Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU

Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail to wean from mechanical ventilation. There is no single appropriate and convenient predictor or method that can help clinicians to accurately predict weaning outcomes. This study designed an artificial neural network (A...

Full description

Saved in:
Bibliographic Details
Published inRespiratory care Vol. 60; no. 11; p. 1560
Main Authors Kuo, Hung-Ju, Chiu, Hung-Wen, Lee, Chun-Nin, Chen, Tzu-Tao, Chang, Chih-Cheng, Bien, Mauo-Ying
Format Journal Article
LanguageEnglish
Published United States 01.11.2015
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail to wean from mechanical ventilation. There is no single appropriate and convenient predictor or method that can help clinicians to accurately predict weaning outcomes. This study designed an artificial neural network (ANN) model for predicting successful extubation in mechanically ventilated patients. Ready-to-wean subjects (N = 121) hospitalized in medical ICUs were recruited and randomly divided into training (n = 76) and test (n = 45) sets. Eight variables consisting of age, reasons for intubation, duration of mechanical ventilation, Acute Physiology and Chronic Health Evaluation II score, mean inspiratory and expiratory times, mean breathing frequency, and mean expiratory tidal volume in a 30-min SBT (pressure support ventilation of 5 cm H2O and PEEP of 5 cm H2O) were selected as the ANN input variables. The prediction performance of the ANN model was compared with the rapid shallow breathing index (RSBI), maximum inspiratory pressure, RSBI at 1 min (RSBI1) and 30 min (RSBI30) in an SBT, and absolute percentage change in RSBI from 1 to 30 min in an SBT (ΔRSBI30) using a confusion matrix and receiver operating characteristic curves. The area under the receiver operating characteristic curves in the test set of the ANN model was 0.83 (95% CI 0.69-0.92, P < .001), which is better than any one of the following predictors: 0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95% CI 0.37-0.67, P = .86) for maximum inspiratory pressure, 0.53 (95% CI 0.37-0.68, P = .79) for RSBI1, 0.60 (95% CI 0.44-0.74, P = .34) for RSBI30, and 0.51 (95% CI 0.36-0.66, P = .91) for ΔRSBI30. Predicting successful extubation based on the ANN model of the test set had a sensitivity of 82%, a specificity of 73%, and an accuracy rate of 80%, with an optimal threshold of ≥ 0.5 selected from the training set. The ANN model improved the accuracy of predicting successful extubation. By applying it clinically, clinicians can select the earliest appropriate weaning time.
AbstractList Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail to wean from mechanical ventilation. There is no single appropriate and convenient predictor or method that can help clinicians to accurately predict weaning outcomes. This study designed an artificial neural network (ANN) model for predicting successful extubation in mechanically ventilated patients. Ready-to-wean subjects (N = 121) hospitalized in medical ICUs were recruited and randomly divided into training (n = 76) and test (n = 45) sets. Eight variables consisting of age, reasons for intubation, duration of mechanical ventilation, Acute Physiology and Chronic Health Evaluation II score, mean inspiratory and expiratory times, mean breathing frequency, and mean expiratory tidal volume in a 30-min SBT (pressure support ventilation of 5 cm H2O and PEEP of 5 cm H2O) were selected as the ANN input variables. The prediction performance of the ANN model was compared with the rapid shallow breathing index (RSBI), maximum inspiratory pressure, RSBI at 1 min (RSBI1) and 30 min (RSBI30) in an SBT, and absolute percentage change in RSBI from 1 to 30 min in an SBT (ΔRSBI30) using a confusion matrix and receiver operating characteristic curves. The area under the receiver operating characteristic curves in the test set of the ANN model was 0.83 (95% CI 0.69-0.92, P < .001), which is better than any one of the following predictors: 0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95% CI 0.37-0.67, P = .86) for maximum inspiratory pressure, 0.53 (95% CI 0.37-0.68, P = .79) for RSBI1, 0.60 (95% CI 0.44-0.74, P = .34) for RSBI30, and 0.51 (95% CI 0.36-0.66, P = .91) for ΔRSBI30. Predicting successful extubation based on the ANN model of the test set had a sensitivity of 82%, a specificity of 73%, and an accuracy rate of 80%, with an optimal threshold of ≥ 0.5 selected from the training set. The ANN model improved the accuracy of predicting successful extubation. By applying it clinically, clinicians can select the earliest appropriate weaning time.
Author Chang, Chih-Cheng
Lee, Chun-Nin
Chen, Tzu-Tao
Chiu, Hung-Wen
Kuo, Hung-Ju
Bien, Mauo-Ying
Author_xml – sequence: 1
  givenname: Hung-Ju
  surname: Kuo
  fullname: Kuo, Hung-Ju
  organization: Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan. Graduate Institute of Biomedical Informatics
– sequence: 2
  givenname: Hung-Wen
  surname: Chiu
  fullname: Chiu, Hung-Wen
  organization: Graduate Institute of Biomedical Informatics
– sequence: 3
  givenname: Chun-Nin
  surname: Lee
  fullname: Lee, Chun-Nin
  organization: Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan. School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 4
  givenname: Tzu-Tao
  surname: Chen
  fullname: Chen, Tzu-Tao
  organization: Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
– sequence: 5
  givenname: Chih-Cheng
  surname: Chang
  fullname: Chang, Chih-Cheng
  organization: Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
– sequence: 6
  givenname: Mauo-Ying
  surname: Bien
  fullname: Bien, Mauo-Ying
  email: mybien@tmu.edu.tw
  organization: School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan. Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan. mybien@tmu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26329358$$D View this record in MEDLINE/PubMed
BookMark eNo1j0lPwzAYRC0EogtcOSL_gRRvWXysKpZIhXKgcKzs-AsYEjtyHFD_PQ3L6UkzmifNDB077wChC0oWghb5VYC-q1SABeGZKI7QlErBE56lYoJmff9OCMtEKk_RhGWcSZ4WU9SWbRf8J7TgIrYOxzfAjwGMraL1DvsaPx8a26joA34B5ax7xZshVr6FHus9Vg4vQ7S1raxq8AMM4Qfxy4ePUajw_Wg7hOVqe4ZOatX0cP7HOdreXD-t7pL15rZcLddJJaSMScbygopaasaJKggIJRnjnADRYFiqai0M1QU3kuZZlYKQgmgyLigjJgc2R5e_3m7QLZhdF2yrwn73_5t9A9pbWzs
CitedBy_id crossref_primary_10_1016_j_amjmed_2023_05_015
crossref_primary_10_1088_1361_6579_aace95
crossref_primary_10_3389_fmed_2023_1167445
crossref_primary_10_1007_s10877_024_01171_0
crossref_primary_10_1080_14767058_2018_1487395
crossref_primary_10_1109_ACCESS_2019_2946980
crossref_primary_10_1002_kjm2_12269
crossref_primary_10_1111_aas_12959
crossref_primary_10_1016_j_iccn_2023_103551
crossref_primary_10_1016_j_ijmedinf_2021_104469
crossref_primary_10_1186_s13054_021_03864_3
crossref_primary_10_1109_JBHI_2024_3379998
crossref_primary_10_1038_s41598_023_47452_7
crossref_primary_10_2139_ssrn_4163713
crossref_primary_10_4187_respcare_05949
crossref_primary_10_1016_j_bspc_2021_102847
crossref_primary_10_1016_j_aucc_2025_101203
crossref_primary_10_1038_s41598_025_93516_1
crossref_primary_10_1097_AIA_0000000000000221
crossref_primary_10_3389_fped_2021_734753
crossref_primary_10_3390_jcm8101709
crossref_primary_10_1016_j_dss_2017_01_007
crossref_primary_10_1016_j_artmed_2021_102087
crossref_primary_10_1016_j_aucc_2016_03_004
crossref_primary_10_1111_pan_13792
crossref_primary_10_1186_s13040_022_00309_7
crossref_primary_10_23736_S0375_9393_18_12627_7
crossref_primary_10_3390_jcm13051505
crossref_primary_10_1016_j_bspc_2021_103170
crossref_primary_10_1016_j_chest_2021_06_030
crossref_primary_10_3389_fmed_2022_961252
crossref_primary_10_3390_jpm12030501
crossref_primary_10_1098_rsta_2020_0363
crossref_primary_10_3390_bioengineering11060626
crossref_primary_10_2139_ssrn_3397530
crossref_primary_10_35712_aig_v3_i2_66
crossref_primary_10_1186_s13054_021_03802_3
crossref_primary_10_1038_s41598_024_71548_3
crossref_primary_10_3390_jcm11092520
crossref_primary_10_5005_jp_journals_10071_24663
crossref_primary_10_1287_mnsc_2021_01427
crossref_primary_10_3390_jcm7090240
crossref_primary_10_3390_medicina58030360
crossref_primary_10_1007_s11517_017_1631_0
crossref_primary_10_1155_2018_6820975
ContentType Journal Article
Copyright Copyright © 2015 by Daedalus Enterprises.
Copyright_xml – notice: Copyright © 2015 by Daedalus Enterprises.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.4187/respcare.03648
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1943-3654
ExternalDocumentID 26329358
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
04C
123
1KJ
29P
36B
53G
5VS
6PF
8RF
AAQQT
AAWTL
AAYJJ
ACBNA
ACCJX
ADBBV
ADOJX
AENEX
AFFNX
AGATL
ALMA_UNASSIGNED_HOLDINGS
BMSDO
BTFSW
CGR
CUY
CVF
EBD
EBS
ECM
ECT
EIF
EIHBH
EJD
F5P
H13
HW5
INR
JXZBJ
MJL
N4W
NPM
OHT
OK1
PV9
RHI
RZL
SJN
WH7
WHG
XOL
XZL
YJK
YOJ
YQI
YQJ
ZXP
ID FETCH-LOGICAL-c499t-627814f9b230a80e4a922330e0bed25afb4d1b83d9176c5e4940b014f9120d7e2
IngestDate Thu Apr 03 07:06:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords spontaneous breathing trial
artificial neural network
airway extubation
weaning prediction
receiver operating characteristic curve
rapid shallow breathing index
Language English
License Copyright © 2015 by Daedalus Enterprises.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-627814f9b230a80e4a922330e0bed25afb4d1b83d9176c5e4940b014f9120d7e2
OpenAccessLink http://rc.rcjournal.com/content/respcare/60/11/1560.full.pdf
PMID 26329358
ParticipantIDs pubmed_primary_26329358
PublicationCentury 2000
PublicationDate 2015-Nov
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Respiratory care
PublicationTitleAlternate Respir Care
PublicationYear 2015
SSID ssj0026459
Score 2.3364992
Snippet Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail to wean from mechanical ventilation. There is no single appropriate and...
SourceID pubmed
SourceType Index Database
StartPage 1560
SubjectTerms Aged
Aged, 80 and over
Airway Extubation
Female
Forecasting - methods
Humans
Intensive Care Units
Lung - physiopathology
Male
Middle Aged
Models, Biological
Neural Networks (Computer)
Predictive Value of Tests
Random Allocation
Respiration
Respiration, Artificial
Respiratory Function Tests
ROC Curve
Ventilator Weaning
Title Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU
URI https://www.ncbi.nlm.nih.gov/pubmed/26329358
Volume 60
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLbKkKa9TBu7sKvOw8TLMMvFSZNHVA0VJFg1pYM3ZCeuqAQpKs1D-QH73TvHduqsYgL2klZ2bDk5n51z82fGvlSp7KsgrniaRZKLKhQ8E1XJ0bwuI5FpInmjbIuTdDgWR2fJWa_3u5O11CzUXnl7576S_5EqlqFcaZfsIyS76hQL8D_KF68oYbw-SMbWI2AcfG2-4mhOkZdWDfxFuUCXZFd_PdXSuEB-NAscir4hvRPn9v7cJAuR35x4OsyPSQynDuUqjnM4GHfV2J-dAD3ljvmAkPG8DnEF4UeNTx2YNqviU72eBDS4aGp-Mq397XYpLG4bXshZ1y8RJm6Dnvms2LU0FzGPU8sR3S629vCAFlRhZ-mkLd13rekiJK_IwRwfjB5ojwKnWfdGlMn1lZEwcc9TXPf-2jWO7bZqg22gtUHHp5LPx5ntRLdj6T5pKN_-HgiRSbvGa4aJUVCKF-y5syxg38LkJevpeos9PXa5E1tsZ2RZype7UPhNdze7sAMjz1--fMWuOrCCaQ0IK_CwgtkEPKzAwQpaWIFagqzBwwosrMDBijqU4GAFCKvXbHzwvRgMuTuVg5doHS94GhFL2iRXaLzKLNBC5qhixoEOlK6iRE4UzniVxVUe9tMy0SIX5GzHFmEUVH0dvWFP6lmttxlUdFpDluQCbRA0DLQScVrG2A6tDB1J-Y69tW_0_NpSr5y37_r9P2s-sGcejR_Z5gTnuv6EiuNCfTZy_QNjRG5g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+the+Prediction+of+Ventilator+Weaning+Outcomes+by+an+Artificial+Neural+Network+in+a+Medical+ICU&rft.jtitle=Respiratory+care&rft.au=Kuo%2C+Hung-Ju&rft.au=Chiu%2C+Hung-Wen&rft.au=Lee%2C+Chun-Nin&rft.au=Chen%2C+Tzu-Tao&rft.date=2015-11-01&rft.eissn=1943-3654&rft.volume=60&rft.issue=11&rft.spage=1560&rft_id=info:doi/10.4187%2Frespcare.03648&rft_id=info%3Apmid%2F26329358&rft_id=info%3Apmid%2F26329358&rft.externalDocID=26329358