 70 Yu (10.1016/j.cell.2021.04.046_bib92) 2013; 14 Ou (10.1016/j.cell.2021.04.046_bib54) 2019; 10 Ou (10.1016/j.cell.2021.04.046_bib53) 2018; 176 Jiao (10.1016/j.cell.2021.04.046_bib30) 2020; 11 Ma (10.1016/j.cell.2021.04.046_bib49) 2004; 101 Sedlazeck (10.1016/j.cell.2021.04.046_bib62) 2018; 15 Han (10.1016/j.cell.2021.04.046_bib22) 2010; 38 Jones (10.1016/j.cell.2021.04.046_bib31) 2014; 30 Qu (10.1016/j.cell.2021.04.046_bib57) 2006; 172 Yuan (10.1016/j.cell.2021.04.046_bib93) 2020; 21 Li (10.1016/j.cell.2021.04.046_bib43) 2009; 25 Zhou (10.1016/j.cell.2021.04.046_bib98) 2020; 7 Chen (10.1016/j.cell.2021.04.046_bib7) 2018; 45 Audano (10.1016/j.cell.2021.04.046_bib4) 2019; 176 Shi (10.1016/j.cell.2021.04.046_bib64) 2019; 180 Hu (10.1016/j.cell.2021.04.046_bib26) 2018; 5 Hufnagel (10.1016/j.cell.2021.04.046_bib27) 2020; 11 Wang (10.1016/j.cell.2021.04.046_bib79) 2019; 51 Stanke (10.1016/j.cell.2021.04.046_bib68) 2005; 33 Walkowiak (10.1016/j.cell.2021.04.046_bib74) 2020; 588 Song (10.1016/j.cell.2021.04.046_bib67) 2020; 6 Sun (10.1016/j.cell.2021.04.046_bib71) 2018; 50 Liu (10.1016/j.cell.2021.04.046_bib46) 2017; 3 Nonoue (10.1016/j.cell.2021.04.046_bib51) 2019; 69 Yang (10.1016/j.cell.2021.04.046_bib89) 2019; 10 Stein (10.1016/j.cell.2021.04.046_bib69) 2018; 50 Delteil (10.1016/j.cell.2021.04.046_bib10) 2016; 16 Oikawa (10.1016/j.cell.2021.04.046_bib52) 2015; 27 Akiyama (10.1016/j.cell.2021.04.046_bib1) 2005; 435 Kobayashi (10.1016/j.cell.2021.04.046_bib39) 2018; 11 Cardoso (10.1016/j.cell.2021.04.046_bib5) 2014; 111 Lye (10.1016/j.cell.2021.04.046_bib48) 2019; 24 Simão (10.1016/j.cell.2021.04.046_bib65) 2015; 31 Ellinghaus (10.1016/j.cell.2021.04.046_bib18) 2008; 9 Smit (10.1016/j.cell.2021.04.046_bib66) 2013 Thorvaldsdóttir (10.1016/j.cell.2021.04.046_bib72) 2013; 14 Sasaki (10.1016/j.cell.2021.04.046_bib60) 2002; 416 Wang (10.1016/j.cell.2021.04.046_bib76) 2015; 47 Carvalho (10.1016/j.cell.2021.04.046_bib6) 2016; 17 Trapnell (10.1016/j.cell.2021.04.046_bib73) 2010; 28 Duan (10.1016/j.cell.2021.04.046_bib15) 2017; 10 Li (10.1016/j.cell.2021.04.046_bib44) 2017; 93 Xiong (10.1016/j.cell.2021.04.046_bib86) 2014; 111 DePristo (10.1016/j.cell.2021.04.046_bib11) 2011; 43 Alonge (10.1016/j.cell.2021.04.046_bib3) 2020; 182 Du (10.1016/j.cell.2021.04.046_bib14) 2017; 8 Dong (10.1016/j.cell.2021.04.046_bib12) 2018; 94 Ho (10.1016/j.cell.2021.04.046_bib25) 2020; 21 Jayakodi (10.1016/j.cell.2021.04.046_bib28) 2020; 588 Chen (10.1016/j.cell.2021.04.046_bib9) 2020; 47 Durand (10.1016/j.cell.2021.04.046_bib17) 2016; 3 Yang (10.1016/j.cell.2021.04.046_bib87) 2013; 153 Kawahara (10.1016/j.cell.2021.04.046_bib34) 2013; 6 Kim (10.1016/j.cell.2021.04.046_bib38) 2019; 37 Shen (10.1016/j.cell.2021.04.046_bib63) 2017; 8 Wang (10.1016/j.cell.2021.04.046_bib77) 2016; 172 Su (10.1016/j.cell.2021.04.046_bib70) 2019; 12 Alexander (10.1016/j.cell.2021.04.046_bib2) 2009; 19 Jukes (10.1016/j.cell.2021.04.046_bib32) 1969 Fuentes (10.1016/j.cell.2021.04.046_bib19) 2019; 29 Jeong (10.1016/j.cell.2021.04.046_bib29) 2016; 35 Kim (10.1016/j.cell.2021.04.046_bib37) 2015; 12 Xie (10.1016/j.cell.2021.04.046_bib85) 2014; 30 Zhang (10.1016/j.cell.2021.04.046_bib95) 2018; 11 Wang (10.1016/j.cell.2021.04.046_bib75) 2012; 40 Kidd (10.1016/j.cell.2021.04.046_bib36) 2010; 143 Liang (10.1016/j.cell.2021.04.046_bib45) 2009; 19 Xia (10.1016/j.cell.2021.04.046_bib83) 2017; 44 Garrison (10.1016/j.cell.2021.04.046_bib20) 2018; 36 He (10.1016/j.cell.2021.04.046_bib23) 2014; 20 Rakocevic (10.1016/j.cell.2021.04.046_bib58) 2019; 51 Liu (10.1016/j.cell.2021.04.046_bib47) 2020; 182 Wang (10.1016/j.cell.2021.04.046_bib80) 2020; 183 Yao (10.1016/j.cell.2021.04.046_bib90) 2018; 7 Schatz (10.1016/j.cell.2021.04.046_bib61) 2014; 15 Zhou (10.1016/j.cell.2021.04.046_bib97) 2019; 5 Zhang (10.1016/j.cell.2021.04.046_bib94) 2016; 113 |
References_xml | – volume: 30 start-page: 1660 year: 2014 end-page: 1666 ident: bib85 article-title: SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads publication-title: Bioinformatics – volume: 10 start-page: 48 year: 2019 ident: bib54 article-title: LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons publication-title: Mob. DNA – volume: 51 start-page: 1052 year: 2019 end-page: 1059 ident: bib88 article-title: Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement publication-title: Nat. Genet. – volume: 47 start-page: 637 year: 2020 end-page: 649 ident: bib9 article-title: Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice publication-title: J. Genet. Genomics – volume: 435 start-page: 824 year: 2005 end-page: 827 ident: bib1 article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi publication-title: Nature – volume: 48 start-page: 93 year: 2010 end-page: 117 ident: bib84 article-title: The strigolactone story publication-title: Annu. Rev. Phytopathol. – volume: 46 start-page: e126 year: 2018 ident: bib55 article-title: Assessing genome assembly quality using the LTR Assembly Index (LAI) publication-title: Nucleic Acids Res. – volume: 47 start-page: 944 year: 2015 end-page: 948 ident: bib76 article-title: Copy number variation at the GL7 locus contributes to grain size diversity in rice publication-title: Nat. Genet. – volume: 172 start-page: 1901 year: 2006 end-page: 1914 ident: bib57 article-title: The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice publication-title: Genetics – volume: 6 start-page: 34 year: 2020 end-page: 45 ident: bib67 article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus publication-title: Nat. Plants – volume: 70 start-page: 639 year: 2019 end-page: 665 ident: bib8 article-title: The Genomics of publication-title: Annu. Rev. Plant Biol. – volume: 50 start-page: 1289 year: 2018 end-page: 1295 ident: bib71 article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes publication-title: Nat. Genet. – volume: 588 start-page: 284 year: 2020 end-page: 289 ident: bib28 article-title: The barley pan-genome reveals the hidden legacy of mutation breeding publication-title: Nature – volume: 101 start-page: 12404 year: 2004 end-page: 12410 ident: bib49 article-title: Rapid recent growth and divergence of rice nuclear genomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 275 year: 2019 ident: bib56 article-title: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline publication-title: Genome Biol. – volume: 44 start-page: 235 year: 2017 end-page: 241 ident: bib83 article-title: Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice publication-title: J. Genet. Genomics – volume: 14 start-page: e1005944 year: 2018 ident: bib50 article-title: MUMmer4: A fast and versatile genome alignment system publication-title: PLoS Comput. Biol. – volume: 11 start-page: 492 year: 2020 ident: bib27 article-title: High-quality genome sequence of white lupin provides insight into soil exploration and seed quality publication-title: Nat. Commun. – volume: 94 start-page: 1141 year: 2018 end-page: 1156 ident: bib12 article-title: Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice publication-title: Plant J. – volume: 11 start-page: 1492 year: 2018 end-page: 1508 ident: bib95 article-title: N publication-title: Mol. Plant – volume: 11 start-page: 15 year: 2018 ident: bib39 article-title: Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan publication-title: Rice (N. Y.) – volume: 111 start-page: 2379 year: 2014 end-page: 2384 ident: bib5 article-title: Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 506 year: 2014 ident: bib61 article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica publication-title: Genome Biol. – volume: 36 start-page: 875 year: 2018 end-page: 879 ident: bib20 article-title: Variation graph toolkit improves read mapping by representing genetic variation in the reference publication-title: Nat. Biotechnol. – volume: 12 start-page: 447 year: 2019 end-page: 460 ident: bib70 article-title: TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome publication-title: Mol. Plant – volume: 27 start-page: 722 year: 2017 end-page: 736 ident: bib40 article-title: Canu: scalable and accurate long-read assembly via adaptive publication-title: Genome Res. – volume: 3 start-page: 99 year: 2016 end-page: 101 ident: bib17 article-title: Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom publication-title: Cell Syst. – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: bib37 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – volume: 27 start-page: 2401 year: 2015 end-page: 2414 ident: bib52 article-title: The Birth of a Black Rice Gene and Its Local Spread by Introgression publication-title: Plant Cell – year: 2013-2015 ident: bib66 article-title: RepeatMasker Open-4.0 – volume: 182 start-page: 162 year: 2020 end-page: 176.e13 ident: bib47 article-title: Pan-Genome of Wild and Cultivated Soybeans publication-title: Cell – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib43 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 7 start-page: 1 year: 2018 end-page: 9 ident: bib90 article-title: funRiceGenes dataset for comprehensive understanding and application of rice functional genes publication-title: Gigascience – volume: 7 start-page: 113 year: 2020 ident: bib98 article-title: A platinum standard pan-genome resource that represents the population structure of Asian rice publication-title: Sci. Data – volume: 176 start-page: 663 year: 2019 end-page: 675.e19 ident: bib4 article-title: Characterizing the Major Structural Variant Alleles of the Human Genome publication-title: Cell – volume: 19 start-page: 1912 year: 2009 end-page: 1923 ident: bib45 article-title: Evidence-based gene predictions in plant genomes publication-title: Genome Res. – volume: 19 start-page: 505 year: 2018 end-page: 517 ident: bib82 article-title: The rice genome revolution: from an ancient grain to Green Super Rice publication-title: Nat. Rev. Genet. – volume: 42 start-page: 348 year: 2010 end-page: 354 ident: bib33 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet. – volume: 29 start-page: 870 year: 2019 end-page: 880 ident: bib19 article-title: Structural variants in 3000 rice genomes publication-title: Genome Res. – volume: 11 start-page: 989 year: 2020 ident: bib30 article-title: Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics publication-title: Nat. Commun. – volume: 33 start-page: W465-7 year: 2005 ident: bib68 article-title: AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints publication-title: Nucleic Acids Res. – volume: 416 start-page: 701 year: 2002 end-page: 702 ident: bib60 article-title: Green revolution: a mutant gibberellin-synthesis gene in rice publication-title: Nature – volume: 588 start-page: 277 year: 2020 end-page: 283 ident: bib74 article-title: Multiple wheat genomes reveal global variation in modern breeding publication-title: Nature – volume: 3 start-page: 17043 year: 2017 ident: bib46 article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice publication-title: Nat. Plants – volume: 183 start-page: 1157 year: 2020 end-page: 1170 ident: bib80 article-title: Rice publication-title: Plant Physiol. – volume: 21 start-page: 35 year: 2020 ident: bib24 article-title: Genotyping structural variants in pangenome graphs using the vg toolkit publication-title: Genome Biol. – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: bib73 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. – volume: 557 start-page: 43 year: 2018 end-page: 49 ident: bib78 article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice publication-title: Nature – volume: 35 start-page: 905 year: 2016 end-page: 920 ident: bib29 article-title: OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days publication-title: Plant Cell Rep. – volume: 143 start-page: 837 year: 2010 end-page: 847 ident: bib36 article-title: A human genome structural variation sequencing resource reveals insights into mutational mechanisms publication-title: Cell – volume: 17 start-page: 224 year: 2016 end-page: 238 ident: bib6 article-title: Mechanisms underlying structural variant formation in genomic disorders publication-title: Nat. Rev. Genet. – volume: 172 start-page: 427 year: 2016 end-page: 440 ident: bib77 article-title: Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes publication-title: Plant Physiol. – volume: 21 start-page: 1344 year: 2020 ident: bib93 article-title: Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice ( publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 965 year: 2019 end-page: 979 ident: bib97 article-title: The population genetics of structural variants in grapevine domestication publication-title: Nat. Plants – volume: 180 start-page: 1803 year: 2019 end-page: 1815 ident: bib64 article-title: Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection publication-title: Plant Physiol. – volume: 8 start-page: 1310 year: 2017 ident: bib63 article-title: Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice publication-title: Nat. Commun. – volume: 356 start-page: 92 year: 2017 end-page: 95 ident: bib16 article-title: De novo assembly of the publication-title: Science – volume: 153 start-page: 919 year: 2013 end-page: 929 ident: bib87 article-title: Diverse mechanisms of somatic structural variations in human cancer genomes publication-title: Cell – volume: 24 start-page: 352 year: 2019 end-page: 365 ident: bib48 article-title: Copy Number Variation in Domestication publication-title: Trends Plant Sci. – volume: 14 start-page: 649 year: 2013 ident: bib92 article-title: Genome-wide copy number variations in Oryza sativa L publication-title: BMC Genomics – volume: 10 start-page: 685 year: 2017 end-page: 694 ident: bib15 article-title: Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice publication-title: Mol. Plant – volume: 40 start-page: 491 year: 2008 end-page: 492 ident: bib59 article-title: Principal component analysis of genetic data publication-title: Nat. Genet. – volume: 31 start-page: 3210 year: 2015 end-page: 3212 ident: bib65 article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs publication-title: Bioinformatics – volume: 10 start-page: 2989 year: 2019 ident: bib89 article-title: Extensive intraspecific gene order and gene structural variations in upland cotton cultivars publication-title: Nat. Commun. – volume: 38 start-page: e199 year: 2010 ident: bib22 article-title: MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences publication-title: Nucleic Acids Res. – volume: 45 start-page: 663 year: 2018 end-page: 672 ident: bib7 article-title: Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis publication-title: J. Genet. Genomics – volume: 50 start-page: 285 year: 2018 end-page: 296 ident: bib69 article-title: Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza publication-title: Nat. Genet. – volume: 14 start-page: 125 year: 2013 end-page: 138 ident: bib81 article-title: Phenotypic impact of genomic structural variation: insights from and for human disease publication-title: Nat. Rev. Genet. – volume: 8 start-page: 15324 year: 2017 ident: bib14 article-title: Sequencing and de novo assembly of a near complete indica rice genome publication-title: Nat. Commun. – volume: 43 start-page: 491 year: 2011 end-page: 498 ident: bib11 article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data publication-title: Nat. Genet. – volume: 14 start-page: 178 year: 2013 end-page: 192 ident: bib72 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Brief. Bioinform. – volume: 16 start-page: 17 year: 2016 ident: bib10 article-title: Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus publication-title: BMC Plant Biol. – volume: 21 start-page: 171 year: 2020 end-page: 189 ident: bib25 article-title: Structural variation in the sequencing era publication-title: Nat. Rev. Genet. – volume: 10 start-page: 5360 year: 2019 ident: bib13 article-title: Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads publication-title: Nat. Commun. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib42 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – volume: 5 start-page: 180079 year: 2018 ident: bib26 article-title: Novel sequences, structural variations and gene presence variations of Asian cultivated rice publication-title: Sci. Data – volume: 37 start-page: 907 year: 2019 end-page: 915 ident: bib38 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. – volume: 93 start-page: 21 year: 2017 end-page: 34 ident: bib44 article-title: Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice publication-title: Plant Mol. Biol. – volume: 182 start-page: 145 year: 2020 end-page: 161.e23 ident: bib3 article-title: Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato publication-title: Cell – volume: 40 start-page: e49 year: 2012 ident: bib75 article-title: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity publication-title: Nucleic Acids Res. – volume: 12 start-page: 656 year: 2002 end-page: 664 ident: bib35 article-title: BLAT--the BLAST-like alignment tool publication-title: Genome Res. – volume: 176 start-page: 1410 year: 2018 end-page: 1422 ident: bib53 article-title: LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons publication-title: Plant Physiol. – volume: 6 start-page: 4 year: 2013 ident: bib34 article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data publication-title: Rice (N. Y.) – volume: 113 start-page: E5163 year: 2016 end-page: E5171 ident: bib94 article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 18 year: 2008 ident: bib18 article-title: LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons publication-title: BMC Bioinformatics – volume: 15 start-page: 461 year: 2018 end-page: 468 ident: bib62 article-title: Accurate detection of complex structural variations using single-molecule sequencing publication-title: Nat. Methods – volume: 1 start-page: 15124 year: 2015 ident: bib41 article-title: A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice publication-title: Nat. Plants – volume: 51 start-page: 354 year: 2019 end-page: 362 ident: bib58 article-title: Fast and accurate genomic analyses using genome graphs publication-title: Nat. Genet. – volume: 20 start-page: 417 year: 2014 end-page: 425 ident: bib23 article-title: The progress of mapping, isolation of the genes resisting to blast and their breeding application in rice publication-title: Zhongguo Nongxue Tongbao – volume: 30 start-page: 1236 year: 2014 end-page: 1240 ident: bib31 article-title: InterProScan 5: genome-scale protein function classification publication-title: Bioinformatics – volume: 51 start-page: 224 year: 2019 end-page: 229 ident: bib79 article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense publication-title: Nat. Genet. – start-page: 21 year: 1969 end-page: 132 ident: bib32 article-title: Evolution of protein molecules publication-title: Mammalian Protein Metabolism – volume: 70 start-page: 3895 year: 2019 end-page: 3909 ident: bib91 article-title: OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice publication-title: J. Exp. Bot. – volume: 19 start-page: 1655 year: 2009 end-page: 1664 ident: bib2 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. – volume: 111 start-page: 10263 year: 2014 end-page: 10268 ident: bib86 article-title: HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 69 start-page: 352 year: 2019 end-page: 358 ident: bib51 article-title: Detection of heading date QTLs in advanced-backcross populations of an elite publication-title: Breed. Sci. – volume: 50 start-page: 278 year: 2018 end-page: 284 ident: bib96 article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice publication-title: Nat. Genet. – volume: 20 start-page: 277 year: 2019 ident: bib21 article-title: SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies publication-title: Genome Biol. – volume: 10 start-page: 48 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib54 article-title: LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons publication-title: Mob. DNA doi: 10.1186/s13100-019-0193-0 – volume: 19 start-page: 505 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib82 article-title: The rice genome revolution: from an ancient grain to Green Super Rice publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0024-z – volume: 50 start-page: 285 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib69 article-title: Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza publication-title: Nat. Genet. doi: 10.1038/s41588-018-0040-0 – volume: 12 start-page: 447 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib70 article-title: TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome publication-title: Mol. Plant doi: 10.1016/j.molp.2019.02.008 – volume: 20 start-page: 277 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib21 article-title: SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies publication-title: Genome Biol. doi: 10.1186/s13059-019-1911-0 – volume: 101 start-page: 12404 year: 2004 ident: 10.1016/j.cell.2021.04.046_bib49 article-title: Rapid recent growth and divergence of rice nuclear genomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0403715101 – volume: 31 start-page: 3210 year: 2015 ident: 10.1016/j.cell.2021.04.046_bib65 article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume: 5 start-page: 965 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib97 article-title: The population genetics of structural variants in grapevine domestication publication-title: Nat. Plants doi: 10.1038/s41477-019-0507-8 – volume: 6 start-page: 34 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib67 article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus publication-title: Nat. Plants doi: 10.1038/s41477-019-0577-7 – volume: 588 start-page: 277 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib74 article-title: Multiple wheat genomes reveal global variation in modern breeding publication-title: Nature doi: 10.1038/s41586-020-2961-x – volume: 8 start-page: 15324 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib14 article-title: Sequencing and de novo assembly of a near complete indica rice genome publication-title: Nat. Commun. doi: 10.1038/ncomms15324 – volume: 50 start-page: 1289 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib71 article-title: Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes publication-title: Nat. Genet. doi: 10.1038/s41588-018-0182-0 – volume: 111 start-page: 2379 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib5 article-title: Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1317360111 – volume: 10 start-page: 5360 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib13 article-title: Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads publication-title: Nat. Commun. doi: 10.1038/s41467-019-13355-3 – volume: 30 start-page: 1236 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib31 article-title: InterProScan 5: genome-scale protein function classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu031 – volume: 11 start-page: 15 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib39 article-title: Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan publication-title: Rice (N. Y.) doi: 10.1186/s12284-018-0207-4 – volume: 40 start-page: e49 year: 2012 ident: 10.1016/j.cell.2021.04.046_bib75 article-title: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1293 – volume: 3 start-page: 17043 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib46 article-title: GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice publication-title: Nat. Plants doi: 10.1038/nplants.2017.43 – volume: 27 start-page: 2401 year: 2015 ident: 10.1016/j.cell.2021.04.046_bib52 article-title: The Birth of a Black Rice Gene and Its Local Spread by Introgression publication-title: Plant Cell doi: 10.1105/tpc.15.00310 – volume: 20 start-page: 275 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib56 article-title: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline publication-title: Genome Biol. doi: 10.1186/s13059-019-1905-y – volume: 12 start-page: 357 year: 2015 ident: 10.1016/j.cell.2021.04.046_bib37 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 11 start-page: 492 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib27 article-title: High-quality genome sequence of white lupin provides insight into soil exploration and seed quality publication-title: Nat. Commun. doi: 10.1038/s41467-019-14197-9 – volume: 33 start-page: W465-7 year: 2005 ident: 10.1016/j.cell.2021.04.046_bib68 article-title: AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki458 – volume: 42 start-page: 348 year: 2010 ident: 10.1016/j.cell.2021.04.046_bib33 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.548 – volume: 6 start-page: 4 year: 2013 ident: 10.1016/j.cell.2021.04.046_bib34 article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data publication-title: Rice (N. Y.) doi: 10.1186/1939-8433-6-4 – volume: 36 start-page: 875 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib20 article-title: Variation graph toolkit improves read mapping by representing genetic variation in the reference publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4227 – volume: 12 start-page: 656 year: 2002 ident: 10.1016/j.cell.2021.04.046_bib35 article-title: BLAT--the BLAST-like alignment tool publication-title: Genome Res. – volume: 14 start-page: e1005944 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib50 article-title: MUMmer4: A fast and versatile genome alignment system publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005944 – volume: 37 start-page: 907 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib38 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 50 start-page: 278 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib96 article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice publication-title: Nat. Genet. doi: 10.1038/s41588-018-0041-z – volume: 176 start-page: 663 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib4 article-title: Characterizing the Major Structural Variant Alleles of the Human Genome publication-title: Cell doi: 10.1016/j.cell.2018.12.019 – volume: 21 start-page: 35 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib24 article-title: Genotyping structural variants in pangenome graphs using the vg toolkit publication-title: Genome Biol. doi: 10.1186/s13059-020-1941-7 – volume: 3 start-page: 99 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib17 article-title: Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom publication-title: Cell Syst. doi: 10.1016/j.cels.2015.07.012 – volume: 30 start-page: 1660 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib85 article-title: SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu077 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.cell.2021.04.046_bib43 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 15 start-page: 461 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib62 article-title: Accurate detection of complex structural variations using single-molecule sequencing publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 – volume: 5 start-page: 180079 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib26 article-title: Novel sequences, structural variations and gene presence variations of Asian cultivated rice publication-title: Sci. Data doi: 10.1038/sdata.2018.79 – volume: 11 start-page: 989 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib30 article-title: Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-020-14779-y – volume: 1 start-page: 15124 year: 2015 ident: 10.1016/j.cell.2021.04.046_bib41 article-title: A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice publication-title: Nat. Plants doi: 10.1038/nplants.2015.124 – volume: 29 start-page: 870 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib19 article-title: Structural variants in 3000 rice genomes publication-title: Genome Res. doi: 10.1101/gr.241240.118 – volume: 111 start-page: 10263 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib86 article-title: HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1410068111 – volume: 35 start-page: 905 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib29 article-title: OsVIL1 controls flowering time in rice by suppressing OsLF under short days and by inducing Ghd7 under long days publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1931-5 – volume: 20 start-page: 417 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib23 article-title: The progress of mapping, isolation of the genes resisting to blast and their breeding application in rice publication-title: Zhongguo Nongxue Tongbao – volume: 435 start-page: 824 year: 2005 ident: 10.1016/j.cell.2021.04.046_bib1 article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi publication-title: Nature doi: 10.1038/nature03608 – volume: 51 start-page: 354 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib58 article-title: Fast and accurate genomic analyses using genome graphs publication-title: Nat. Genet. doi: 10.1038/s41588-018-0316-4 – volume: 27 start-page: 722 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib40 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res. doi: 10.1101/gr.215087.116 – volume: 70 start-page: 639 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib8 article-title: The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100320 – volume: 11 start-page: 1492 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib95 article-title: N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses publication-title: Mol. Plant doi: 10.1016/j.molp.2018.11.005 – volume: 588 start-page: 284 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib28 article-title: The barley pan-genome reveals the hidden legacy of mutation breeding publication-title: Nature doi: 10.1038/s41586-020-2947-8 – volume: 44 start-page: 235 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib83 article-title: Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2017.05.003 – volume: 40 start-page: 491 year: 2008 ident: 10.1016/j.cell.2021.04.046_bib59 article-title: Principal component analysis of genetic data publication-title: Nat. Genet. doi: 10.1038/ng0508-491 – volume: 183 start-page: 1157 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib80 article-title: Rice GERMIN-LIKE PROTEIN 2-1 Functions in Seed Dormancy under the Control of Abscisic Acid and Gibberellic Acid Signaling Pathways publication-title: Plant Physiol. doi: 10.1104/pp.20.00253 – volume: 172 start-page: 1901 year: 2006 ident: 10.1016/j.cell.2021.04.046_bib57 article-title: The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice publication-title: Genetics doi: 10.1534/genetics.105.044891 – volume: 14 start-page: 125 year: 2013 ident: 10.1016/j.cell.2021.04.046_bib81 article-title: Phenotypic impact of genomic structural variation: insights from and for human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3373 – volume: 16 start-page: 17 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib10 article-title: Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus publication-title: BMC Plant Biol. doi: 10.1186/s12870-016-0711-x – volume: 21 start-page: 1344 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib93 article-title: Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice (Oryza sativa L.) publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21041344 – volume: 47 start-page: 944 year: 2015 ident: 10.1016/j.cell.2021.04.046_bib76 article-title: Copy number variation at the GL7 locus contributes to grain size diversity in rice publication-title: Nat. Genet. doi: 10.1038/ng.3346 – volume: 8 start-page: 1310 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib63 article-title: Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice publication-title: Nat. Commun. doi: 10.1038/s41467-017-01400-y – volume: 172 start-page: 427 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib77 article-title: Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes publication-title: Plant Physiol. doi: 10.1104/pp.16.01177 – volume: 17 start-page: 224 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib6 article-title: Mechanisms underlying structural variant formation in genomic disorders publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2015.25 – start-page: 21 year: 1969 ident: 10.1016/j.cell.2021.04.046_bib32 article-title: Evolution of protein molecules – volume: 113 start-page: E5163 year: 2016 ident: 10.1016/j.cell.2021.04.046_bib94 article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 publication-title: Proc. Natl. Acad. Sci. USA – volume: 416 start-page: 701 year: 2002 ident: 10.1016/j.cell.2021.04.046_bib60 article-title: Green revolution: a mutant gibberellin-synthesis gene in rice publication-title: Nature doi: 10.1038/416701a – volume: 51 start-page: 224 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib79 article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense publication-title: Nat. Genet. doi: 10.1038/s41588-018-0282-x – volume: 557 start-page: 43 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib78 article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice publication-title: Nature doi: 10.1038/s41586-018-0063-9 – volume: 7 start-page: 113 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib98 article-title: A platinum standard pan-genome resource that represents the population structure of Asian rice publication-title: Sci. Data doi: 10.1038/s41597-020-0438-2 – volume: 143 start-page: 837 year: 2010 ident: 10.1016/j.cell.2021.04.046_bib36 article-title: A human genome structural variation sequencing resource reveals insights into mutational mechanisms publication-title: Cell doi: 10.1016/j.cell.2010.10.027 – volume: 28 start-page: 511 year: 2010 ident: 10.1016/j.cell.2021.04.046_bib73 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 51 start-page: 1052 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib88 article-title: Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement publication-title: Nat. Genet. doi: 10.1038/s41588-019-0427-6 – volume: 45 start-page: 663 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib7 article-title: Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2018.10.007 – volume: 182 start-page: 162 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib47 article-title: Pan-Genome of Wild and Cultivated Soybeans publication-title: Cell doi: 10.1016/j.cell.2020.05.023 – volume: 94 start-page: 1141 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib12 article-title: Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice publication-title: Plant J. doi: 10.1111/tpj.13925 – volume: 70 start-page: 3895 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib91 article-title: OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz198 – volume: 10 start-page: 685 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib15 article-title: Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice publication-title: Mol. Plant doi: 10.1016/j.molp.2017.03.009 – volume: 356 start-page: 92 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib16 article-title: De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds publication-title: Science doi: 10.1126/science.aal3327 – volume: 21 start-page: 171 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib25 article-title: Structural variation in the sequencing era publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0180-9 – volume: 15 start-page: 506 year: 2014 ident: 10.1016/j.cell.2021.04.046_bib61 article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica publication-title: Genome Biol. – volume: 180 start-page: 1803 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib64 article-title: Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection publication-title: Plant Physiol. doi: 10.1104/pp.19.00386 – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib90 article-title: funRiceGenes dataset for comprehensive understanding and application of rice functional genes publication-title: Gigascience doi: 10.1093/gigascience/gix119 – volume: 9 start-page: 18 year: 2008 ident: 10.1016/j.cell.2021.04.046_bib18 article-title: LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-18 – volume: 19 start-page: 1912 year: 2009 ident: 10.1016/j.cell.2021.04.046_bib45 article-title: Evidence-based gene predictions in plant genomes publication-title: Genome Res. doi: 10.1101/gr.088997.108 – volume: 47 start-page: 637 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib9 article-title: Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2020.10.006 – volume: 48 start-page: 93 year: 2010 ident: 10.1016/j.cell.2021.04.046_bib84 article-title: The strigolactone story publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-073009-114453 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.cell.2021.04.046_bib42 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 176 start-page: 1410 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib53 article-title: LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons publication-title: Plant Physiol. doi: 10.1104/pp.17.01310 – volume: 14 start-page: 178 year: 2013 ident: 10.1016/j.cell.2021.04.046_bib72 article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs017 – volume: 69 start-page: 352 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib51 article-title: Detection of heading date QTLs in advanced-backcross populations of an elite indica rice cultivar, IR64 publication-title: Breed. Sci. doi: 10.1270/jsbbs.18172 – volume: 153 start-page: 919 year: 2013 ident: 10.1016/j.cell.2021.04.046_bib87 article-title: Diverse mechanisms of somatic structural variations in human cancer genomes publication-title: Cell doi: 10.1016/j.cell.2013.04.010 – volume: 14 start-page: 649 year: 2013 ident: 10.1016/j.cell.2021.04.046_bib92 article-title: Genome-wide copy number variations in Oryza sativa L publication-title: BMC Genomics doi: 10.1186/1471-2164-14-649 – volume: 182 start-page: 145 year: 2020 ident: 10.1016/j.cell.2021.04.046_bib3 article-title: Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato publication-title: Cell doi: 10.1016/j.cell.2020.05.021 – volume: 10 start-page: 2989 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib89 article-title: Extensive intraspecific gene order and gene structural variations in upland cotton cultivars publication-title: Nat. Commun. doi: 10.1038/s41467-019-10820-x – volume: 38 start-page: e199 year: 2010 ident: 10.1016/j.cell.2021.04.046_bib22 article-title: MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq862 – volume: 24 start-page: 352 year: 2019 ident: 10.1016/j.cell.2021.04.046_bib48 article-title: Copy Number Variation in Domestication publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.01.003 – volume: 93 start-page: 21 year: 2017 ident: 10.1016/j.cell.2021.04.046_bib44 article-title: Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice publication-title: Plant Mol. Biol. doi: 10.1007/s11103-016-0544-x – volume: 46 start-page: e126 year: 2018 ident: 10.1016/j.cell.2021.04.046_bib55 article-title: Assessing genome assembly quality using the LTR Assembly Index (LAI) publication-title: Nucleic Acids Res. – year: 2013 ident: 10.1016/j.cell.2021.04.046_bib66 – volume: 19 start-page: 1655 year: 2009 ident: 10.1016/j.cell.2021.04.046_bib2 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. doi: 10.1101/gr.094052.109 – volume: 43 start-page: 491 year: 2011 ident: 10.1016/j.cell.2021.04.046_bib11 article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data publication-title: Nat. Genet. doi: 10.1038/ng.806 |
SSID | ssj0008555 |
Score | 2.70901 |
Snippet | Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3542 |
SubjectTerms | Adaptation, Physiological - genetics Agriculture Domestication Ecotype evolution Gene copy number variation gene expression Gene Expression Profiling Gene Expression Regulation, Plant Genes, Plant Genetic Variation genome Genome, Plant genome-wide association study Genomic Structural Variation genomics Graph-based genome High-quality assembly Molecular Sequence Annotation Oryza - genetics Oryza glaberrima Oryza sativa Pan-genome Phenotype Rice Structural variation |
Title | Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations |
URI | https://dx.doi.org/10.1016/j.cell.2021.04.046 https://www.ncbi.nlm.nih.gov/pubmed/34051138 https://www.proquest.com/docview/2534618988 https://www.proquest.com/docview/2636435978 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIPgifju_iOCblC0fbdNHHY4hKD5M2FtIkxQnsxu6CfvvvWvagaB7EPrS9lLC5XL3u_Q-CLl2NnXKMvyr27ORZN5HxkgTceNjZxKweTnmDj8-JcMX-TCOxy3Sb3JhMKyy1v1Bp1faun7SrbnZnU8mmOObcZWAa8ewNx4bgx4WUlVJfOO7tTZWcRy6GGSw84G6TpwJMV54OA4-ImdVuVMEwb8bp7_AZ2WEBrtkp0aP9DZMcI-0fLlPtkI_ydUB0c-mjLDq6runpq42QmcFFYLC05CuOF1RV8VieIr1hKipOiai8FGs5gTSSF-xrEhJqw9NLP0Cdzqc6x2S0eB-1B9GdQeFyIIns4iMYl7kGculSHOmTMG5A38FYEXiHAA9lSmfx5bJwlow1LETyqYGMIQpetxbcUTa5az0J4RyDqpBMM8zoJapyLnLElOALRMmY4XoENZwTtu6ujg2uZjqJozsTSO3NXJb9yRcSYfcrMfMQ22NjdRxsyD6h4RoUP4bx101q6dh6-BrU_rZ8lPzWMiEAQ_UBppEAGYDrwtojsPSr-cqAOwyJtTpP2d2RrbxDgPPuDwn7cXH0l8AxFnkl5UMfwMn1_iP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7ShNJcStNnmjZRoT0Vk9XDtnzIoY-E3bzoYQt7E7Ikky2pNySblv1b_YWdseSFQruHQsAnaSTESJr5Rp4HwFvvSq8dp7-6A5cpHkJmrbKZsCH3tkCdV1Ps8Nl5Mfyqjif5ZA1-9bEw5FaZZH-U6Z20Ti37iZv7V9MpxfhWQhdo2nGqjccnybPyJCx-ot12czD6jJv8Toijw_GnYZZKC2QOIf48s5oHWVe8VrKsubaNEB6BPOrbwntEQLrSoc4dV41zqMFyL7UrLSpX2wxEcBKnvQcbCD5KEgajycel9Nd5HqsmVChpcHUpUCf6lNFjPNqkgnfpVQl0_10Z_gvsdkrv6BE8TGiVfYgM2YK10D6G-7F-5eIJmC-2zSjL6_fAbMpuwmYNk5JhawyPvFww3_l-BEb5i5jtKjTSYWeUPQpPP7ugNCYt6yaaOvYDzff4jvgUxnfB1mew3s7a8AKYECiKJA-iQmpVylr4qrAN6k5pK97IbeA954xL2cypqMal6d3WvhnitiFum4HCr9iG98sxVzGXx0rqvN8Q88eJNKhsVo570--ewatK3bYNs9sbI3KpCo480CtoCokYEa08pHket365VongmnOpX_7nyvbgwXB8dmpOR-cnO7BJPeT0JtQrWJ9f34bXCK_m9W53nhmYO74_vwHjQTTc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pan-genome+analysis+of+33+genetically+diverse+rice+accessions+reveals+hidden+genomic+variations&rft.jtitle=Cell&rft.au=Qin%2C+Peng&rft.au=Lu%2C+Hongwei&rft.au=Du%2C+Huilong&rft.au=Wang%2C+Hao&rft.date=2021-06-24&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=184&rft.issue=13&rft.spage=3542&rft.epage=3558.e16&rft_id=info:doi/10.1016%2Fj.cell.2021.04.046&rft.externalDocID=S009286742100581X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |