Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau
Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (...
Saved in:
Published in | International journal of remote sensing Vol. 37; no. 8; pp. 1922 - 1936 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
17.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods. |
---|---|
AbstractList | Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai-Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC
UAV
) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC
ground
), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R
2
) between FVC
UAV
and vegetation indices (VIs) was significantly greater than that between FVC
ground
and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods. Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods. Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai-Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC sub(UAV)) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC sub(ground)), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R super(2)) between FVC sub(UAV) and vegetation indices (VIs) was significantly greater than that between FVC sub(ground) and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods. Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods. |
Author | Wang, Xiaoyun Chen, Jianjun Qin, Yu Yi, Shuhua |
Author_xml | – sequence: 1 givenname: Jianjun surname: Chen fullname: Chen, Jianjun organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Shuhua surname: Yi fullname: Yi, Shuhua email: yis@lzb.ac.cn organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences – sequence: 3 givenname: Yu surname: Qin fullname: Qin, Yu organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences – sequence: 4 givenname: Xiaoyun surname: Wang fullname: Wang, Xiaoyun organization: University of Chinese Academy of Sciences |
BookMark | eNqNkU1uFDEQhVsoSCSBIyC8ZDODq_3TbbEhiviJFAkQE7ZWtdueGHnswe4ZlB134IacBA8dJMRmWLlKfu-pqr6z5iSmaJvmKdAl0J6-oMAZgIRlS0EuayX6nj9oToFJuRCKwslf9aPmrJQvlFLZie60ma4225z2Pq6JLZPf4GQLSY64jGbyKWIge7u2Ex4aYtLeZjJgsSOp7c3FZ-IjwbD10ZJ1xlICxt9f060lH2vqLfqf33-s_FAjIvkQaj7uHjcPHYZin9y_583qzevV5bvF9fu3V5cX1wvDlZoWEtseBu46J6TEwTo0wNrW9SiQt2CEBDeaQbWKt4ijAUUHJpnqgZmx69h583yOrRt-3dX19MYXY0Od0aZd0dCDpBQ6EP8hpQwoV8COSztFlQQheJW-nKUmp1Kyddr4-ZJTRh80UH0AqP8A1AeA-h5gdYt_3NtcAeW7o75Xs89Hl_IGv6UcRj3hXUi5Yo3GF82ORTybIxwmjetcHTefDop6Lt53nWS_AGmfvh4 |
CitedBy_id | crossref_primary_10_1016_j_jag_2019_101924 crossref_primary_10_1016_j_compag_2022_106982 crossref_primary_10_1016_j_isprsjprs_2024_09_004 crossref_primary_10_3390_rs12244121 crossref_primary_10_1016_j_jag_2024_103964 crossref_primary_10_1186_s42408_023_00174_7 crossref_primary_10_3390_rs12060998 crossref_primary_10_1016_j_scitotenv_2021_145433 crossref_primary_10_1016_j_geoderma_2017_12_007 crossref_primary_10_1109_LGRS_2021_3109725 crossref_primary_10_1016_j_rse_2018_09_019 crossref_primary_10_3390_rs14122829 crossref_primary_10_5194_bg_13_6273_2016 crossref_primary_10_1016_j_agrformet_2019_107665 crossref_primary_10_1007_s11629_021_7110_y crossref_primary_10_1016_S2095_3119_20_63556_0 crossref_primary_10_14358_PERS_21_00038R2 crossref_primary_10_1007_s40333_022_0073_1 crossref_primary_10_1002_ece3_4919 crossref_primary_10_1109_JSTARS_2021_3110896 crossref_primary_10_3390_drones8050187 crossref_primary_10_3390_rs14205146 crossref_primary_10_1109_JSTARS_2023_3284913 crossref_primary_10_3389_fpls_2023_1150859 crossref_primary_10_3390_agriculture15010027 crossref_primary_10_3390_rs13112105 crossref_primary_10_3390_rs16010030 crossref_primary_10_1016_j_ecolind_2021_107570 crossref_primary_10_3390_rs12111742 crossref_primary_10_3390_drones8100578 crossref_primary_10_1016_j_compag_2021_106033 crossref_primary_10_1016_j_ecolind_2023_110020 crossref_primary_10_1016_j_rama_2018_11_007 crossref_primary_10_3390_horticulturae10070748 crossref_primary_10_3390_rs11050513 crossref_primary_10_3390_rs16050840 crossref_primary_10_3390_drones3010010 crossref_primary_10_3390_rs12203460 crossref_primary_10_1016_j_rse_2018_12_019 crossref_primary_10_3390_rs15051312 crossref_primary_10_1002_ldr_5381 crossref_primary_10_1016_j_geoderma_2017_03_001 crossref_primary_10_1016_j_isprsjprs_2019_09_017 crossref_primary_10_3390_rs14225800 crossref_primary_10_3390_rs15194857 crossref_primary_10_1016_j_agwat_2022_107540 crossref_primary_10_1109_TGRS_2021_3105482 crossref_primary_10_1109_JSTARS_2024_3373508 crossref_primary_10_3390_rs15174266 crossref_primary_10_1016_j_ecolind_2022_109102 crossref_primary_10_1016_j_jenvman_2024_123656 crossref_primary_10_1117_1_JRS_12_022207 crossref_primary_10_3390_rs11151816 crossref_primary_10_1109_JSTARS_2025_3531439 crossref_primary_10_5194_essd_15_821_2023 crossref_primary_10_1002_ecs2_4330 crossref_primary_10_1007_s11104_020_04489_1 crossref_primary_10_3390_rs13010051 crossref_primary_10_1080_01431161_2016_1253898 crossref_primary_10_3390_ijgi11110549 crossref_primary_10_1016_j_gecco_2021_e01742 crossref_primary_10_1016_j_rama_2020_05_004 crossref_primary_10_1186_s13007_021_00796_5 crossref_primary_10_3390_rs13214466 crossref_primary_10_1080_01431161_2017_1317942 crossref_primary_10_1016_j_rsase_2021_100689 crossref_primary_10_1080_01431161_2018_1484965 crossref_primary_10_1109_MGRS_2019_2918840 crossref_primary_10_3390_f15050847 crossref_primary_10_1016_j_ecolind_2019_105839 crossref_primary_10_3390_rs12182942 crossref_primary_10_1002_rse2_271 crossref_primary_10_3390_rs10020320 crossref_primary_10_1016_j_jag_2019_01_013 crossref_primary_10_3390_drones7010061 crossref_primary_10_3390_rs13112126 crossref_primary_10_3390_rs14133031 crossref_primary_10_1016_j_ecoinf_2024_102768 crossref_primary_10_1016_j_rse_2017_05_031 crossref_primary_10_1109_JSTARS_2021_3081565 crossref_primary_10_3390_ijgi8110497 crossref_primary_10_1016_j_rse_2020_111953 crossref_primary_10_3390_su11030864 crossref_primary_10_1016_j_biocon_2019_108282 crossref_primary_10_1016_j_compag_2021_106414 crossref_primary_10_1109_ACCESS_2019_2941441 crossref_primary_10_1080_01431161_2016_1259684 crossref_primary_10_3390_rs12213511 crossref_primary_10_1016_j_catena_2024_107940 |
Cites_doi | 10.3390/rs6064705 10.1016/j.rse.2003.07.010 10.1016/0034-4257(95)00136-O 10.1016/S0034-4257(02)00079-2 10.1117/1.JRS.8.083630 10.3390/s90200768 10.1007/s10661-007-0003-x 10.1657/AAAR0013-098 10.1002/hyp.7294 10.1016/j.rse.2007.10.009 10.1016/j.rse.2009.01.006 10.1080/01431160802552736 10.2307/1936256 10.1016/0034-4257(94)90134-1 10.1016/S0034-4257(02)00080-9 10.1029/95JD02138 10.1007/s10661-011-2302-5 10.3390/rs2010290 10.1080/01904169909365631 10.1029/2003GB002199 10.1016/0034-4257(90)90074-V 10.1016/S0034-4257(01)00289-9 10.1007/s12665-013-2547-0 10.1016/j.rse.2012.11.021 10.1016/j.rse.2005.07.011 10.1016/j.compag.2014.02.009 10.3390/rs61212815 10.1016/j.agrformet.2011.07.004 10.1016/j.jag.2011.10.005 10.1016/j.rse.2015.04.020 10.1111/j.1744-7909.2005.00134.x 10.1016/S0034-4257(02)00096-2 10.5815/ijigsp.2013.08.06 10.1016/S0143-6228(02)00048-6 10.1016/S0034-4257(99)00112-1 10.1007/s11368-010-0209-3 10.1016/S0034-4257(01)00292-9 10.1016/S0168-1923(00)00195-7 10.1016/0034-4257(86)90012-X 10.1007/s11430-010-4133-6 10.1080/01431160010004504 10.1016/0034-4257(93)90069-A 10.1016/j.jag.2010.06.009 10.1007/s10661-008-0360-0 10.1109/72.788640 10.1088/1748-9326/6/4/045403 10.1016/j.jag.2010.09.006 10.1080/014311698213795 10.1016/j.rse.2006.01.003 10.1016/j.atmosenv.2011.10.002 10.1016/0034-4257(88)90106-X 10.1016/j.isprsjprs.2014.02.013 10.1080/01431168808954929 10.1016/j.ecoleng.2014.10.008 10.1007/BF02991835 10.1016/S0034-4257(99)00036-X 10.1111/j.1654-1103.2011.01373.x 10.1080/01431160210146668 |
ContentType | Journal Article |
Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
DBID | FBQ AAYXX CITATION 7TG KL. 7S9 L.6 8FD FR3 H8D KR7 L7M |
DOI | 10.1080/01431161.2016.1165884 |
DatabaseName | AGRIS CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts AGRICOLA AGRICOLA - Academic Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | AGRICOLA Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 1936 |
ExternalDocumentID | 10_1080_01431161_2016_1165884 1165884 US201600148776 |
Genre | Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: independent grants from the State Key Laboratory of Cryospheric Sciences grantid: SKLCS-ZZ-2013-2-2 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB030303 – fundername: the Chinese National Natural Science Foundation Commission grantid: 41271089; 41422102 – fundername: the China Special Fund for Meteorological Research in the Public Interest grantid: GYHY201306017 |
GroupedDBID | -~X .7F .DC .QJ 07I 0BK 1TA 29J 30N 4.4 4B5 5GY 5VS 6TJ AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABFMO ABHAV ABJNI ABJVF ABLIJ ABLJU ABPEM ABPTK ABQHQ ABRLO ABTAH ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACTTO ADCVX ADGTB ADXEU ADXPE AEGYZ AEHZU AEISY AENEX AEOZL AEPSL AEXLP AEYOC AEZBV AFION AFKVX AFOLD AFWLO AGBLW AGDLA AGMYJ AGVKY AGWUF AHDLD AI. AIDBO AIJEM AIRXU AJWEG AKBVH AKHJE AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRRR ALXIB AQRUH AVBZW AWYRJ BGSSV BLEHA BWMZZ C0- C5H CAG CCCUG CE4 COF CS3 CYRSC DAOYK DEXXA DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FBQ FETWF FUNRP FVPDL G8K HF~ H~9 IFELN IPNFZ J.P KYCEM L8C LJTGL M4Z NUSFT OPCYK P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TAP TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TWF UAO UB6 UPT UT5 UU3 V1K VH1 VOH ZGOLN ZY4 ~02 ~S~ 0R~ AAHBH ABPAQ AHDZW H13 TBQAZ TDBHL TUROJ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TG KL. 7S9 L.6 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c499t-6a281b4f7f566abefac1322f8a5a421c561fdcb92942aadc190b3639813cd773 |
ISSN | 1366-5901 0143-1161 |
IngestDate | Fri Jul 11 15:59:50 EDT 2025 Wed Jul 02 04:40:28 EDT 2025 Fri Jul 11 03:57:44 EDT 2025 Tue Jul 01 04:04:46 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Wed Dec 25 09:05:10 EST 2024 Wed Dec 27 19:41:09 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c499t-6a281b4f7f566abefac1322f8a5a421c561fdcb92942aadc190b3639813cd773 |
Notes | http://dx.doi.org/10.1080/01431161.2016.1165884 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1790961554 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | fao_agris_US201600148776 proquest_miscellaneous_1790961554 crossref_citationtrail_10_1080_01431161_2016_1165884 proquest_miscellaneous_1803104913 proquest_miscellaneous_1816001715 informaworld_taylorfrancis_310_1080_01431161_2016_1165884 crossref_primary_10_1080_01431161_2016_1165884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-17 |
PublicationDateYYYYMMDD | 2016-04-17 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0032 Lin Z. S. (CIT0029) 2004; 14 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0021 CIT0020 CIT0023 CIT0022 Rouse J. W. (CIT0047) 1973 CIT0025 CIT0024 CIT0027 CIT0026 CIT0028 |
References_xml | – ident: CIT0026 doi: 10.3390/rs6064705 – ident: CIT0009 doi: 10.1016/j.rse.2003.07.010 – ident: CIT0001 doi: 10.1016/0034-4257(95)00136-O – ident: CIT0014 doi: 10.1016/S0034-4257(02)00079-2 – ident: CIT0030 doi: 10.1117/1.JRS.8.083630 – ident: CIT0022 doi: 10.3390/s90200768 – ident: CIT0057 doi: 10.1007/s10661-007-0003-x – ident: CIT0060 doi: 10.1657/AAAR0013-098 – ident: CIT0054 doi: 10.1002/hyp.7294 – ident: CIT0016 doi: 10.1016/j.rse.2007.10.009 – ident: CIT0012 doi: 10.1016/j.rse.2009.01.006 – ident: CIT0011 doi: 10.1080/01431160802552736 – volume: 14 start-page: 355 issue: 3 year: 2004 ident: CIT0029 publication-title: Pedosphere – ident: CIT0023 doi: 10.2307/1936256 – ident: CIT0043 doi: 10.1016/0034-4257(94)90134-1 – ident: CIT0013 doi: 10.1016/S0034-4257(02)00080-9 – ident: CIT0036 doi: 10.1029/95JD02138 – ident: CIT0040 doi: 10.1007/s10661-011-2302-5 – ident: CIT0019 doi: 10.3390/rs2010290 – ident: CIT0034 doi: 10.1080/01904169909365631 – ident: CIT0024 doi: 10.1029/2003GB002199 – ident: CIT0048 doi: 10.1016/0034-4257(90)90074-V – ident: CIT0008 doi: 10.1016/S0034-4257(01)00289-9 – ident: CIT0046 doi: 10.1007/s12665-013-2547-0 – ident: CIT0038 doi: 10.1016/j.rse.2012.11.021 – ident: CIT0055 doi: 10.1016/j.rse.2005.07.011 – ident: CIT0050 doi: 10.1016/j.compag.2014.02.009 – ident: CIT0007 doi: 10.3390/rs61212815 – ident: CIT0021 doi: 10.1016/j.agrformet.2011.07.004 – ident: CIT0006 doi: 10.1016/j.jag.2011.10.005 – ident: CIT0025 doi: 10.1016/j.rse.2015.04.020 – ident: CIT0027 doi: 10.1111/j.1744-7909.2005.00134.x – ident: CIT0017 doi: 10.1016/S0034-4257(02)00096-2 – ident: CIT0051 doi: 10.5815/ijigsp.2013.08.06 – ident: CIT0003 doi: 10.1016/S0143-6228(02)00048-6 – ident: CIT0035 doi: 10.1016/S0034-4257(99)00112-1 – ident: CIT0015 doi: 10.1007/s11368-010-0209-3 – ident: CIT0037 doi: 10.1016/S0034-4257(01)00292-9 – ident: CIT0044 doi: 10.1016/S0168-1923(00)00195-7 – ident: CIT0005 doi: 10.1016/0034-4257(86)90012-X – ident: CIT0049 doi: 10.1007/s11430-010-4133-6 – ident: CIT0059 doi: 10.1080/01431160010004504 – ident: CIT0041 doi: 10.1016/0034-4257(93)90069-A – ident: CIT0002 doi: 10.1016/j.jag.2010.06.009 – ident: CIT0031 doi: 10.1007/s10661-008-0360-0 – ident: CIT0052 doi: 10.1109/72.788640 – ident: CIT0056 doi: 10.1088/1748-9326/6/4/045403 – ident: CIT0033 doi: 10.1016/j.jag.2010.09.006 – ident: CIT0042 doi: 10.1080/014311698213795 – ident: CIT0020 doi: 10.1016/j.rse.2006.01.003 – ident: CIT0028 doi: 10.1016/j.atmosenv.2011.10.002 – ident: CIT0018 doi: 10.1016/0034-4257(88)90106-X – ident: CIT0004 doi: 10.1016/j.isprsjprs.2014.02.013 – ident: CIT0010 doi: 10.1080/01431168808954929 – ident: CIT0045 doi: 10.1016/j.ecoleng.2014.10.008 – ident: CIT0039 doi: 10.1007/BF02991835 – ident: CIT0053 doi: 10.1016/S0034-4257(99)00036-X – start-page: 309 volume-title: Third Earth Resources Technology Satellite-1 Symposium year: 1973 ident: CIT0047 – ident: CIT0032 doi: 10.1111/j.1654-1103.2011.01373.x – ident: CIT0061 doi: 10.1080/01431160210146668 |
SSID | ssj0006757 |
Score | 2.4802115 |
Snippet | Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a... |
SourceID | proquest crossref informaworld fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1922 |
SubjectTerms | Aerial surveys China climate change ecosystems Estimates Grasslands Pixels Remote sensing Satellite imagery satellites soil erosion surveys Unmanned aerial vehicles Vegetation vegetation cover vegetation index |
Title | Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1165884 https://www.proquest.com/docview/1790961554 https://www.proquest.com/docview/1803104913 https://www.proquest.com/docview/1816001715 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWc5NBeiq6Iu4EFejNkWKKs5Wh0Mwq0QBC7dXoRRhRpu0jlQLEKtD_TX-2MSEuyYyRdLoItiaSgeSIfhzOPjL2UUgjfU6ETZypyfEjBAQ2ZI1LsDHUoIKy2e_vwMRhP_fez4azT-dWKWirXaV_-3JtX8i9WxXNoV8qS_QvL1pXiCfyN9sUjWhiPf2TjxiNAWhnfiDYS-dOFyVbAt_9dzTfxhJKCNXs0amW0QjAdfSJfB5xfEM-cF0iiKcjRLh70TrDWBSydyTLFCnLa3AjhULa57LYzsSVBUSi0v-pdUmy8HRirAAKbB4KA_FrWmDyrwglOF-WirEeIEyNscFY27n7TJc2WsPphy1pXhRvQqovJzKzANbmya8iWY1M4rmuE2fvKdMYiCBzKjW331kYixqIyanW9SFW91jCOxDTYO0TYmEpsj5qj4L6gTxpEkdmqbkd92145YEcezkOwIz0ajV9_-VwP9jjfMhn59vE3SWIk376viS36c6BhtSORe4USVDxncpfdsRMUPjJou8c6Kr_Pbr1TVtr8AStq1PEadXyleYM63qCOV6jjFeo4_kXU8WXODep4jTq6hKjjO6jjFnUP2eTtm8mrsWN37nAkzqDXTgAeTod8HWqcLUCqNEjyeugIhuB7rkTSrjOZIjX3PYBMIitNBXLlyBUyC0PxiB3mq1wdMx7HEPhDECAynHwMBqkXaCyYaen5kKWDLvM37zORVtWeNlc5T9yN-K01Q0JmSKwZuqxfF7swsi43FThGYyUwx6E3mZ7SJfIuRGEYdFnctmCyrmCuDcITcUO1LzbmTrBfp8U6yNWqvExIOS-moIHr7olI2NePXXHdPdWThu7w8X885xN2u_mgn7LDdVGqZ8jG1-lz-0X8BoUP2Z8 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB615VAuvFHT8jASHDdk19717oFDBVQpbSMQCerNGnvXbdSwqdIEVP4Vf4VfxMw-IiiiPaAeOK5sj7xjj-ezPf4G4LlzUqqo0EGWF2mg0GKAHvNAWloMvZaoq3RvB4OkP1LvDuPDFfjevoXhsEreQ_uaKKJaq9m4-TC6DYl7yZx0IUEVjsxKukwgk6aqCazcK86_0rbt7NXuGxrjF1G083b4uh80mQUCRwh_HiQYEVxTXntCM2gLj453ZT7FGFUUOgIVPneWoIOKEHNHXtNK8uVpKF2utSSxq3AjzhLNpiV7g-XiT_i7fqHNzJ_UxfbR0N96_Zs7XPU4vUCZ-oeLqPzezm340WqsDnc56S7mtuu-XSCT_K9UegduNShcbNdmcxdWivIerDcJ4Y_P78NsedgimIbkMyNyMfXCz-qHINT4S3HUhGoKx3GwggFBLuhztP1JjEuBk1NShCCRBOZJM1xEcFt8IKnHOA6GY0sCSvF-QtJx8QCG1_HHD2GtnJbFBogsw0TFKFHmhLB7PRslnhrm3kUKc9vrgGoniXENdTtnEJmYsGV4bYbP8PCZZvg60F02O625S65qsEEz0OAR-Rcz-shFvIVOtU46kP06Lc28Ok_ydfIXI68Q-6ydw4YWL76RwrKYLs4M08NlfDN-WZ2U2WtVFsrL6lQ91WG8-Q_9fArr_eHBvtnfHextwU0u4nvDUD-CtflsUTwm-Dm3TyqDF2Cu2Rp-Ah4chDs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbaIgEX3lXD00hw3JBdO-vdA4eKErUUoiIS1Js1frURYROlG1D5VfwV_hEz-4igiPaAeuC4smfk9Ws-2zPfMPbMWiFk4lWUO59FEgxEEMBFwuBmGJQAVaV7ezdMd8fyzWH_cI19b2NhyK2SztChJoqo9mpa3HMXWo-4F0RJFyNSIcestEv8MVkmG7_KfX_6FU9tJy_3dnCInyfJ4PXo1W7UJBaILAL8MkohQbQmgwoIZsD4AJYOZSGDPsgktogpgrMGkYNMAJxFo2kEmvIsFtYpJVDtOruSUlwnBY30hqu9H-F3HaBNxJ_YxDZm6G-t_s0argeYnWFM_cNCVGZvcJP9aDus9nb51F2Wpmu_neGS_J969Ba70WBwvl0vmttszRd32LUmHfzx6V22WF21cCIh-Ux4nM8CD4s6DASFv_ijxlGTW_KC5QQHHMfP8fZHPik4TOfYDxxVIpTHjqEiBNv8PWo9hkk0mhhUUPCDKWqH5T02uow_3mQbxazwW4znOaSyDwKEQ3zd65kkDSjogk0kONPrMNnOEW0b4nbKHzLVccvv2gyfpuHTzfB1WHclNq-ZSy4S2MIJqOEIrYsef6AiOkBnSqUdlv86K3VZ3SaFOvWLFheofdpOYY1bF71HQeFnyxNN5HA5vYufVycj7lqZx-K8OlVLVdy__w_tfMKuHuwM9Nu94f4Ddp1K6NEwVg_ZRrlY-keIPUvzuFrunOlLXgw_AbRmgt8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+estimates+of+fractional+vegetation+cover+based+on+UAV+in+alpine+grassland+on+the+Qinghai-Tibetan+Plateau&rft.jtitle=International+journal+of+remote+sensing&rft.au=Chen%2C+Jianjun&rft.au=Yi%2C+Shuhua&rft.au=Qin%2C+Yu&rft.au=Wang%2C+Xiaoyun&rft.date=2016-04-17&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=37&rft.issue=8&rft.spage=1922&rft.epage=1936&rft_id=info:doi/10.1080%2F01431161.2016.1165884&rft.externalDocID=1165884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon |