Susceptibility to Astrocytoma in Mice Mutant for Nf1 and Trp53 Is Linked to Chromosome 11 and Subject to Epigenetic Effects
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 101; no. 35; pp. 13008 - 13013 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
31.08.2004
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.0401236101 |
Cover
Loading…
Abstract | Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6, 129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. |
---|---|
AbstractList | Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6, 129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F sub(1) progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F 1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53 . Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F 1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53 . Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions. |
Author | Loisel, Dagan A. Tuskan, Robert G. Jacks, Tyler Christy, Emily Tsang, Shirley Reilly, Karlyne M. Smith, C. Dahlem Vogelstein, Bert Ledger, Jeremy Bronson, Roderick T. Munroe, David J. |
AuthorAffiliation | Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; ‡ Department of Biology and Center for Cancer Research and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02169; ¶ Department of Pathology, Harvard Medical School, Boston, MA 02115; and Laboratories of ∥ Animal Sciences Program and Molecular Technology, Science Applications International Corporation, Frederick, MD 21702 |
AuthorAffiliation_xml | – name: Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; ‡ Department of Biology and Center for Cancer Research and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02169; ¶ Department of Pathology, Harvard Medical School, Boston, MA 02115; and Laboratories of ∥ Animal Sciences Program and Molecular Technology, Science Applications International Corporation, Frederick, MD 21702 |
Author_xml | – sequence: 1 givenname: Karlyne M. surname: Reilly fullname: Reilly, Karlyne M. – sequence: 2 givenname: Robert G. surname: Tuskan fullname: Tuskan, Robert G. – sequence: 3 givenname: Emily surname: Christy fullname: Christy, Emily – sequence: 4 givenname: Dagan A. surname: Loisel fullname: Loisel, Dagan A. – sequence: 5 givenname: Jeremy surname: Ledger fullname: Ledger, Jeremy – sequence: 6 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. – sequence: 7 givenname: C. Dahlem surname: Smith fullname: Smith, C. Dahlem – sequence: 8 givenname: Shirley surname: Tsang fullname: Tsang, Shirley – sequence: 9 givenname: David J. surname: Munroe fullname: Munroe, David J. – sequence: 10 givenname: Tyler surname: Jacks fullname: Jacks, Tyler – sequence: 11 givenname: Bert surname: Vogelstein fullname: Vogelstein, Bert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15319471$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URD_gzAUhn5A4bDsTx4lz4FCtFqi0hUPL2XISp_WS2MF2ECv-eRzt0gUO9GRp5vfGb-adkiPrrCbkJcI5QskuRqvCOeSAGSsQ8Ak5QahwUeQVHJETgKxciDzLj8lpCBsAqLiAZ-QYOcMqL_GE_LyZQqPHaGrTm7il0dHLEL1rttENihpLr02j6fUUlY20c55-6pAq29JbP3JGrwJdG_tVt7Nyee_d4IIbNMUddDPVG93EubkazZ22OpqGrrouFcNz8rRTfdAv9u8Z-fJ-dbv8uFh__nC1vFwvmryq4qLQbSOghCxvGSqRMdaWbc2LVgimBc_KgiHUnIu8KplmXdu2iWk6XWCHWOfsjLzbzR2nekjDtI1e9XL0ZlB-K50y8u-ONffyzn2XHAsOVdK_2eu9-zbpEOVg0tH6XlntpiCLQrAqnflREAVwUQhM4Os_HT1Y-Z1LAi52QONdCF53BwTknLyck5eH5JOC_6NoTFTRuHkl0_9HR_dW5sbhF5SMS2QAIiFvH0FkN_V91D9iYl_t2E2Izj_AjJXzZuwXWr3UUw |
CitedBy_id | crossref_primary_10_1016_j_ddmod_2005_05_003 crossref_primary_10_1101_sqb_2005_70_025 crossref_primary_10_1038_onc_2012_579 crossref_primary_10_1186_s13023_019_1223_1 crossref_primary_10_1002_glia_22945 crossref_primary_10_1016_j_tins_2012_12_002 crossref_primary_10_1016_j_critrevonc_2016_05_008 crossref_primary_10_1038_sj_onc_1210261 crossref_primary_10_1007_s10048_006_0078_5 crossref_primary_10_1111_j_1365_2990_2011_01230_x crossref_primary_10_1038_s41467_019_13403_y crossref_primary_10_1371_journal_pone_0065801 crossref_primary_10_1038_nrc2107 crossref_primary_10_1042_BSR20190763 crossref_primary_10_1007_s10689_012_9549_z crossref_primary_10_1146_annurev_pathol_2_010506_091940 crossref_primary_10_1016_j_ccr_2005_07_004 crossref_primary_10_3390_genes11070762 crossref_primary_10_1038_nrc1653 crossref_primary_10_1007_s00018_014_1675_3 crossref_primary_10_1158_0008_5472_CAN_08_0703 crossref_primary_10_1111_j_1750_3639_2008_00235_x crossref_primary_10_1517_13543784_2013_772979 crossref_primary_10_1080_14737175_2016_1189329 crossref_primary_10_1093_noajnl_vdz040 crossref_primary_10_1093_neuonc_now006 crossref_primary_10_1016_j_nurt_2009_04_002 crossref_primary_10_1093_neuonc_nor035 crossref_primary_10_1016_j_semcancer_2009_02_005 crossref_primary_10_1177_0192623309357075 crossref_primary_10_1212_WNL_0000000000000652 crossref_primary_10_1074_jbc_M505770200 crossref_primary_10_1172_JCI71048 crossref_primary_10_1038_nrc1803 crossref_primary_10_1007_s00335_009_9209_2 crossref_primary_10_1021_acs_jnatprod_5b00753 crossref_primary_10_1146_annurev_genet_42_110807_091659 crossref_primary_10_3390_genes11050583 crossref_primary_10_1186_s12943_017_0703_y crossref_primary_10_1073_pnas_0910398106 crossref_primary_10_1007_s11060_004_5961_z crossref_primary_10_1158_0008_5472_CAN_05_1480 crossref_primary_10_1002_ajmg_a_33804 crossref_primary_10_1016_S1470_2045_09_70033_6 crossref_primary_10_1093_neuonc_nor206 crossref_primary_10_1586_14737140_2015_1009043 crossref_primary_10_1007_s00335_011_9380_0 crossref_primary_10_1101_pdb_top076273 crossref_primary_10_1371_journal_pgen_1005235 crossref_primary_10_1167_iovs_65_6_8 crossref_primary_10_1016_j_brainresbull_2011_06_002 crossref_primary_10_3390_genes11050477 crossref_primary_10_1002_glia_21142 crossref_primary_10_1007_s11060_014_1401_x crossref_primary_10_1038_nrc3655 crossref_primary_10_1158_0008_5472_CAN_10_4489 crossref_primary_10_1111_j_1750_3639_2008_00232_x crossref_primary_10_1371_journal_pgen_1004575 crossref_primary_10_1038_onc_2013_148 crossref_primary_10_1111_j_1750_3639_2008_00236_x crossref_primary_10_1002_hipo_20454 crossref_primary_10_1038_onc_2010_519 crossref_primary_10_1038_s41388_022_02290_1 crossref_primary_10_1177_0883073808321061 crossref_primary_10_1007_s00335_009_9179_4 crossref_primary_10_1007_s00018_015_1930_2 crossref_primary_10_1038_nrc3206 crossref_primary_10_1038_s41467_020_18569_4 crossref_primary_10_1146_annurev_pathol_052016_100228 |
Cites_doi | 10.1038/sj.onc.1205936 10.1136/jmg.40.6.e82 10.1101/gr.786403 10.1073/pnas.232087499 10.1093/hmg/9.11.1587 10.1073/pnas.95.18.10826 10.1073/pnas.95.3.1102 10.1093/nar/gkg232 10.1073/pnas.88.21.9658 10.1007/s00439-002-0871-7 10.1038/79075 10.1038/nature01156 10.1016/S0002-9440(10)64853-5 10.1097/00005072-199812000-00002 10.1056/NEJM198604173141603 10.1126/science.286.5447.2172 10.1126/science.286.5447.2176 10.1126/science.1058889 10.1055/s-2007-973687 10.1002/1097-0142(19860315)57:6<1225::AID-CNCR2820570627>3.0.CO;2-P 10.2144/03344rr04 10.1038/ng0794-353 10.1159/000065528 10.1016/S0960-9822(00)00002-6 10.1096/fasebj.7.10.8344491 10.1093/nar/21.24.5577 |
ContentType | Journal Article |
Copyright | Copyright 1993/2004 The National Academy of Sciences of the United States of America Copyright 2004 The National Academy of Sciencs of the USA Copyright © 2004, The National Academy of Sciences 2004 |
Copyright_xml | – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America – notice: Copyright 2004 The National Academy of Sciencs of the USA – notice: Copyright © 2004, The National Academy of Sciences 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0401236101 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13013 |
ExternalDocumentID | PMC516509 15319471 10_1073_pnas_0401236101 101_35_13008 3373194 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: N01-CO-12400 – fundername: NCI NIH HHS grantid: N01 CO012400 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c499t-6edc807024d31a8233d7db56d883e85276310b5584973e3fddd233cfe61f11b43 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:31:35 EDT 2025 Fri Jul 11 05:36:10 EDT 2025 Fri Jul 11 14:45:33 EDT 2025 Fri May 30 10:49:20 EDT 2025 Tue Jul 01 03:59:55 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Wed Nov 11 00:29:20 EST 2020 Thu May 30 08:50:36 EDT 2019 Thu May 29 08:40:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | Copyright 2004 The National Academy of Sciencs of the USA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-6edc807024d31a8233d7db56d883e85276310b5584973e3fddd233cfe61f11b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Bert Vogelstein, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, and approved July 9, 2004 This paper was submitted directly (Track II) to the PNAS office. To whom correspondence should be addressed. E-mail: kreilly@ncifcrf.gov. Abbreviations: NF1, neurofibromatosis type 1; SSLP, simple sequence length polymorphism; NPcis, Nf1;Trp53cis; B6, C57BL/6J; 129, 129S4/SvJae; A, A/J; DB, DBA/2J; CB, CBA/J; 129S1, 129S1/SvImJ; 129X1, 129X1/SvJ; SNP, single nucleotide polymorphism; chr, chromosome; WHO, World Health Organization; NCBI, National Center for Biotechnology Information; dbSNP, Single Nucleotide Polymorphism Database. Data deposition: The SNP data reported in this paper have been deposited in the NCBI Single Nucleotide Polymorphism Database (dbSNP) (dbSNP ID nos. 28476647-28476655; see also Table 4, which is published as supporting information on the PNAS web site). |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/516509 |
PMID | 15319471 |
PQID | 18058681 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_0401236101 jstor_primary_3373194 proquest_miscellaneous_18058681 pnas_primary_101_35_13008 pubmedcentral_primary_oai_pubmedcentral_nih_gov_516509 crossref_primary_10_1073_pnas_0401236101 pubmed_primary_15319471 proquest_miscellaneous_66839842 pnas_primary_101_35_13008_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-08-31 |
PublicationDateYYYYMMDD | 2004-08-31 |
PublicationDate_xml | – month: 08 year: 2004 text: 2004-08-31 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2004 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_17_2 (e_1_3_2_5_2) 1994; 1198 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_4_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_7_2) 1993; 53 (e_1_3_2_12_2) 1992; 52 (e_1_3_2_11_2) 1992; 52 |
References_xml | – ident: e_1_3_2_15_2 doi: 10.1038/sj.onc.1205936 – ident: e_1_3_2_10_2 doi: 10.1136/jmg.40.6.e82 – volume: 52 start-page: 2987 year: 1992 ident: e_1_3_2_11_2 publication-title: Cancer Res. – ident: e_1_3_2_25_2 doi: 10.1101/gr.786403 – ident: e_1_3_2_27_2 doi: 10.1073/pnas.232087499 – ident: e_1_3_2_1_2 – ident: e_1_3_2_31_2 doi: 10.1093/hmg/9.11.1587 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.95.18.10826 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.95.3.1102 – ident: e_1_3_2_32_2 doi: 10.1093/nar/gkg232 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.88.21.9658 – ident: e_1_3_2_9_2 doi: 10.1007/s00439-002-0871-7 – ident: e_1_3_2_16_2 doi: 10.1038/79075 – ident: e_1_3_2_26_2 doi: 10.1038/nature01156 – volume: 1198 start-page: 197 year: 1994 ident: e_1_3_2_5_2 publication-title: Biochem. Biophys. Acta – ident: e_1_3_2_14_2 doi: 10.1016/S0002-9440(10)64853-5 – ident: e_1_3_2_22_2 – ident: e_1_3_2_28_2 doi: 10.1097/00005072-199812000-00002 – ident: e_1_3_2_4_2 doi: 10.1056/NEJM198604173141603 – volume: 52 start-page: 674 year: 1992 ident: e_1_3_2_12_2 publication-title: Cancer Res. – ident: e_1_3_2_17_2 doi: 10.1126/science.286.5447.2172 – ident: e_1_3_2_18_2 doi: 10.1126/science.286.5447.2176 – ident: e_1_3_2_24_2 doi: 10.1126/science.1058889 – ident: e_1_3_2_8_2 doi: 10.1055/s-2007-973687 – volume: 53 start-page: 305 year: 1993 ident: e_1_3_2_7_2 publication-title: Am. J. Hum. Genet. – ident: e_1_3_2_3_2 doi: 10.1002/1097-0142(19860315)57:6<1225::AID-CNCR2820570627>3.0.CO;2-P – ident: e_1_3_2_21_2 doi: 10.2144/03344rr04 – ident: e_1_3_2_19_2 doi: 10.1038/ng0794-353 – ident: e_1_3_2_2_2 doi: 10.1159/000065528 – ident: e_1_3_2_20_2 doi: 10.1016/S0960-9822(00)00002-6 – ident: e_1_3_2_13_2 doi: 10.1096/fasebj.7.10.8344491 – ident: e_1_3_2_29_2 doi: 10.1093/nar/21.24.5577 |
SSID | ssj0009580 |
Score | 2.0885553 |
Snippet | Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13008 |
SubjectTerms | Alleles Animals Apoptosis Regulatory Proteins Astrocytoma Astrocytoma - genetics Astrocytoma - pathology Biological Sciences Carrier Proteins - genetics Crosses, Genetic Cytoplasmic inheritance Female Genetic inheritance Genetic Linkage Genetic mutation Genetic Predisposition to Disease Heat-Shock Proteins - genetics Inbred strains Inbreeding Male Medical genetics Mice Models, Genetic Neurofibromin 1 - genetics Tumors |
Title | Susceptibility to Astrocytoma in Mice Mutant for Nf1 and Trp53 Is Linked to Chromosome 11 and Subject to Epigenetic Effects |
URI | https://www.jstor.org/stable/3373194 http://www.pnas.org/content/101/35/13008.abstract https://www.ncbi.nlm.nih.gov/pubmed/15319471 https://www.proquest.com/docview/18058681 https://www.proquest.com/docview/66839842 https://pubmed.ncbi.nlm.nih.gov/PMC516509 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWFggPC3EYVGUUMeJkx4rWHbFo1qJrtRblDTObsU2qTbJAfjN_Adm7DyrFgE9VFU8cZ3O15mx_XmGkNdCOhNPSm75oHHL9RJuxYAdK_YlBCNx6ohEsS1m4uzC_bjwFqPRrx5rqSpje_lj57mS_9EqXAO94inZf9Bs2ylcgM-gX3gHDcP7X-n4a1UoVooiuKowMipK8Ejfy3wd4UoG1po31xVWClZ8wlnK1G7B_Gbjcaxljvu3EHLCncsrJOYV-VqaTAsVVYyLNNgoN5i0E887NgSQflB73jrBoqEczJo1xml3YqU2I4Vpmeezrv7xJ0yxDKHuFxt0vbru6KWa9G2e2ua8Kr51KD5RSzI6K0Ir_D66BEs1tc3PORaQGixmuM3qbMP16A-uHVbffjvgU1196tqW2mRDxGMJVxcdbW16vUKiwcu9nonG_btgp_MAa4cVj7OosMG0qbQ0upselDZrhSWGpsvVxWOGSby3nGtLeYSuQu6p3cPgFrntwKwG_cjpgvVyRAf6xFT9kE0mKp-_3RqUKialRzCIpzSlFvP0gvyuOdM29bcXS83vkbv1JIhONaIPyUhm98lhowh6XOdCf_OA_BxCnJY57UGcrjKKEKca4hQgTgHiFNBLFcTpqqAa4nhnB3HKtFANcWzsIE5riB-Riw8n83dnVl0vxFrCvL20BDxWAC7McRPOosDhPPGT2BNJEHAZeA64UjaOPQi5Jz6XPE2SBGSWqRQsZSx2-UNykOWZfEzoZJzwaDJeMjkZuykL4OVCV34iUkcylhrEbn71cFkn08eaLtehInX4PEQNhJ3GDHLc3rDReWT2ix4pNbZynPuoa4MYSrK7vUOUQV7tbQvTmkZmkJcNIEJwIrgzGGUyr4qQBWMvEAHbLyEEzKQAlAZ5pAHUfVUNRIOIAbRaAUxgP2zJVlcqkb3HMH_nkz8811NypzMTz8hBeVPJ5zALKOMX6r_zG7r6Bks |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Susceptibility+to+astrocytoma+in+mice+mutant+for+Nf1+and+Trp53+is+linked+to+chromosome+11+and+subject+to+epigenetic+effects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Karlyne+M.+Reilly&rft.au=Robert+G.+Tuskan&rft.au=Emily+Christy&rft.au=Dagan+A.+Loisel&rft.date=2004-08-31&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=101&rft.issue=35&rft.spage=13008&rft_id=info:doi/10.1073%2Fpnas.0401236101&rft_id=info%3Apmid%2F15319471&rft.externalDBID=n%2Fa&rft.externalDocID=101_35_13008 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F35.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F35.cover.gif |