Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau

Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 37; no. 8; pp. 1922 - 1936
Main Authors Chen, Jianjun, Yi, Shuhua, Qin, Yu, Wang, Xiaoyun
Format Journal Article
LanguageEnglish
Published Taylor & Francis 17.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods.
AbstractList Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai-Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV ) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC ground ), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R 2 ) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC ground and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods.
Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods.
Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai-Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC sub(UAV)) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC sub(ground)), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R super(2)) between FVC sub(UAV) and vegetation indices (VIs) was significantly greater than that between FVC sub(ground) and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods.
Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a common approach to estimating FVC. However, there is an important gap between ground-based surveys (quadrat level) and remote-sensing imagery (satellite image pixel scale) from satellites. In this study we evaluated that gap with unmanned aerial vehicle (UAV) aerial images of alpine grassland on the Qinghai–Tibetan Plateau (QTP). The results showed that: (1) the most accurate estimations of FVC came from UAV (FVC UAV) at the satellite image pixel scale, and when FVC was estimated using ground-based surveys (FVC gᵣₒᵤₙd), the accuracy increased as the number of quadrats used increased and was inversely proportional to the heterogeneity of the underlying surface condition; (2) the UAV method was more efficient than conventional ground-based survey methods at the satellite image pixel scale; and (3) the coefficient of determination (R ²) between FVC UAV and vegetation indices (VIs) was significantly greater than that between FVC gᵣₒᵤₙd and VIs (p < 0.05, n = 5). Our results suggest that the use of UAV to estimate FVC at the satellite image pixel scale provides more accurate results and is more efficient than conventional ground-based survey methods.
Author Wang, Xiaoyun
Chen, Jianjun
Qin, Yu
Yi, Shuhua
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Chen
  fullname: Chen, Jianjun
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Shuhua
  surname: Yi
  fullname: Yi, Shuhua
  email: yis@lzb.ac.cn
  organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences
– sequence: 3
  givenname: Yu
  surname: Qin
  fullname: Qin, Yu
  organization: State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences
– sequence: 4
  givenname: Xiaoyun
  surname: Wang
  fullname: Wang, Xiaoyun
  organization: University of Chinese Academy of Sciences
BookMark eNqNkU1uFDEQhVsoSCSBIyC8ZDODq_3TbbEhiviJFAkQE7ZWtdueGHnswe4ZlB134IacBA8dJMRmWLlKfu-pqr6z5iSmaJvmKdAl0J6-oMAZgIRlS0EuayX6nj9oToFJuRCKwslf9aPmrJQvlFLZie60ma4225z2Pq6JLZPf4GQLSY64jGbyKWIge7u2Ex4aYtLeZjJgsSOp7c3FZ-IjwbD10ZJ1xlICxt9f060lH2vqLfqf33-s_FAjIvkQaj7uHjcPHYZin9y_583qzevV5bvF9fu3V5cX1wvDlZoWEtseBu46J6TEwTo0wNrW9SiQt2CEBDeaQbWKt4ijAUUHJpnqgZmx69h583yOrRt-3dX19MYXY0Od0aZd0dCDpBQ6EP8hpQwoV8COSztFlQQheJW-nKUmp1Kyddr4-ZJTRh80UH0AqP8A1AeA-h5gdYt_3NtcAeW7o75Xs89Hl_IGv6UcRj3hXUi5Yo3GF82ORTybIxwmjetcHTefDop6Lt53nWS_AGmfvh4
CitedBy_id crossref_primary_10_1016_j_jag_2019_101924
crossref_primary_10_1016_j_compag_2022_106982
crossref_primary_10_1016_j_isprsjprs_2024_09_004
crossref_primary_10_3390_rs12244121
crossref_primary_10_1016_j_jag_2024_103964
crossref_primary_10_1186_s42408_023_00174_7
crossref_primary_10_3390_rs12060998
crossref_primary_10_1016_j_scitotenv_2021_145433
crossref_primary_10_1016_j_geoderma_2017_12_007
crossref_primary_10_1109_LGRS_2021_3109725
crossref_primary_10_1016_j_rse_2018_09_019
crossref_primary_10_3390_rs14122829
crossref_primary_10_5194_bg_13_6273_2016
crossref_primary_10_1016_j_agrformet_2019_107665
crossref_primary_10_1007_s11629_021_7110_y
crossref_primary_10_1016_S2095_3119_20_63556_0
crossref_primary_10_14358_PERS_21_00038R2
crossref_primary_10_1007_s40333_022_0073_1
crossref_primary_10_1002_ece3_4919
crossref_primary_10_1109_JSTARS_2021_3110896
crossref_primary_10_3390_drones8050187
crossref_primary_10_3390_rs14205146
crossref_primary_10_1109_JSTARS_2023_3284913
crossref_primary_10_3389_fpls_2023_1150859
crossref_primary_10_3390_agriculture15010027
crossref_primary_10_3390_rs13112105
crossref_primary_10_3390_rs16010030
crossref_primary_10_1016_j_ecolind_2021_107570
crossref_primary_10_3390_rs12111742
crossref_primary_10_3390_drones8100578
crossref_primary_10_1016_j_compag_2021_106033
crossref_primary_10_1016_j_ecolind_2023_110020
crossref_primary_10_1016_j_rama_2018_11_007
crossref_primary_10_3390_horticulturae10070748
crossref_primary_10_3390_rs11050513
crossref_primary_10_3390_rs16050840
crossref_primary_10_3390_drones3010010
crossref_primary_10_3390_rs12203460
crossref_primary_10_1016_j_rse_2018_12_019
crossref_primary_10_3390_rs15051312
crossref_primary_10_1002_ldr_5381
crossref_primary_10_1016_j_geoderma_2017_03_001
crossref_primary_10_1016_j_isprsjprs_2019_09_017
crossref_primary_10_3390_rs14225800
crossref_primary_10_3390_rs15194857
crossref_primary_10_1016_j_agwat_2022_107540
crossref_primary_10_1109_TGRS_2021_3105482
crossref_primary_10_1109_JSTARS_2024_3373508
crossref_primary_10_3390_rs15174266
crossref_primary_10_1016_j_ecolind_2022_109102
crossref_primary_10_1016_j_jenvman_2024_123656
crossref_primary_10_1117_1_JRS_12_022207
crossref_primary_10_3390_rs11151816
crossref_primary_10_1109_JSTARS_2025_3531439
crossref_primary_10_5194_essd_15_821_2023
crossref_primary_10_1002_ecs2_4330
crossref_primary_10_1007_s11104_020_04489_1
crossref_primary_10_3390_rs13010051
crossref_primary_10_1080_01431161_2016_1253898
crossref_primary_10_3390_ijgi11110549
crossref_primary_10_1016_j_gecco_2021_e01742
crossref_primary_10_1016_j_rama_2020_05_004
crossref_primary_10_1186_s13007_021_00796_5
crossref_primary_10_3390_rs13214466
crossref_primary_10_1080_01431161_2017_1317942
crossref_primary_10_1016_j_rsase_2021_100689
crossref_primary_10_1080_01431161_2018_1484965
crossref_primary_10_1109_MGRS_2019_2918840
crossref_primary_10_3390_f15050847
crossref_primary_10_1016_j_ecolind_2019_105839
crossref_primary_10_3390_rs12182942
crossref_primary_10_1002_rse2_271
crossref_primary_10_3390_rs10020320
crossref_primary_10_1016_j_jag_2019_01_013
crossref_primary_10_3390_drones7010061
crossref_primary_10_3390_rs13112126
crossref_primary_10_3390_rs14133031
crossref_primary_10_1016_j_ecoinf_2024_102768
crossref_primary_10_1016_j_rse_2017_05_031
crossref_primary_10_1109_JSTARS_2021_3081565
crossref_primary_10_3390_ijgi8110497
crossref_primary_10_1016_j_rse_2020_111953
crossref_primary_10_3390_su11030864
crossref_primary_10_1016_j_biocon_2019_108282
crossref_primary_10_1016_j_compag_2021_106414
crossref_primary_10_1109_ACCESS_2019_2941441
crossref_primary_10_1080_01431161_2016_1259684
crossref_primary_10_3390_rs12213511
crossref_primary_10_1016_j_catena_2024_107940
Cites_doi 10.3390/rs6064705
10.1016/j.rse.2003.07.010
10.1016/0034-4257(95)00136-O
10.1016/S0034-4257(02)00079-2
10.1117/1.JRS.8.083630
10.3390/s90200768
10.1007/s10661-007-0003-x
10.1657/AAAR0013-098
10.1002/hyp.7294
10.1016/j.rse.2007.10.009
10.1016/j.rse.2009.01.006
10.1080/01431160802552736
10.2307/1936256
10.1016/0034-4257(94)90134-1
10.1016/S0034-4257(02)00080-9
10.1029/95JD02138
10.1007/s10661-011-2302-5
10.3390/rs2010290
10.1080/01904169909365631
10.1029/2003GB002199
10.1016/0034-4257(90)90074-V
10.1016/S0034-4257(01)00289-9
10.1007/s12665-013-2547-0
10.1016/j.rse.2012.11.021
10.1016/j.rse.2005.07.011
10.1016/j.compag.2014.02.009
10.3390/rs61212815
10.1016/j.agrformet.2011.07.004
10.1016/j.jag.2011.10.005
10.1016/j.rse.2015.04.020
10.1111/j.1744-7909.2005.00134.x
10.1016/S0034-4257(02)00096-2
10.5815/ijigsp.2013.08.06
10.1016/S0143-6228(02)00048-6
10.1016/S0034-4257(99)00112-1
10.1007/s11368-010-0209-3
10.1016/S0034-4257(01)00292-9
10.1016/S0168-1923(00)00195-7
10.1016/0034-4257(86)90012-X
10.1007/s11430-010-4133-6
10.1080/01431160010004504
10.1016/0034-4257(93)90069-A
10.1016/j.jag.2010.06.009
10.1007/s10661-008-0360-0
10.1109/72.788640
10.1088/1748-9326/6/4/045403
10.1016/j.jag.2010.09.006
10.1080/014311698213795
10.1016/j.rse.2006.01.003
10.1016/j.atmosenv.2011.10.002
10.1016/0034-4257(88)90106-X
10.1016/j.isprsjprs.2014.02.013
10.1080/01431168808954929
10.1016/j.ecoleng.2014.10.008
10.1007/BF02991835
10.1016/S0034-4257(99)00036-X
10.1111/j.1654-1103.2011.01373.x
10.1080/01431160210146668
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
DBID FBQ
AAYXX
CITATION
7TG
KL.
7S9
L.6
8FD
FR3
H8D
KR7
L7M
DOI 10.1080/01431161.2016.1165884
DatabaseName AGRIS
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
AGRICOLA
AGRICOLA - Academic
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
AGRICOLA
Aerospace Database

Meteorological & Geoastrophysical Abstracts - Academic
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 1936
ExternalDocumentID 10_1080_01431161_2016_1165884
1165884
US201600148776
Genre Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: independent grants from the State Key Laboratory of Cryospheric Sciences
  grantid: SKLCS-ZZ-2013-2-2
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB030303
– fundername: the Chinese National Natural Science Foundation Commission
  grantid: 41271089; 41422102
– fundername: the China Special Fund for Meteorological Research in the Public Interest
  grantid: GYHY201306017
GroupedDBID -~X
.7F
.DC
.QJ
07I
0BK
1TA
29J
30N
4.4
4B5
5GY
5VS
6TJ
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABHAV
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPTK
ABQHQ
ABRLO
ABTAH
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXEU
ADXPE
AEGYZ
AEHZU
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AEZBV
AFION
AFKVX
AFOLD
AFWLO
AGBLW
AGDLA
AGMYJ
AGVKY
AGWUF
AHDLD
AI.
AIDBO
AIJEM
AIRXU
AJWEG
AKBVH
AKHJE
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
ALXIB
AQRUH
AVBZW
AWYRJ
BGSSV
BLEHA
BWMZZ
C0-
C5H
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DEXXA
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
FBQ
FETWF
FUNRP
FVPDL
G8K
HF~
H~9
IFELN
IPNFZ
J.P
KYCEM
L8C
LJTGL
M4Z
NUSFT
OPCYK
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TAP
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TWF
UAO
UB6
UPT
UT5
UU3
V1K
VH1
VOH
ZGOLN
ZY4
~02
~S~
0R~
AAHBH
ABPAQ
AHDZW
H13
TBQAZ
TDBHL
TUROJ
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TG
KL.
7S9
L.6
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c499t-6a281b4f7f566abefac1322f8a5a421c561fdcb92942aadc190b3639813cd773
ISSN 1366-5901
0143-1161
IngestDate Fri Jul 11 15:59:50 EDT 2025
Wed Jul 02 04:40:28 EDT 2025
Fri Jul 11 03:57:44 EDT 2025
Tue Jul 01 04:04:46 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Wed Dec 25 09:05:10 EST 2024
Wed Dec 27 19:41:09 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-6a281b4f7f566abefac1322f8a5a421c561fdcb92942aadc190b3639813cd773
Notes http://dx.doi.org/10.1080/01431161.2016.1165884
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1790961554
PQPubID 23462
PageCount 15
ParticipantIDs fao_agris_US201600148776
proquest_miscellaneous_1790961554
crossref_citationtrail_10_1080_01431161_2016_1165884
proquest_miscellaneous_1803104913
proquest_miscellaneous_1816001715
informaworld_taylorfrancis_310_1080_01431161_2016_1165884
crossref_primary_10_1080_01431161_2016_1165884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-17
PublicationDateYYYYMMDD 2016-04-17
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-17
  day: 17
PublicationDecade 2010
PublicationTitle International journal of remote sensing
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0032
Lin Z. S. (CIT0029) 2004; 14
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0021
CIT0020
CIT0023
CIT0022
Rouse J. W. (CIT0047) 1973
CIT0025
CIT0024
CIT0027
CIT0026
CIT0028
References_xml – ident: CIT0026
  doi: 10.3390/rs6064705
– ident: CIT0009
  doi: 10.1016/j.rse.2003.07.010
– ident: CIT0001
  doi: 10.1016/0034-4257(95)00136-O
– ident: CIT0014
  doi: 10.1016/S0034-4257(02)00079-2
– ident: CIT0030
  doi: 10.1117/1.JRS.8.083630
– ident: CIT0022
  doi: 10.3390/s90200768
– ident: CIT0057
  doi: 10.1007/s10661-007-0003-x
– ident: CIT0060
  doi: 10.1657/AAAR0013-098
– ident: CIT0054
  doi: 10.1002/hyp.7294
– ident: CIT0016
  doi: 10.1016/j.rse.2007.10.009
– ident: CIT0012
  doi: 10.1016/j.rse.2009.01.006
– ident: CIT0011
  doi: 10.1080/01431160802552736
– volume: 14
  start-page: 355
  issue: 3
  year: 2004
  ident: CIT0029
  publication-title: Pedosphere
– ident: CIT0023
  doi: 10.2307/1936256
– ident: CIT0043
  doi: 10.1016/0034-4257(94)90134-1
– ident: CIT0013
  doi: 10.1016/S0034-4257(02)00080-9
– ident: CIT0036
  doi: 10.1029/95JD02138
– ident: CIT0040
  doi: 10.1007/s10661-011-2302-5
– ident: CIT0019
  doi: 10.3390/rs2010290
– ident: CIT0034
  doi: 10.1080/01904169909365631
– ident: CIT0024
  doi: 10.1029/2003GB002199
– ident: CIT0048
  doi: 10.1016/0034-4257(90)90074-V
– ident: CIT0008
  doi: 10.1016/S0034-4257(01)00289-9
– ident: CIT0046
  doi: 10.1007/s12665-013-2547-0
– ident: CIT0038
  doi: 10.1016/j.rse.2012.11.021
– ident: CIT0055
  doi: 10.1016/j.rse.2005.07.011
– ident: CIT0050
  doi: 10.1016/j.compag.2014.02.009
– ident: CIT0007
  doi: 10.3390/rs61212815
– ident: CIT0021
  doi: 10.1016/j.agrformet.2011.07.004
– ident: CIT0006
  doi: 10.1016/j.jag.2011.10.005
– ident: CIT0025
  doi: 10.1016/j.rse.2015.04.020
– ident: CIT0027
  doi: 10.1111/j.1744-7909.2005.00134.x
– ident: CIT0017
  doi: 10.1016/S0034-4257(02)00096-2
– ident: CIT0051
  doi: 10.5815/ijigsp.2013.08.06
– ident: CIT0003
  doi: 10.1016/S0143-6228(02)00048-6
– ident: CIT0035
  doi: 10.1016/S0034-4257(99)00112-1
– ident: CIT0015
  doi: 10.1007/s11368-010-0209-3
– ident: CIT0037
  doi: 10.1016/S0034-4257(01)00292-9
– ident: CIT0044
  doi: 10.1016/S0168-1923(00)00195-7
– ident: CIT0005
  doi: 10.1016/0034-4257(86)90012-X
– ident: CIT0049
  doi: 10.1007/s11430-010-4133-6
– ident: CIT0059
  doi: 10.1080/01431160010004504
– ident: CIT0041
  doi: 10.1016/0034-4257(93)90069-A
– ident: CIT0002
  doi: 10.1016/j.jag.2010.06.009
– ident: CIT0031
  doi: 10.1007/s10661-008-0360-0
– ident: CIT0052
  doi: 10.1109/72.788640
– ident: CIT0056
  doi: 10.1088/1748-9326/6/4/045403
– ident: CIT0033
  doi: 10.1016/j.jag.2010.09.006
– ident: CIT0042
  doi: 10.1080/014311698213795
– ident: CIT0020
  doi: 10.1016/j.rse.2006.01.003
– ident: CIT0028
  doi: 10.1016/j.atmosenv.2011.10.002
– ident: CIT0018
  doi: 10.1016/0034-4257(88)90106-X
– ident: CIT0004
  doi: 10.1016/j.isprsjprs.2014.02.013
– ident: CIT0010
  doi: 10.1080/01431168808954929
– ident: CIT0045
  doi: 10.1016/j.ecoleng.2014.10.008
– ident: CIT0039
  doi: 10.1007/BF02991835
– ident: CIT0053
  doi: 10.1016/S0034-4257(99)00036-X
– start-page: 309
  volume-title: Third Earth Resources Technology Satellite-1 Symposium
  year: 1973
  ident: CIT0047
– ident: CIT0032
  doi: 10.1111/j.1654-1103.2011.01373.x
– ident: CIT0061
  doi: 10.1080/01431160210146668
SSID ssj0006757
Score 2.4802115
Snippet Fractional vegetation cover (FVC) is an important parameter in studies of ecosystem balance, soil erosion, and climate change. Remote-sensing inversion is a...
SourceID proquest
crossref
informaworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1922
SubjectTerms Aerial surveys
China
climate change
ecosystems
Estimates
Grasslands
Pixels
Remote sensing
Satellite imagery
satellites
soil erosion
surveys
Unmanned aerial vehicles
Vegetation
vegetation cover
vegetation index
Title Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1165884
https://www.proquest.com/docview/1790961554
https://www.proquest.com/docview/1803104913
https://www.proquest.com/docview/1816001715
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWc5NBeiq6Iu4EFejNkWKKs5Wh0Mwq0QBC7dXoRRhRpu0jlQLEKtD_TX-2MSEuyYyRdLoItiaSgeSIfhzOPjL2UUgjfU6ETZypyfEjBAQ2ZI1LsDHUoIKy2e_vwMRhP_fez4azT-dWKWirXaV_-3JtX8i9WxXNoV8qS_QvL1pXiCfyN9sUjWhiPf2TjxiNAWhnfiDYS-dOFyVbAt_9dzTfxhJKCNXs0amW0QjAdfSJfB5xfEM-cF0iiKcjRLh70TrDWBSydyTLFCnLa3AjhULa57LYzsSVBUSi0v-pdUmy8HRirAAKbB4KA_FrWmDyrwglOF-WirEeIEyNscFY27n7TJc2WsPphy1pXhRvQqovJzKzANbmya8iWY1M4rmuE2fvKdMYiCBzKjW331kYixqIyanW9SFW91jCOxDTYO0TYmEpsj5qj4L6gTxpEkdmqbkd92145YEcezkOwIz0ajV9_-VwP9jjfMhn59vE3SWIk376viS36c6BhtSORe4USVDxncpfdsRMUPjJou8c6Kr_Pbr1TVtr8AStq1PEadXyleYM63qCOV6jjFeo4_kXU8WXODep4jTq6hKjjO6jjFnUP2eTtm8mrsWN37nAkzqDXTgAeTod8HWqcLUCqNEjyeugIhuB7rkTSrjOZIjX3PYBMIitNBXLlyBUyC0PxiB3mq1wdMx7HEPhDECAynHwMBqkXaCyYaen5kKWDLvM37zORVtWeNlc5T9yN-K01Q0JmSKwZuqxfF7swsi43FThGYyUwx6E3mZ7SJfIuRGEYdFnctmCyrmCuDcITcUO1LzbmTrBfp8U6yNWqvExIOS-moIHr7olI2NePXXHdPdWThu7w8X885xN2u_mgn7LDdVGqZ8jG1-lz-0X8BoUP2Z8
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB615VAuvFHT8jASHDdk19717oFDBVQpbSMQCerNGnvXbdSwqdIEVP4Vf4VfxMw-IiiiPaAeOK5sj7xjj-ezPf4G4LlzUqqo0EGWF2mg0GKAHvNAWloMvZaoq3RvB4OkP1LvDuPDFfjevoXhsEreQ_uaKKJaq9m4-TC6DYl7yZx0IUEVjsxKukwgk6aqCazcK86_0rbt7NXuGxrjF1G083b4uh80mQUCRwh_HiQYEVxTXntCM2gLj453ZT7FGFUUOgIVPneWoIOKEHNHXtNK8uVpKF2utSSxq3AjzhLNpiV7g-XiT_i7fqHNzJ_UxfbR0N96_Zs7XPU4vUCZ-oeLqPzezm340WqsDnc56S7mtuu-XSCT_K9UegduNShcbNdmcxdWivIerDcJ4Y_P78NsedgimIbkMyNyMfXCz-qHINT4S3HUhGoKx3GwggFBLuhztP1JjEuBk1NShCCRBOZJM1xEcFt8IKnHOA6GY0sCSvF-QtJx8QCG1_HHD2GtnJbFBogsw0TFKFHmhLB7PRslnhrm3kUKc9vrgGoniXENdTtnEJmYsGV4bYbP8PCZZvg60F02O625S65qsEEz0OAR-Rcz-shFvIVOtU46kP06Lc28Ok_ydfIXI68Q-6ydw4YWL76RwrKYLs4M08NlfDN-WZ2U2WtVFsrL6lQ91WG8-Q_9fArr_eHBvtnfHextwU0u4nvDUD-CtflsUTwm-Dm3TyqDF2Cu2Rp-Ah4chDs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbaIgEX3lXD00hw3JBdO-vdA4eKErUUoiIS1Js1frURYROlG1D5VfwV_hEz-4igiPaAeuC4smfk9Ws-2zPfMPbMWiFk4lWUO59FEgxEEMBFwuBmGJQAVaV7ezdMd8fyzWH_cI19b2NhyK2SztChJoqo9mpa3HMXWo-4F0RJFyNSIcestEv8MVkmG7_KfX_6FU9tJy_3dnCInyfJ4PXo1W7UJBaILAL8MkohQbQmgwoIZsD4AJYOZSGDPsgktogpgrMGkYNMAJxFo2kEmvIsFtYpJVDtOruSUlwnBY30hqu9H-F3HaBNxJ_YxDZm6G-t_s0argeYnWFM_cNCVGZvcJP9aDus9nb51F2Wpmu_neGS_J969Ba70WBwvl0vmttszRd32LUmHfzx6V22WF21cCIh-Ux4nM8CD4s6DASFv_ijxlGTW_KC5QQHHMfP8fZHPik4TOfYDxxVIpTHjqEiBNv8PWo9hkk0mhhUUPCDKWqH5T02uow_3mQbxazwW4znOaSyDwKEQ3zd65kkDSjogk0kONPrMNnOEW0b4nbKHzLVccvv2gyfpuHTzfB1WHclNq-ZSy4S2MIJqOEIrYsef6AiOkBnSqUdlv86K3VZ3SaFOvWLFheofdpOYY1bF71HQeFnyxNN5HA5vYufVycj7lqZx-K8OlVLVdy__w_tfMKuHuwM9Nu94f4Ddp1K6NEwVg_ZRrlY-keIPUvzuFrunOlLXgw_AbRmgt8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+estimates+of+fractional+vegetation+cover+based+on+UAV+in+alpine+grassland+on+the+Qinghai-Tibetan+Plateau&rft.jtitle=International+journal+of+remote+sensing&rft.au=Chen%2C+Jianjun&rft.au=Yi%2C+Shuhua&rft.au=Qin%2C+Yu&rft.au=Wang%2C+Xiaoyun&rft.date=2016-04-17&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=37&rft.issue=8&rft.spage=1922&rft.epage=1936&rft_id=info:doi/10.1080%2F01431161.2016.1165884&rft.externalDocID=1165884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1366-5901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1366-5901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1366-5901&client=summon