Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output
Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts fr...
Saved in:
Published in | Cell Vol. 183; no. 1; pp. 76 - 93.e22 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH.
[Display omitted]
•Mitochondria-located circRNA SCAR inhibits mROS output and fibroblast activation•circRNA SCAR shuts down mPTP by binding to ATP5B•Lipid-induced ER stress impairs PGC-1α-mediated circRNA SCAR expression•Mitochondria-specific delivery of circRNA SCAR alleviates metaflammation in vivo
A mitochondrial circRNA that is dysregulated in NAFLD patients’ liver fibroblasts directly binds and regulates the mitochondrial permeability transition pore to modulate mitochondrial metabolism and inflammation, providing a potential therapeutic angle. |
---|---|
AbstractList | Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH. Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH.Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH. Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH. Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH. [Display omitted] •Mitochondria-located circRNA SCAR inhibits mROS output and fibroblast activation•circRNA SCAR shuts down mPTP by binding to ATP5B•Lipid-induced ER stress impairs PGC-1α-mediated circRNA SCAR expression•Mitochondria-specific delivery of circRNA SCAR alleviates metaflammation in vivo A mitochondrial circRNA that is dysregulated in NAFLD patients’ liver fibroblasts directly binds and regulates the mitochondrial permeability transition pore to modulate mitochondrial metabolism and inflammation, providing a potential therapeutic angle. |
Author | Guo, Zhiyong Li, Jiaqian Xu, Xiaoding Cai, Junchao Liu, Jiayu Ma, Ruiying Liang, Huixin Deng, Hong Gao, Zhiliang Liao, Jian-You Hu, Jingxiong Zhao, Qiyi Su, Shicheng |
Author_xml | – sequence: 1 givenname: Qiyi surname: Zhao fullname: Zhao, Qiyi organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 2 givenname: Jiayu surname: Liu fullname: Liu, Jiayu organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 3 givenname: Hong surname: Deng fullname: Deng, Hong organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China – sequence: 4 givenname: Ruiying surname: Ma fullname: Ma, Ruiying organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 5 givenname: Jian-You orcidid: 0000-0002-5586-3458 surname: Liao fullname: Liao, Jian-You organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 6 givenname: Huixin surname: Liang fullname: Liang, Huixin organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China – sequence: 7 givenname: Jingxiong surname: Hu fullname: Hu, Jingxiong organization: Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China – sequence: 8 givenname: Jiaqian surname: Li fullname: Li, Jiaqian organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 9 givenname: Zhiyong surname: Guo fullname: Guo, Zhiyong organization: Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China – sequence: 10 givenname: Junchao surname: Cai fullname: Cai, Junchao organization: Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China – sequence: 11 givenname: Xiaoding orcidid: 0000-0002-9785-6731 surname: Xu fullname: Xu, Xiaoding email: xuxiaod5@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China – sequence: 12 givenname: Zhiliang surname: Gao fullname: Gao, Zhiliang email: gaozhl@mail.sysu.edu.cn organization: Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China – sequence: 13 givenname: Shicheng surname: Su fullname: Su, Shicheng email: sushch@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32931733$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r20AQxZeQkjhpv0APRcdepM7-k3ahF2GapuDGYLvnRd4dpWtkyd1dBfrtI-Hk0kN6mmF4vzfw3g257IceCflIoaBAyy-HwmLXFQwYFKAKAH1BFhR0lQtasUuymC4sV2UlrslNjAcAUFLKK3LNmea04nxBdrsmPGLy_WP206fB_h56F3yTrwbbJHSZ9cFuHupsu6w3Wd11-OSne8we6u19Nu3ZBt1oZ_y4WW-z9ZhOY3pP3rVNF_HDy7wlv-6-7Zb3-Wr9_ceyXuVWaJ1yRVslK84UaFRcastoK4RCEGUrQbYChBTo2laxvXaMgdOVAmR7y9tSM8pvyeez7ykMf0aMyRx9nDNpehzGaJhkYrIvlf6_VAguaVVBNUk_vUjH_RGdOQV_bMJf8xraJFBngQ1DjAFbY31qkh_6FBrfGQpm7scczPzAzP0YUGZqY0LZP-ir-5vQ1zOEU5ZPHoOJ1mNv0fmANhk3-LfwZ_8Epc4 |
CitedBy_id | crossref_primary_10_1038_s41571_021_00585_y crossref_primary_10_1016_j_omtn_2022_02_002 crossref_primary_10_1080_1061186X_2021_1909051 crossref_primary_10_1097_HEP_0000000000000012 crossref_primary_10_1158_2159_8290_CD_24_0830 crossref_primary_10_1093_hmg_ddac088 crossref_primary_10_1002_wrna_1723 crossref_primary_10_1093_procel_pwae023 crossref_primary_10_1038_s41392_021_00865_0 crossref_primary_10_3389_fphar_2022_819735 crossref_primary_10_1186_s13046_022_02252_1 crossref_primary_10_1002_wrna_1729 crossref_primary_10_1016_j_cej_2024_158068 crossref_primary_10_1186_s12967_023_04367_1 crossref_primary_10_3389_fonc_2021_705059 crossref_primary_10_3389_fcell_2023_1153174 crossref_primary_10_1016_j_addr_2024_115355 crossref_primary_10_3389_fcell_2021_713729 crossref_primary_10_1002_mco2_226 crossref_primary_10_1016_j_pestbp_2023_105631 crossref_primary_10_3389_fendo_2023_1162485 crossref_primary_10_3390_sports11030054 crossref_primary_10_1016_j_gene_2024_148971 crossref_primary_10_2147_JIR_S490418 crossref_primary_10_3892_ijmm_2024_5411 crossref_primary_10_1007_s00535_023_01996_7 crossref_primary_10_1161_CIRCULATIONAHA_124_070840 crossref_primary_10_3389_fnut_2022_830738 crossref_primary_10_3389_fphys_2021_682467 crossref_primary_10_1186_s12935_022_02559_1 crossref_primary_10_1038_s41419_022_05148_2 crossref_primary_10_1002_mco2_699 crossref_primary_10_1002_yea_3893 crossref_primary_10_1038_s41467_022_33356_z crossref_primary_10_1016_j_jnutbio_2023_109506 crossref_primary_10_1016_j_fmre_2023_04_019 crossref_primary_10_1186_s12964_023_01051_1 crossref_primary_10_1016_j_omtn_2023_07_009 crossref_primary_10_3389_fcell_2022_1044897 crossref_primary_10_3390_biom13030560 crossref_primary_10_1155_2021_6889533 crossref_primary_10_3390_cells12030378 crossref_primary_10_1080_15476286_2020_1853977 crossref_primary_10_1016_j_bbrc_2024_149937 crossref_primary_10_1109_TBDATA_2023_3334673 crossref_primary_10_1186_s12576_024_00933_4 crossref_primary_10_1016_j_freeradbiomed_2024_12_055 crossref_primary_10_1055_a_2108_9820 crossref_primary_10_1073_pnas_2219352120 crossref_primary_10_1186_s40659_024_00497_y crossref_primary_10_1016_j_biomaterials_2022_121656 crossref_primary_10_1038_s41598_023_34255_z crossref_primary_10_1002_mc_23639 crossref_primary_10_3390_biom13030558 crossref_primary_10_3390_ijms23031032 crossref_primary_10_1186_s12885_025_13886_7 crossref_primary_10_3389_fgene_2023_1106665 crossref_primary_10_1038_s41598_024_62748_y crossref_primary_10_3389_fgene_2021_665153 crossref_primary_10_3390_antiox12020262 crossref_primary_10_3390_antiox14030270 crossref_primary_10_2147_COPD_S468825 crossref_primary_10_1002_advs_202205692 crossref_primary_10_1073_pnas_2220296120 crossref_primary_10_1007_s13167_024_00376_2 crossref_primary_10_1016_j_ccell_2023_05_002 crossref_primary_10_3390_ijms22041503 crossref_primary_10_1158_1078_0432_CCR_22_0991 crossref_primary_10_1016_j_ymeth_2021_04_014 crossref_primary_10_1038_s41419_025_07360_2 crossref_primary_10_1186_s12920_023_01540_9 crossref_primary_10_3389_fcell_2021_716406 crossref_primary_10_1038_s12276_024_01251_w crossref_primary_10_3390_nu16010058 crossref_primary_10_1016_S1875_5364_24_60690_4 crossref_primary_10_1002_advs_202307442 crossref_primary_10_1016_j_ijbiomac_2023_126322 crossref_primary_10_3390_biom13121711 crossref_primary_10_1109_JBHI_2023_3346821 crossref_primary_10_3390_ijms24021297 crossref_primary_10_1016_j_molcel_2022_05_027 crossref_primary_10_1016_j_jconrel_2023_11_021 crossref_primary_10_3390_biom12121863 crossref_primary_10_1016_j_ymthe_2022_10_005 crossref_primary_10_1021_acsnano_3c13114 crossref_primary_10_1146_annurev_cellbio_120420_125117 crossref_primary_10_3390_ijms25031502 crossref_primary_10_3892_ijo_2025_5720 crossref_primary_10_3389_fonc_2022_854678 crossref_primary_10_3390_ncrna10040044 crossref_primary_10_1016_j_ymthe_2022_01_045 crossref_primary_10_1093_bib_bbab444 crossref_primary_10_18632_aging_202192 crossref_primary_10_7555_JBR_36_20220095 crossref_primary_10_1093_lifemedi_lnac031 crossref_primary_10_1016_j_crbiot_2024_100213 crossref_primary_10_1002_ctm2_529 crossref_primary_10_34133_research_0038 crossref_primary_10_3390_catal11050638 crossref_primary_10_3390_ncrna7010002 crossref_primary_10_1002_jnr_25194 crossref_primary_10_3389_fmolb_2021_761698 crossref_primary_10_3389_fimmu_2021_602006 crossref_primary_10_1002_ctm2_1801 crossref_primary_10_1093_bib_bbac530 crossref_primary_10_1038_s41420_021_00771_y crossref_primary_10_1038_s41587_021_00916_5 crossref_primary_10_1097_MOL_0000000000000814 crossref_primary_10_1016_j_jep_2025_119485 crossref_primary_10_1016_j_fmre_2023_05_014 crossref_primary_10_1016_j_cytogfr_2022_04_005 crossref_primary_10_3389_fcell_2024_1397788 crossref_primary_10_1007_s00109_024_02488_8 crossref_primary_10_1016_j_xpro_2020_100275 crossref_primary_10_3390_ijms23084134 crossref_primary_10_3389_fphar_2021_796207 crossref_primary_10_1016_j_mtbio_2022_100215 crossref_primary_10_1155_2022_3200932 crossref_primary_10_3390_genes13091537 crossref_primary_10_1038_s41417_022_00583_x crossref_primary_10_1016_j_biopha_2024_116502 crossref_primary_10_1111_cns_14500 crossref_primary_10_1016_j_jconrel_2023_02_044 crossref_primary_10_1111_jcmm_18098 crossref_primary_10_1002_tox_23745 crossref_primary_10_1002_tox_23622 crossref_primary_10_3390_antiox13010115 crossref_primary_10_1016_j_molcel_2024_08_020 crossref_primary_10_1155_2022_5084631 crossref_primary_10_1038_s41467_025_55939_2 crossref_primary_10_1360_TB_2024_0523 crossref_primary_10_1111_jgh_16372 crossref_primary_10_1186_s12967_022_03725_9 crossref_primary_10_1016_j_celrep_2023_112954 crossref_primary_10_1038_s41392_023_01546_w crossref_primary_10_1016_j_freeradbiomed_2021_10_031 crossref_primary_10_3389_fgene_2024_1364389 crossref_primary_10_1021_acs_jnatprod_2c00098 crossref_primary_10_3389_fonc_2023_1145379 crossref_primary_10_1007_s00394_023_03179_9 crossref_primary_10_1038_s41556_021_00762_2 crossref_primary_10_1016_j_cellsig_2024_111298 crossref_primary_10_1186_s40164_022_00302_0 crossref_primary_10_3389_fonc_2022_862602 crossref_primary_10_1186_s12943_020_01286_3 crossref_primary_10_3748_wjg_v28_i35_5111 crossref_primary_10_1080_15476286_2023_2290769 crossref_primary_10_1096_fj_202400585RRR crossref_primary_10_1016_j_omtn_2021_05_022 crossref_primary_10_3389_fcell_2023_1160381 crossref_primary_10_1038_s41467_023_35998_z crossref_primary_10_1016_j_omtn_2024_102262 crossref_primary_10_1016_j_jgg_2023_12_011 crossref_primary_10_1097_HEP_0000000000000893 crossref_primary_10_2174_1389200224666230614115655 crossref_primary_10_1016_j_ijbiomac_2024_131793 crossref_primary_10_1016_j_mce_2023_111969 crossref_primary_10_1002_poh2_95 crossref_primary_10_1111_liv_16052 crossref_primary_10_1016_j_tibs_2021_06_002 crossref_primary_10_1002_adhm_202203106 crossref_primary_10_1007_s10565_024_09851_y crossref_primary_10_1016_j_phrs_2024_107409 crossref_primary_10_1002_advs_202414211 crossref_primary_10_1093_humrep_deae052 crossref_primary_10_1038_s41467_023_36651_5 crossref_primary_10_3390_ijms24021801 crossref_primary_10_3390_biom13010102 crossref_primary_10_3390_biom13060940 crossref_primary_10_1002_mabi_202300151 crossref_primary_10_1016_j_mcp_2023_101920 crossref_primary_10_1016_j_jep_2021_114796 crossref_primary_10_1186_s12872_024_04387_9 crossref_primary_10_1097_MS9_0000000000002761 crossref_primary_10_1016_j_ncrna_2024_05_005 crossref_primary_10_1021_acs_jcim_4c02250 crossref_primary_10_1002_ctm2_1325 crossref_primary_10_1016_j_biopha_2023_115744 crossref_primary_10_5582_bst_2022_01473 crossref_primary_10_1038_s41380_025_02925_1 crossref_primary_10_1007_s00018_021_03780_3 crossref_primary_10_1016_j_molcel_2022_09_010 crossref_primary_10_1038_s41428_024_00973_y crossref_primary_10_3390_membranes12030324 crossref_primary_10_31083_j_jin2304087 crossref_primary_10_1016_j_prp_2023_154809 crossref_primary_10_1016_j_lfs_2020_118707 crossref_primary_10_1016_j_tig_2022_08_004 crossref_primary_10_1038_s41587_021_00842_6 crossref_primary_10_2174_1389557523666230130093512 crossref_primary_10_1038_s41467_023_41491_4 crossref_primary_10_1016_j_biopha_2022_114160 crossref_primary_10_1016_j_biopha_2022_114040 crossref_primary_10_1080_15476286_2021_1935572 crossref_primary_10_1038_s43018_022_00354_5 crossref_primary_10_1002_btm2_10579 crossref_primary_10_1186_s12915_023_01597_z crossref_primary_10_2217_epi_2023_0322 crossref_primary_10_3390_nu15224757 crossref_primary_10_1016_j_bios_2021_113508 crossref_primary_10_1021_acsnano_3c12163 crossref_primary_10_1007_s11427_021_2038_5 crossref_primary_10_3390_ijms25168934 crossref_primary_10_1186_s12951_021_01108_8 crossref_primary_10_1002_advs_202301071 crossref_primary_10_1016_j_mito_2024_101968 crossref_primary_10_1111_bph_15727 crossref_primary_10_3390_cells10081945 crossref_primary_10_3389_fneur_2021_779558 crossref_primary_10_3390_jcm14020428 crossref_primary_10_1016_j_ebiom_2025_105638 crossref_primary_10_1080_10409238_2023_2185764 crossref_primary_10_1080_15476286_2023_2272118 crossref_primary_10_1007_s10557_024_07557_1 crossref_primary_10_3389_fendo_2022_1035159 crossref_primary_10_1161_CIRCRESAHA_123_322654 crossref_primary_10_1152_ajpgi_00255_2023 crossref_primary_10_3389_fcell_2021_739511 crossref_primary_10_1016_j_ymeth_2021_02_020 crossref_primary_10_3390_ijms24065999 crossref_primary_10_1111_raq_12895 crossref_primary_10_1152_ajpendo_00614_2020 crossref_primary_10_3390_antiox10020313 crossref_primary_10_3390_cancers14174183 crossref_primary_10_1038_s41392_024_01839_8 crossref_primary_10_1016_j_prp_2024_155618 crossref_primary_10_3389_fimmu_2024_1462064 crossref_primary_10_3389_fonc_2021_736546 crossref_primary_10_1186_s11658_023_00448_7 crossref_primary_10_1016_j_bone_2021_116185 crossref_primary_10_1093_plphys_kiac143 crossref_primary_10_3390_ijms242417514 crossref_primary_10_1038_d41573_020_00169_y crossref_primary_10_1016_j_ymthe_2022_06_016 crossref_primary_10_1016_j_molmet_2023_101730 crossref_primary_10_1186_s12876_025_03722_4 crossref_primary_10_1186_s13046_022_02432_z crossref_primary_10_1016_j_molcel_2024_11_013 crossref_primary_10_3389_fendo_2022_1002916 crossref_primary_10_1038_s41392_023_01333_7 crossref_primary_10_1155_2020_6687185 crossref_primary_10_1016_j_cell_2020_09_028 crossref_primary_10_1002_agt2_663 crossref_primary_10_1007_s11064_023_04077_6 crossref_primary_10_1186_s40164_023_00451_w crossref_primary_10_3390_livers5010005 crossref_primary_10_1016_j_ymeth_2021_02_006 crossref_primary_10_1038_s41467_024_44779_1 crossref_primary_10_1016_j_jep_2024_118253 crossref_primary_10_34133_2022_9891689 crossref_primary_10_1002_jmv_27734 crossref_primary_10_1038_s44222_024_00259_1 crossref_primary_10_1007_s00395_021_00889_1 crossref_primary_10_3390_ijms24032636 crossref_primary_10_1016_j_cbi_2022_109899 crossref_primary_10_1016_j_gendis_2025_101605 crossref_primary_10_1038_s41419_023_05775_3 crossref_primary_10_1186_s12943_020_01266_7 crossref_primary_10_1186_s12964_024_01663_1 crossref_primary_10_3390_ijms24119414 crossref_primary_10_3390_ncrna10010010 crossref_primary_10_1038_s41413_022_00208_x crossref_primary_10_1016_j_ejphar_2023_176192 crossref_primary_10_1016_j_xcrp_2023_101444 crossref_primary_10_1016_j_phymed_2021_153532 crossref_primary_10_1016_j_tibs_2021_11_004 crossref_primary_10_1007_s12031_024_02285_5 crossref_primary_10_1016_j_nbd_2023_106344 crossref_primary_10_1002_ctm2_70173 crossref_primary_10_1038_s41598_024_67819_8 crossref_primary_10_1186_s12943_023_01766_2 crossref_primary_10_3389_fgene_2023_1173812 crossref_primary_10_1186_s40104_022_00825_w crossref_primary_10_1016_j_ymeth_2021_03_017 crossref_primary_10_1016_j_canlet_2024_216794 crossref_primary_10_1126_science_adi3332 crossref_primary_10_1186_s12943_021_01484_7 crossref_primary_10_3389_fimmu_2020_622602 crossref_primary_10_1038_s41420_022_00866_0 crossref_primary_10_1111_odi_14687 crossref_primary_10_1038_s41467_022_34287_5 crossref_primary_10_1038_s41586_023_06834_7 crossref_primary_10_1038_s41413_022_00197_x crossref_primary_10_1158_1541_7786_MCR_24_0434 crossref_primary_10_1038_s41467_022_30963_8 crossref_primary_10_1002_adma_202308239 crossref_primary_10_1002_advs_202100275 crossref_primary_10_1016_j_psj_2022_102026 crossref_primary_10_1016_j_ymthe_2022_12_005 crossref_primary_10_1016_j_cell_2022_04_021 crossref_primary_10_1002_advs_202105160 crossref_primary_10_1002_smll_202305923 crossref_primary_10_1016_j_fmre_2024_05_012 crossref_primary_10_1007_s00109_022_02186_3 crossref_primary_10_1021_acsnano_4c02380 crossref_primary_10_1016_j_jconrel_2025_02_008 crossref_primary_10_3390_biom12060824 |
Cites_doi | 10.1038/s41556-019-0299-0 10.1002/hep.29270 10.1261/rna.035667.112 10.1038/nrcardio.2014.189 10.1161/CIRCRESAHA.118.312708 10.1038/s41422-020-0279-8 10.1161/CIRCRESAHA.114.303915 10.7554/eLife.05005 10.1126/science.aas9699 10.1021/acs.chemrev.7b00042 10.7554/eLife.29224 10.1016/j.cmet.2014.12.001 10.15252/embr.201643354 10.15252/embr.201744705 10.1261/rna.047126.114 10.1126/scitranslmed.aat2039 10.1074/jbc.M116.726968 10.1016/j.jhep.2019.06.031 10.1038/ni.1843 10.1038/nbt.1754 10.1002/hep.29367 10.1002/anie.201601273 10.1038/nm.3212 10.1016/j.molcel.2016.05.037 10.1080/15476286.2016.1227905 10.1038/s41591-018-0104-9 10.1038/nature11993 10.1038/nrc3803 10.1016/j.cell.2016.12.004 10.1111/acel.12650 10.1038/nri.2016.62 10.4161/15384101.2014.949082 10.1021/acsnano.6b07195 10.1016/j.molcel.2016.09.034 10.14806/ej.17.1.200 10.1038/s41576-019-0158-7 10.1038/nature21363 10.1016/j.cell.2011.06.051 10.1038/ncomms9523 10.1016/j.cell.2020.02.015 10.1016/j.cell.2016.08.064 10.1002/wrna.1478 10.1016/j.cell.2019.03.046 10.1016/j.molcel.2014.08.019 10.1016/j.molcel.2018.06.034 10.1016/j.cell.2015.10.001 10.1126/science.aam8526 10.1016/j.cmet.2018.08.001 10.1016/j.biocel.2013.01.005 10.1080/15476286.2016.1271524 10.1038/nature09973 10.1126/science.1230593 10.1093/bioinformatics/bts635 10.1016/j.molcel.2017.10.034 10.1038/nrm.2015.32 10.1016/j.molcel.2014.06.003 10.1038/s41577-019-0156-1 10.1038/s41590-018-0207-y 10.1038/nmeth.3179 10.1093/toxsci/kfx096 10.1038/nrc.2016.73 10.1002/hep.27173 10.1016/j.cell.2018.01.009 10.7150/thno.40098 10.1038/ni.3704 10.1006/mthe.2002.0588 10.1016/j.it.2017.08.006 10.1038/nrgastro.2016.86 10.1038/ejhg.2013.293 10.1016/j.ccell.2015.02.004 10.1016/j.cmet.2019.05.009 10.1038/nri.2017.66 10.1038/nprot.2015.017 10.1073/pnas.1217823110 10.1371/journal.pbio.0020363 10.1136/gutjnl-2014-307362 10.1038/s41574-018-0059-4 10.1016/j.immuni.2018.03.016 10.1194/jlr.R067595 10.1038/s41467-017-01216-w 10.1038/nsmb.2959 10.1016/j.cmet.2016.04.004 10.1016/j.immuni.2012.10.020 10.1186/s12916-017-0806-8 10.1093/hmg/ddx142 10.1093/nar/gkx428 10.1371/journal.pgen.1003777 10.1101/gad.270421.115 10.7717/peerj.3720 10.1038/nrgastro.2017.109 10.1038/s41467-019-10246-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.cell.2020.08.009 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 93.e22 |
ExternalDocumentID | 32931733 10_1016_j_cell_2020_08_009 S009286742031000X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c499t-81f85732809e8359c21f448e046f505f40454edff82b9d220d9780e2bc3f69213 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Jul 10 20:00:15 EDT 2025 Fri Jul 11 16:17:11 EDT 2025 Thu Apr 03 07:02:18 EDT 2025 Tue Jul 01 02:17:07 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Fri Feb 23 02:48:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-81f85732809e8359c21f448e046f505f40454edff82b9d220d9780e2bc3f69213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9785-6731 0000-0002-5586-3458 |
OpenAccessLink | http://www.cell.com/article/S009286742031000X/pdf |
PMID | 32931733 |
PQID | 2443517707 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2524328689 proquest_miscellaneous_2443517707 pubmed_primary_32931733 crossref_citationtrail_10_1016_j_cell_2020_08_009 crossref_primary_10_1016_j_cell_2020_08_009 elsevier_sciencedirect_doi_10_1016_j_cell_2020_08_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chen (bib8) 2016; 17 Kwong, Molkentin (bib43) 2015; 21 Liu, Wang, Li, Hu, Deng, Yin, Bao, Zhang, Wang, Wang (bib52) 2019 Giorgio, von Stockum, Antoniel, Fabbro, Fogolari, Forte, Glick, Petronilli, Zoratti, Szabó (bib22) 2013; 110 Ying, Xiang, Zheng, Tang, Duan, Lin, Zhao, Chen, Wu, Xing (bib88) 2018; 28 Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard, Kjems (bib29) 2013; 495 Liu, Sun, Liu, Gong, Yao, Lv, Lin, Yao, Su, Li (bib50) 2015; 27 Xu, Wu, Liu, Saw, Tao, Yu, Zope, Si, Victorious, Rasmussen (bib87) 2017; 11 Li, Huang, Bao, Chen, Lin, Wang, Zhong, Yu, Hu, Dai (bib46) 2015; 22 Kristensen, Andersen, Stagsted, Ebbesen, Hansen, Kjems (bib41) 2019; 20 Kumarswamy, Bauters, Volkmann, Maury, Fetisch, Holzmann, Lemesle, de Groote, Pinet, Thum (bib42) 2014; 114 Wang, Luo, Song, Zhou, Ma, Wang, Jia, Wang, Nie, Liu, Hou (bib80) 2018; 10 Friedrich-Rust, Poynard, Castera (bib21) 2016; 13 Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Dabritz, Gottlieb, Latorre (bib59) 2016; 167 Dey, DeMazumder, Sidor, Foster, O’Rourke (bib15) 2018; 123 Jeck, Sorrentino, Wang, Slevin, Burd, Liu, Marzluff, Sharpless (bib35) 2013; 19 Sena, Li, Jairaman, Prakriya, Ezponda, Hildeman, Wang, Schumacker, Licht, Perlman (bib73) 2013; 38 Piwecka, Glažar, Hernandez-Miranda, Memczak, Wolf, Rybak-Wolf, Filipchyk, Klironomos, Cerda Jara, Fenske (bib65) 2017; 357 Mehta, Weinberg, Chandel (bib57) 2017; 17 Chen, Zhong, Dong, Liu, Yang (bib9) 2017; 158 Herai, Negraes, Muotri (bib31) 2017; 26 Chouchani, Methner, Nadtochiy, Logan, Pell, Ding, James, Cochemé, Reinhold, Lilley (bib11) 2013; 19 Franceschi, Garagnani, Parini, Giuliani, Santoro (bib19) 2018; 14 Hotamisligil (bib32) 2017; 542 Hung, Zou, Rhee, Udeshi, Cracan, Svinkina, Carr, Mootha, Ting (bib34) 2014; 55 Han, Li, Wang, Su, Hou, Gu, Qian, Lin, Liu, Huang (bib28) 2017; 66 Su, Zhao, He, Huang, Liu, Chen, Chen, Liao, Cui, Zeng (bib76) 2015; 6 Tang, Xie, Yu, Liu, Wang, Woolsey, Tang, Zhang, Qin, Zhang (bib78) 2020; 30 Patananan, Wu, Chiou, Teitell (bib64) 2016; 23 Wang, Zhu, Li, Ren, Zhang, Zhou (bib81) 2020; 10 Mercer, Neph, Dinger, Crawford, Smith, Shearwood, Haugen, Bracken, Rackham, Stamatoyannopoulos (bib58) 2011; 146 Li, Wang, Wu, Zhou, Ding, Shi, Thorne, Zhang, Hu, Wu (bib48) 2019; 30 Bonora, Bravo-San Pedro, Kroemer, Galluzzi, Pinton (bib5) 2014; 13 Ashwal-Fluss, Meyer, Pamudurti, Ivanov, Bartok, Hanan, Evantal, Memczak, Rajewsky, Kadener (bib3) 2014; 56 Lasda, Parker (bib45) 2014; 20 West, Brodsky, Rahner, Woo, Erdjument-Bromage, Tempst, Walsh, Choi, Shadel, Ghosh (bib82) 2011; 472 Glover, Bienemann, Heywood, Cosgrave, Uney (bib24) 2002; 5 Agarwal, Bell, Nam, Bartel (bib1) 2015; 4 Ebbesen, Hansen, Kjems (bib18) 2017; 14 Liang, Tatomer, Luo, Wu, Yang, Chen, Cherry, Wilusz (bib49) 2017; 68 Huang, Chen, Yang, Ouyang, Li, Lao, Zhao, Liu, Lu, Xing (bib33) 2018; 19 Sabharwal, Schumacker (bib71) 2014; 14 Neuschwander-Tetri (bib61) 2017; 15 Salzman, Chen, Olsen, Wang, Brown (bib72) 2013; 9 Bedossa (bib4) 2014; 60 Capasso, Bhamrah, Henley, Boyd, Langlais, Cain, Dinsdale, Pulford, Khan, Musset (bib6) 2010; 11 Martin (bib55) 2011; 17 Lam, Martell, Kamer, Deerinck, Ellisman, Mootha, Ting (bib44) 2015; 12 Li, Yang, Chen (bib47) 2018; 71 Kaewsapsak, Shechner, Mallard, Rinn, Ting (bib37) 2017; 6 Cubillos-Ruiz, Bettigole, Glimcher (bib13) 2017; 168 Mederacke, Dapito, Affò, Uchinami, Schwabe (bib56) 2015; 10 Lu, Zhao, Liao, Song, Xia, Pan, Li, Li, Zhou, Ye (bib53) 2020; 180 Rambold, Pearce (bib66) 2018; 39 Zielonka, Joseph, Sikora, Hardy, Ouari, Vasquez-Vivar, Cheng, Lopez, Kalyanaraman (bib93) 2017; 117 Grootjans, Kaser, Kaufman, Blumberg (bib25) 2016; 16 Hahn, Parey, Bublitz, Mills, Zickermann, Vonck, Kühlbrandt, Meier (bib26) 2016; 63 Kang, Yang, Kong, Hou, Meng, Wei, Gao (bib39) 2017; 45 Antoniel, Jones, Antonucci, Spolaore, Fogolari, Petronilli, Giorgio, Carraro, Di Lisa, Forte (bib2) 2018; 19 Zhao, Lee, Kim, Yang, Chamseddin, Ni, Gusho, Xie, Chiang, Buszczak (bib92) 2019; 10 Han, Kaufman (bib27) 2016; 57 Kalluri (bib38) 2016; 16 Chalasani, Younossi, Lavine, Charlton, Cusi, Rinella, Harrison, Brunt, Sanyal (bib7) 2018; 67 Chen, Chen, Yang, Liu, Zhang, Zhang, Tu, Yin, Lin, Wong (bib10) 2019; 21 Xu, Wu, Liu, Yu, Zhao, Zhu, Bhasin, Li, Ha, Shi, Farokhzad (bib86) 2016; 55 Rottenberg, Hoek (bib70) 2017; 16 Rhee, Zou, Udeshi, Martell, Mootha, Carr, Ting (bib67) 2013; 339 Yu, Li, Wu, Yeh, Chiang, Chuang, Kuo (bib90) 2017; 8 Mills, Kelly, O’Neill (bib60) 2017; 18 Machado, Michelotti, Pereira, Boursier, Kruger, Swiderska-Syn, Karaca, Xie, Guy, Bohinc (bib54) 2015; 64 Christ, Latz (bib12) 2019; 19 John, Enright, Aravin, Tuschl, Sander, Marks (bib36) 2004; 2 Wilusz (bib84) 2018; 9 Nicholls, Rorbach, Minczuk (bib62) 2013; 45 Srivastava, Luo, Zhou, Symersky, Bai, Chambers, Faraldo-Gómez, Liao, Mueller (bib75) 2018; 360 Giorgio, Burchell, Schiavone, Bassot, Minervini, Petronilli, Argenton, Forte, Tosatto, Lippe, Bernardi (bib23) 2017; 18 Liu, Li, Nan, Jiang, Gao, Guo, Xue, Cui, Dong, Ding (bib51) 2019; 177 Shadel, Horvath (bib74) 2015; 163 Dey, Sidor, O’Rourke (bib14) 2016; 291 Didion, Martin, Collins (bib16) 2017; 5 Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib68) 2011; 29 Wilusz (bib83) 2017; 14 Younossi, Anstee, Marietti, Hardy, Henry, Eslam, George, Bugianesi (bib89) 2018; 15 Zhang, Zhao, Lin, Hu, Zhang, Gao (bib91) 2019; 2019 He, Sidoli, Warneford-Thomson, Tatomer, Wilusz, Garcia, Bonasio (bib30) 2016; 64 Wang, Yang, Mandhan, Brinkmeyer-Langford, Cai (bib79) 2014; 22 Kramer, Liang, Tatomer, Gold, March, Cherry, Wilusz (bib40) 2015; 29 Okonko, Shah (bib63) 2015; 12 Rosso, Kazankov, Younes, Esmaili, Marietti, Sacco, Carli, Gaggini, Salomone, Møller (bib69) 2019; 71 Su, Chen, Yao, Liu, Yu, Lao, Wang, Luo, Xing, Chen (bib77) 2018; 172 Friedman, Neuschwander-Tetri, Rinella, Sanyal (bib20) 2018; 24 Xia, Wang, Ye, Du, Li, Xiong, Qu, Fan (bib85) 2018; 48 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib17) 2013; 29 Dey (10.1016/j.cell.2020.08.009_bib15) 2018; 123 Kalluri (10.1016/j.cell.2020.08.009_bib38) 2016; 16 Kang (10.1016/j.cell.2020.08.009_bib39) 2017; 45 Mills (10.1016/j.cell.2020.08.009_bib60) 2017; 18 Herai (10.1016/j.cell.2020.08.009_bib31) 2017; 26 Lasda (10.1016/j.cell.2020.08.009_bib45) 2014; 20 Didion (10.1016/j.cell.2020.08.009_bib16) 2017; 5 Giorgio (10.1016/j.cell.2020.08.009_bib22) 2013; 110 Hahn (10.1016/j.cell.2020.08.009_bib26) 2016; 63 Han (10.1016/j.cell.2020.08.009_bib27) 2016; 57 Wilusz (10.1016/j.cell.2020.08.009_bib84) 2018; 9 Machado (10.1016/j.cell.2020.08.009_bib54) 2015; 64 Liu (10.1016/j.cell.2020.08.009_bib52) 2019 Neuschwander-Tetri (10.1016/j.cell.2020.08.009_bib61) 2017; 15 Wang (10.1016/j.cell.2020.08.009_bib79) 2014; 22 Capasso (10.1016/j.cell.2020.08.009_bib6) 2010; 11 Rhee (10.1016/j.cell.2020.08.009_bib67) 2013; 339 Srivastava (10.1016/j.cell.2020.08.009_bib75) 2018; 360 Zhang (10.1016/j.cell.2020.08.009_bib91) 2019; 2019 Mercer (10.1016/j.cell.2020.08.009_bib58) 2011; 146 Su (10.1016/j.cell.2020.08.009_bib76) 2015; 6 Bonora (10.1016/j.cell.2020.08.009_bib5) 2014; 13 Xu (10.1016/j.cell.2020.08.009_bib86) 2016; 55 Christ (10.1016/j.cell.2020.08.009_bib12) 2019; 19 Ebbesen (10.1016/j.cell.2020.08.009_bib18) 2017; 14 Mehta (10.1016/j.cell.2020.08.009_bib57) 2017; 17 Robinson (10.1016/j.cell.2020.08.009_bib68) 2011; 29 Younossi (10.1016/j.cell.2020.08.009_bib89) 2018; 15 Sena (10.1016/j.cell.2020.08.009_bib73) 2013; 38 Franceschi (10.1016/j.cell.2020.08.009_bib19) 2018; 14 Glover (10.1016/j.cell.2020.08.009_bib24) 2002; 5 Xu (10.1016/j.cell.2020.08.009_bib87) 2017; 11 Patananan (10.1016/j.cell.2020.08.009_bib64) 2016; 23 Li (10.1016/j.cell.2020.08.009_bib46) 2015; 22 Lam (10.1016/j.cell.2020.08.009_bib44) 2015; 12 Su (10.1016/j.cell.2020.08.009_bib77) 2018; 172 Salzman (10.1016/j.cell.2020.08.009_bib72) 2013; 9 Dey (10.1016/j.cell.2020.08.009_bib14) 2016; 291 West (10.1016/j.cell.2020.08.009_bib82) 2011; 472 Martin (10.1016/j.cell.2020.08.009_bib55) 2011; 17 Xia (10.1016/j.cell.2020.08.009_bib85) 2018; 48 Kramer (10.1016/j.cell.2020.08.009_bib40) 2015; 29 Shadel (10.1016/j.cell.2020.08.009_bib74) 2015; 163 Liu (10.1016/j.cell.2020.08.009_bib50) 2015; 27 Kaewsapsak (10.1016/j.cell.2020.08.009_bib37) 2017; 6 Chen (10.1016/j.cell.2020.08.009_bib10) 2019; 21 Han (10.1016/j.cell.2020.08.009_bib28) 2017; 66 Li (10.1016/j.cell.2020.08.009_bib47) 2018; 71 Liang (10.1016/j.cell.2020.08.009_bib49) 2017; 68 Hung (10.1016/j.cell.2020.08.009_bib34) 2014; 55 Tang (10.1016/j.cell.2020.08.009_bib78) 2020; 30 Yu (10.1016/j.cell.2020.08.009_bib90) 2017; 8 Grootjans (10.1016/j.cell.2020.08.009_bib25) 2016; 16 Jeck (10.1016/j.cell.2020.08.009_bib35) 2013; 19 Hotamisligil (10.1016/j.cell.2020.08.009_bib32) 2017; 542 Okonko (10.1016/j.cell.2020.08.009_bib63) 2015; 12 Bedossa (10.1016/j.cell.2020.08.009_bib4) 2014; 60 Li (10.1016/j.cell.2020.08.009_bib48) 2019; 30 Kwong (10.1016/j.cell.2020.08.009_bib43) 2015; 21 Ashwal-Fluss (10.1016/j.cell.2020.08.009_bib3) 2014; 56 Chen (10.1016/j.cell.2020.08.009_bib9) 2017; 158 Zielonka (10.1016/j.cell.2020.08.009_bib93) 2017; 117 Wilusz (10.1016/j.cell.2020.08.009_bib83) 2017; 14 Nicholls (10.1016/j.cell.2020.08.009_bib62) 2013; 45 Kumarswamy (10.1016/j.cell.2020.08.009_bib42) 2014; 114 John (10.1016/j.cell.2020.08.009_bib36) 2004; 2 Mills (10.1016/j.cell.2020.08.009_bib59) 2016; 167 Mederacke (10.1016/j.cell.2020.08.009_bib56) 2015; 10 Hansen (10.1016/j.cell.2020.08.009_bib29) 2013; 495 Rambold (10.1016/j.cell.2020.08.009_bib66) 2018; 39 Dobin (10.1016/j.cell.2020.08.009_bib17) 2013; 29 Wang (10.1016/j.cell.2020.08.009_bib81) 2020; 10 He (10.1016/j.cell.2020.08.009_bib30) 2016; 64 Huang (10.1016/j.cell.2020.08.009_bib33) 2018; 19 Rosso (10.1016/j.cell.2020.08.009_bib69) 2019; 71 Liu (10.1016/j.cell.2020.08.009_bib51) 2019; 177 Piwecka (10.1016/j.cell.2020.08.009_bib65) 2017; 357 Antoniel (10.1016/j.cell.2020.08.009_bib2) 2018; 19 Giorgio (10.1016/j.cell.2020.08.009_bib23) 2017; 18 Lu (10.1016/j.cell.2020.08.009_bib53) 2020; 180 Kristensen (10.1016/j.cell.2020.08.009_bib41) 2019; 20 Rottenberg (10.1016/j.cell.2020.08.009_bib70) 2017; 16 Zhao (10.1016/j.cell.2020.08.009_bib92) 2019; 10 Wang (10.1016/j.cell.2020.08.009_bib80) 2018; 10 Ying (10.1016/j.cell.2020.08.009_bib88) 2018; 28 Sabharwal (10.1016/j.cell.2020.08.009_bib71) 2014; 14 Friedrich-Rust (10.1016/j.cell.2020.08.009_bib21) 2016; 13 Friedman (10.1016/j.cell.2020.08.009_bib20) 2018; 24 Chen (10.1016/j.cell.2020.08.009_bib8) 2016; 17 Cubillos-Ruiz (10.1016/j.cell.2020.08.009_bib13) 2017; 168 Agarwal (10.1016/j.cell.2020.08.009_bib1) 2015; 4 Chalasani (10.1016/j.cell.2020.08.009_bib7) 2018; 67 Chouchani (10.1016/j.cell.2020.08.009_bib11) 2013; 19 33007261 - Cell. 2020 Oct 1;183(1):11-13 |
References_xml | – volume: 23 start-page: 785 year: 2016 end-page: 796 ident: bib64 article-title: Modifying the Mitochondrial Genome publication-title: Cell Metab. – volume: 55 start-page: 7091 year: 2016 end-page: 7094 ident: bib86 article-title: Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy publication-title: Angew. Chem. Int. Ed. Engl. – volume: 167 start-page: 457 year: 2016 end-page: 470 ident: bib59 article-title: Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages publication-title: Cell – volume: 14 start-page: 709 year: 2014 end-page: 721 ident: bib71 article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? publication-title: Nat. Rev. Cancer – volume: 158 start-page: 275 year: 2017 end-page: 285 ident: bib9 article-title: Endoplasmic Reticulum Stress-Induced CHOP Inhibits PGC-1α and Causes Mitochondrial Dysfunction in Diabetic Embryopathy publication-title: Toxicol. Sci. – volume: 19 start-page: 257 year: 2018 end-page: 268 ident: bib2 article-title: The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH publication-title: EMBO Rep. – volume: 18 start-page: 1065 year: 2017 end-page: 1076 ident: bib23 article-title: Ca publication-title: EMBO Rep. – volume: 27 start-page: 370 year: 2015 end-page: 381 ident: bib50 article-title: A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis publication-title: Cancer Cell – volume: 146 start-page: 645 year: 2011 end-page: 658 ident: bib58 article-title: The human mitochondrial transcriptome publication-title: Cell – volume: 14 start-page: 1035 year: 2017 end-page: 1045 ident: bib18 article-title: Insights into circular RNA biology publication-title: RNA Biol. – volume: 13 start-page: 2666 year: 2014 end-page: 2670 ident: bib5 article-title: Novel insights into the mitochondrial permeability transition publication-title: Cell Cycle – volume: 357 start-page: eaam8526 year: 2017 ident: bib65 article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function publication-title: Science – volume: 71 start-page: 428 year: 2018 end-page: 442 ident: bib47 article-title: The Biogenesis, Functions, and Challenges of Circular RNAs publication-title: Mol. Cell – volume: 472 start-page: 476 year: 2011 end-page: 480 ident: bib82 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature – volume: 16 start-page: 943 year: 2017 end-page: 955 ident: bib70 article-title: The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore publication-title: Aging Cell – volume: 17 start-page: 205 year: 2016 end-page: 211 ident: bib8 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nat. Rev. Mol. Cell Biol. – volume: 26 start-page: 2472 year: 2017 end-page: 2479 ident: bib31 article-title: Evidence of nuclei-encoded spliceosome mediating splicing of mitochondrial RNA publication-title: Hum. Mol. Genet. – volume: 29 start-page: 2168 year: 2015 end-page: 2182 ident: bib40 article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins publication-title: Genes Dev. – volume: 6 start-page: 8523 year: 2015 ident: bib76 article-title: miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program publication-title: Nat. Commun. – volume: 123 start-page: 356 year: 2018 end-page: 371 ident: bib15 article-title: Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure publication-title: Circ. Res. – volume: 19 start-page: 753 year: 2013 end-page: 759 ident: bib11 article-title: Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I publication-title: Nat. Med. – volume: 163 start-page: 560 year: 2015 end-page: 569 ident: bib74 article-title: Mitochondrial ROS signaling in organismal homeostasis publication-title: Cell – volume: 4 start-page: e05005 year: 2015 ident: bib1 article-title: Predicting effective microRNA target sites in mammalian mRNAs publication-title: eLife – volume: 117 start-page: 10043 year: 2017 end-page: 10120 ident: bib93 article-title: Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications publication-title: Chem. Rev. – volume: 64 start-page: 1148 year: 2015 end-page: 1157 ident: bib54 article-title: Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis publication-title: Gut – volume: 291 start-page: 11185 year: 2016 end-page: 11197 ident: bib14 article-title: Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes publication-title: J. Biol. Chem. – volume: 20 start-page: 675 year: 2019 end-page: 691 ident: bib41 article-title: The biogenesis, biology and characterization of circular RNAs publication-title: Nat. Rev. Genet. – volume: 30 start-page: 157 year: 2019 end-page: 173 ident: bib48 article-title: CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress publication-title: Cell Metab. – volume: 12 start-page: 6 year: 2015 end-page: 8 ident: bib63 article-title: Heart failure: mitochondrial dysfunction and oxidative stress in CHF publication-title: Nat. Rev. Cardiol. – volume: 6 start-page: e29224 year: 2017 ident: bib37 article-title: Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking publication-title: eLife – volume: 38 start-page: 225 year: 2013 end-page: 236 ident: bib73 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity – volume: 68 start-page: 940 year: 2017 end-page: 954 ident: bib49 article-title: The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting publication-title: Mol. Cell – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib55 article-title: Cutadapt removes adapter sequences from highthroughput sequencing reads publication-title: EMBnet. J. – volume: 110 start-page: 5887 year: 2013 end-page: 5892 ident: bib22 article-title: Dimers of mitochondrial ATP synthase form the permeability transition pore publication-title: Proc. Natl. Acad. Sci. USA – volume: 114 start-page: 1569 year: 2014 end-page: 1575 ident: bib42 article-title: Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure publication-title: Circ. Res. – volume: 339 start-page: 1328 year: 2013 end-page: 1331 ident: bib67 article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging publication-title: Science – volume: 5 start-page: 509 year: 2002 end-page: 516 ident: bib24 article-title: Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity publication-title: Mol. Ther. – volume: 14 start-page: 576 year: 2018 end-page: 590 ident: bib19 article-title: Inflammaging: a new immune-metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. – volume: 16 start-page: 469 year: 2016 end-page: 484 ident: bib25 article-title: The unfolded protein response in immunity and inflammation publication-title: Nat. Rev. Immunol. – volume: 177 start-page: 865 year: 2019 end-page: 880 ident: bib51 article-title: Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity publication-title: Cell – volume: 15 start-page: 11 year: 2018 end-page: 20 ident: bib89 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 10 start-page: 2300 year: 2019 ident: bib92 article-title: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus publication-title: Nat. Commun. – volume: 19 start-page: 267 year: 2019 end-page: 268 ident: bib12 article-title: The Western lifestyle has lasting effects on metaflammation publication-title: Nat. Rev. Immunol. – volume: 21 start-page: 206 year: 2015 end-page: 214 ident: bib43 article-title: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart publication-title: Cell Metab. – volume: 39 start-page: 6 year: 2018 end-page: 18 ident: bib66 article-title: Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function publication-title: Trends Immunol. – volume: 63 start-page: 445 year: 2016 end-page: 456 ident: bib26 article-title: Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology publication-title: Mol. Cell – year: 2019 ident: bib52 article-title: The identification of mecciRNAs and their roles in mitochondrial entry of proteins publication-title: bioRxiv – volume: 67 start-page: 328 year: 2018 end-page: 357 ident: bib7 article-title: The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases publication-title: Hepatology – volume: 45 start-page: W12 year: 2017 end-page: W16 ident: bib39 article-title: CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features publication-title: Nucleic Acids Res. – volume: 172 start-page: 841 year: 2018 end-page: 856 ident: bib77 article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness publication-title: Cell – volume: 24 start-page: 908 year: 2018 end-page: 922 ident: bib20 article-title: Mechanisms of NAFLD development and therapeutic strategies publication-title: Nat. Med. – volume: 15 start-page: 45 year: 2017 ident: bib61 article-title: Non-alcoholic fatty liver disease publication-title: BMC Med. – volume: 14 start-page: 1007 year: 2017 end-page: 1017 ident: bib83 article-title: Circular RNAs: Unexpected outputs of many protein-coding genes publication-title: RNA Biol. – volume: 13 start-page: 402 year: 2016 end-page: 411 ident: bib21 article-title: Critical comparison of elastography methods to assess chronic liver disease publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 8 start-page: 1149 year: 2017 ident: bib90 article-title: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency publication-title: Nat. Commun. – volume: 11 start-page: 265 year: 2010 end-page: 272 ident: bib6 article-title: HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species publication-title: Nat. Immunol. – volume: 10 start-page: 305 year: 2015 end-page: 315 ident: bib56 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat. Protoc. – volume: 48 start-page: 688 year: 2018 end-page: 701 ident: bib85 article-title: A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion publication-title: Immunity – volume: 168 start-page: 692 year: 2017 end-page: 706 ident: bib13 article-title: Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer publication-title: Cell – volume: 55 start-page: 332 year: 2014 end-page: 341 ident: bib34 article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging publication-title: Mol. Cell – volume: 16 start-page: 582 year: 2016 end-page: 598 ident: bib38 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Cancer – volume: 12 start-page: 51 year: 2015 end-page: 54 ident: bib44 article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling publication-title: Nat. Methods – volume: 19 start-page: 1112 year: 2018 end-page: 1125 ident: bib33 article-title: NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death publication-title: Nat. Immunol. – volume: 2019 start-page: 3951574 year: 2019 ident: bib91 article-title: Transient Elastography and Ultrasonography: Optimal Evaluation of Liver Fibrosis and Cirrhosis in Patients with Chronic Hepatitis B Concurrent with Nonalcoholic Fatty Liver Disease publication-title: BioMed Res. Int. – volume: 66 start-page: 1151 year: 2017 end-page: 1164 ident: bib28 article-title: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression publication-title: Hepatology – volume: 11 start-page: 2618 year: 2017 end-page: 2627 ident: bib87 article-title: Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy publication-title: ACS Nano – volume: 542 start-page: 177 year: 2017 end-page: 185 ident: bib32 article-title: Inflammation, metaflammation and immunometabolic disorders publication-title: Nature – volume: 71 start-page: 1012 year: 2019 end-page: 1021 ident: bib69 article-title: Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease publication-title: J. Hepatol. – volume: 19 start-page: 141 year: 2013 end-page: 157 ident: bib35 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA – volume: 22 start-page: 1093 year: 2014 end-page: 1099 ident: bib79 article-title: Population-level expression variability of mitochondrial DNA-encoded genes in humans publication-title: Eur. J. Hum. Genet. – volume: 22 start-page: 256 year: 2015 end-page: 264 ident: bib46 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat. Struct. Mol. Biol. – volume: 21 start-page: 498 year: 2019 end-page: 510 ident: bib10 article-title: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells publication-title: Nat. Cell Biol. – volume: 64 start-page: 416 year: 2016 end-page: 430 ident: bib30 article-title: High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells publication-title: Mol. Cell – volume: 18 start-page: 488 year: 2017 end-page: 498 ident: bib60 article-title: Mitochondria are the powerhouses of immunity publication-title: Nat. Immunol. – volume: 5 start-page: e3720 year: 2017 ident: bib16 article-title: Atropos: specific, sensitive, and speedy trimming of sequencing reads publication-title: PeerJ – volume: 17 start-page: 608 year: 2017 end-page: 620 ident: bib57 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat. Rev. Immunol. – volume: 57 start-page: 1329 year: 2016 end-page: 1338 ident: bib27 article-title: The role of ER stress in lipid metabolism and lipotoxicity publication-title: J. Lipid Res. – volume: 30 start-page: 211 year: 2020 end-page: 228 ident: bib78 article-title: m publication-title: Cell Res. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib17 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 29 start-page: 24 year: 2011 end-page: 26 ident: bib68 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. – volume: 360 start-page: eaas9699 year: 2018 ident: bib75 article-title: High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane publication-title: Science – volume: 9 start-page: e1478 year: 2018 ident: bib84 article-title: A 360° view of circular RNAs: From biogenesis to functions publication-title: Wiley Interdiscip. Rev. RNA – volume: 2 start-page: e363 year: 2004 ident: bib36 article-title: Human MicroRNA targets publication-title: PLoS Biol. – volume: 10 start-page: 384 year: 2020 end-page: 397 ident: bib81 article-title: Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2 publication-title: Theranostics – volume: 28 start-page: 935 year: 2018 end-page: 945 ident: bib88 article-title: Short-Term Mitochondrial Permeability Transition Pore Opening Modulates Histone Lysine Methylation at the Early Phase of Somatic Cell Reprogramming publication-title: Cell Metab. – volume: 60 start-page: 565 year: 2014 end-page: 575 ident: bib4 article-title: Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease publication-title: Hepatology – volume: 10 start-page: eaat2039 year: 2018 ident: bib80 article-title: Long noncoding RNA publication-title: Sci. Transl. Med. – volume: 495 start-page: 384 year: 2013 end-page: 388 ident: bib29 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 45 start-page: 845 year: 2013 end-page: 849 ident: bib62 article-title: Mitochondria: mitochondrial RNA metabolism and human disease publication-title: Int. J. Biochem. Cell Biol. – volume: 20 start-page: 1829 year: 2014 end-page: 1842 ident: bib45 article-title: Circular RNAs: diversity of form and function publication-title: RNA – volume: 9 start-page: e1003777 year: 2013 ident: bib72 article-title: Cell-type specific features of circular RNA expression publication-title: PLoS Genet. – volume: 180 start-page: 1081 year: 2020 end-page: 1097 ident: bib53 article-title: Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity publication-title: Cell – volume: 56 start-page: 55 year: 2014 end-page: 66 ident: bib3 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell – volume: 21 start-page: 498 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib10 article-title: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0299-0 – volume: 66 start-page: 1151 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib28 article-title: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression publication-title: Hepatology doi: 10.1002/hep.29270 – volume: 19 start-page: 141 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib35 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 12 start-page: 6 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib63 article-title: Heart failure: mitochondrial dysfunction and oxidative stress in CHF publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2014.189 – volume: 123 start-page: 356 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib15 article-title: Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312708 – volume: 30 start-page: 211 year: 2020 ident: 10.1016/j.cell.2020.08.009_bib78 article-title: m6A-dependent biogenesis of circular RNAs in male germ cells publication-title: Cell Res. doi: 10.1038/s41422-020-0279-8 – volume: 114 start-page: 1569 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib42 article-title: Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.303915 – volume: 4 start-page: e05005 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib1 article-title: Predicting effective microRNA target sites in mammalian mRNAs publication-title: eLife doi: 10.7554/eLife.05005 – volume: 360 start-page: eaas9699 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib75 article-title: High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane publication-title: Science doi: 10.1126/science.aas9699 – volume: 117 start-page: 10043 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib93 article-title: Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00042 – volume: 6 start-page: e29224 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib37 article-title: Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking publication-title: eLife doi: 10.7554/eLife.29224 – volume: 21 start-page: 206 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib43 article-title: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.12.001 – volume: 18 start-page: 1065 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib23 article-title: Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition publication-title: EMBO Rep. doi: 10.15252/embr.201643354 – volume: 19 start-page: 257 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib2 article-title: The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH publication-title: EMBO Rep. doi: 10.15252/embr.201744705 – volume: 20 start-page: 1829 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib45 article-title: Circular RNAs: diversity of form and function publication-title: RNA doi: 10.1261/rna.047126.114 – volume: 10 start-page: eaat2039 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib80 article-title: Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat2039 – volume: 291 start-page: 11185 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib14 article-title: Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.726968 – volume: 71 start-page: 1012 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib69 article-title: Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.06.031 – volume: 11 start-page: 265 year: 2010 ident: 10.1016/j.cell.2020.08.009_bib6 article-title: HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species publication-title: Nat. Immunol. doi: 10.1038/ni.1843 – volume: 29 start-page: 24 year: 2011 ident: 10.1016/j.cell.2020.08.009_bib68 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – volume: 67 start-page: 328 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib7 article-title: The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases publication-title: Hepatology doi: 10.1002/hep.29367 – volume: 55 start-page: 7091 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib86 article-title: Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201601273 – volume: 19 start-page: 753 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib11 article-title: Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I publication-title: Nat. Med. doi: 10.1038/nm.3212 – volume: 63 start-page: 445 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib26 article-title: Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.037 – volume: 14 start-page: 1007 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib83 article-title: Circular RNAs: Unexpected outputs of many protein-coding genes publication-title: RNA Biol. doi: 10.1080/15476286.2016.1227905 – volume: 24 start-page: 908 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib20 article-title: Mechanisms of NAFLD development and therapeutic strategies publication-title: Nat. Med. doi: 10.1038/s41591-018-0104-9 – volume: 495 start-page: 384 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib29 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 14 start-page: 709 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib71 article-title: Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3803 – volume: 168 start-page: 692 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib13 article-title: Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer publication-title: Cell doi: 10.1016/j.cell.2016.12.004 – volume: 16 start-page: 943 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib70 article-title: The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore publication-title: Aging Cell doi: 10.1111/acel.12650 – volume: 16 start-page: 469 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib25 article-title: The unfolded protein response in immunity and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.62 – volume: 13 start-page: 2666 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib5 article-title: Novel insights into the mitochondrial permeability transition publication-title: Cell Cycle doi: 10.4161/15384101.2014.949082 – volume: 11 start-page: 2618 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib87 article-title: Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b07195 – volume: 64 start-page: 416 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib30 article-title: High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.034 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.cell.2020.08.009_bib55 article-title: Cutadapt removes adapter sequences from highthroughput sequencing reads publication-title: EMBnet. J. doi: 10.14806/ej.17.1.200 – volume: 20 start-page: 675 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib41 article-title: The biogenesis, biology and characterization of circular RNAs publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0158-7 – volume: 542 start-page: 177 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib32 article-title: Inflammation, metaflammation and immunometabolic disorders publication-title: Nature doi: 10.1038/nature21363 – volume: 146 start-page: 645 year: 2011 ident: 10.1016/j.cell.2020.08.009_bib58 article-title: The human mitochondrial transcriptome publication-title: Cell doi: 10.1016/j.cell.2011.06.051 – volume: 6 start-page: 8523 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib76 article-title: miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program publication-title: Nat. Commun. doi: 10.1038/ncomms9523 – volume: 180 start-page: 1081 year: 2020 ident: 10.1016/j.cell.2020.08.009_bib53 article-title: Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity publication-title: Cell doi: 10.1016/j.cell.2020.02.015 – volume: 167 start-page: 457 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib59 article-title: Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages publication-title: Cell doi: 10.1016/j.cell.2016.08.064 – volume: 9 start-page: e1478 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib84 article-title: A 360° view of circular RNAs: From biogenesis to functions publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1478 – volume: 177 start-page: 865 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib51 article-title: Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity publication-title: Cell doi: 10.1016/j.cell.2019.03.046 – volume: 56 start-page: 55 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib3 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 71 start-page: 428 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib47 article-title: The Biogenesis, Functions, and Challenges of Circular RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.034 – volume: 163 start-page: 560 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib74 article-title: Mitochondrial ROS signaling in organismal homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.10.001 – volume: 357 start-page: eaam8526 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib65 article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function publication-title: Science doi: 10.1126/science.aam8526 – volume: 28 start-page: 935 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib88 article-title: Short-Term Mitochondrial Permeability Transition Pore Opening Modulates Histone Lysine Methylation at the Early Phase of Somatic Cell Reprogramming publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.08.001 – volume: 45 start-page: 845 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib62 article-title: Mitochondria: mitochondrial RNA metabolism and human disease publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2013.01.005 – volume: 14 start-page: 1035 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib18 article-title: Insights into circular RNA biology publication-title: RNA Biol. doi: 10.1080/15476286.2016.1271524 – volume: 472 start-page: 476 year: 2011 ident: 10.1016/j.cell.2020.08.009_bib82 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature doi: 10.1038/nature09973 – volume: 339 start-page: 1328 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib67 article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging publication-title: Science doi: 10.1126/science.1230593 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib17 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 68 start-page: 940 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib49 article-title: The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.034 – volume: 17 start-page: 205 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib8 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.32 – volume: 55 start-page: 332 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib34 article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.003 – volume: 19 start-page: 267 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib12 article-title: The Western lifestyle has lasting effects on metaflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0156-1 – volume: 19 start-page: 1112 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib33 article-title: NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0207-y – volume: 12 start-page: 51 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib44 article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling publication-title: Nat. Methods doi: 10.1038/nmeth.3179 – volume: 158 start-page: 275 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib9 article-title: Endoplasmic Reticulum Stress-Induced CHOP Inhibits PGC-1α and Causes Mitochondrial Dysfunction in Diabetic Embryopathy publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfx096 – volume: 16 start-page: 582 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib38 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.73 – volume: 60 start-page: 565 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib4 article-title: Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.27173 – volume: 172 start-page: 841 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib77 article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness publication-title: Cell doi: 10.1016/j.cell.2018.01.009 – volume: 10 start-page: 384 year: 2020 ident: 10.1016/j.cell.2020.08.009_bib81 article-title: Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2 publication-title: Theranostics doi: 10.7150/thno.40098 – volume: 18 start-page: 488 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib60 article-title: Mitochondria are the powerhouses of immunity publication-title: Nat. Immunol. doi: 10.1038/ni.3704 – volume: 5 start-page: 509 year: 2002 ident: 10.1016/j.cell.2020.08.009_bib24 article-title: Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity publication-title: Mol. Ther. doi: 10.1006/mthe.2002.0588 – volume: 39 start-page: 6 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib66 article-title: Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function publication-title: Trends Immunol. doi: 10.1016/j.it.2017.08.006 – volume: 13 start-page: 402 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib21 article-title: Critical comparison of elastography methods to assess chronic liver disease publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.86 – volume: 22 start-page: 1093 year: 2014 ident: 10.1016/j.cell.2020.08.009_bib79 article-title: Population-level expression variability of mitochondrial DNA-encoded genes in humans publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2013.293 – volume: 27 start-page: 370 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib50 article-title: A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.02.004 – volume: 30 start-page: 157 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib48 article-title: CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.05.009 – volume: 17 start-page: 608 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib57 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.66 – volume: 10 start-page: 305 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib56 article-title: High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.017 – volume: 110 start-page: 5887 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib22 article-title: Dimers of mitochondrial ATP synthase form the permeability transition pore publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1217823110 – year: 2019 ident: 10.1016/j.cell.2020.08.009_bib52 article-title: The identification of mecciRNAs and their roles in mitochondrial entry of proteins publication-title: bioRxiv – volume: 2019 start-page: 3951574 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib91 article-title: Transient Elastography and Ultrasonography: Optimal Evaluation of Liver Fibrosis and Cirrhosis in Patients with Chronic Hepatitis B Concurrent with Nonalcoholic Fatty Liver Disease publication-title: BioMed Res. Int. – volume: 2 start-page: e363 year: 2004 ident: 10.1016/j.cell.2020.08.009_bib36 article-title: Human MicroRNA targets publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020363 – volume: 64 start-page: 1148 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib54 article-title: Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis publication-title: Gut doi: 10.1136/gutjnl-2014-307362 – volume: 14 start-page: 576 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib19 article-title: Inflammaging: a new immune-metabolic viewpoint for age-related diseases publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-018-0059-4 – volume: 48 start-page: 688 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib85 article-title: A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion publication-title: Immunity doi: 10.1016/j.immuni.2018.03.016 – volume: 57 start-page: 1329 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib27 article-title: The role of ER stress in lipid metabolism and lipotoxicity publication-title: J. Lipid Res. doi: 10.1194/jlr.R067595 – volume: 8 start-page: 1149 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib90 article-title: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency publication-title: Nat. Commun. doi: 10.1038/s41467-017-01216-w – volume: 22 start-page: 256 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib46 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2959 – volume: 23 start-page: 785 year: 2016 ident: 10.1016/j.cell.2020.08.009_bib64 article-title: Modifying the Mitochondrial Genome publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.04.004 – volume: 38 start-page: 225 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib73 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 15 start-page: 45 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib61 article-title: Non-alcoholic fatty liver disease publication-title: BMC Med. doi: 10.1186/s12916-017-0806-8 – volume: 26 start-page: 2472 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib31 article-title: Evidence of nuclei-encoded spliceosome mediating splicing of mitochondrial RNA publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx142 – volume: 45 start-page: W12 issue: W1 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib39 article-title: CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx428 – volume: 9 start-page: e1003777 year: 2013 ident: 10.1016/j.cell.2020.08.009_bib72 article-title: Cell-type specific features of circular RNA expression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003777 – volume: 29 start-page: 2168 year: 2015 ident: 10.1016/j.cell.2020.08.009_bib40 article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins publication-title: Genes Dev. doi: 10.1101/gad.270421.115 – volume: 5 start-page: e3720 year: 2017 ident: 10.1016/j.cell.2020.08.009_bib16 article-title: Atropos: specific, sensitive, and speedy trimming of sequencing reads publication-title: PeerJ doi: 10.7717/peerj.3720 – volume: 15 start-page: 11 year: 2018 ident: 10.1016/j.cell.2020.08.009_bib89 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.109 – volume: 10 start-page: 2300 year: 2019 ident: 10.1016/j.cell.2020.08.009_bib92 article-title: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus publication-title: Nat. Commun. doi: 10.1038/s41467-019-10246-5 – reference: 33007261 - Cell. 2020 Oct 1;183(1):11-13 |
SSID | ssj0008555 |
Score | 2.6968107 |
Snippet | Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 76 |
SubjectTerms | circular RNA endoplasmic reticulum fatty liver fibroblasts genome insulin resistance lipids liver mitochondria therapeutics |
Title | Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output |
URI | https://dx.doi.org/10.1016/j.cell.2020.08.009 https://www.ncbi.nlm.nih.gov/pubmed/32931733 https://www.proquest.com/docview/2443517707 https://www.proquest.com/docview/2524328689 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yEHwR784bEXyTsjZp2uSxDmWITtgm7C20aQKT2Q3tHvz3ntPLQNA9-LauOSWc5Hz5TjgXQm6YdClLnfV4pPC2SjAPMC_zQgPOijSC5REmJz8Po8Fr-DgV0y3Sb3NhMKyywf4a0yu0bv7pNdrsLWczzPFVTEbg2vnVJfUUcJiHskrim96t0VgKUXcxUGD5MLpJnKljvPByHHxE5ldlPDEo8ffD6S_yWR1CD3tkt2GPNKknuE-2bHFAtut-kl-HZDKp4rrhNKLPYKmAbEUOG8x7WmDcU07N7MOMhgkd95MRTeaYWY5Ukw6T8YDCbzrCQq4o_j56GdOXVblclUfk9eF-0h94TdsEz4D7UnoycFJgDR5fWeBXyrDAgRNmwRN2wHdciFX3bO6cZJnKGfNzrEJkWWa4ixQL-DHpFIvCnhLKMxnbyDeZDVE6kynQCT9NHZi-Ui7tkqDVlzZNTXFsbTHXbfDYm0Yda9Sxxn6XvuqS27XMsq6osXG0aJdB_9gXGiB_o9x1u2YaDAZfp4VdrD418Bkugjj24w1jBAtBgZGE75zUC76eKweCFMScn_1zZudkB5_qgMAL0ik_VvYSiE2ZXVU79xswXvHk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-IPoifn9rBN-k2KZNmzzWoUzdJmwT9hbaNIGJdkO7B_977_oxEHQPvpU2V8Ild_ld-N0dIVdM2IQl1jh-KPG2ijMHfF7qBBqCFaE5y0JMTu72wvZL8DjioyXSanJhkFZZ-_7Kp5feun5zU2vzZjoeY46vZCKE0M4tL6lHy2QV0ECE1vkwup27Y8F51cZAgunD8DpzpiJ54e04BInMLet4Iivx99PpL_RZnkL3W2Szho80rma4TZZMvkPWqoaSX7tkOCyJ3XAc0S6YKri2PIMd5nQmSHzKqB5_6H4vpoNW3KfxG6aWI9akvXjQpvBM-1jJFcXf-88D-jwrprNij7zc3w1bbafum-BoiF8KR3hWcCzC40oDAEtq5lmIwgyEwhYAjw2w7J7JrBUslRljboZliAxLtW9DyTx_n6zkk9wcEuqnIjKhq1MToHQqEsATbpJYsH0pbXJEvEZfStdFxbG3xZtq2GOvCnWsUMcKG1668ohcz2WmVUmNhaN5swzqx8ZQ4PMXyl02a6bAYvBzkpvJ7FMBoPG5F0VutGAMZwEoMBTwn4Nqwedz9QEheZHvH_9zZhdkvT3sdlTnofd0QjbwS8UOPCUrxcfMnAHKKdLzchd_A2PC9QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Mitochondria-Located+circRNA+SCAR+Alleviates+NASH+via+Reducing+mROS+Output&rft.jtitle=Cell&rft.au=Zhao%2C+Qiyi&rft.au=Liu%2C+Jiayu&rft.au=Deng%2C+Hong&rft.au=Ma%2C+Ruiying&rft.date=2020-10-01&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=183&rft.issue=1&rft.spage=76&rft_id=info:doi/10.1016%2Fj.cell.2020.08.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |