Susceptibility to Astrocytoma in Mice Mutant for Nf1 and Trp53 Is Linked to Chromosome 11 and Subject to Epigenetic Effects

Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 101; no. 35; pp. 13008 - 13013
Main Authors Reilly, Karlyne M., Tuskan, Robert G., Christy, Emily, Loisel, Dagan A., Ledger, Jeremy, Bronson, Roderick T., Smith, C. Dahlem, Tsang, Shirley, Munroe, David J., Jacks, Tyler, Vogelstein, Bert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 31.08.2004
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.0401236101

Cover

Loading…
Abstract Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6, 129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
AbstractList Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6, 129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F sub(1) progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53. Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F 1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53 . Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common during tumor progression. We have shown previously that mice mutant for Trp53 and Nf1 develop astrocytoma, progressing to glioblastoma, on a C57BL/6J strain background. In contrast, here we present data that mice mutant for Trp53 and Nf1 on a 129S4/SvJae background are highly resistant to developing astrocytoma. Through analysis of F 1 progeny, we demonstrate that susceptibility to astrocytoma is linked to chromosome 11, and that the modifier gene(s) responsible for differences in susceptibility is closely linked to Nf1 and Trp53 . Furthermore, this modifier of astrocytoma susceptibility is itself epigenetically modified. These data demonstrate that epigenetic effects can have a strong effect on whether cancer develops in the context of mutant ras signaling and mutant p53, and that this mouse model of astrocytoma can be used to identify modifier phenotypes with complex inheritance patterns that would be unidentifiable in humans. Because analysis of gene function in the mouse is often performed on a mixed C57BL/6,129 strain background, these data also provide a powerful example of the potential of these strains to mask interesting gene functions.
Author Loisel, Dagan A.
Tuskan, Robert G.
Jacks, Tyler
Christy, Emily
Tsang, Shirley
Reilly, Karlyne M.
Smith, C. Dahlem
Vogelstein, Bert
Ledger, Jeremy
Bronson, Roderick T.
Munroe, David J.
AuthorAffiliation Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; ‡ Department of Biology and Center for Cancer Research and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02169; ¶ Department of Pathology, Harvard Medical School, Boston, MA 02115; and Laboratories of ∥ Animal Sciences Program and Molecular Technology, Science Applications International Corporation, Frederick, MD 21702
AuthorAffiliation_xml – name: Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; ‡ Department of Biology and Center for Cancer Research and § Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02169; ¶ Department of Pathology, Harvard Medical School, Boston, MA 02115; and Laboratories of ∥ Animal Sciences Program and Molecular Technology, Science Applications International Corporation, Frederick, MD 21702
Author_xml – sequence: 1
  givenname: Karlyne M.
  surname: Reilly
  fullname: Reilly, Karlyne M.
– sequence: 2
  givenname: Robert G.
  surname: Tuskan
  fullname: Tuskan, Robert G.
– sequence: 3
  givenname: Emily
  surname: Christy
  fullname: Christy, Emily
– sequence: 4
  givenname: Dagan A.
  surname: Loisel
  fullname: Loisel, Dagan A.
– sequence: 5
  givenname: Jeremy
  surname: Ledger
  fullname: Ledger, Jeremy
– sequence: 6
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
– sequence: 7
  givenname: C. Dahlem
  surname: Smith
  fullname: Smith, C. Dahlem
– sequence: 8
  givenname: Shirley
  surname: Tsang
  fullname: Tsang, Shirley
– sequence: 9
  givenname: David J.
  surname: Munroe
  fullname: Munroe, David J.
– sequence: 10
  givenname: Tyler
  surname: Jacks
  fullname: Jacks, Tyler
– sequence: 11
  givenname: Bert
  surname: Vogelstein
  fullname: Vogelstein, Bert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15319471$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URD_gzAUhn5A4bDsTx4lz4FCtFqi0hUPL2XISp_WS2MF2ECv-eRzt0gUO9GRp5vfGb-adkiPrrCbkJcI5QskuRqvCOeSAGSsQ8Ak5QahwUeQVHJETgKxciDzLj8lpCBsAqLiAZ-QYOcMqL_GE_LyZQqPHaGrTm7il0dHLEL1rttENihpLr02j6fUUlY20c55-6pAq29JbP3JGrwJdG_tVt7Nyee_d4IIbNMUddDPVG93EubkazZ22OpqGrrouFcNz8rRTfdAv9u8Z-fJ-dbv8uFh__nC1vFwvmryq4qLQbSOghCxvGSqRMdaWbc2LVgimBc_KgiHUnIu8KplmXdu2iWk6XWCHWOfsjLzbzR2nekjDtI1e9XL0ZlB-K50y8u-ONffyzn2XHAsOVdK_2eu9-zbpEOVg0tH6XlntpiCLQrAqnflREAVwUQhM4Os_HT1Y-Z1LAi52QONdCF53BwTknLyck5eH5JOC_6NoTFTRuHkl0_9HR_dW5sbhF5SMS2QAIiFvH0FkN_V91D9iYl_t2E2Izj_AjJXzZuwXWr3UUw
CitedBy_id crossref_primary_10_1016_j_ddmod_2005_05_003
crossref_primary_10_1101_sqb_2005_70_025
crossref_primary_10_1038_onc_2012_579
crossref_primary_10_1186_s13023_019_1223_1
crossref_primary_10_1002_glia_22945
crossref_primary_10_1016_j_tins_2012_12_002
crossref_primary_10_1016_j_critrevonc_2016_05_008
crossref_primary_10_1038_sj_onc_1210261
crossref_primary_10_1007_s10048_006_0078_5
crossref_primary_10_1111_j_1365_2990_2011_01230_x
crossref_primary_10_1038_s41467_019_13403_y
crossref_primary_10_1371_journal_pone_0065801
crossref_primary_10_1038_nrc2107
crossref_primary_10_1042_BSR20190763
crossref_primary_10_1007_s10689_012_9549_z
crossref_primary_10_1146_annurev_pathol_2_010506_091940
crossref_primary_10_1016_j_ccr_2005_07_004
crossref_primary_10_3390_genes11070762
crossref_primary_10_1038_nrc1653
crossref_primary_10_1007_s00018_014_1675_3
crossref_primary_10_1158_0008_5472_CAN_08_0703
crossref_primary_10_1111_j_1750_3639_2008_00235_x
crossref_primary_10_1517_13543784_2013_772979
crossref_primary_10_1080_14737175_2016_1189329
crossref_primary_10_1093_noajnl_vdz040
crossref_primary_10_1093_neuonc_now006
crossref_primary_10_1016_j_nurt_2009_04_002
crossref_primary_10_1093_neuonc_nor035
crossref_primary_10_1016_j_semcancer_2009_02_005
crossref_primary_10_1177_0192623309357075
crossref_primary_10_1212_WNL_0000000000000652
crossref_primary_10_1074_jbc_M505770200
crossref_primary_10_1172_JCI71048
crossref_primary_10_1038_nrc1803
crossref_primary_10_1007_s00335_009_9209_2
crossref_primary_10_1021_acs_jnatprod_5b00753
crossref_primary_10_1146_annurev_genet_42_110807_091659
crossref_primary_10_3390_genes11050583
crossref_primary_10_1186_s12943_017_0703_y
crossref_primary_10_1073_pnas_0910398106
crossref_primary_10_1007_s11060_004_5961_z
crossref_primary_10_1158_0008_5472_CAN_05_1480
crossref_primary_10_1002_ajmg_a_33804
crossref_primary_10_1016_S1470_2045_09_70033_6
crossref_primary_10_1093_neuonc_nor206
crossref_primary_10_1586_14737140_2015_1009043
crossref_primary_10_1007_s00335_011_9380_0
crossref_primary_10_1101_pdb_top076273
crossref_primary_10_1371_journal_pgen_1005235
crossref_primary_10_1167_iovs_65_6_8
crossref_primary_10_1016_j_brainresbull_2011_06_002
crossref_primary_10_3390_genes11050477
crossref_primary_10_1002_glia_21142
crossref_primary_10_1007_s11060_014_1401_x
crossref_primary_10_1038_nrc3655
crossref_primary_10_1158_0008_5472_CAN_10_4489
crossref_primary_10_1111_j_1750_3639_2008_00232_x
crossref_primary_10_1371_journal_pgen_1004575
crossref_primary_10_1038_onc_2013_148
crossref_primary_10_1111_j_1750_3639_2008_00236_x
crossref_primary_10_1002_hipo_20454
crossref_primary_10_1038_onc_2010_519
crossref_primary_10_1038_s41388_022_02290_1
crossref_primary_10_1177_0883073808321061
crossref_primary_10_1007_s00335_009_9179_4
crossref_primary_10_1007_s00018_015_1930_2
crossref_primary_10_1038_nrc3206
crossref_primary_10_1038_s41467_020_18569_4
crossref_primary_10_1146_annurev_pathol_052016_100228
Cites_doi 10.1038/sj.onc.1205936
10.1136/jmg.40.6.e82
10.1101/gr.786403
10.1073/pnas.232087499
10.1093/hmg/9.11.1587
10.1073/pnas.95.18.10826
10.1073/pnas.95.3.1102
10.1093/nar/gkg232
10.1073/pnas.88.21.9658
10.1007/s00439-002-0871-7
10.1038/79075
10.1038/nature01156
10.1016/S0002-9440(10)64853-5
10.1097/00005072-199812000-00002
10.1056/NEJM198604173141603
10.1126/science.286.5447.2172
10.1126/science.286.5447.2176
10.1126/science.1058889
10.1055/s-2007-973687
10.1002/1097-0142(19860315)57:6<1225::AID-CNCR2820570627>3.0.CO;2-P
10.2144/03344rr04
10.1038/ng0794-353
10.1159/000065528
10.1016/S0960-9822(00)00002-6
10.1096/fasebj.7.10.8344491
10.1093/nar/21.24.5577
ContentType Journal Article
Copyright Copyright 1993/2004 The National Academy of Sciences of the United States of America
Copyright 2004 The National Academy of Sciencs of the USA
Copyright © 2004, The National Academy of Sciences 2004
Copyright_xml – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America
– notice: Copyright 2004 The National Academy of Sciencs of the USA
– notice: Copyright © 2004, The National Academy of Sciences 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0401236101
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13013
ExternalDocumentID PMC516509
15319471
10_1073_pnas_0401236101
101_35_13008
3373194
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: N01-CO-12400
– fundername: NCI NIH HHS
  grantid: N01 CO012400
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c499t-6edc807024d31a8233d7db56d883e85276310b5584973e3fddd233cfe61f11b43
ISSN 0027-8424
IngestDate Thu Aug 21 18:31:35 EDT 2025
Fri Jul 11 05:36:10 EDT 2025
Fri Jul 11 14:45:33 EDT 2025
Fri May 30 10:49:20 EDT 2025
Tue Jul 01 03:59:55 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Wed Nov 11 00:29:20 EST 2020
Thu May 30 08:50:36 EDT 2019
Thu May 29 08:40:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License Copyright 2004 The National Academy of Sciencs of the USA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-6edc807024d31a8233d7db56d883e85276310b5584973e3fddd233cfe61f11b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Bert Vogelstein, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, and approved July 9, 2004
This paper was submitted directly (Track II) to the PNAS office.
To whom correspondence should be addressed. E-mail: kreilly@ncifcrf.gov.
Abbreviations: NF1, neurofibromatosis type 1; SSLP, simple sequence length polymorphism; NPcis, Nf1;Trp53cis; B6, C57BL/6J; 129, 129S4/SvJae; A, A/J; DB, DBA/2J; CB, CBA/J; 129S1, 129S1/SvImJ; 129X1, 129X1/SvJ; SNP, single nucleotide polymorphism; chr, chromosome; WHO, World Health Organization; NCBI, National Center for Biotechnology Information; dbSNP, Single Nucleotide Polymorphism Database.
Data deposition: The SNP data reported in this paper have been deposited in the NCBI Single Nucleotide Polymorphism Database (dbSNP) (dbSNP ID nos. 28476647-28476655; see also Table 4, which is published as supporting information on the PNAS web site).
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/516509
PMID 15319471
PQID 18058681
PQPubID 23462
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0401236101
jstor_primary_3373194
proquest_miscellaneous_18058681
pnas_primary_101_35_13008
pubmedcentral_primary_oai_pubmedcentral_nih_gov_516509
crossref_primary_10_1073_pnas_0401236101
pubmed_primary_15319471
proquest_miscellaneous_66839842
pnas_primary_101_35_13008_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-08-31
PublicationDateYYYYMMDD 2004-08-31
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-08-31
  day: 31
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2004
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_17_2
(e_1_3_2_5_2) 1994; 1198
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_4_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
(e_1_3_2_7_2) 1993; 53
(e_1_3_2_12_2) 1992; 52
(e_1_3_2_11_2) 1992; 52
References_xml – ident: e_1_3_2_15_2
  doi: 10.1038/sj.onc.1205936
– ident: e_1_3_2_10_2
  doi: 10.1136/jmg.40.6.e82
– volume: 52
  start-page: 2987
  year: 1992
  ident: e_1_3_2_11_2
  publication-title: Cancer Res.
– ident: e_1_3_2_25_2
  doi: 10.1101/gr.786403
– ident: e_1_3_2_27_2
  doi: 10.1073/pnas.232087499
– ident: e_1_3_2_1_2
– ident: e_1_3_2_31_2
  doi: 10.1093/hmg/9.11.1587
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.95.18.10826
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.95.3.1102
– ident: e_1_3_2_32_2
  doi: 10.1093/nar/gkg232
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.88.21.9658
– ident: e_1_3_2_9_2
  doi: 10.1007/s00439-002-0871-7
– ident: e_1_3_2_16_2
  doi: 10.1038/79075
– ident: e_1_3_2_26_2
  doi: 10.1038/nature01156
– volume: 1198
  start-page: 197
  year: 1994
  ident: e_1_3_2_5_2
  publication-title: Biochem. Biophys. Acta
– ident: e_1_3_2_14_2
  doi: 10.1016/S0002-9440(10)64853-5
– ident: e_1_3_2_22_2
– ident: e_1_3_2_28_2
  doi: 10.1097/00005072-199812000-00002
– ident: e_1_3_2_4_2
  doi: 10.1056/NEJM198604173141603
– volume: 52
  start-page: 674
  year: 1992
  ident: e_1_3_2_12_2
  publication-title: Cancer Res.
– ident: e_1_3_2_17_2
  doi: 10.1126/science.286.5447.2172
– ident: e_1_3_2_18_2
  doi: 10.1126/science.286.5447.2176
– ident: e_1_3_2_24_2
  doi: 10.1126/science.1058889
– ident: e_1_3_2_8_2
  doi: 10.1055/s-2007-973687
– volume: 53
  start-page: 305
  year: 1993
  ident: e_1_3_2_7_2
  publication-title: Am. J. Hum. Genet.
– ident: e_1_3_2_3_2
  doi: 10.1002/1097-0142(19860315)57:6<1225::AID-CNCR2820570627>3.0.CO;2-P
– ident: e_1_3_2_21_2
  doi: 10.2144/03344rr04
– ident: e_1_3_2_19_2
  doi: 10.1038/ng0794-353
– ident: e_1_3_2_2_2
  doi: 10.1159/000065528
– ident: e_1_3_2_20_2
  doi: 10.1016/S0960-9822(00)00002-6
– ident: e_1_3_2_13_2
  doi: 10.1096/fasebj.7.10.8344491
– ident: e_1_3_2_29_2
  doi: 10.1093/nar/21.24.5577
SSID ssj0009580
Score 2.0885553
Snippet Astrocytoma is the most common malignant brain tumor in humans. Loss of the p53 signaling pathway and up-regulation of the ras signaling pathway are common...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13008
SubjectTerms Alleles
Animals
Apoptosis Regulatory Proteins
Astrocytoma
Astrocytoma - genetics
Astrocytoma - pathology
Biological Sciences
Carrier Proteins - genetics
Crosses, Genetic
Cytoplasmic inheritance
Female
Genetic inheritance
Genetic Linkage
Genetic mutation
Genetic Predisposition to Disease
Heat-Shock Proteins - genetics
Inbred strains
Inbreeding
Male
Medical genetics
Mice
Models, Genetic
Neurofibromin 1 - genetics
Tumors
Title Susceptibility to Astrocytoma in Mice Mutant for Nf1 and Trp53 Is Linked to Chromosome 11 and Subject to Epigenetic Effects
URI https://www.jstor.org/stable/3373194
http://www.pnas.org/content/101/35/13008.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15319471
https://www.proquest.com/docview/18058681
https://www.proquest.com/docview/66839842
https://pubmed.ncbi.nlm.nih.gov/PMC516509
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWFggPC3EYVGUUMeJkx4rWHbFo1qJrtRblDTObsU2qTbJAfjN_Adm7DyrFgE9VFU8cZ3O15mx_XmGkNdCOhNPSm75oHHL9RJuxYAdK_YlBCNx6ohEsS1m4uzC_bjwFqPRrx5rqSpje_lj57mS_9EqXAO94inZf9Bs2ylcgM-gX3gHDcP7X-n4a1UoVooiuKowMipK8Ejfy3wd4UoG1po31xVWClZ8wlnK1G7B_Gbjcaxljvu3EHLCncsrJOYV-VqaTAsVVYyLNNgoN5i0E887NgSQflB73jrBoqEczJo1xml3YqU2I4Vpmeezrv7xJ0yxDKHuFxt0vbru6KWa9G2e2ua8Kr51KD5RSzI6K0Ir_D66BEs1tc3PORaQGixmuM3qbMP16A-uHVbffjvgU1196tqW2mRDxGMJVxcdbW16vUKiwcu9nonG_btgp_MAa4cVj7OosMG0qbQ0upselDZrhSWGpsvVxWOGSby3nGtLeYSuQu6p3cPgFrntwKwG_cjpgvVyRAf6xFT9kE0mKp-_3RqUKialRzCIpzSlFvP0gvyuOdM29bcXS83vkbv1JIhONaIPyUhm98lhowh6XOdCf_OA_BxCnJY57UGcrjKKEKca4hQgTgHiFNBLFcTpqqAa4nhnB3HKtFANcWzsIE5riB-Riw8n83dnVl0vxFrCvL20BDxWAC7McRPOosDhPPGT2BNJEHAZeA64UjaOPQi5Jz6XPE2SBGSWqRQsZSx2-UNykOWZfEzoZJzwaDJeMjkZuykL4OVCV34iUkcylhrEbn71cFkn08eaLtehInX4PEQNhJ3GDHLc3rDReWT2ix4pNbZynPuoa4MYSrK7vUOUQV7tbQvTmkZmkJcNIEJwIrgzGGUyr4qQBWMvEAHbLyEEzKQAlAZ5pAHUfVUNRIOIAbRaAUxgP2zJVlcqkb3HMH_nkz8811NypzMTz8hBeVPJ5zALKOMX6r_zG7r6Bks
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Susceptibility+to+astrocytoma+in+mice+mutant+for+Nf1+and+Trp53+is+linked+to+chromosome+11+and+subject+to+epigenetic+effects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Karlyne+M.+Reilly&rft.au=Robert+G.+Tuskan&rft.au=Emily+Christy&rft.au=Dagan+A.+Loisel&rft.date=2004-08-31&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=101&rft.issue=35&rft.spage=13008&rft_id=info:doi/10.1073%2Fpnas.0401236101&rft_id=info%3Apmid%2F15319471&rft.externalDBID=n%2Fa&rft.externalDocID=101_35_13008
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F35.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F35.cover.gif