CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks

Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili und...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 9; pp. 2490 - 2495
Main Authors Echelman, Daniel J., Alegre-Cebollada, Jorge, Badilla, Carmen L., Chang, Chungyu, Ton-That, Hung, Fernández, Julio M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.03.2016
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
AbstractList Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ~28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
Bacteria colonizing the oropharynx must adhere despite mechanical challenges from coughing, sneezing, and chewing; however, little is known about how Gram-positive organisms achieve this feat. We studied the pilus adhesive proteins from two Gram-positive organisms and report a conserved mechanism for dissipating the energy of a mechanical perturbation. The two proteins are stable up to forces of 525 pN and 690 pN, respectively, making these proteins the most mechanically stable proteins known. After a perturbation, the proteins refold rapidly at low force, resulting in a large hysteresis with most of the unfolding energy lost as heat. The work presents an initial model whereby transient unfolding at forces of 500–700 pN dissipates mechanical energy and protects covalent bonds from cleavage. Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.
Author Chang, Chungyu
Badilla, Carmen L.
Fernández, Julio M.
Echelman, Daniel J.
Alegre-Cebollada, Jorge
Ton-That, Hung
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Echelman
  fullname: Echelman, Daniel J.
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027
– sequence: 2
  givenname: Jorge
  surname: Alegre-Cebollada
  fullname: Alegre-Cebollada, Jorge
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027
– sequence: 3
  givenname: Carmen L.
  surname: Badilla
  fullname: Badilla, Carmen L.
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027
– sequence: 4
  givenname: Chungyu
  surname: Chang
  fullname: Chang, Chungyu
  organization: Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030
– sequence: 5
  givenname: Hung
  surname: Ton-That
  fullname: Ton-That, Hung
  organization: Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030
– sequence: 6
  givenname: Julio M.
  surname: Fernández
  fullname: Fernández, Julio M.
  organization: Department of Biological Sciences, Columbia University, New York, NY 10027
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26884173$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUhS0URDaBmgo0Eg3NJNeP8aNBila8pEgUQG15PHbWy4y92LOR-Pd4tMkSUiAqS77fOT7X5wydxBQdQi8xXGAQ9HIXTbnAHSGKcYzpE7TCoHDLmYITtAIgopWMsFN0VsoWAFQn4Rk6JVxKhgVdoa_raK6aIU0mxNKE2PTGzi4HMza7MIbGZNc474MNLs7NEEoJO1OB0iTfjCbfuGZydmNisFVSNsn-KM_RU2_G4l7cnefo-4f339af2usvHz-vr65by5SaW8GMgIFaBrIn9UYAeAaG-04NHQjee6ms5Y4OHWM9JhYow3YA6q1Unjh6jt4dfHf7fnKDrQmzGfUuh8nkXzqZoP-exLDRN-lWMyGBU1wN3t4Z5PRz78qsp1CsG0cTXdoXjYXgvOso7_4HBYIVlVDRN4_QbdrnWH9ioYjkgAWr1OuH4Y-p76upwOUBsDmVkp0_Ihj0Ur5eytd_yq-K7pHChtnMIS3bh_Efuvsoy-D4CqZa6VrMstGrA7Atc8oPojIuazf0N2e3xls
CitedBy_id crossref_primary_10_1073_pnas_2019649118
crossref_primary_10_1038_s41467_018_07145_6
crossref_primary_10_1088_1361_6528_aa655e
crossref_primary_10_1038_s41467_022_28206_x
crossref_primary_10_1016_j_cellimm_2018_08_008
crossref_primary_10_1002_cbic_202200316
crossref_primary_10_1074_jbc_M117_777466
crossref_primary_10_1021_jacsau_2c00121
crossref_primary_10_1038_s41557_020_00586_x
crossref_primary_10_1007_s12551_021_00822_9
crossref_primary_10_1021_acs_bioconjchem_0c00163
crossref_primary_10_1111_mmi_14451
crossref_primary_10_26508_lsa_202403111
crossref_primary_10_3389_fmicb_2020_609880
crossref_primary_10_1016_j_mib_2016_07_015
crossref_primary_10_1016_j_tim_2020_05_008
crossref_primary_10_1039_D0NR07492F
crossref_primary_10_1371_journal_pone_0174682
crossref_primary_10_1021_acs_nanolett_9b00639
crossref_primary_10_1002_pro_3191
crossref_primary_10_1016_j_sbi_2019_11_012
crossref_primary_10_1039_C7CS00820A
crossref_primary_10_1146_annurev_biophys_090420_083836
crossref_primary_10_3389_fmicb_2020_01457
crossref_primary_10_1016_j_cocis_2019_12_010
crossref_primary_10_1016_j_jmb_2016_09_006
crossref_primary_10_1021_jacs_8b05200
crossref_primary_10_1111_febs_15508
crossref_primary_10_1073_pnas_1800954115
crossref_primary_10_1016_j_meegid_2018_03_006
crossref_primary_10_1002_bit_26864
crossref_primary_10_1016_j_tibs_2020_03_002
crossref_primary_10_3389_fmicb_2022_1011578
crossref_primary_10_1111_mmi_14448
crossref_primary_10_1107_S2059798324005114
crossref_primary_10_1038_s41467_018_05107_6
crossref_primary_10_1038_s41467_021_25425_6
crossref_primary_10_1021_acs_jpcb_6b09593
crossref_primary_10_3389_fmicb_2018_00100
crossref_primary_10_1002_chem_202302464
crossref_primary_10_1128_JB_00125_20
crossref_primary_10_1016_j_jbc_2021_100937
crossref_primary_10_1073_pnas_1807689115
crossref_primary_10_1073_pnas_1907733116
crossref_primary_10_1146_annurev_micro_112123_100908
crossref_primary_10_3389_fmicb_2021_615924
crossref_primary_10_1099_mic_0_000506
crossref_primary_10_1111_cmi_13324
crossref_primary_10_3389_fmolb_2020_00085
crossref_primary_10_1021_acs_jpclett_7b01509
crossref_primary_10_1007_s12551_025_01274_1
Cites_doi 10.1038/nprot.2013.056
10.1073/pnas.0806350105
10.1126/science.283.5408.1727
10.1007/s00249-012-0814-8
10.1074/jbc.M110.102962
10.1007/s00018-008-8477-4
10.1016/j.addr.2008.09.012
10.1016/j.cell.2012.09.036
10.1073/pnas.1321417111
10.1529/biophysj.106.091561
10.1128/JB.188.4.1526-1533.2006
10.1371/journal.ppat.1000422
10.1016/j.bpj.2010.02.053
10.1016/S0092-8674(02)00796-1
10.1016/j.cell.2014.01.056
10.1016/j.addr.2008.09.008
10.7554/eLife.06638
10.1371/journal.pcbi.1003971
10.1046/j.1365-2958.2003.03782.x
10.1038/nrmicro2520
10.1021/ja4056382
10.1038/srep13678
10.1021/cb800025k
10.1172/JCI0215217
10.1073/pnas.0906826106
10.1126/science.1151398
10.1016/j.bpj.2013.04.002
10.1371/journal.pone.0125875
10.1111/j.1365-2958.2011.07745.x
10.1073/pnas.0813093106
10.1073/pnas.1106590108
10.1126/science.1145806
10.1038/emboj.2009.360
10.1073/pnas.0901213106
10.1074/jbc.M113.523761
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 1, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 1, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1522946113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)

CrossRef

Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Mechanics of Gram-positive pili
EISSN 1091-6490
EndPage 2495
ExternalDocumentID PMC4780631
3983833231
26884173
10_1073_pnas_1522946113
113_9_2490
26468544
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL61228
– fundername: NIAID NIH HHS
  grantid: AI106072
– fundername: NIDCR NIH HHS
  grantid: DE017382
– fundername: NHLBI NIH HHS
  grantid: R01 HL066030
– fundername: NIGMS NIH HHS
  grantid: R01 GM116122
– fundername: NIDCR NIH HHS
  grantid: R01 DE025015
– fundername: NIDCR NIH HHS
  grantid: R01 DE017382
– fundername: NHLBI NIH HHS
  grantid: HL66030
– fundername: NHLBI NIH HHS
  grantid: R01 HL061228
– fundername: NIAID NIH HHS
  grantid: K99 AI106072
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: HL61228
– fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
  grantid: DE017382
– fundername: Marie Curie International Incoming Fellowship
  grantid: FP7-PEOPLE-2010-COFUND-267149
– fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
  grantid: DE025015
– fundername: HHS | National Institutes of Health (NIH)
  grantid: AI106072
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: HL66030
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
.GJ
3O-
692
6TJ
79B
AAYJJ
AAYXX
ACKIV
ADXHL
AFHIN
AFOSN
AFQQW
AS~
CITATION
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c499t-74a70d3c408b2499700f40a6f59d5076bf89cc6e3d544b12c0341cd03fc89f2e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:24:39 EDT 2025
Fri Jul 11 04:24:00 EDT 2025
Fri Jul 11 10:55:23 EDT 2025
Mon Jun 30 07:49:10 EDT 2025
Thu Apr 03 07:02:25 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 01:53:41 EDT 2025
Wed Nov 11 00:29:24 EST 2020
Sun Aug 24 12:10:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords single-molecule force spectroscopy
Gram-positive pili
isopeptide bond
mechanical stability
bacterial adhesion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-74a70d3c408b2499700f40a6f59d5076bf89cc6e3d544b12c0341cd03fc89f2e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1D.J.E. and J.A.-C. contributed equally to this work.
Author contributions: D.J.E., J.A.-C., and J.M.F. designed research; D.J.E., J.A.-C., and C.L.B. performed research; C.L.B., C.C., and H.T.-T. contributed new reagents/analytic tools; D.J.E., J.A.-C., and J.M.F. analyzed data; and D.J.E., J.A.-C., and J.M.F. wrote the paper.
Edited by Scott J. Hultgren, Washington University School of Medicine, St. Louis, MO, and approved January 15, 2016 (received for review November 28, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/113/9/2490.full.pdf
PMID 26884173
PQID 1772860174
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_26468544
pubmed_primary_26884173
crossref_citationtrail_10_1073_pnas_1522946113
pnas_primary_113_9_2490
proquest_journals_1772860174
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4780631
crossref_primary_10_1073_pnas_1522946113
proquest_miscellaneous_1776655365
proquest_miscellaneous_1770219380
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
19135107 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):75-85
18533659 - ACS Chem Biol. 2008 Jun 20;3(6):373-82
18063798 - Science. 2007 Dec 7;318(5856):1625-8
21326273 - Nat Rev Microbiol. 2011 Mar;9(3):166-76
23744288 - Nat Protoc. 2013;8(7):1261-76
19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9
19666489 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13791-6
25942637 - PLoS One. 2015;10(5):e0125875
10073936 - Science. 1999 Mar 12;283(5408):1727-30
17028145 - Biophys J. 2007 Jan 1;92(1):225-33
24220033 - J Biol Chem. 2014 Jan 3;289(1):177-89
26032562 - Elife. 2015;4. doi: 10.7554/eLife.06638
19942854 - EMBO J. 2009 Dec 16;28(24):3921-30
19424490 - PLoS Pathog. 2009 May;5(5):e1000422
25473833 - PLoS Comput Biol. 2014 Dec;10(12):e1003971
24630725 - Cell. 2014 Mar 13;156(6):1235-46
11877463 - J Clin Invest. 2002 Mar;109(5):571-7
18063774 - Science. 2007 Dec 7;318(5856):1558-9
20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42
19166889 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100
23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71
21696465 - Mol Microbiol. 2011 Sep;81(5):1205-20
14622427 - Mol Microbiol. 2003 Nov;50(4):1429-38
26411657 - Sci Rep. 2015;5:13678
12110187 - Cell. 2002 Jun 28;109(7):913-23
22562139 - Eur Biophys J. 2012 Jun;41(6):551-60
16452436 - J Bacteriol. 2006 Feb;188(4):1526-33
24567409 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3835-40
18953686 - Cell Mol Life Sci. 2009 Feb;66(4):613-35
19805181 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16967-71
23141538 - Cell. 2012 Nov 9;151(4):794-806
21593422 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10278-83
20513414 - Biophys J. 2010 Jun 2;98(11):2692-701
23663848 - Biophys J. 2013 May 7;104(9):2051-7
18779588 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14147-52
References_xml – ident: e_1_3_3_26_2
  doi: 10.1038/nprot.2013.056
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0806350105
– ident: e_1_3_3_5_2
  doi: 10.1126/science.283.5408.1727
– ident: e_1_3_3_15_2
  doi: 10.1007/s00249-012-0814-8
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M110.102962
– ident: e_1_3_3_6_2
  doi: 10.1007/s00018-008-8477-4
– ident: e_1_3_3_3_2
  doi: 10.1016/j.addr.2008.09.012
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2012.09.036
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.1321417111
– ident: e_1_3_3_20_2
  doi: 10.1529/biophysj.106.091561
– ident: e_1_3_3_31_2
  doi: 10.1128/JB.188.4.1526-1533.2006
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.ppat.1000422
– ident: e_1_3_3_28_2
  doi: 10.1016/j.bpj.2010.02.053
– ident: e_1_3_3_1_2
  doi: 10.1016/S0092-8674(02)00796-1
– ident: e_1_3_3_27_2
  doi: 10.1016/j.cell.2014.01.056
– ident: e_1_3_3_4_2
  doi: 10.1016/j.addr.2008.09.008
– ident: e_1_3_3_33_2
  doi: 10.7554/eLife.06638
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pcbi.1003971
– ident: e_1_3_3_32_2
  doi: 10.1046/j.1365-2958.2003.03782.x
– ident: e_1_3_3_10_2
  doi: 10.1038/nrmicro2520
– ident: e_1_3_3_23_2
  doi: 10.1021/ja4056382
– ident: e_1_3_3_9_2
  doi: 10.1038/srep13678
– ident: e_1_3_3_22_2
  doi: 10.1021/cb800025k
– ident: e_1_3_3_2_2
  doi: 10.1172/JCI0215217
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0906826106
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1151398
– ident: e_1_3_3_21_2
  doi: 10.1016/j.bpj.2013.04.002
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pone.0125875
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-2958.2011.07745.x
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0813093106
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1106590108
– ident: e_1_3_3_18_2
  doi: 10.1126/science.1145806
– ident: e_1_3_3_16_2
  doi: 10.1038/emboj.2009.360
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0901213106
– ident: e_1_3_3_34_2
  doi: 10.1074/jbc.M113.523761
– reference: 17028145 - Biophys J. 2007 Jan 1;92(1):225-33
– reference: 21593422 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10278-83
– reference: 24630725 - Cell. 2014 Mar 13;156(6):1235-46
– reference: 22562139 - Eur Biophys J. 2012 Jun;41(6):551-60
– reference: 19424490 - PLoS Pathog. 2009 May;5(5):e1000422
– reference: 21696465 - Mol Microbiol. 2011 Sep;81(5):1205-20
– reference: 19166889 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100
– reference: 18063774 - Science. 2007 Dec 7;318(5856):1558-9
– reference: 11877463 - J Clin Invest. 2002 Mar;109(5):571-7
– reference: 12110187 - Cell. 2002 Jun 28;109(7):913-23
– reference: 26032562 - Elife. 2015;4. doi: 10.7554/eLife.06638
– reference: 19135107 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):75-85
– reference: 25473833 - PLoS Comput Biol. 2014 Dec;10(12):e1003971
– reference: 19666489 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13791-6
– reference: 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71
– reference: 23141538 - Cell. 2012 Nov 9;151(4):794-806
– reference: 20513414 - Biophys J. 2010 Jun 2;98(11):2692-701
– reference: 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9
– reference: 19805181 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16967-71
– reference: 24220033 - J Biol Chem. 2014 Jan 3;289(1):177-89
– reference: 21326273 - Nat Rev Microbiol. 2011 Mar;9(3):166-76
– reference: 23744288 - Nat Protoc. 2013;8(7):1261-76
– reference: 18779588 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14147-52
– reference: 25942637 - PLoS One. 2015;10(5):e0125875
– reference: 14622427 - Mol Microbiol. 2003 Nov;50(4):1429-38
– reference: 20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42
– reference: 26411657 - Sci Rep. 2015;5:13678
– reference: 18533659 - ACS Chem Biol. 2008 Jun 20;3(6):373-82
– reference: 18063798 - Science. 2007 Dec 7;318(5856):1625-8
– reference: 23663848 - Biophys J. 2013 May 7;104(9):2051-7
– reference: 18953686 - Cell Mol Life Sci. 2009 Feb;66(4):613-35
– reference: 10073936 - Science. 1999 Mar 12;283(5408):1727-30
– reference: 19942854 - EMBO J. 2009 Dec 16;28(24):3921-30
– reference: 16452436 - J Bacteriol. 2006 Feb;188(4):1526-33
– reference: 24567409 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3835-40
SSID ssj0009580
Score 2.4187253
Snippet Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein...
Bacteria colonizing the oropharynx must adhere despite mechanical challenges from coughing, sneezing, and chewing; however, little is known about how...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2490
SubjectTerms Actinomyces
Actinomyces - chemistry
Bacteria
Bacterial proteins
Bacterial Proteins - chemistry
Bioenergetics
Biological Sciences
Corynebacterium diphtheriae
Corynebacterium diphtheriae - chemistry
Energy dissipation
Fimbriae, Bacterial - chemistry
Gram-positive bacteria
Polypeptides
Spectrum analysis
Title CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks
URI https://www.jstor.org/stable/26468544
http://www.pnas.org/content/113/9/2490.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26884173
https://www.proquest.com/docview/1772860174
https://www.proquest.com/docview/1770219380
https://www.proquest.com/docview/1776655365
https://pubmed.ncbi.nlm.nih.gov/PMC4780631
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChsCAjcVgUpeTh2M6xqrpaoaWsRCv1FiWOo1Zq0xVtD3DjnzMTO48uBS1coiiZWJbn82RmPA9C3meBpwo_KNyQs9RlUjE3lSpwC5aJgnnMzzhmI3-e8KsZ-zSP5r3ez252yS4bqB9H80r-h6vwDPiKWbL_wNlmUHgA98BfuAKH4XovHo_KdOjkm3W6NOHgmSm9jMlVy9XSwaAuXZWIwAN_PHnH-GnM2AUNcYUh4M5aY-avSY1cgGjcdpXVm-bntq1DCSa173DYZqJY8bB1XOdm0vY1HmOMqfWvmkT29ghqiM0utDsCYQcwzE28LjrnW8dqju2QbEjKWpdO46Qe1S7u0QIE1fd912_h8zZwy4pa0FRczkyz0IE-8qyWzyZZ1QIx7kpbS_nbbwDkFvYuLtMt9ncKYsbrQQ4Kbk--JJez6-tkOp5PH5CHAVgaQSXbu3WbpSloYSdWV4cS4cc7wx8oNia2FQvmAtEx4-VuDG5HqZk-IY-tNUKHBlqnpKfLp-S0Zii9sEXJPzwjXxFr1GKNLkvaYI0i1ihgjTZYox2s0U1BK6zRFmvUYO05mV2Op6Mr1zbkcBUYxjtXsFR4eaiYJzNY-1h4HuznlBdRnINdwbNCxkpxHeYRY5kfKA90JJV7YaFkXAQ6PCMn5abULwkthPBBfHgRaJRMCy9VOcu9lKVa6tzP4j4Z1KuZKFutHpumrJIqakKECa5s0i5_n1w0H9yaQi1_Jj2r2NPQgVHAJUy5T15UpM33fpjECaKsT85rFiZWAMCIgBfJ4ZcGH75rXoN4xjO3tNSbfUUDWnQcSu-vNJxHUcgjnECFis7UpGS-gDmLA7w0BFge_vBNuVxUZeKZkGB_-K_uMbfX5FG7Rc_Jye7bXr8BZXuXva22wy_9k9TY
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CnaA+domains+in+bacterial+pili+are+efficient+dissipaters+of+large+mechanical+shocks&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Echelman%2C+Daniel+J&rft.au=Alegre-Cebollada%2C+Jorge&rft.au=Badilla%2C+Carmen+L&rft.au=Chang%2C+Chungyu&rft.date=2016-03-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=9&rft.spage=2490&rft_id=info:doi/10.1073%2Fpnas.1522946113&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F9.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F9.cover.gif