Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness

In this paper, the authors present research into autonomously responsive architectural systems that adapt to environmental changes using hygroscopic material properties. Instead of using superimposed layers of singular purpose mechanisms–for sensing, actuation, control and power–in the form of high-...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 60; pp. 50 - 69
Main Authors Reichert, Steffen, Menges, Achim, Correa, David
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the authors present research into autonomously responsive architectural systems that adapt to environmental changes using hygroscopic material properties. Instead of using superimposed layers of singular purpose mechanisms–for sensing, actuation, control and power–in the form of high-tech electronic equipment as is emblematic for current approaches to climate responsiveness in architecture, the presented research follows an integrative, no-tech strategy that can be considered to follow biological rather than mechanical principles. In nature plants employ different systems to respond to environmental changes. One particularly promising way is hygroscopic actuation, as it allows for metabolically independent movement and thus provides an interesting model for autonomous, passive and materially embedded responsiveness. The paper presents a comprehensive overview of the parameters, variables and syntactic elements that enable the development of such meteorosensitive architectural systems based on the biomimetic transfer of the hygroscopic actuation of plant cones. It provides a summary of five years of research by the authors on architectural systems which utilize the hygroscopic qualities of wooden veneer as a naturally produced constituent within weather responsive composite systems, which is presented through an extensive analysis of research samples, prototypes at various scales, and two comprehensive case studies of full scale constructions. •Access and instrumentalisation of computational capacities within organic systems.•Formal complexity through singular parametric differentiation in material behaviour.•Environment cognisant architectural systems with climate dependent formal behaviour.•Embedded biomimetic intelligence through material programming.
AbstractList In this paper, the authors present research into autonomously responsive architectural systems that adapt to environmental changes using hygroscopic material properties. Instead of using superimposed layers of singular purpose mechanisms–for sensing, actuation, control and power–in the form of high-tech electronic equipment as is emblematic for current approaches to climate responsiveness in architecture, the presented research follows an integrative, no-tech strategy that can be considered to follow biological rather than mechanical principles. In nature plants employ different systems to respond to environmental changes. One particularly promising way is hygroscopic actuation, as it allows for metabolically independent movement and thus provides an interesting model for autonomous, passive and materially embedded responsiveness. The paper presents a comprehensive overview of the parameters, variables and syntactic elements that enable the development of such meteorosensitive architectural systems based on the biomimetic transfer of the hygroscopic actuation of plant cones. It provides a summary of five years of research by the authors on architectural systems which utilize the hygroscopic qualities of wooden veneer as a naturally produced constituent within weather responsive composite systems, which is presented through an extensive analysis of research samples, prototypes at various scales, and two comprehensive case studies of full scale constructions. •Access and instrumentalisation of computational capacities within organic systems.•Formal complexity through singular parametric differentiation in material behaviour.•Environment cognisant architectural systems with climate dependent formal behaviour.•Embedded biomimetic intelligence through material programming.
In this paper, the authors present research into autonomously responsive architectural systems that adapt to environmental changes using hygroscopic material properties. Instead of using superimposed layers of singular purpose mechanisms - for sensing, actuation, control and power - in the form of high-tech electronic equipment as is emblematic for current approaches to climate responsiveness in architecture, the presented research follows an integrative, no-tech strategy that can be considered to follow biological rather than mechanical principles. In nature plants employ different systems to respond to environmental changes. One particularly promising way is hygroscopic actuation, as it allows for metabolically independent movement and thus provides an interesting model for autonomous, passive and materially embedded responsiveness. The paper presents a comprehensive overview of the parameters, variables and syntactic elements that enable the development of such meteorosensitive architectural systems based on the biomimetic transfer of the hygroscopic actuation of plant cones. It provides a summary of five years of research by the authors on architectural systems which utilize the hygroscopic qualities of wooden veneer as a naturally produced constituent within weather responsive composite systems, which is presented through an extensive analysis of research samples, prototypes at various scales, and two comprehensive case studies of full scale constructions.
Author Menges, Achim
Correa, David
Reichert, Steffen
Author_xml – sequence: 1
  givenname: Steffen
  orcidid: 0000-0002-9611-0292
  surname: Reichert
  fullname: Reichert, Steffen
  email: steffen.reichert@icd.uni-stuttgart.de
– sequence: 2
  givenname: Achim
  surname: Menges
  fullname: Menges, Achim
– sequence: 3
  givenname: David
  orcidid: 0000-0002-4399-7897
  surname: Correa
  fullname: Correa, David
BookMark eNqFkb1uFDEUhS0UJDaBB6BzSTODPeOxx1BBxE-kIBqoLf_cTe4yYy-2d6XteHQcLRVFUlm693zHsr9LchFTBEJec9ZzxuXbXe9t6AfGRc-GnnH2jGz4rHQ3yHm6IBvWRp0Q8_SCXJayY4wNfNQb8ucbVEg5FYgFKx6B2uzvsYKvhwzv6EdMK65Q0VN3wCVgvKPlF8ZCnS0QaIp0tRUy2mU5UVgdhNDGNgZ6f7prvT7t0Z-X0bql7TKUfWq3HSFCKS_J861dCrz6d16Rn58__bj-2t1-_3Jz_eG280Lr2slJTyO3anStfisAmLRBi5EpJ2culdSBgRRSO5jCCBKYhtlqC1vnWn4Yr8ibc-8-p98HKNWsWDwsi42QDsVwNc2DmJiYn45KpfSkxCRalJ-jvj21ZNiafcbV5pPhzDyIMTvTxJgHMYYNpllojPqP8VhtxRRrtrg8Sr4_k9A-6oiQTfEI0UPA3ISZkPAR-i_g_a3T
CitedBy_id crossref_primary_10_1088_0964_1726_25_9_095052
crossref_primary_10_1126_sciadv_aax1311
crossref_primary_10_1557_s43577_022_00470_8
crossref_primary_10_1177_1478077119895216
crossref_primary_10_1080_17480272_2024_2358147
crossref_primary_10_1088_1748_3190_12_1_011001
crossref_primary_10_1016_j_conbuildmat_2021_126195
crossref_primary_10_1089_3dp_2022_0061
crossref_primary_10_1016_j_buildenv_2020_107292
crossref_primary_10_1051_e3sconf_202016608001
crossref_primary_10_1088_1748_3190_ac10af
crossref_primary_10_1080_00038628_2017_1416575
crossref_primary_10_1177_1478077115625522
crossref_primary_10_1002_aisy_202400396
crossref_primary_10_3390_su9030435
crossref_primary_10_3390_biomimetics7010021
crossref_primary_10_1002_advs_202100411
crossref_primary_10_1093_imanum_drad100
crossref_primary_10_1016_j_jobe_2020_101829
crossref_primary_10_1088_1748_3190_acd82e
crossref_primary_10_1016_j_jobe_2021_103942
crossref_primary_10_1080_23744731_2022_2122675
crossref_primary_10_1016_j_jobe_2020_101543
crossref_primary_10_3390_polym13193209
crossref_primary_10_1061_JAEIED_AEENG_1784
crossref_primary_10_3390_land11071055
crossref_primary_10_3390_biomimetics9010048
crossref_primary_10_20396_parc_v14i00_8671581
crossref_primary_10_1002_adma_202001412
crossref_primary_10_1016_j_buildenv_2018_08_028
crossref_primary_10_1080_00038628_2020_1742644
crossref_primary_10_4028_www_scientific_net_AMR_1149_28
crossref_primary_10_1177_1045389X211027954
crossref_primary_10_1098_rsfs_2023_0077
crossref_primary_10_1039_D2SM00519K
crossref_primary_10_3389_fbuil_2024_1385116
crossref_primary_10_1051_e3sconf_202128004014
crossref_primary_10_3390_s21103417
crossref_primary_10_1617_s11527_017_1117_4
crossref_primary_10_3389_fbuil_2020_00095
crossref_primary_10_1002_adsu_202300253
crossref_primary_10_3390_ma12182896
crossref_primary_10_3390_su12114391
crossref_primary_10_1016_j_foar_2022_05_006
crossref_primary_10_1007_s00226_023_01464_8
crossref_primary_10_1108_OHI_02_2021_0028
crossref_primary_10_1080_24751448_2020_1804766
crossref_primary_10_1088_1748_3190_ad475b
crossref_primary_10_1080_17508975_2019_1669134
crossref_primary_10_3390_app10041400
crossref_primary_10_3390_fire5060205
crossref_primary_10_1007_s00226_018_1046_6
crossref_primary_10_1080_17480272_2020_1713885
crossref_primary_10_3390_biomimetics6040058
crossref_primary_10_3390_buildings12010062
crossref_primary_10_1016_j_bioactmat_2020_06_003
crossref_primary_10_1617_s11527_017_1043_5
crossref_primary_10_1002_adma_201703653
crossref_primary_10_1038_s41467_022_31527_6
crossref_primary_10_1016_j_solener_2018_04_047
crossref_primary_10_3390_ma12101664
crossref_primary_10_1088_1742_6596_1906_1_012055
crossref_primary_10_1038_srep39402
crossref_primary_10_1016_j_renene_2024_120679
crossref_primary_10_1016_j_rser_2016_09_018
crossref_primary_10_1088_1748_3190_ad3a4d
crossref_primary_10_1007_s40964_023_00433_8
crossref_primary_10_3389_fbuil_2018_00037
crossref_primary_10_26614_les_wood_2021_v70n02a05
crossref_primary_10_1016_j_indcrop_2017_02_004
crossref_primary_10_3390_su11174684
crossref_primary_10_21625_essd_v5i2_758
crossref_primary_10_1038_natrevmats_2017_82
crossref_primary_10_1371_journal_pone_0205607
crossref_primary_10_1080_17452759_2024_2335233
crossref_primary_10_1016_j_rser_2022_112850
crossref_primary_10_1016_j_compositesb_2024_111645
crossref_primary_10_1088_1748_3190_abdd9e
crossref_primary_10_1016_j_autcon_2020_103450
crossref_primary_10_1016_S1672_6529_16_60423_7
crossref_primary_10_3390_biomimetics9090569
crossref_primary_10_1007_s10570_023_05342_1
crossref_primary_10_1061__ASCE_AE_1943_5568_0000504
crossref_primary_10_1557_s43577_024_00663_3
crossref_primary_10_1038_s41578_020_00251_2
crossref_primary_10_1680_jgrma_23_00039
crossref_primary_10_32548_2023_me_04311
crossref_primary_10_1061__ASCE_AE_1943_5568_0000410
crossref_primary_10_1016_j_rser_2017_05_028
crossref_primary_10_1016_j_istruc_2021_06_073
crossref_primary_10_1016_j_indcrop_2015_03_077
crossref_primary_10_1016_j_conbuildmat_2023_130479
crossref_primary_10_1002_adma_201705616
crossref_primary_10_1108_SASBE_03_2024_0090
crossref_primary_10_3390_su152216119
crossref_primary_10_1186_s10086_023_02105_1
crossref_primary_10_1038_s41467_024_54808_8
crossref_primary_10_1016_j_mtener_2021_100874
crossref_primary_10_51764_smutgd_1296435
crossref_primary_10_1073_pnas_2210351120
crossref_primary_10_1016_j_conbuildmat_2017_12_134
crossref_primary_10_1016_j_jobe_2019_02_013
crossref_primary_10_1088_1361_665X_aa640f
crossref_primary_10_1016_j_enbuild_2017_10_042
crossref_primary_10_3390_en12091729
crossref_primary_10_3130_aijs_82_97
crossref_primary_10_1088_1748_3190_aabe15
crossref_primary_10_1088_1748_3190_ac0c8e
crossref_primary_10_1016_j_enbuild_2020_109968
crossref_primary_10_3390_biomimetics4040075
crossref_primary_10_1098_rsif_2019_0454
crossref_primary_10_3233_FDE_150026
Cites_doi 10.1098/rsif.2011.0395
10.1038/ncomms1336
10.1111/j.1365-2818.1975.tb04004.x
10.1126/science.1140097
10.1002/bate.201110005
10.2749/101686607782359155
10.1088/1748-3182/7/1/015002
10.1002/adfm.201203692
10.1038/ncomms2666
10.1039/b716663j
10.1111/nph.12254
10.1109/IE.2013.23
10.1016/j.jsb.2008.06.008
10.1104/pp.107.108241
10.1038/37745
10.1021/nn300079f
10.1098/rsif.2009.0184
10.1098/rsta.2009.0003
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
7TG
KL.
DOI 10.1016/j.cad.2014.02.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1879-2685
EndPage 69
ExternalDocumentID 10_1016_j_cad_2014_02_010
S0010448514000438
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
7TG
KL.
ID FETCH-LOGICAL-c499t-659531a73bdedf4ee06ad94307b6816769d0e6469be5d3e6e09e8a9aefbbdf423
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Fri Jul 11 08:09:32 EDT 2025
Fri Jul 11 08:24:44 EDT 2025
Tue Jul 01 04:54:02 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hygroscopic actuation
Responsive architecture
Wood structures
Computational design
Passive actuation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-659531a73bdedf4ee06ad94307b6816769d0e6469be5d3e6e09e8a9aefbbdf423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9611-0292
0000-0002-4399-7897
PQID 1677957454
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1758245048
proquest_miscellaneous_1677957454
crossref_primary_10_1016_j_cad_2014_02_010
crossref_citationtrail_10_1016_j_cad_2014_02_010
elsevier_sciencedirect_doi_10_1016_j_cad_2014_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer aided design
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haase, Klaus, Schmid, Sobek, Sedlbauer, Schmidt (br000010) 2011; 88
Schleicher S, Lienhard J, Poppinga S, Masselter T, Speck T, Knippers J. Adaptive façade shading aystems inspired by natural elastic kinematics. In: Proc. int. conf. adapt. archit. 2011.
Scheer, Feil, Zerwer (br000130) 2006
Reyssat, Mahadevan (br000090) 2009; 6
Dinwoodie (br000155) 2000
Knippers, Speck (br000180) 2012; 7
Volkov, Adesina, Markin, Jovanov (br000045) 2008; 146
Reichert, Menges (br000105) 2010
Harrington, Razghandi, Ditsch, Guiducci, Rueggeberg, Dunlop (br000080) 2011; 2
Burgert, Fratzl (br000085) 2009; 367
Bögle A, Schlaich M, Hartz C. Pneumatic structures in motion. In: Domingo A, Lazaro C, editors. Proc. IASS symp. evol. trends des. anal. constr. shell spat. struct. 2009, p. 2019–30.
Sterk (br000020) 2006
Simpson, TenWolde (br000170) 1999
[last accessed: 14.01.2014 16:43].
Kolb (br000125) 2008
Alcorn (br000120) 1996
Ionov (br000200) 2013; 23
Maragkoudaki A. No-mech kinetic responsive architecture. In: Proc. 9th int. conf. intell. environ. 2013. p. 145–50.
Sung DK. Skin deep: breathing life into the layer between man and nature Doris Kim Sung, AIA rep. Univ. Res. 3 (n.d.).
Okabe, Boots, Sugihara, Chiu (br000185) 2009
Abraham, Elbaum (br000050) 2013; 199
Greer L, Pemperton S. Water’s effect on the mechanical behaviour of wood. 2008.
Kretzer M. Towards a new softness. In: Proc. int. conf. adapt. archit. 2011.
Hoadley (br000140) 2000
Cave (br000160) 1975; 104
Wagenführ (br000150) 1999
Dawson, Vincent, Rocca (br000060) 1997; 390
Grosser, Teetz (br000175) 1987
Menges (br000110) 2008; 78
Herzog (br000115) 2008
Göppert, Bergermann, Stein, President (br000005) 2007
Fratzl, Elbaum, Burgert (br000075) 2008; 139
Elbaum, Zaltzman, Burgert, Fratzl (br000070) 2007; 316
Stoychev, Zakharchenko, Turcaud, Dunlop, Ionov (br000205) 2012; 6
Abraham, Tamburu, Klein, Dunlop, Fratzl, Raviv (br000055) 2012; 9
Skaar (br000165) 1988
Elbaum, Gorb, Fratzl (br000065) 2008; 164
Erb, Sander, Grisch, Studart (br000095) 2013; 4
Dietenberger, Green (br000135) 1999
Breiner T, Quarles SL, Huber D. Steam and electrical consumption in a commercial scale lumber dry kiln. In: West. dry kiln. assoc. Corvallis. 1987. p. 83–94.
Menges, Reichert (br000100) 2012; 82
Menges (br000190) 2012
Fratzl (10.1016/j.cad.2014.02.010_br000075) 2008; 139
Simpson (10.1016/j.cad.2014.02.010_br000170) 1999
Dawson (10.1016/j.cad.2014.02.010_br000060) 1997; 390
Hoadley (10.1016/j.cad.2014.02.010_br000140) 2000
Kolb (10.1016/j.cad.2014.02.010_br000125) 2008
Grosser (10.1016/j.cad.2014.02.010_br000175) 1987
Sterk (10.1016/j.cad.2014.02.010_br000020) 2006
Dinwoodie (10.1016/j.cad.2014.02.010_br000155) 2000
Harrington (10.1016/j.cad.2014.02.010_br000080) 2011; 2
Elbaum (10.1016/j.cad.2014.02.010_br000065) 2008; 164
10.1016/j.cad.2014.02.010_br000145
Herzog (10.1016/j.cad.2014.02.010_br000115) 2008
10.1016/j.cad.2014.02.010_br000025
Elbaum (10.1016/j.cad.2014.02.010_br000070) 2007; 316
Okabe (10.1016/j.cad.2014.02.010_br000185) 2009
Menges (10.1016/j.cad.2014.02.010_br000110) 2008; 78
Menges (10.1016/j.cad.2014.02.010_br000100) 2012; 82
10.1016/j.cad.2014.02.010_br000040
Menges (10.1016/j.cad.2014.02.010_br000190) 2012
Burgert (10.1016/j.cad.2014.02.010_br000085) 2009; 367
Stoychev (10.1016/j.cad.2014.02.010_br000205) 2012; 6
Haase (10.1016/j.cad.2014.02.010_br000010) 2011; 88
Abraham (10.1016/j.cad.2014.02.010_br000055) 2012; 9
Abraham (10.1016/j.cad.2014.02.010_br000050) 2013; 199
Knippers (10.1016/j.cad.2014.02.010_br000180) 2012; 7
Cave (10.1016/j.cad.2014.02.010_br000160) 1975; 104
Erb (10.1016/j.cad.2014.02.010_br000095) 2013; 4
Ionov (10.1016/j.cad.2014.02.010_br000200) 2013; 23
Alcorn (10.1016/j.cad.2014.02.010_br000120) 1996
Volkov (10.1016/j.cad.2014.02.010_br000045) 2008; 146
10.1016/j.cad.2014.02.010_br000035
Scheer (10.1016/j.cad.2014.02.010_br000130) 2006
10.1016/j.cad.2014.02.010_br000015
Reichert (10.1016/j.cad.2014.02.010_br000105) 2010
Dietenberger (10.1016/j.cad.2014.02.010_br000135) 1999
10.1016/j.cad.2014.02.010_br000030
10.1016/j.cad.2014.02.010_br000195
Göppert (10.1016/j.cad.2014.02.010_br000005) 2007
Reyssat (10.1016/j.cad.2014.02.010_br000090) 2009; 6
Wagenführ (10.1016/j.cad.2014.02.010_br000150) 1999
Skaar (10.1016/j.cad.2014.02.010_br000165) 1988
References_xml – volume: 146
  start-page: 694
  year: 2008
  end-page: 702
  ident: br000045
  article-title: Kinetics and mechanism of Dionaea muscipula trap closing
  publication-title: J Plant Physiol
– start-page: 28
  year: 2010
  end-page: 34
  ident: br000105
  article-title: Responsive surface structures
  publication-title: Bionik pat. aus. der. natur.
– year: 1996
  ident: br000120
  article-title: Embodied energy coefficients of building materials
– volume: 82
  start-page: 52
  year: 2012
  end-page: 59
  ident: br000100
  article-title: Material capacity: embedded responsiveness
  publication-title: Archit Des
– year: 1987
  ident: br000175
  article-title: Einheimische nutzhölzer
– year: 2006
  ident: br000130
  article-title: Nachhaltigkeit im bereich bauen und wohnen—-ökologische bewertung der Bauholz-Kette
– volume: 23
  start-page: 4555
  year: 2013
  end-page: 4570
  ident: br000200
  article-title: Biomimetic hydrogel-based actuating systems
  publication-title: Adv Funct Mater
– volume: 104
  start-page: 52
  year: 1975
  end-page: 57
  ident: br000160
  article-title: Wood substance as a water-reactive fibre reinforced composite
  publication-title: J Microsc
– year: 1999
  ident: br000150
  article-title: Anatomie des holzes
– year: 2008
  ident: br000115
  article-title: Timber construction manual
– volume: 6
  start-page: 3925
  year: 2012
  end-page: 3934
  ident: br000205
  article-title: Shape-programmed folding of stimuli-responsive polymer bilayers
  publication-title: ACS Nano
– start-page: 282
  year: 2007
  end-page: 287
  ident: br000005
  article-title: A spoked wheel structure for the world’s largest convertible roof—the new Commerzbank Arena in Frankfurt, Germany
  publication-title: Struct Eng Int
– year: 2009
  ident: br000185
  article-title: Spacial tesselations: concepts and applications of Voronoi diagrams
– year: 2006
  ident: br000020
  article-title: Shape control in responsive architectural structures—current reasons & challenges
  publication-title: 4th world conf. struct. control monit
– volume: 2
  start-page: 337
  year: 2011
  ident: br000080
  article-title: Origami-like unfolding of hydro-actuated ice plant seed capsules
  publication-title: Nature Commun
– start-page: 28
  year: 2012
  end-page: 47
  ident: br000190
  article-title: Morphospaces of Robotic Fabrication, from theoretical morphology to design computation and digital fabrication in architecture
  publication-title: Robot. fabr. archit. art. des. proc. robot. archit. conf. 2012
– reference:  [last accessed: 14.01.2014 16:43].
– year: 2000
  ident: br000140
  article-title: Understanding wood
– volume: 367
  start-page: 1541
  year: 2009
  end-page: 1557
  ident: br000085
  article-title: Actuation systems in plants as prototypes for bioinspired devices
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
– volume: 316
  start-page: 884
  year: 2007
  end-page: 886
  ident: br000070
  article-title: The role of wheat awns in the seed dispersal unit
  publication-title: Science
– volume: 7
  year: 2012
  ident: br000180
  article-title: Design and construction principles in nature and architecture
  publication-title: Bioinspir Biomim
– volume: 9
  start-page: 640
  year: 2012
  end-page: 649
  ident: br000055
  article-title: Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn
  publication-title: J R Soc Interface
– reference: Kretzer M. Towards a new softness. In: Proc. int. conf. adapt. archit. 2011.
– year: 2000
  ident: br000155
  article-title: Timber, its nature and behaviour
– reference: Maragkoudaki A. No-mech kinetic responsive architecture. In: Proc. 9th int. conf. intell. environ. 2013. p. 145–50.
– volume: 390
  start-page: 668
  year: 1997
  ident: br000060
  article-title: How pine cones open
  publication-title: Nature
– year: 2008
  ident: br000125
  article-title: Timber engineering: loadbearing structures and component layers
– volume: 164
  start-page: 101
  year: 2008
  end-page: 107
  ident: br000065
  article-title: Structures in the cell wall that enable hygroscopic movement of wheat awns
  publication-title: J Struct Biol
– year: 1988
  ident: br000165
  article-title: Wood–water relations
– reference: Bögle A, Schlaich M, Hartz C. Pneumatic structures in motion. In: Domingo A, Lazaro C, editors. Proc. IASS symp. evol. trends des. anal. constr. shell spat. struct. 2009, p. 2019–30.
– reference: Schleicher S, Lienhard J, Poppinga S, Masselter T, Speck T, Knippers J. Adaptive façade shading aystems inspired by natural elastic kinematics. In: Proc. int. conf. adapt. archit. 2011.
– reference: Greer L, Pemperton S. Water’s effect on the mechanical behaviour of wood. 2008.
– volume: 139
  start-page: 275
  year: 2008
  end-page: 282
  ident: br000075
  article-title: Cellulose fibrils direct plant organ movements
  publication-title: Faraday Discuss
– year: 1999
  ident: br000135
  article-title: Wood handbook: wood as an engineering material
– start-page: 463
  year: 1999
  ident: br000170
  article-title: Physical properties and moisture relations of wood
  publication-title: Wood handb.—wood as an eng. mater
– volume: 199
  start-page: 584
  year: 2013
  end-page: 594
  ident: br000050
  article-title: Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending
  publication-title: New Phytol
– volume: 88
  start-page: 69
  year: 2011
  end-page: 75
  ident: br000010
  article-title: Adaptive textile und folienbasierte Gebäudehüllen
  publication-title: Bautechnik
– reference: Sung DK. Skin deep: breathing life into the layer between man and nature Doris Kim Sung, AIA rep. Univ. Res. 3 (n.d.).
– volume: 4
  start-page: 1712
  year: 2013
  ident: br000095
  article-title: Self-shaping composites with programmable bioinspired microstructures
  publication-title: Nature Commun
– volume: 6
  start-page: 951
  year: 2009
  end-page: 957
  ident: br000090
  article-title: Hygromorphs: from pine cones to biomimetic bilayers
  publication-title: J R Soc Interface
– volume: 78
  start-page: 39
  year: 2008
  end-page: 41
  ident: br000110
  article-title: Material performance—responsive surface structures: instrumentalising moisture-content activated dimensional changes of timber compoments
  publication-title: Archit Des
– reference: Breiner T, Quarles SL, Huber D. Steam and electrical consumption in a commercial scale lumber dry kiln. In: West. dry kiln. assoc. Corvallis. 1987. p. 83–94.
– ident: 10.1016/j.cad.2014.02.010_br000030
– volume: 9
  start-page: 640
  year: 2012
  ident: 10.1016/j.cad.2014.02.010_br000055
  article-title: Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2011.0395
– volume: 2
  start-page: 337
  year: 2011
  ident: 10.1016/j.cad.2014.02.010_br000080
  article-title: Origami-like unfolding of hydro-actuated ice plant seed capsules
  publication-title: Nature Commun
  doi: 10.1038/ncomms1336
– year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000115
– year: 1999
  ident: 10.1016/j.cad.2014.02.010_br000150
– volume: 104
  start-page: 52
  year: 1975
  ident: 10.1016/j.cad.2014.02.010_br000160
  article-title: Wood substance as a water-reactive fibre reinforced composite
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.1975.tb04004.x
– year: 2006
  ident: 10.1016/j.cad.2014.02.010_br000130
– year: 2000
  ident: 10.1016/j.cad.2014.02.010_br000155
– volume: 316
  start-page: 884
  year: 2007
  ident: 10.1016/j.cad.2014.02.010_br000070
  article-title: The role of wheat awns in the seed dispersal unit
  publication-title: Science
  doi: 10.1126/science.1140097
– ident: 10.1016/j.cad.2014.02.010_br000145
– ident: 10.1016/j.cad.2014.02.010_br000015
– volume: 82
  start-page: 52
  year: 2012
  ident: 10.1016/j.cad.2014.02.010_br000100
  article-title: Material capacity: embedded responsiveness
  publication-title: Archit Des
– year: 2006
  ident: 10.1016/j.cad.2014.02.010_br000020
  article-title: Shape control in responsive architectural structures—current reasons & challenges
– year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000125
– volume: 88
  start-page: 69
  year: 2011
  ident: 10.1016/j.cad.2014.02.010_br000010
  article-title: Adaptive textile und folienbasierte Gebäudehüllen
  publication-title: Bautechnik
  doi: 10.1002/bate.201110005
– year: 1988
  ident: 10.1016/j.cad.2014.02.010_br000165
– start-page: 282
  year: 2007
  ident: 10.1016/j.cad.2014.02.010_br000005
  article-title: A spoked wheel structure for the world’s largest convertible roof—the new Commerzbank Arena in Frankfurt, Germany
  publication-title: Struct Eng Int
  doi: 10.2749/101686607782359155
– year: 1996
  ident: 10.1016/j.cad.2014.02.010_br000120
– volume: 7
  year: 2012
  ident: 10.1016/j.cad.2014.02.010_br000180
  article-title: Design and construction principles in nature and architecture
  publication-title: Bioinspir Biomim
  doi: 10.1088/1748-3182/7/1/015002
– ident: 10.1016/j.cad.2014.02.010_br000195
– volume: 23
  start-page: 4555
  year: 2013
  ident: 10.1016/j.cad.2014.02.010_br000200
  article-title: Biomimetic hydrogel-based actuating systems
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201203692
– volume: 4
  start-page: 1712
  year: 2013
  ident: 10.1016/j.cad.2014.02.010_br000095
  article-title: Self-shaping composites with programmable bioinspired microstructures
  publication-title: Nature Commun
  doi: 10.1038/ncomms2666
– start-page: 28
  year: 2010
  ident: 10.1016/j.cad.2014.02.010_br000105
  article-title: Responsive surface structures
– ident: 10.1016/j.cad.2014.02.010_br000025
– year: 1999
  ident: 10.1016/j.cad.2014.02.010_br000135
– year: 2000
  ident: 10.1016/j.cad.2014.02.010_br000140
– start-page: 463
  year: 1999
  ident: 10.1016/j.cad.2014.02.010_br000170
  article-title: Physical properties and moisture relations of wood
– volume: 139
  start-page: 275
  year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000075
  article-title: Cellulose fibrils direct plant organ movements
  publication-title: Faraday Discuss
  doi: 10.1039/b716663j
– year: 2009
  ident: 10.1016/j.cad.2014.02.010_br000185
– volume: 199
  start-page: 584
  year: 2013
  ident: 10.1016/j.cad.2014.02.010_br000050
  article-title: Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending
  publication-title: New Phytol
  doi: 10.1111/nph.12254
– ident: 10.1016/j.cad.2014.02.010_br000040
  doi: 10.1109/IE.2013.23
– volume: 164
  start-page: 101
  year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000065
  article-title: Structures in the cell wall that enable hygroscopic movement of wheat awns
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2008.06.008
– ident: 10.1016/j.cad.2014.02.010_br000035
– volume: 78
  start-page: 39
  year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000110
  article-title: Material performance—responsive surface structures: instrumentalising moisture-content activated dimensional changes of timber compoments
  publication-title: Archit Des
– volume: 146
  start-page: 694
  year: 2008
  ident: 10.1016/j.cad.2014.02.010_br000045
  article-title: Kinetics and mechanism of Dionaea muscipula trap closing
  publication-title: J Plant Physiol
  doi: 10.1104/pp.107.108241
– volume: 390
  start-page: 668
  year: 1997
  ident: 10.1016/j.cad.2014.02.010_br000060
  article-title: How pine cones open
  publication-title: Nature
  doi: 10.1038/37745
– volume: 6
  start-page: 3925
  year: 2012
  ident: 10.1016/j.cad.2014.02.010_br000205
  article-title: Shape-programmed folding of stimuli-responsive polymer bilayers
  publication-title: ACS Nano
  doi: 10.1021/nn300079f
– volume: 6
  start-page: 951
  year: 2009
  ident: 10.1016/j.cad.2014.02.010_br000090
  article-title: Hygromorphs: from pine cones to biomimetic bilayers
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2009.0184
– start-page: 28
  year: 2012
  ident: 10.1016/j.cad.2014.02.010_br000190
  article-title: Morphospaces of Robotic Fabrication, from theoretical morphology to design computation and digital fabrication in architecture
– year: 1987
  ident: 10.1016/j.cad.2014.02.010_br000175
– volume: 367
  start-page: 1541
  year: 2009
  ident: 10.1016/j.cad.2014.02.010_br000085
  article-title: Actuation systems in plants as prototypes for bioinspired devices
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rsta.2009.0003
SSID ssj0002139
Score 2.487506
Snippet In this paper, the authors present research into autonomously responsive architectural systems that adapt to environmental changes using hygroscopic material...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Actuation
Architecture
Autonomous
Biological
Computational design
Construction materials
Hygroscopic actuation
Mathematical models
Passive actuation
Plants (organisms)
Power plants
Responsive architecture
Wood structures
Title Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness
URI https://dx.doi.org/10.1016/j.cad.2014.02.010
https://www.proquest.com/docview/1677957454
https://www.proquest.com/docview/1758245048
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqIzEhBSaJk6csEFFVUDtRKVulh1foYgmFZSBBfHTucsDCkIdGJPYTuJzvjvH331m7MSglxR-BI5vpHSEjcHRIK0TBWE89i2G5Jp-DfQHYW8obkbBqMY6VS4M0SpL7C8wPUfr8kyr7M3WbDKhHF-cSgiMGESxnkUZ7ELSKD97_6Z5eG2_CIERb6h0tbKZc7wSTWKhbZHLdlIS7d--6RdK566nu8HWy5iRXxSPtclqkG6xtQUlwW320cfgN8NWiY9OCMYXVwjO-eUkm06mlLDITbkRNn8hegwnN2Z5lnIMXfPR-PTGYWoAAclynVr-8HZPipfZjMxJF_NsK8ufS3ZtgZY7bNi9uuv0nHJzBSfBSc7cIR1Bv62lb7C5sQBwQ21Ji12aMGoT8dW6EOLk2UBgfQjBjSEiKe-xMVje83dZPc1S2GNca_DASu2CjsSYtE8TkDK0kQABSRw3mFt1q0pK5XHaAONJVRSzR4WWUGQJ5XoKLdFgp19VZoXsxrLCorKV-jF2FLqFZdWOK7sq_KZooUSnkL2-KHx9GQdSBGJJGZxoeSJAANz_3-0P2CoeBQWf7ZDV58-vcIQBztw08xHcZCsX17e9wSeVT_31
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5bDLAfFYxBsjcUKKSBMnTrgBApVHewKJm2XHU7YrmlRQDtz46cwkDoLVqgeu8SOJx_lmJjPzGeDAkpaUcYZBbJUKpMsxMKhckCVpPowdmeSGfw30B2nvTl7dJ_dzcNbWwnBapcf-BtNrtPZXjvxqHk1GI67xJVdCksUgm3jWD5hndqqkA_Mnl9e9wQcgR924sYIJcnhAG9ys07wKw3yhXVkzd3Id7f_V0z9AXWufiyVY9GajOGmebBnmsFyBhU9kgqvw1if7t6JZOSWdQUx8DhIci9NRNR6NuWZRWH8WtnjmDBnBmsyJqhRkvdYb8vFV4NgiYZITpnTiz-sDk15WE5YoN9YFV048-QTbBjB_w93F-e1ZL_DnKwQF-TnTgKkE465RsaXphhIxTI1jOnZl06zLua8uxJT8Z4uJizHFMMeM2byH1lL_KF6DTlmVuA7CGIzQKROiyeSQ6U8LVCp1mUSJRZ5vQNguqy48-TifgfGo2yyzv5okoVkSOow0SWIDDj-GTBrmjVmdZSsr_WX7aNIMs4btt3LV9FlxrMSUWL08a3p9lSeKNtSMPuRrRTIhDNz83u334Gfvtn-jby4H11vwi1qSJr1tGzrTpxfcIXtnanf9fn4HPKAAtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meteorosensitive+architecture%3A+Biomimetic+building+skins+based+on+materially+embedded+and+hygroscopically+enabled+responsiveness&rft.jtitle=Computer+aided+design&rft.au=Reichert%2C+Steffen&rft.au=Menges%2C+Achim&rft.au=Correa%2C+David&rft.date=2015-03-01&rft.issn=0010-4485&rft.volume=60&rft.spage=50&rft.epage=69&rft_id=info:doi/10.1016%2Fj.cad.2014.02.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon