Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming
Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induc...
Saved in:
Published in | Cell stem cell Vol. 14; no. 4; pp. 512 - 522 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.
[Display omitted]
•Tet dioxygenases and TDG glycosylase are essential for fibroblast reprogramming•Tet and TDG mediate demethylation and reactivation of miRNAs critical for MET•Tet enzymes are not required for the reactivation of pluripotency loci
Using triple Tet gene knockout cells, Hu et al. show that Tet activity is required for reprogramming of fibroblasts to iPSCs for activation of key miRNA expression during the MET step. |
---|---|
AbstractList | Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion. Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion. [Display omitted] •Tet dioxygenases and TDG glycosylase are essential for fibroblast reprogramming•Tet and TDG mediate demethylation and reactivation of miRNAs critical for MET•Tet enzymes are not required for the reactivation of pluripotency loci Using triple Tet gene knockout cells, Hu et al. show that Tet activity is required for reprogramming of fibroblasts to iPSCs for activation of key miRNA expression during the MET step. Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion. |
Author | Shi, Yujiang Geno Li, Zheng Zhang, Run-Rui Tang, Fuchou Pei, Duanqing Liu, Wei Guo, Fan Zhang, Lei Chen, Jiekai Hu, Boqiang Hu, Xiao Xu, Gui-Fang Wu, Hai-Ping Xu, Guo-Liang Gao, Juan Dai, Hai-Qiang Mao, Shi-Qing Li, Xianlong |
Author_xml | – sequence: 1 givenname: Xiao surname: Hu fullname: Hu, Xiao organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 3 givenname: Shi-Qing surname: Mao fullname: Mao, Shi-Qing organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 4 givenname: Zheng surname: Li fullname: Li, Zheng organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 5 givenname: Jiekai surname: Chen fullname: Chen, Jiekai organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 6 givenname: Run-Rui surname: Zhang fullname: Zhang, Run-Rui organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 7 givenname: Hai-Ping surname: Wu fullname: Wu, Hai-Ping organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 8 givenname: Juan surname: Gao fullname: Gao, Juan organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 9 givenname: Fan surname: Guo fullname: Guo, Fan organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 10 givenname: Wei surname: Liu fullname: Liu, Wei organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 11 givenname: Gui-Fang surname: Xu fullname: Xu, Gui-Fang organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 12 givenname: Hai-Qiang surname: Dai fullname: Dai, Hai-Qiang organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – sequence: 13 givenname: Yujiang Geno surname: Shi fullname: Shi, Yujiang Geno organization: Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and BCMP, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA – sequence: 14 givenname: Xianlong surname: Li fullname: Li, Xianlong organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China – sequence: 15 givenname: Boqiang surname: Hu fullname: Hu, Boqiang organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China – sequence: 16 givenname: Fuchou surname: Tang fullname: Tang, Fuchou organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China – sequence: 17 givenname: Duanqing surname: Pei fullname: Pei, Duanqing organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China – sequence: 18 givenname: Guo-Liang surname: Xu fullname: Xu, Guo-Liang email: glxu@sibs.ac.cn organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24529596$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uGyEURlGVqvlpX6CLimU3M4UBhkHqJrLdtFKaSK27Rpi5E2MNjAs4kt8-OE42WURZAeKce-F-5-gkTAEQ-kxJTQltv23qlMHXDaG8JrQmhL5DZ7STolJSypOyV4xXQhF1is5T2hAiJCXyAzptuGiUUO0Zul9Cxib0eDm_wr-hdyYDnt9c4jl4yOv9aLKbAl6kBCE7M-JhioUrJ7veezNWeaoWW5fXMB5ul9GE5B4VF_DfyRfd4hmMI_4D2zjdReO9C3cf0fvBjAk-Pa0X6N-PxXL2s7q-vfo1u7yuLFcqVy3hnaKdZaxpeWsbzuWKSAlccF7-JoZO0m5orF2BIIOCriNKMQMD66FvmWEX6Ouxbun9fwcpa--SLc8xAaZd0lQwXhwu2BtQynkjWyIK-uUJ3a089HobnTdxr5_HWoDuCNg4pRRh0Nblx0nmaNyoKdGHBPVGHxLUhwQ1obokWNTmhfpc_VXp-1GCMst7B1En60pEJc8INut-cq_pD19fs7o |
CitedBy_id | crossref_primary_10_2139_ssrn_3155731 crossref_primary_10_1089_biores_2014_0028 crossref_primary_10_1038_s41419_023_06049_8 crossref_primary_10_1186_s13287_022_02707_4 crossref_primary_10_14336_AD_2022_0414 crossref_primary_10_1016_j_stemcr_2016_11_010 crossref_primary_10_1093_pnasnexus_pgac310 crossref_primary_10_15252_embj_201490649 crossref_primary_10_1093_nar_gkv653 crossref_primary_10_7554_eLife_17082 crossref_primary_10_1016_j_scr_2014_03_007 crossref_primary_10_1038_s41392_024_01809_0 crossref_primary_10_1038_s12276_021_00637_4 crossref_primary_10_1186_s13072_015_0016_6 crossref_primary_10_1007_s00018_021_03883_x crossref_primary_10_1007_s11434_015_0905_x crossref_primary_10_1038_s41598_019_57214_z crossref_primary_10_1073_pnas_2107599119 crossref_primary_10_1101_gr_237180_118 crossref_primary_10_1038_s41375_023_02055_z crossref_primary_10_1126_sciadv_abb9149 crossref_primary_10_1038_s41586_018_0586_0 crossref_primary_10_1093_nsr_nwv029 crossref_primary_10_1016_j_celrep_2016_10_081 crossref_primary_10_3390_ijms252111780 crossref_primary_10_1093_nar_gku457 crossref_primary_10_1002_bies_201600178 crossref_primary_10_1038_s41589_020_0618_6 crossref_primary_10_1016_j_dnarep_2016_05_013 crossref_primary_10_1016_j_mce_2017_08_021 crossref_primary_10_1016_j_gde_2017_07_002 crossref_primary_10_1101_gad_295741_116 crossref_primary_10_1016_j_gde_2017_07_001 crossref_primary_10_1016_j_celrep_2020_03_039 crossref_primary_10_1016_j_mam_2017_09_002 crossref_primary_10_1155_2018_2186301 crossref_primary_10_15252_embr_201642402 crossref_primary_10_1016_j_cels_2018_06_012 crossref_primary_10_1016_j_scr_2015_08_010 crossref_primary_10_1038_icb_2015_5 crossref_primary_10_1016_j_gde_2014_08_005 crossref_primary_10_1016_j_gde_2014_08_004 crossref_primary_10_2139_ssrn_3376662 crossref_primary_10_3389_fimmu_2018_02859 crossref_primary_10_1038_s41598_019_43021_z crossref_primary_10_1002_tox_22739 crossref_primary_10_1016_j_celrep_2016_06_068 crossref_primary_10_1126_science_adf3171 crossref_primary_10_1038_s41576_020_00287_8 crossref_primary_10_1038_nature19353 crossref_primary_10_3389_fgene_2017_00204 crossref_primary_10_1186_s13287_018_1109_5 crossref_primary_10_1007_s12015_019_09931_1 crossref_primary_10_1007_s12015_018_9862_5 crossref_primary_10_1016_j_tig_2016_10_007 crossref_primary_10_1038_nchembio_2250 crossref_primary_10_1155_2016_8415010 crossref_primary_10_1002_1878_0261_12082 crossref_primary_10_1038_nchembio_1848 crossref_primary_10_1016_j_xpro_2021_100568 crossref_primary_10_1186_s13072_017_0138_0 crossref_primary_10_26508_lsa_201900516 crossref_primary_10_3390_cells9112484 crossref_primary_10_3390_epigenomes2020010 crossref_primary_10_1038_nature14047 crossref_primary_10_1186_s13287_019_1427_2 crossref_primary_10_1007_s12264_024_01302_2 crossref_primary_10_1016_j_jmb_2020_10_008 crossref_primary_10_3389_fcell_2018_00026 crossref_primary_10_1002_iub_1577 crossref_primary_10_1242_dev_203090 crossref_primary_10_3390_cancers13061333 crossref_primary_10_1186_s13148_022_01323_6 crossref_primary_10_1186_s13059_015_0699_9 crossref_primary_10_3390_cancers15204997 crossref_primary_10_1007_s13770_014_0099_3 crossref_primary_10_3389_fcell_2019_00128 crossref_primary_10_1073_pnas_1510510112 crossref_primary_10_1093_nar_gkac642 crossref_primary_10_1016_j_stem_2018_08_016 crossref_primary_10_1126_sciadv_abm2427 crossref_primary_10_1038_ncomms7188 crossref_primary_10_1093_nar_gkw529 crossref_primary_10_1093_nar_gkz1144 crossref_primary_10_1128_MCB_01172_14 crossref_primary_10_1111_febs_15628 crossref_primary_10_3389_fendo_2023_1235614 crossref_primary_10_3390_cancers14030830 crossref_primary_10_1016_j_molcel_2016_10_013 crossref_primary_10_1016_j_stem_2014_05_002 crossref_primary_10_1016_j_celrep_2017_01_008 crossref_primary_10_1242_jeb_107961 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_3390_ijms20040938 crossref_primary_10_1038_s41419_020_2684_9 crossref_primary_10_1093_abbs_gmv083 crossref_primary_10_1186_s13287_020_02047_1 crossref_primary_10_1111_imr_13056 crossref_primary_10_1016_j_isci_2024_109252 crossref_primary_10_3389_fcell_2020_630754 crossref_primary_10_3390_cells10112888 crossref_primary_10_1371_journal_pone_0156839 crossref_primary_10_1038_s41598_017_07458_4 crossref_primary_10_1186_s13024_016_0106_3 crossref_primary_10_1021_acs_est_0c07359 crossref_primary_10_3389_fcell_2024_1416325 crossref_primary_10_1289_EHP181 crossref_primary_10_1016_j_bmcl_2015_01_070 crossref_primary_10_1186_s13072_023_00514_6 crossref_primary_10_1016_j_stemcr_2014_08_003 crossref_primary_10_1016_j_reth_2022_09_002 crossref_primary_10_1002_wdev_206 crossref_primary_10_1186_s13072_017_0143_3 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_1016_j_scr_2014_11_003 crossref_primary_10_1038_nbt_3963 crossref_primary_10_1016_j_cell_2018_05_035 crossref_primary_10_1186_s13148_020_00892_8 crossref_primary_10_1038_s41556_018_0195_z crossref_primary_10_1016_j_tcb_2018_10_002 crossref_primary_10_1038_cddis_2017_497 crossref_primary_10_1093_abbs_gmx122 crossref_primary_10_3390_ijms22020897 crossref_primary_10_1016_j_freeradbiomed_2019_10_010 crossref_primary_10_3389_fphar_2020_596239 crossref_primary_10_1126_sciadv_aba1593 crossref_primary_10_3390_cells13070628 crossref_primary_10_1016_j_stemcr_2016_05_014 crossref_primary_10_3906_biy_1506_95 crossref_primary_10_1021_jacs_1c03815 crossref_primary_10_1124_jpet_120_000324 crossref_primary_10_1186_s13059_021_02384_1 crossref_primary_10_1084_jem_20161149 crossref_primary_10_1093_hmg_ddab046 crossref_primary_10_3389_freae_2024_1409355 crossref_primary_10_1016_j_jgg_2016_04_001 crossref_primary_10_1016_j_tcb_2015_12_003 crossref_primary_10_1038_srep13691 crossref_primary_10_1166_jbt_2022_3056 crossref_primary_10_1002_cjoc_202300576 crossref_primary_10_1038_nchem_2778 crossref_primary_10_1007_s12015_022_10438_5 crossref_primary_10_1002_anie_201807845 crossref_primary_10_1016_j_stemcr_2017_07_013 crossref_primary_10_1186_s13578_023_01160_x crossref_primary_10_1038_s41392_023_01537_x crossref_primary_10_1007_s10555_020_09882_x crossref_primary_10_1155_2018_8764384 crossref_primary_10_1016_j_celrep_2020_01_065 crossref_primary_10_1126_sciadv_aaz7364 crossref_primary_10_1002_bies_201600126 crossref_primary_10_1186_s13148_021_01131_4 crossref_primary_10_1016_j_celrep_2016_04_058 crossref_primary_10_1074_jbc_TM118_000831 crossref_primary_10_1038_s41419_017_0234_x crossref_primary_10_1007_s00018_017_2721_8 crossref_primary_10_1016_j_molcel_2020_11_045 crossref_primary_10_3390_genes12111704 crossref_primary_10_2217_rme_15_79 crossref_primary_10_1128_MCB_00587_15 crossref_primary_10_1186_s13069_015_0035_8 crossref_primary_10_1016_j_scr_2020_101755 crossref_primary_10_1038_nrg_2017_33 crossref_primary_10_1101_gad_248005_114 crossref_primary_10_1007_s11434_015_0919_4 crossref_primary_10_1016_j_bbadis_2016_08_014 crossref_primary_10_15252_embj_2019101681 crossref_primary_10_1016_j_matbio_2018_02_015 crossref_primary_10_1038_nchembio_2531 crossref_primary_10_1016_j_stem_2018_05_020 crossref_primary_10_1016_j_ijbiomac_2019_06_143 crossref_primary_10_1016_j_celrep_2015_12_044 crossref_primary_10_15252_embj_201899165 crossref_primary_10_1242_dev_114249 crossref_primary_10_1080_15592294_2019_1695332 crossref_primary_10_15252_embj_201490446 crossref_primary_10_1007_s00018_023_04907_4 crossref_primary_10_1242_dev_182170 crossref_primary_10_3389_fcell_2020_00760 crossref_primary_10_1016_j_biomaterials_2019_119743 crossref_primary_10_1038_s41556_023_01191_z crossref_primary_10_1016_j_stem_2014_08_003 crossref_primary_10_1007_s10815_020_01744_3 crossref_primary_10_1038_ncomms11452 crossref_primary_10_1002_pros_23201 crossref_primary_10_1074_jbc_M115_693861 crossref_primary_10_1590_1414_431x20154026 crossref_primary_10_1016_j_stem_2014_03_007 crossref_primary_10_3390_cancers14030765 crossref_primary_10_2217_rme_2018_0041 crossref_primary_10_1016_j_lfs_2019_117101 crossref_primary_10_2174_1574888X16666210714152730 crossref_primary_10_1016_j_cell_2014_11_040 crossref_primary_10_1038_nrm_2016_8 crossref_primary_10_1042_BSR20181730 crossref_primary_10_1080_15592294_2017_1292189 crossref_primary_10_1186_s13059_020_02087_z crossref_primary_10_1038_s41594_020_00526_w crossref_primary_10_1038_s41421_018_0074_6 crossref_primary_10_1016_j_ygeno_2014_08_012 crossref_primary_10_1016_j_tig_2014_07_005 crossref_primary_10_1016_j_ygeno_2014_08_015 crossref_primary_10_1038_nrc3781 crossref_primary_10_1016_j_ygeno_2014_08_018 crossref_primary_10_1158_0008_5472_CAN_18_1234 crossref_primary_10_1371_journal_pone_0288005 crossref_primary_10_1111_febs_14934 crossref_primary_10_2217_epi_2017_0021 crossref_primary_10_1155_2017_8936156 crossref_primary_10_1016_j_taap_2017_11_015 crossref_primary_10_1038_s41419_018_0335_1 crossref_primary_10_1093_nar_gkv392 crossref_primary_10_1101_gad_255109_114 crossref_primary_10_1038_s41586_019_1825_8 crossref_primary_10_15252_embr_202051644 crossref_primary_10_1016_j_gde_2014_09_006 crossref_primary_10_1016_j_stem_2016_06_017 crossref_primary_10_1016_j_reth_2024_12_014 crossref_primary_10_1016_j_gene_2016_07_025 crossref_primary_10_1002_ange_201807845 crossref_primary_10_1242_bio_016402 crossref_primary_10_1111_cpr_12426 crossref_primary_10_5483_BMBRep_2014_47_11_223 crossref_primary_10_1186_s13059_022_02762_3 crossref_primary_10_1038_s41388_019_1081_2 crossref_primary_10_1080_10495398_2016_1140056 crossref_primary_10_1042_BST20240291 crossref_primary_10_1089_cell_2016_0020 crossref_primary_10_21053_ceo_2023_01340 crossref_primary_10_1073_pnas_1608679113 crossref_primary_10_1021_jacs_6b12180 crossref_primary_10_1016_j_isci_2022_105003 crossref_primary_10_1093_nar_gkv283 crossref_primary_10_1002_cbf_3101 crossref_primary_10_2174_1574888X18666230417084518 crossref_primary_10_1038_nature20095 crossref_primary_10_12688_f1000research_25637_2 |
Cites_doi | 10.1016/j.molcel.2013.01.032 10.1126/science.1210597 10.1038/nsmb.1476 10.1038/nature09672 10.1016/j.cell.2009.11.007 10.1016/j.devcel.2012.12.015 10.1038/ng1089 10.1016/j.cell.2006.07.024 10.1016/j.stem.2011.07.010 10.1128/MCB.01380-07 10.1126/science.1212483 10.1098/rstb.2011.0330 10.1038/ncb1722 10.1038/emboj.2012.331 10.1038/nrm3589 10.1126/science.1170116 10.1016/j.cell.2013.06.026 10.1038/nature11333 10.1016/j.cell.2013.01.012 10.1038/nature10443 10.1146/annurev.biochem.74.010904.153721 10.1016/j.molcel.2012.11.001 10.1038/embor.2011.11 10.1038/nature11925 10.1016/j.stem.2010.04.015 10.1073/pnas.1212769110 10.1038/nprot.2012.137 10.1126/science.1229277 10.1016/j.stem.2013.08.005 10.1016/j.stem.2013.01.016 10.1126/science.1210944 10.1038/ng.2807 10.1038/cr.2011.51 10.1016/j.stem.2013.02.005 10.1016/j.cell.2012.11.039 10.1016/j.cell.2012.04.027 10.1016/j.stem.2010.04.014 10.1074/jbc.C111.284620 10.1016/j.cell.2011.06.020 10.1126/science.1160810 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 7TM 8FD FR3 H94 P64 |
DOI | 10.1016/j.stem.2014.01.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 522 |
ExternalDocumentID | 24529596 10_1016_j_stem_2014_01_001 S1934590914000022 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT 0SF CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 7TM 8FD EFKBS FR3 H94 P64 |
ID | FETCH-LOGICAL-c499t-6048918c332646c2447b077e45449345f8718f2ccbe50f9e880993aef3ded63a3 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Tue Aug 05 10:28:24 EDT 2025 Fri Jul 11 05:00:28 EDT 2025 Thu Jan 02 23:00:12 EST 2025 Tue Jul 01 01:08:25 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Fri Feb 23 02:30:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-6048918c332646c2447b077e45449345f8718f2ccbe50f9e880993aef3ded63a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590914000022 |
PMID | 24529596 |
PQID | 1514427605 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1534809453 proquest_miscellaneous_1514427605 pubmed_primary_24529596 crossref_citationtrail_10_1016_j_stem_2014_01_001 crossref_primary_10_1016_j_stem_2014_01_001 elsevier_sciencedirect_doi_10_1016_j_stem_2014_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-03 |
PublicationDateYYYYMMDD | 2014-04-03 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Song, Poliseno, Song, Ala, Webster, Ng, Beringer, Brikbak, Yuan, Cantley (bib31) 2013; 154 Cortellino, Xu, Sannai, Moore, Caretti, Cigliano, Le Coz, Devarajan, Wessels, Soprano (bib5) 2011; 146 Gu, Guo, Yang, Wu, Xu, Liu, Xie, Shi, He, Jin (bib14) 2011; 477 Kagiwada, Kurimoto, Hirota, Yamaji, Saitou (bib21) 2013; 32 Chen, Liu, Chen, Yang, Chen, Liu, Zhao, Mo, Song, Guo (bib2) 2011; 21 Gao, Chen, Li, Wu, Huang, Liu, Kou, Zhang, Huang, Jiang (bib11) 2013; 12 Cortázar, Kunz, Selfridge, Lettieri, Saito, MacDougall, Wirz, Schuermann, Jacobs, Siegrist (bib4) 2011; 470 Yu, Hon, Szulwach, Song, Jin, Ren, He (bib39) 2012; 7 Chen, Guo, Zhang, Wu, Yang, Liu, Wang, Hu, Gu, Zhou (bib3) 2013; 45 Epsztejn-Litman, Feldman, Abu-Remaileh, Shufaro, Gerson, Ueda, Deplus, Fuks, Shinkai, Cedar, Bergman (bib10) 2008; 15 Thiery, Acloque, Huang, Nieto (bib34) 2009; 139 Yu, Hon, Szulwach, Song, Zhang, Kim, Li, Dai, Shen, Park (bib40) 2012; 149 Goll, Bestor (bib12) 2005; 74 Inoue, Zhang (bib18) 2011; 334 Wang, Chen, Hu, Wei, Qin, Gao, Zhang, Jiang, Li, Liu (bib37) 2011; 12 Samavarchi-Tehrani, Golipour, David, Sung, Beyer, Datti, Woltjen, Nagy, Wrana (bib28) 2010; 7 Costa, Ding, Theunissen, Faiola, Hore, Shliaha, Fidalgo, Saunders, Lawrence, Dietmann (bib6) 2013; 495 Gurdon, Melton (bib15) 2008; 322 Seisenberger, Andrews, Krueger, Arand, Walter, Santos, Popp, Thienpont, Dean, Reik (bib29) 2012; 48 Li, Liang, Ni, Zhou, Qing, Li, He, Chen, Li, Zhuang (bib23) 2010; 7 Tahiliani, Koh, Shen, Pastor, Bandukwala, Brudno, Agarwal, Iyer, Liu, Aravind, Rao (bib32) 2009; 324 Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib27) 2012; 151 Ito, Shen, Dai, Wu, Collins, Swenberg, He, Zhang (bib19) 2011; 333 Li, Pu, Hirasawa, Li, Huang, Zeng, Jing, Chen, Li, Sasaki, Xu (bib22) 2007; 27 Takahashi, Yamanaka (bib33) 2006; 126 Seisenberger, Peat, Hore, Santos, Dean, Reik (bib30) 2013; 368 Tsubouchi, Soza-Ried, Brown, Piccolo, Cantone, Landeira, Bagci, Hochegger, Merkenschlager, Fisher (bib35) 2013; 152 Wang, Guo, Hong, Liu, Wei, Lu, Gao, Ye, Zhou, Chen (bib38) 2013; 110 Pastor, Aravind, Rao (bib25) 2013; 14 He, Li, Li, Liu, Wang, Tang, Ding, Jia, Chen, Li (bib17) 2011; 333 Doege, Inoue, Yamashita, Rhee, Travis, Fujita, Guarnieri, Bhagat, Vanti, Shih (bib9) 2012; 488 Maiti, Drohat (bib24) 2011; 286 Bagci, Fisher (bib1) 2013; 13 Gregory, Bert, Paterson, Barry, Tsykin, Farshid, Vadas, Khew-Goodall, Goodall (bib13) 2008; 10 Vincent, Huang, Chen, Feng, Calvopiña, Nee, Lee, Le, Yoon, Faull (bib36) 2013; 12 Piccolo, Bagci, Brown, Landeira, Soza-Ried, Feytout, Mooijman, Hajkova, Leitch, Tada (bib26) 2013; 49 Jaenisch, Bird (bib20) 2003; 33 Hackett, Sengupta, Zylicz, Murakami, Lee, Down, Surani (bib16) 2012; 339 Dawlaty, Breiling, Le, Raddatz, Barrasa, Cheng, Gao, Powell, Li, Xu (bib8) 2013; 24 Dawlaty, Ganz, Powell, Hu, Markoulaki, Cheng, Gao, Kim, Choi, Page, Jaenisch (bib7) 2011; 9 Gurdon (10.1016/j.stem.2014.01.001_bib15) 2008; 322 Yu (10.1016/j.stem.2014.01.001_bib40) 2012; 149 Cortellino (10.1016/j.stem.2014.01.001_bib5) 2011; 146 Inoue (10.1016/j.stem.2014.01.001_bib18) 2011; 334 Yu (10.1016/j.stem.2014.01.001_bib39) 2012; 7 Samavarchi-Tehrani (10.1016/j.stem.2014.01.001_bib28) 2010; 7 Costa (10.1016/j.stem.2014.01.001_bib6) 2013; 495 Thiery (10.1016/j.stem.2014.01.001_bib34) 2009; 139 Tahiliani (10.1016/j.stem.2014.01.001_bib32) 2009; 324 Maiti (10.1016/j.stem.2014.01.001_bib24) 2011; 286 Kagiwada (10.1016/j.stem.2014.01.001_bib21) 2013; 32 Gao (10.1016/j.stem.2014.01.001_bib11) 2013; 12 Polo (10.1016/j.stem.2014.01.001_bib27) 2012; 151 Goll (10.1016/j.stem.2014.01.001_bib12) 2005; 74 Seisenberger (10.1016/j.stem.2014.01.001_bib29) 2012; 48 Cortázar (10.1016/j.stem.2014.01.001_bib4) 2011; 470 Li (10.1016/j.stem.2014.01.001_bib22) 2007; 27 Dawlaty (10.1016/j.stem.2014.01.001_bib8) 2013; 24 Hackett (10.1016/j.stem.2014.01.001_bib16) 2012; 339 Pastor (10.1016/j.stem.2014.01.001_bib25) 2013; 14 Wang (10.1016/j.stem.2014.01.001_bib38) 2013; 110 Gregory (10.1016/j.stem.2014.01.001_bib13) 2008; 10 Jaenisch (10.1016/j.stem.2014.01.001_bib20) 2003; 33 Chen (10.1016/j.stem.2014.01.001_bib3) 2013; 45 Seisenberger (10.1016/j.stem.2014.01.001_bib30) 2013; 368 Chen (10.1016/j.stem.2014.01.001_bib2) 2011; 21 Ito (10.1016/j.stem.2014.01.001_bib19) 2011; 333 Li (10.1016/j.stem.2014.01.001_bib23) 2010; 7 Tsubouchi (10.1016/j.stem.2014.01.001_bib35) 2013; 152 Vincent (10.1016/j.stem.2014.01.001_bib36) 2013; 12 Dawlaty (10.1016/j.stem.2014.01.001_bib7) 2011; 9 Piccolo (10.1016/j.stem.2014.01.001_bib26) 2013; 49 Takahashi (10.1016/j.stem.2014.01.001_bib33) 2006; 126 Wang (10.1016/j.stem.2014.01.001_bib37) 2011; 12 Epsztejn-Litman (10.1016/j.stem.2014.01.001_bib10) 2008; 15 Bagci (10.1016/j.stem.2014.01.001_bib1) 2013; 13 Song (10.1016/j.stem.2014.01.001_bib31) 2013; 154 He (10.1016/j.stem.2014.01.001_bib17) 2011; 333 Doege (10.1016/j.stem.2014.01.001_bib9) 2012; 488 Gu (10.1016/j.stem.2014.01.001_bib14) 2011; 477 24702989 - Cell Stem Cell. 2014 Apr 3;14(4):417-8 |
References_xml | – volume: 15 start-page: 1176 year: 2008 end-page: 1183 ident: bib10 article-title: De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes publication-title: Nat. Struct. Mol. Biol. – volume: 139 start-page: 871 year: 2009 end-page: 890 ident: bib34 article-title: Epithelial-mesenchymal transitions in development and disease publication-title: Cell – volume: 13 start-page: 265 year: 2013 end-page: 269 ident: bib1 article-title: DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division publication-title: Cell Stem Cell – volume: 10 start-page: 593 year: 2008 end-page: 601 ident: bib13 article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 publication-title: Nat. Cell Biol. – volume: 477 start-page: 606 year: 2011 end-page: 610 ident: bib14 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib33 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 21 start-page: 884 year: 2011 end-page: 894 ident: bib2 article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics publication-title: Cell Res. – volume: 24 start-page: 310 year: 2013 end-page: 323 ident: bib8 article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development publication-title: Dev. Cell – volume: 333 start-page: 1300 year: 2011 end-page: 1303 ident: bib19 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science – volume: 488 start-page: 652 year: 2012 end-page: 655 ident: bib9 article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2 publication-title: Nature – volume: 322 start-page: 1811 year: 2008 end-page: 1815 ident: bib15 article-title: Nuclear reprogramming in cells publication-title: Science – volume: 48 start-page: 849 year: 2012 end-page: 862 ident: bib29 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell – volume: 7 start-page: 51 year: 2010 end-page: 63 ident: bib23 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell – volume: 333 start-page: 1303 year: 2011 end-page: 1307 ident: bib17 article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA publication-title: Science – volume: 324 start-page: 930 year: 2009 end-page: 935 ident: bib32 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science – volume: 495 start-page: 370 year: 2013 end-page: 374 ident: bib6 article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency publication-title: Nature – volume: 7 start-page: 2159 year: 2012 end-page: 2170 ident: bib39 article-title: Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine publication-title: Nat. Protoc. – volume: 110 start-page: 2858 year: 2013 end-page: 2863 ident: bib38 article-title: Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 8748 year: 2007 end-page: 8759 ident: bib22 article-title: Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog publication-title: Mol. Cell. Biol. – volume: 14 start-page: 341 year: 2013 end-page: 356 ident: bib25 article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 start-page: 166 year: 2011 end-page: 175 ident: bib7 article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development publication-title: Cell Stem Cell – volume: 286 start-page: 35334 year: 2011 end-page: 35338 ident: bib24 article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites publication-title: J. Biol. Chem. – volume: 470 start-page: 419 year: 2011 end-page: 423 ident: bib4 article-title: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability publication-title: Nature – volume: 12 start-page: 373 year: 2011 end-page: 378 ident: bib37 article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors publication-title: EMBO Rep. – volume: 12 start-page: 453 year: 2013 end-page: 469 ident: bib11 article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming publication-title: Cell Stem Cell – volume: 49 start-page: 1023 year: 2013 end-page: 1033 ident: bib26 article-title: Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion publication-title: Mol. Cell – volume: 33 start-page: 245 year: 2003 end-page: 254 ident: bib20 article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals publication-title: Nat. Genet. – volume: 12 start-page: 470 year: 2013 end-page: 478 ident: bib36 article-title: Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells publication-title: Cell Stem Cell – volume: 146 start-page: 67 year: 2011 end-page: 79 ident: bib5 article-title: Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair publication-title: Cell – volume: 339 start-page: 448 year: 2012 end-page: 452 ident: bib16 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science – volume: 334 start-page: 194 year: 2011 ident: bib18 article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos publication-title: Science – volume: 7 start-page: 64 year: 2010 end-page: 77 ident: bib28 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell – volume: 154 start-page: 311 year: 2013 end-page: 324 ident: bib31 article-title: MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling publication-title: Cell – volume: 152 start-page: 873 year: 2013 end-page: 883 ident: bib35 article-title: DNA synthesis is required for reprogramming mediated by stem cell fusion publication-title: Cell – volume: 149 start-page: 1368 year: 2012 end-page: 1380 ident: bib40 article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome publication-title: Cell – volume: 74 start-page: 481 year: 2005 end-page: 514 ident: bib12 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. – volume: 368 start-page: 20110330 year: 2013 ident: bib30 article-title: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 45 start-page: 1504 year: 2013 end-page: 1509 ident: bib3 article-title: Vitamin C modulates TET1 function during somatic cell reprogramming publication-title: Nat. Genet. – volume: 32 start-page: 340 year: 2013 end-page: 353 ident: bib21 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. – volume: 151 start-page: 1617 year: 2012 end-page: 1632 ident: bib27 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell – volume: 49 start-page: 1023 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib26 article-title: Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.032 – volume: 333 start-page: 1300 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib19 article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine publication-title: Science doi: 10.1126/science.1210597 – volume: 15 start-page: 1176 year: 2008 ident: 10.1016/j.stem.2014.01.001_bib10 article-title: De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1476 – volume: 470 start-page: 419 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib4 article-title: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability publication-title: Nature doi: 10.1038/nature09672 – volume: 139 start-page: 871 year: 2009 ident: 10.1016/j.stem.2014.01.001_bib34 article-title: Epithelial-mesenchymal transitions in development and disease publication-title: Cell doi: 10.1016/j.cell.2009.11.007 – volume: 24 start-page: 310 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib8 article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.12.015 – volume: 33 start-page: 245 issue: Suppl year: 2003 ident: 10.1016/j.stem.2014.01.001_bib20 article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals publication-title: Nat. Genet. doi: 10.1038/ng1089 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.stem.2014.01.001_bib33 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 9 start-page: 166 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib7 article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.07.010 – volume: 27 start-page: 8748 year: 2007 ident: 10.1016/j.stem.2014.01.001_bib22 article-title: Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01380-07 – volume: 334 start-page: 194 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib18 article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos publication-title: Science doi: 10.1126/science.1212483 – volume: 368 start-page: 20110330 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib30 article-title: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2011.0330 – volume: 10 start-page: 593 year: 2008 ident: 10.1016/j.stem.2014.01.001_bib13 article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1722 – volume: 32 start-page: 340 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib21 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. doi: 10.1038/emboj.2012.331 – volume: 14 start-page: 341 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib25 article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3589 – volume: 324 start-page: 930 year: 2009 ident: 10.1016/j.stem.2014.01.001_bib32 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science doi: 10.1126/science.1170116 – volume: 154 start-page: 311 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib31 article-title: MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling publication-title: Cell doi: 10.1016/j.cell.2013.06.026 – volume: 488 start-page: 652 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib9 article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2 publication-title: Nature doi: 10.1038/nature11333 – volume: 152 start-page: 873 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib35 article-title: DNA synthesis is required for reprogramming mediated by stem cell fusion publication-title: Cell doi: 10.1016/j.cell.2013.01.012 – volume: 477 start-page: 606 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib14 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature doi: 10.1038/nature10443 – volume: 74 start-page: 481 year: 2005 ident: 10.1016/j.stem.2014.01.001_bib12 article-title: Eukaryotic cytosine methyltransferases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.010904.153721 – volume: 48 start-page: 849 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib29 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.001 – volume: 12 start-page: 373 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib37 article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors publication-title: EMBO Rep. doi: 10.1038/embor.2011.11 – volume: 495 start-page: 370 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib6 article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency publication-title: Nature doi: 10.1038/nature11925 – volume: 7 start-page: 64 year: 2010 ident: 10.1016/j.stem.2014.01.001_bib28 article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.015 – volume: 110 start-page: 2858 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib38 article-title: Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1212769110 – volume: 7 start-page: 2159 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib39 article-title: Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.137 – volume: 339 start-page: 448 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib16 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science doi: 10.1126/science.1229277 – volume: 13 start-page: 265 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib1 article-title: DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.08.005 – volume: 12 start-page: 470 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib36 article-title: Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.01.016 – volume: 333 start-page: 1303 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib17 article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA publication-title: Science doi: 10.1126/science.1210944 – volume: 45 start-page: 1504 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib3 article-title: Vitamin C modulates TET1 function during somatic cell reprogramming publication-title: Nat. Genet. doi: 10.1038/ng.2807 – volume: 21 start-page: 884 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib2 article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics publication-title: Cell Res. doi: 10.1038/cr.2011.51 – volume: 12 start-page: 453 year: 2013 ident: 10.1016/j.stem.2014.01.001_bib11 article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.02.005 – volume: 151 start-page: 1617 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib27 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 149 start-page: 1368 year: 2012 ident: 10.1016/j.stem.2014.01.001_bib40 article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome publication-title: Cell doi: 10.1016/j.cell.2012.04.027 – volume: 7 start-page: 51 year: 2010 ident: 10.1016/j.stem.2014.01.001_bib23 article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.04.014 – volume: 286 start-page: 35334 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib24 article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.284620 – volume: 146 start-page: 67 year: 2011 ident: 10.1016/j.stem.2014.01.001_bib5 article-title: Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair publication-title: Cell doi: 10.1016/j.cell.2011.06.020 – volume: 322 start-page: 1811 year: 2008 ident: 10.1016/j.stem.2014.01.001_bib15 article-title: Nuclear reprogramming in cells publication-title: Science doi: 10.1126/science.1160810 – reference: 24702989 - Cell Stem Cell. 2014 Apr 3;14(4):417-8 |
SSID | ssj0057107 |
Score | 2.5657299 |
Snippet | Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 512 |
SubjectTerms | Animals Blotting, Western Cell Differentiation Cell Lineage Cells, Cultured Cellular Reprogramming DNA Glycosylases - physiology DNA Methylation DNA-Binding Proteins - physiology Embryo, Mammalian - cytology Embryo, Mammalian - metabolism Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Epigenesis, Genetic Epithelial-Mesenchymal Transition Fibroblasts - cytology Fibroblasts - metabolism Flow Cytometry Gene Expression Regulation Immunoenzyme Techniques Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Mice Mice, Knockout MicroRNAs - physiology Proto-Oncogene Proteins - physiology Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics |
Title | Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming |
URI | https://dx.doi.org/10.1016/j.stem.2014.01.001 https://www.ncbi.nlm.nih.gov/pubmed/24529596 https://www.proquest.com/docview/1514427605 https://www.proquest.com/docview/1534809453 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4iCF7Et_VFBG8Suo9kH0ftQxHaS1voLSTbLFa226Kr0H_vTLIrCNqDt83uLIRkMvMN-WaGkNsw9wMVpDnjOvcYNz4cKR37THtaGYX1vTVmIw-G0dOEP0_FdIt0mlwYpFXWtt_ZdGut6zftejXbq_m8PQLowUUK_o57towL2OGQJzaJb_rQWGMBHjR2N8ucoXSdOOM4XlgrGeld3JburBvD_OKc_gKf1gn198lejR7pvZvgAdky5SHZcf0k10fkc2wqqsoZHXcf6cA24TC0O7ynXYOdoteO90Z775hxBIpHAbGCHIyyl_VCFaxast4KszQK_Gr9mKV00XlJR0tb3ZV2TFFQwO2O2LUA13dMJv3euPPE6sYKLIMAp2IRHNvUT7IQsBuPMvDwsfbi2HDBOS5qDlFUkgdZpo3w8tTAGQcYo0wezswsClV4QrbLZWnOCNUK0DmmwyY64TowaZyqFGuCidyH57hF_GZFZVZXHcfmF4Vs6GWvEndB4i5Iz0eOXYvcff-zcjU3NkqLZqPkD82R4BQ2_nfT7KqEI4X3JKo0y493CSCI8yCGQG-TDOgahMYibJFTpxLfc7WX2SKNzv85swuyiyPLDwovyXb19mGuAPpU-trq9hcNUf9e |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBa6DsN6GfZu9tSA7TQI8UOy4sMOXZMuWZtcmgK5aZIjYylcJ2jcFvld-4MjJbnAgC2HAb05tmwoIkV-hD6ShHxMyzjRSV4ybsqIcRvDljIyZiYy2mqs720wG3k8yYZn_PtMzHbIrzYXBmmVwfZ7m-6sdbjTDavZXS0W3VOAHlzk4O945Mq4BGblsd3cQNy2_jLqg5A_JcnRYHo4ZKG1ACsA4jcsA8XN416RAnrhWQE-TppISssF5_jZEuKIXpkUhbEiKnMLWg6OXNsyndt5luoUvnuP3Af0IdEajGZfW_MvwGVLf5TNGU4vZOp4UhkWZ0Y-GXe1QkMnmr94w3-hXef1jh6TRwGu0gO_Ik_Ijq2fkge-geXmGbme2obqek6n_W907Lp-WNqfHNC-xdbUG0-0o4M1pjiBplOAyDAOfhU_Nxe6Ys2SDVaYFlLhU-c4HYeMLmp6unTlZOmhrSoKgYJnkl2Ar31Ozu5kuV-Q3XpZ231CjYZwAPNve6bHTWJzmesci5CJMoZr2SFxu6KqCGXOsdtGpVo-27lCKSiUgopiJPV1yOfbd1a-yMfW0aIVlPpDVRV4oa3vfWilqmAP48GMru3yaq0AdXGeSIgst41JOfxLLtIOeelV4nau7vRc5Nmr_5zZe_JwOB2fqJPR5Pg12cMnjpyUviG7zeWVfQu4qzHvnJ5T8uOuN9ZvLDU62Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tet+and+TDG+mediate+DNA+demethylation+essential+for+mesenchymal-to-epithelial+transition+in+somatic+cell+reprogramming&rft.jtitle=Cell+stem+cell&rft.au=Hu%2C+Xiao&rft.au=Zhang%2C+Lei&rft.au=Mao%2C+Shi-Qing&rft.au=Li%2C+Zheng&rft.date=2014-04-03&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=14&rft.issue=4&rft.spage=512&rft_id=info:doi/10.1016%2Fj.stem.2014.01.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |