CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks
Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili und...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 9; pp. 2490 - 2495 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
01.03.2016
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations. |
---|---|
AbstractList | Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ~28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations. Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations. Bacteria colonizing the oropharynx must adhere despite mechanical challenges from coughing, sneezing, and chewing; however, little is known about how Gram-positive organisms achieve this feat. We studied the pilus adhesive proteins from two Gram-positive organisms and report a conserved mechanism for dissipating the energy of a mechanical perturbation. The two proteins are stable up to forces of 525 pN and 690 pN, respectively, making these proteins the most mechanically stable proteins known. After a perturbation, the proteins refold rapidly at low force, resulting in a large hysteresis with most of the unfolding energy lost as heat. The work presents an initial model whereby transient unfolding at forces of 500–700 pN dissipates mechanical energy and protects covalent bonds from cleavage. Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations. Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations. |
Author | Chang, Chungyu Badilla, Carmen L. Fernández, Julio M. Echelman, Daniel J. Alegre-Cebollada, Jorge Ton-That, Hung |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Echelman fullname: Echelman, Daniel J. organization: Department of Biological Sciences, Columbia University, New York, NY 10027 – sequence: 2 givenname: Jorge surname: Alegre-Cebollada fullname: Alegre-Cebollada, Jorge organization: Department of Biological Sciences, Columbia University, New York, NY 10027 – sequence: 3 givenname: Carmen L. surname: Badilla fullname: Badilla, Carmen L. organization: Department of Biological Sciences, Columbia University, New York, NY 10027 – sequence: 4 givenname: Chungyu surname: Chang fullname: Chang, Chungyu organization: Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030 – sequence: 5 givenname: Hung surname: Ton-That fullname: Ton-That, Hung organization: Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030 – sequence: 6 givenname: Julio M. surname: Fernández fullname: Fernández, Julio M. organization: Department of Biological Sciences, Columbia University, New York, NY 10027 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26884173$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtvFDEUhS0URDaBmgo0Eg3NJNeP8aNBila8pEgUQG15PHbWy4y92LOR-Pd4tMkSUiAqS77fOT7X5wydxBQdQi8xXGAQ9HIXTbnAHSGKcYzpE7TCoHDLmYITtAIgopWMsFN0VsoWAFQn4Rk6JVxKhgVdoa_raK6aIU0mxNKE2PTGzi4HMza7MIbGZNc474MNLs7NEEoJO1OB0iTfjCbfuGZydmNisFVSNsn-KM_RU2_G4l7cnefo-4f339af2usvHz-vr65by5SaW8GMgIFaBrIn9UYAeAaG-04NHQjee6ms5Y4OHWM9JhYow3YA6q1Unjh6jt4dfHf7fnKDrQmzGfUuh8nkXzqZoP-exLDRN-lWMyGBU1wN3t4Z5PRz78qsp1CsG0cTXdoXjYXgvOso7_4HBYIVlVDRN4_QbdrnWH9ioYjkgAWr1OuH4Y-p76upwOUBsDmVkp0_Ihj0Ur5eytd_yq-K7pHChtnMIS3bh_Efuvsoy-D4CqZa6VrMstGrA7Atc8oPojIuazf0N2e3xls |
CitedBy_id | crossref_primary_10_1073_pnas_2019649118 crossref_primary_10_1038_s41467_018_07145_6 crossref_primary_10_1088_1361_6528_aa655e crossref_primary_10_1038_s41467_022_28206_x crossref_primary_10_1016_j_cellimm_2018_08_008 crossref_primary_10_1002_cbic_202200316 crossref_primary_10_1074_jbc_M117_777466 crossref_primary_10_1021_jacsau_2c00121 crossref_primary_10_1038_s41557_020_00586_x crossref_primary_10_1007_s12551_021_00822_9 crossref_primary_10_1021_acs_bioconjchem_0c00163 crossref_primary_10_1111_mmi_14451 crossref_primary_10_26508_lsa_202403111 crossref_primary_10_3389_fmicb_2020_609880 crossref_primary_10_1016_j_mib_2016_07_015 crossref_primary_10_1016_j_tim_2020_05_008 crossref_primary_10_1039_D0NR07492F crossref_primary_10_1371_journal_pone_0174682 crossref_primary_10_1021_acs_nanolett_9b00639 crossref_primary_10_1002_pro_3191 crossref_primary_10_1016_j_sbi_2019_11_012 crossref_primary_10_1039_C7CS00820A crossref_primary_10_1146_annurev_biophys_090420_083836 crossref_primary_10_3389_fmicb_2020_01457 crossref_primary_10_1016_j_cocis_2019_12_010 crossref_primary_10_1016_j_jmb_2016_09_006 crossref_primary_10_1021_jacs_8b05200 crossref_primary_10_1111_febs_15508 crossref_primary_10_1073_pnas_1800954115 crossref_primary_10_1016_j_meegid_2018_03_006 crossref_primary_10_1002_bit_26864 crossref_primary_10_1016_j_tibs_2020_03_002 crossref_primary_10_3389_fmicb_2022_1011578 crossref_primary_10_1111_mmi_14448 crossref_primary_10_1107_S2059798324005114 crossref_primary_10_1038_s41467_018_05107_6 crossref_primary_10_1038_s41467_021_25425_6 crossref_primary_10_1021_acs_jpcb_6b09593 crossref_primary_10_3389_fmicb_2018_00100 crossref_primary_10_1002_chem_202302464 crossref_primary_10_1128_JB_00125_20 crossref_primary_10_1016_j_jbc_2021_100937 crossref_primary_10_1073_pnas_1807689115 crossref_primary_10_1073_pnas_1907733116 crossref_primary_10_1146_annurev_micro_112123_100908 crossref_primary_10_3389_fmicb_2021_615924 crossref_primary_10_1099_mic_0_000506 crossref_primary_10_1111_cmi_13324 crossref_primary_10_3389_fmolb_2020_00085 crossref_primary_10_1021_acs_jpclett_7b01509 crossref_primary_10_1007_s12551_025_01274_1 |
Cites_doi | 10.1038/nprot.2013.056 10.1073/pnas.0806350105 10.1126/science.283.5408.1727 10.1007/s00249-012-0814-8 10.1074/jbc.M110.102962 10.1007/s00018-008-8477-4 10.1016/j.addr.2008.09.012 10.1016/j.cell.2012.09.036 10.1073/pnas.1321417111 10.1529/biophysj.106.091561 10.1128/JB.188.4.1526-1533.2006 10.1371/journal.ppat.1000422 10.1016/j.bpj.2010.02.053 10.1016/S0092-8674(02)00796-1 10.1016/j.cell.2014.01.056 10.1016/j.addr.2008.09.008 10.7554/eLife.06638 10.1371/journal.pcbi.1003971 10.1046/j.1365-2958.2003.03782.x 10.1038/nrmicro2520 10.1021/ja4056382 10.1038/srep13678 10.1021/cb800025k 10.1172/JCI0215217 10.1073/pnas.0906826106 10.1126/science.1151398 10.1016/j.bpj.2013.04.002 10.1371/journal.pone.0125875 10.1111/j.1365-2958.2011.07745.x 10.1073/pnas.0813093106 10.1073/pnas.1106590108 10.1126/science.1145806 10.1038/emboj.2009.360 10.1073/pnas.0901213106 10.1074/jbc.M113.523761 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 1, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1522946113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Mechanics of Gram-positive pili |
EISSN | 1091-6490 |
EndPage | 2495 |
ExternalDocumentID | PMC4780631 3983833231 26884173 10_1073_pnas_1522946113 113_9_2490 26468544 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL61228 – fundername: NIAID NIH HHS grantid: AI106072 – fundername: NIDCR NIH HHS grantid: DE017382 – fundername: NHLBI NIH HHS grantid: R01 HL066030 – fundername: NIGMS NIH HHS grantid: R01 GM116122 – fundername: NIDCR NIH HHS grantid: R01 DE025015 – fundername: NIDCR NIH HHS grantid: R01 DE017382 – fundername: NHLBI NIH HHS grantid: HL66030 – fundername: NHLBI NIH HHS grantid: R01 HL061228 – fundername: NIAID NIH HHS grantid: K99 AI106072 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: HL61228 – fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR) grantid: DE017382 – fundername: Marie Curie International Incoming Fellowship grantid: FP7-PEOPLE-2010-COFUND-267149 – fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR) grantid: DE025015 – fundername: HHS | National Institutes of Health (NIH) grantid: AI106072 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: HL66030 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 .GJ 3O- 692 6TJ 79B AAYJJ AAYXX ACKIV ADXHL AFHIN AFOSN AFQQW AS~ CITATION HGD HQ3 HTVGU MVM NEJ NHB P-O VOH WHG ZCG CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c499t-74a70d3c408b2499700f40a6f59d5076bf89cc6e3d544b12c0341cd03fc89f2e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:24:39 EDT 2025 Fri Jul 11 04:24:00 EDT 2025 Fri Jul 11 10:55:23 EDT 2025 Mon Jun 30 07:49:10 EDT 2025 Thu Apr 03 07:02:25 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 01:53:41 EDT 2025 Wed Nov 11 00:29:24 EST 2020 Sun Aug 24 12:10:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | single-molecule force spectroscopy Gram-positive pili isopeptide bond mechanical stability bacterial adhesion |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-74a70d3c408b2499700f40a6f59d5076bf89cc6e3d544b12c0341cd03fc89f2e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1D.J.E. and J.A.-C. contributed equally to this work. Author contributions: D.J.E., J.A.-C., and J.M.F. designed research; D.J.E., J.A.-C., and C.L.B. performed research; C.L.B., C.C., and H.T.-T. contributed new reagents/analytic tools; D.J.E., J.A.-C., and J.M.F. analyzed data; and D.J.E., J.A.-C., and J.M.F. wrote the paper. Edited by Scott J. Hultgren, Washington University School of Medicine, St. Louis, MO, and approved January 15, 2016 (received for review November 28, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/113/9/2490.full.pdf |
PMID | 26884173 |
PQID | 1772860174 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_26468544 pubmed_primary_26884173 crossref_citationtrail_10_1073_pnas_1522946113 pnas_primary_113_9_2490 proquest_journals_1772860174 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4780631 crossref_primary_10_1073_pnas_1522946113 proquest_miscellaneous_1776655365 proquest_miscellaneous_1770219380 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 19135107 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):75-85 18533659 - ACS Chem Biol. 2008 Jun 20;3(6):373-82 18063798 - Science. 2007 Dec 7;318(5856):1625-8 21326273 - Nat Rev Microbiol. 2011 Mar;9(3):166-76 23744288 - Nat Protoc. 2013;8(7):1261-76 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9 19666489 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13791-6 25942637 - PLoS One. 2015;10(5):e0125875 10073936 - Science. 1999 Mar 12;283(5408):1727-30 17028145 - Biophys J. 2007 Jan 1;92(1):225-33 24220033 - J Biol Chem. 2014 Jan 3;289(1):177-89 26032562 - Elife. 2015;4. doi: 10.7554/eLife.06638 19942854 - EMBO J. 2009 Dec 16;28(24):3921-30 19424490 - PLoS Pathog. 2009 May;5(5):e1000422 25473833 - PLoS Comput Biol. 2014 Dec;10(12):e1003971 24630725 - Cell. 2014 Mar 13;156(6):1235-46 11877463 - J Clin Invest. 2002 Mar;109(5):571-7 18063774 - Science. 2007 Dec 7;318(5856):1558-9 20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42 19166889 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71 21696465 - Mol Microbiol. 2011 Sep;81(5):1205-20 14622427 - Mol Microbiol. 2003 Nov;50(4):1429-38 26411657 - Sci Rep. 2015;5:13678 12110187 - Cell. 2002 Jun 28;109(7):913-23 22562139 - Eur Biophys J. 2012 Jun;41(6):551-60 16452436 - J Bacteriol. 2006 Feb;188(4):1526-33 24567409 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3835-40 18953686 - Cell Mol Life Sci. 2009 Feb;66(4):613-35 19805181 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16967-71 23141538 - Cell. 2012 Nov 9;151(4):794-806 21593422 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10278-83 20513414 - Biophys J. 2010 Jun 2;98(11):2692-701 23663848 - Biophys J. 2013 May 7;104(9):2051-7 18779588 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14147-52 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1038/nprot.2013.056 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.0806350105 – ident: e_1_3_3_5_2 doi: 10.1126/science.283.5408.1727 – ident: e_1_3_3_15_2 doi: 10.1007/s00249-012-0814-8 – ident: e_1_3_3_11_2 doi: 10.1074/jbc.M110.102962 – ident: e_1_3_3_6_2 doi: 10.1007/s00018-008-8477-4 – ident: e_1_3_3_3_2 doi: 10.1016/j.addr.2008.09.012 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2012.09.036 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1321417111 – ident: e_1_3_3_20_2 doi: 10.1529/biophysj.106.091561 – ident: e_1_3_3_31_2 doi: 10.1128/JB.188.4.1526-1533.2006 – ident: e_1_3_3_7_2 doi: 10.1371/journal.ppat.1000422 – ident: e_1_3_3_28_2 doi: 10.1016/j.bpj.2010.02.053 – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(02)00796-1 – ident: e_1_3_3_27_2 doi: 10.1016/j.cell.2014.01.056 – ident: e_1_3_3_4_2 doi: 10.1016/j.addr.2008.09.008 – ident: e_1_3_3_33_2 doi: 10.7554/eLife.06638 – ident: e_1_3_3_14_2 doi: 10.1371/journal.pcbi.1003971 – ident: e_1_3_3_32_2 doi: 10.1046/j.1365-2958.2003.03782.x – ident: e_1_3_3_10_2 doi: 10.1038/nrmicro2520 – ident: e_1_3_3_23_2 doi: 10.1021/ja4056382 – ident: e_1_3_3_9_2 doi: 10.1038/srep13678 – ident: e_1_3_3_22_2 doi: 10.1021/cb800025k – ident: e_1_3_3_2_2 doi: 10.1172/JCI0215217 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0906826106 – ident: e_1_3_3_12_2 doi: 10.1126/science.1151398 – ident: e_1_3_3_21_2 doi: 10.1016/j.bpj.2013.04.002 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pone.0125875 – ident: e_1_3_3_24_2 doi: 10.1111/j.1365-2958.2011.07745.x – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0813093106 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1106590108 – ident: e_1_3_3_18_2 doi: 10.1126/science.1145806 – ident: e_1_3_3_16_2 doi: 10.1038/emboj.2009.360 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0901213106 – ident: e_1_3_3_34_2 doi: 10.1074/jbc.M113.523761 – reference: 17028145 - Biophys J. 2007 Jan 1;92(1):225-33 – reference: 21593422 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10278-83 – reference: 24630725 - Cell. 2014 Mar 13;156(6):1235-46 – reference: 22562139 - Eur Biophys J. 2012 Jun;41(6):551-60 – reference: 19424490 - PLoS Pathog. 2009 May;5(5):e1000422 – reference: 21696465 - Mol Microbiol. 2011 Sep;81(5):1205-20 – reference: 19166889 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100 – reference: 18063774 - Science. 2007 Dec 7;318(5856):1558-9 – reference: 11877463 - J Clin Invest. 2002 Mar;109(5):571-7 – reference: 12110187 - Cell. 2002 Jun 28;109(7):913-23 – reference: 26032562 - Elife. 2015;4. doi: 10.7554/eLife.06638 – reference: 19135107 - Adv Drug Deliv Rev. 2009 Feb 27;61(2):75-85 – reference: 25473833 - PLoS Comput Biol. 2014 Dec;10(12):e1003971 – reference: 19666489 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13791-6 – reference: 23909704 - J Am Chem Soc. 2013 Aug 28;135(34):12762-71 – reference: 23141538 - Cell. 2012 Nov 9;151(4):794-806 – reference: 20513414 - Biophys J. 2010 Jun 2;98(11):2692-701 – reference: 19541635 - Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9 – reference: 19805181 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16967-71 – reference: 24220033 - J Biol Chem. 2014 Jan 3;289(1):177-89 – reference: 21326273 - Nat Rev Microbiol. 2011 Mar;9(3):166-76 – reference: 23744288 - Nat Protoc. 2013;8(7):1261-76 – reference: 18779588 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14147-52 – reference: 25942637 - PLoS One. 2015;10(5):e0125875 – reference: 14622427 - Mol Microbiol. 2003 Nov;50(4):1429-38 – reference: 20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42 – reference: 26411657 - Sci Rep. 2015;5:13678 – reference: 18533659 - ACS Chem Biol. 2008 Jun 20;3(6):373-82 – reference: 18063798 - Science. 2007 Dec 7;318(5856):1625-8 – reference: 23663848 - Biophys J. 2013 May 7;104(9):2051-7 – reference: 18953686 - Cell Mol Life Sci. 2009 Feb;66(4):613-35 – reference: 10073936 - Science. 1999 Mar 12;283(5408):1727-30 – reference: 19942854 - EMBO J. 2009 Dec 16;28(24):3921-30 – reference: 16452436 - J Bacteriol. 2006 Feb;188(4):1526-33 – reference: 24567409 - Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3835-40 |
SSID | ssj0009580 |
Score | 2.4187253 |
Snippet | Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein... Bacteria colonizing the oropharynx must adhere despite mechanical challenges from coughing, sneezing, and chewing; however, little is known about how... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2490 |
SubjectTerms | Actinomyces Actinomyces - chemistry Bacteria Bacterial proteins Bacterial Proteins - chemistry Bioenergetics Biological Sciences Corynebacterium diphtheriae Corynebacterium diphtheriae - chemistry Energy dissipation Fimbriae, Bacterial - chemistry Gram-positive bacteria Polypeptides Spectrum analysis |
Title | CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks |
URI | https://www.jstor.org/stable/26468544 http://www.pnas.org/content/113/9/2490.abstract https://www.ncbi.nlm.nih.gov/pubmed/26884173 https://www.proquest.com/docview/1772860174 https://www.proquest.com/docview/1770219380 https://www.proquest.com/docview/1776655365 https://pubmed.ncbi.nlm.nih.gov/PMC4780631 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGChsCAjcVgUpeTh2M6xqrpaoaWsRCv1FiWOo1Zq0xVtD3DjnzMTO48uBS1coiiZWJbn82RmPA9C3meBpwo_KNyQs9RlUjE3lSpwC5aJgnnMzzhmI3-e8KsZ-zSP5r3ez252yS4bqB9H80r-h6vwDPiKWbL_wNlmUHgA98BfuAKH4XovHo_KdOjkm3W6NOHgmSm9jMlVy9XSwaAuXZWIwAN_PHnH-GnM2AUNcYUh4M5aY-avSY1cgGjcdpXVm-bntq1DCSa173DYZqJY8bB1XOdm0vY1HmOMqfWvmkT29ghqiM0utDsCYQcwzE28LjrnW8dqju2QbEjKWpdO46Qe1S7u0QIE1fd912_h8zZwy4pa0FRczkyz0IE-8qyWzyZZ1QIx7kpbS_nbbwDkFvYuLtMt9ncKYsbrQQ4Kbk--JJez6-tkOp5PH5CHAVgaQSXbu3WbpSloYSdWV4cS4cc7wx8oNia2FQvmAtEx4-VuDG5HqZk-IY-tNUKHBlqnpKfLp-S0Zii9sEXJPzwjXxFr1GKNLkvaYI0i1ihgjTZYox2s0U1BK6zRFmvUYO05mV2Op6Mr1zbkcBUYxjtXsFR4eaiYJzNY-1h4HuznlBdRnINdwbNCxkpxHeYRY5kfKA90JJV7YaFkXAQ6PCMn5abULwkthPBBfHgRaJRMCy9VOcu9lKVa6tzP4j4Z1KuZKFutHpumrJIqakKECa5s0i5_n1w0H9yaQi1_Jj2r2NPQgVHAJUy5T15UpM33fpjECaKsT85rFiZWAMCIgBfJ4ZcGH75rXoN4xjO3tNSbfUUDWnQcSu-vNJxHUcgjnECFis7UpGS-gDmLA7w0BFge_vBNuVxUZeKZkGB_-K_uMbfX5FG7Rc_Jye7bXr8BZXuXva22wy_9k9TY |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CnaA+domains+in+bacterial+pili+are+efficient+dissipaters+of+large+mechanical+shocks&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Echelman%2C+Daniel+J&rft.au=Alegre-Cebollada%2C+Jorge&rft.au=Badilla%2C+Carmen+L&rft.au=Chang%2C+Chungyu&rft.date=2016-03-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=113&rft.issue=9&rft.spage=2490&rft_id=info:doi/10.1073%2Fpnas.1522946113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F9.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F9.cover.gif |