Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming

Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induc...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 14; no. 4; pp. 512 - 522
Main Authors Hu, Xiao, Zhang, Lei, Mao, Shi-Qing, Li, Zheng, Chen, Jiekai, Zhang, Run-Rui, Wu, Hai-Ping, Gao, Juan, Guo, Fan, Liu, Wei, Xu, Gui-Fang, Dai, Hai-Qiang, Shi, Yujiang Geno, Li, Xianlong, Hu, Boqiang, Tang, Fuchou, Pei, Duanqing, Xu, Guo-Liang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion. [Display omitted] •Tet dioxygenases and TDG glycosylase are essential for fibroblast reprogramming•Tet and TDG mediate demethylation and reactivation of miRNAs critical for MET•Tet enzymes are not required for the reactivation of pluripotency loci Using triple Tet gene knockout cells, Hu et al. show that Tet activity is required for reprogramming of fibroblasts to iPSCs for activation of key miRNA expression during the MET step.
AbstractList Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.
Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion. [Display omitted] •Tet dioxygenases and TDG glycosylase are essential for fibroblast reprogramming•Tet and TDG mediate demethylation and reactivation of miRNAs critical for MET•Tet enzymes are not required for the reactivation of pluripotency loci Using triple Tet gene knockout cells, Hu et al. show that Tet activity is required for reprogramming of fibroblasts to iPSCs for activation of key miRNA expression during the MET step.
Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.
Author Shi, Yujiang Geno
Li, Zheng
Zhang, Run-Rui
Tang, Fuchou
Pei, Duanqing
Liu, Wei
Guo, Fan
Zhang, Lei
Chen, Jiekai
Hu, Boqiang
Hu, Xiao
Xu, Gui-Fang
Wu, Hai-Ping
Xu, Guo-Liang
Gao, Juan
Dai, Hai-Qiang
Mao, Shi-Qing
Li, Xianlong
Author_xml – sequence: 1
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 3
  givenname: Shi-Qing
  surname: Mao
  fullname: Mao, Shi-Qing
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 4
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 5
  givenname: Jiekai
  surname: Chen
  fullname: Chen, Jiekai
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 6
  givenname: Run-Rui
  surname: Zhang
  fullname: Zhang, Run-Rui
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 7
  givenname: Hai-Ping
  surname: Wu
  fullname: Wu, Hai-Ping
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 8
  givenname: Juan
  surname: Gao
  fullname: Gao, Juan
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 9
  givenname: Fan
  surname: Guo
  fullname: Guo, Fan
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 10
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 11
  givenname: Gui-Fang
  surname: Xu
  fullname: Xu, Gui-Fang
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 12
  givenname: Hai-Qiang
  surname: Dai
  fullname: Dai, Hai-Qiang
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– sequence: 13
  givenname: Yujiang Geno
  surname: Shi
  fullname: Shi, Yujiang Geno
  organization: Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine and BCMP, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
– sequence: 14
  givenname: Xianlong
  surname: Li
  fullname: Li, Xianlong
  organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
– sequence: 15
  givenname: Boqiang
  surname: Hu
  fullname: Hu, Boqiang
  organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
– sequence: 16
  givenname: Fuchou
  surname: Tang
  fullname: Tang, Fuchou
  organization: Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
– sequence: 17
  givenname: Duanqing
  surname: Pei
  fullname: Pei, Duanqing
  organization: CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
– sequence: 18
  givenname: Guo-Liang
  surname: Xu
  fullname: Xu, Guo-Liang
  email: glxu@sibs.ac.cn
  organization: Shanghai Key Laboratory of Molecular Andrology, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24529596$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uGyEURlGVqvlpX6CLimU3M4UBhkHqJrLdtFKaSK27Rpi5E2MNjAs4kt8-OE42WURZAeKce-F-5-gkTAEQ-kxJTQltv23qlMHXDaG8JrQmhL5DZ7STolJSypOyV4xXQhF1is5T2hAiJCXyAzptuGiUUO0Zul9Cxib0eDm_wr-hdyYDnt9c4jl4yOv9aLKbAl6kBCE7M-JhioUrJ7veezNWeaoWW5fXMB5ul9GE5B4VF_DfyRfd4hmMI_4D2zjdReO9C3cf0fvBjAk-Pa0X6N-PxXL2s7q-vfo1u7yuLFcqVy3hnaKdZaxpeWsbzuWKSAlccF7-JoZO0m5orF2BIIOCriNKMQMD66FvmWEX6Ouxbun9fwcpa--SLc8xAaZd0lQwXhwu2BtQynkjWyIK-uUJ3a089HobnTdxr5_HWoDuCNg4pRRh0Nblx0nmaNyoKdGHBPVGHxLUhwQ1obokWNTmhfpc_VXp-1GCMst7B1En60pEJc8INut-cq_pD19fs7o
CitedBy_id crossref_primary_10_2139_ssrn_3155731
crossref_primary_10_1089_biores_2014_0028
crossref_primary_10_1038_s41419_023_06049_8
crossref_primary_10_1186_s13287_022_02707_4
crossref_primary_10_14336_AD_2022_0414
crossref_primary_10_1016_j_stemcr_2016_11_010
crossref_primary_10_1093_pnasnexus_pgac310
crossref_primary_10_15252_embj_201490649
crossref_primary_10_1093_nar_gkv653
crossref_primary_10_7554_eLife_17082
crossref_primary_10_1016_j_scr_2014_03_007
crossref_primary_10_1038_s41392_024_01809_0
crossref_primary_10_1038_s12276_021_00637_4
crossref_primary_10_1186_s13072_015_0016_6
crossref_primary_10_1007_s00018_021_03883_x
crossref_primary_10_1007_s11434_015_0905_x
crossref_primary_10_1038_s41598_019_57214_z
crossref_primary_10_1073_pnas_2107599119
crossref_primary_10_1101_gr_237180_118
crossref_primary_10_1038_s41375_023_02055_z
crossref_primary_10_1126_sciadv_abb9149
crossref_primary_10_1038_s41586_018_0586_0
crossref_primary_10_1093_nsr_nwv029
crossref_primary_10_1016_j_celrep_2016_10_081
crossref_primary_10_3390_ijms252111780
crossref_primary_10_1093_nar_gku457
crossref_primary_10_1002_bies_201600178
crossref_primary_10_1038_s41589_020_0618_6
crossref_primary_10_1016_j_dnarep_2016_05_013
crossref_primary_10_1016_j_mce_2017_08_021
crossref_primary_10_1016_j_gde_2017_07_002
crossref_primary_10_1101_gad_295741_116
crossref_primary_10_1016_j_gde_2017_07_001
crossref_primary_10_1016_j_celrep_2020_03_039
crossref_primary_10_1016_j_mam_2017_09_002
crossref_primary_10_1155_2018_2186301
crossref_primary_10_15252_embr_201642402
crossref_primary_10_1016_j_cels_2018_06_012
crossref_primary_10_1016_j_scr_2015_08_010
crossref_primary_10_1038_icb_2015_5
crossref_primary_10_1016_j_gde_2014_08_005
crossref_primary_10_1016_j_gde_2014_08_004
crossref_primary_10_2139_ssrn_3376662
crossref_primary_10_3389_fimmu_2018_02859
crossref_primary_10_1038_s41598_019_43021_z
crossref_primary_10_1002_tox_22739
crossref_primary_10_1016_j_celrep_2016_06_068
crossref_primary_10_1126_science_adf3171
crossref_primary_10_1038_s41576_020_00287_8
crossref_primary_10_1038_nature19353
crossref_primary_10_3389_fgene_2017_00204
crossref_primary_10_1186_s13287_018_1109_5
crossref_primary_10_1007_s12015_019_09931_1
crossref_primary_10_1007_s12015_018_9862_5
crossref_primary_10_1016_j_tig_2016_10_007
crossref_primary_10_1038_nchembio_2250
crossref_primary_10_1155_2016_8415010
crossref_primary_10_1002_1878_0261_12082
crossref_primary_10_1038_nchembio_1848
crossref_primary_10_1016_j_xpro_2021_100568
crossref_primary_10_1186_s13072_017_0138_0
crossref_primary_10_26508_lsa_201900516
crossref_primary_10_3390_cells9112484
crossref_primary_10_3390_epigenomes2020010
crossref_primary_10_1038_nature14047
crossref_primary_10_1186_s13287_019_1427_2
crossref_primary_10_1007_s12264_024_01302_2
crossref_primary_10_1016_j_jmb_2020_10_008
crossref_primary_10_3389_fcell_2018_00026
crossref_primary_10_1002_iub_1577
crossref_primary_10_1242_dev_203090
crossref_primary_10_3390_cancers13061333
crossref_primary_10_1186_s13148_022_01323_6
crossref_primary_10_1186_s13059_015_0699_9
crossref_primary_10_3390_cancers15204997
crossref_primary_10_1007_s13770_014_0099_3
crossref_primary_10_3389_fcell_2019_00128
crossref_primary_10_1073_pnas_1510510112
crossref_primary_10_1093_nar_gkac642
crossref_primary_10_1016_j_stem_2018_08_016
crossref_primary_10_1126_sciadv_abm2427
crossref_primary_10_1038_ncomms7188
crossref_primary_10_1093_nar_gkw529
crossref_primary_10_1093_nar_gkz1144
crossref_primary_10_1128_MCB_01172_14
crossref_primary_10_1111_febs_15628
crossref_primary_10_3389_fendo_2023_1235614
crossref_primary_10_3390_cancers14030830
crossref_primary_10_1016_j_molcel_2016_10_013
crossref_primary_10_1016_j_stem_2014_05_002
crossref_primary_10_1016_j_celrep_2017_01_008
crossref_primary_10_1242_jeb_107961
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_3390_ijms20040938
crossref_primary_10_1038_s41419_020_2684_9
crossref_primary_10_1093_abbs_gmv083
crossref_primary_10_1186_s13287_020_02047_1
crossref_primary_10_1111_imr_13056
crossref_primary_10_1016_j_isci_2024_109252
crossref_primary_10_3389_fcell_2020_630754
crossref_primary_10_3390_cells10112888
crossref_primary_10_1371_journal_pone_0156839
crossref_primary_10_1038_s41598_017_07458_4
crossref_primary_10_1186_s13024_016_0106_3
crossref_primary_10_1021_acs_est_0c07359
crossref_primary_10_3389_fcell_2024_1416325
crossref_primary_10_1289_EHP181
crossref_primary_10_1016_j_bmcl_2015_01_070
crossref_primary_10_1186_s13072_023_00514_6
crossref_primary_10_1016_j_stemcr_2014_08_003
crossref_primary_10_1016_j_reth_2022_09_002
crossref_primary_10_1002_wdev_206
crossref_primary_10_1186_s13072_017_0143_3
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_1016_j_scr_2014_11_003
crossref_primary_10_1038_nbt_3963
crossref_primary_10_1016_j_cell_2018_05_035
crossref_primary_10_1186_s13148_020_00892_8
crossref_primary_10_1038_s41556_018_0195_z
crossref_primary_10_1016_j_tcb_2018_10_002
crossref_primary_10_1038_cddis_2017_497
crossref_primary_10_1093_abbs_gmx122
crossref_primary_10_3390_ijms22020897
crossref_primary_10_1016_j_freeradbiomed_2019_10_010
crossref_primary_10_3389_fphar_2020_596239
crossref_primary_10_1126_sciadv_aba1593
crossref_primary_10_3390_cells13070628
crossref_primary_10_1016_j_stemcr_2016_05_014
crossref_primary_10_3906_biy_1506_95
crossref_primary_10_1021_jacs_1c03815
crossref_primary_10_1124_jpet_120_000324
crossref_primary_10_1186_s13059_021_02384_1
crossref_primary_10_1084_jem_20161149
crossref_primary_10_1093_hmg_ddab046
crossref_primary_10_3389_freae_2024_1409355
crossref_primary_10_1016_j_jgg_2016_04_001
crossref_primary_10_1016_j_tcb_2015_12_003
crossref_primary_10_1038_srep13691
crossref_primary_10_1166_jbt_2022_3056
crossref_primary_10_1002_cjoc_202300576
crossref_primary_10_1038_nchem_2778
crossref_primary_10_1007_s12015_022_10438_5
crossref_primary_10_1002_anie_201807845
crossref_primary_10_1016_j_stemcr_2017_07_013
crossref_primary_10_1186_s13578_023_01160_x
crossref_primary_10_1038_s41392_023_01537_x
crossref_primary_10_1007_s10555_020_09882_x
crossref_primary_10_1155_2018_8764384
crossref_primary_10_1016_j_celrep_2020_01_065
crossref_primary_10_1126_sciadv_aaz7364
crossref_primary_10_1002_bies_201600126
crossref_primary_10_1186_s13148_021_01131_4
crossref_primary_10_1016_j_celrep_2016_04_058
crossref_primary_10_1074_jbc_TM118_000831
crossref_primary_10_1038_s41419_017_0234_x
crossref_primary_10_1007_s00018_017_2721_8
crossref_primary_10_1016_j_molcel_2020_11_045
crossref_primary_10_3390_genes12111704
crossref_primary_10_2217_rme_15_79
crossref_primary_10_1128_MCB_00587_15
crossref_primary_10_1186_s13069_015_0035_8
crossref_primary_10_1016_j_scr_2020_101755
crossref_primary_10_1038_nrg_2017_33
crossref_primary_10_1101_gad_248005_114
crossref_primary_10_1007_s11434_015_0919_4
crossref_primary_10_1016_j_bbadis_2016_08_014
crossref_primary_10_15252_embj_2019101681
crossref_primary_10_1016_j_matbio_2018_02_015
crossref_primary_10_1038_nchembio_2531
crossref_primary_10_1016_j_stem_2018_05_020
crossref_primary_10_1016_j_ijbiomac_2019_06_143
crossref_primary_10_1016_j_celrep_2015_12_044
crossref_primary_10_15252_embj_201899165
crossref_primary_10_1242_dev_114249
crossref_primary_10_1080_15592294_2019_1695332
crossref_primary_10_15252_embj_201490446
crossref_primary_10_1007_s00018_023_04907_4
crossref_primary_10_1242_dev_182170
crossref_primary_10_3389_fcell_2020_00760
crossref_primary_10_1016_j_biomaterials_2019_119743
crossref_primary_10_1038_s41556_023_01191_z
crossref_primary_10_1016_j_stem_2014_08_003
crossref_primary_10_1007_s10815_020_01744_3
crossref_primary_10_1038_ncomms11452
crossref_primary_10_1002_pros_23201
crossref_primary_10_1074_jbc_M115_693861
crossref_primary_10_1590_1414_431x20154026
crossref_primary_10_1016_j_stem_2014_03_007
crossref_primary_10_3390_cancers14030765
crossref_primary_10_2217_rme_2018_0041
crossref_primary_10_1016_j_lfs_2019_117101
crossref_primary_10_2174_1574888X16666210714152730
crossref_primary_10_1016_j_cell_2014_11_040
crossref_primary_10_1038_nrm_2016_8
crossref_primary_10_1042_BSR20181730
crossref_primary_10_1080_15592294_2017_1292189
crossref_primary_10_1186_s13059_020_02087_z
crossref_primary_10_1038_s41594_020_00526_w
crossref_primary_10_1038_s41421_018_0074_6
crossref_primary_10_1016_j_ygeno_2014_08_012
crossref_primary_10_1016_j_tig_2014_07_005
crossref_primary_10_1016_j_ygeno_2014_08_015
crossref_primary_10_1038_nrc3781
crossref_primary_10_1016_j_ygeno_2014_08_018
crossref_primary_10_1158_0008_5472_CAN_18_1234
crossref_primary_10_1371_journal_pone_0288005
crossref_primary_10_1111_febs_14934
crossref_primary_10_2217_epi_2017_0021
crossref_primary_10_1155_2017_8936156
crossref_primary_10_1016_j_taap_2017_11_015
crossref_primary_10_1038_s41419_018_0335_1
crossref_primary_10_1093_nar_gkv392
crossref_primary_10_1101_gad_255109_114
crossref_primary_10_1038_s41586_019_1825_8
crossref_primary_10_15252_embr_202051644
crossref_primary_10_1016_j_gde_2014_09_006
crossref_primary_10_1016_j_stem_2016_06_017
crossref_primary_10_1016_j_reth_2024_12_014
crossref_primary_10_1016_j_gene_2016_07_025
crossref_primary_10_1002_ange_201807845
crossref_primary_10_1242_bio_016402
crossref_primary_10_1111_cpr_12426
crossref_primary_10_5483_BMBRep_2014_47_11_223
crossref_primary_10_1186_s13059_022_02762_3
crossref_primary_10_1038_s41388_019_1081_2
crossref_primary_10_1080_10495398_2016_1140056
crossref_primary_10_1042_BST20240291
crossref_primary_10_1089_cell_2016_0020
crossref_primary_10_21053_ceo_2023_01340
crossref_primary_10_1073_pnas_1608679113
crossref_primary_10_1021_jacs_6b12180
crossref_primary_10_1016_j_isci_2022_105003
crossref_primary_10_1093_nar_gkv283
crossref_primary_10_1002_cbf_3101
crossref_primary_10_2174_1574888X18666230417084518
crossref_primary_10_1038_nature20095
crossref_primary_10_12688_f1000research_25637_2
Cites_doi 10.1016/j.molcel.2013.01.032
10.1126/science.1210597
10.1038/nsmb.1476
10.1038/nature09672
10.1016/j.cell.2009.11.007
10.1016/j.devcel.2012.12.015
10.1038/ng1089
10.1016/j.cell.2006.07.024
10.1016/j.stem.2011.07.010
10.1128/MCB.01380-07
10.1126/science.1212483
10.1098/rstb.2011.0330
10.1038/ncb1722
10.1038/emboj.2012.331
10.1038/nrm3589
10.1126/science.1170116
10.1016/j.cell.2013.06.026
10.1038/nature11333
10.1016/j.cell.2013.01.012
10.1038/nature10443
10.1146/annurev.biochem.74.010904.153721
10.1016/j.molcel.2012.11.001
10.1038/embor.2011.11
10.1038/nature11925
10.1016/j.stem.2010.04.015
10.1073/pnas.1212769110
10.1038/nprot.2012.137
10.1126/science.1229277
10.1016/j.stem.2013.08.005
10.1016/j.stem.2013.01.016
10.1126/science.1210944
10.1038/ng.2807
10.1038/cr.2011.51
10.1016/j.stem.2013.02.005
10.1016/j.cell.2012.11.039
10.1016/j.cell.2012.04.027
10.1016/j.stem.2010.04.014
10.1074/jbc.C111.284620
10.1016/j.cell.2011.06.020
10.1126/science.1160810
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
7TM
8FD
FR3
H94
P64
DOI 10.1016/j.stem.2014.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 522
ExternalDocumentID 24529596
10_1016_j_stem_2014_01_001
S1934590914000022
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
7TM
8FD
EFKBS
FR3
H94
P64
ID FETCH-LOGICAL-c499t-6048918c332646c2447b077e45449345f8718f2ccbe50f9e880993aef3ded63a3
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Tue Aug 05 10:28:24 EDT 2025
Fri Jul 11 05:00:28 EDT 2025
Thu Jan 02 23:00:12 EST 2025
Tue Jul 01 01:08:25 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Fri Feb 23 02:30:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-6048918c332646c2447b077e45449345f8718f2ccbe50f9e880993aef3ded63a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590914000022
PMID 24529596
PQID 1514427605
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1534809453
proquest_miscellaneous_1514427605
pubmed_primary_24529596
crossref_citationtrail_10_1016_j_stem_2014_01_001
crossref_primary_10_1016_j_stem_2014_01_001
elsevier_sciencedirect_doi_10_1016_j_stem_2014_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-03
PublicationDateYYYYMMDD 2014-04-03
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Song, Poliseno, Song, Ala, Webster, Ng, Beringer, Brikbak, Yuan, Cantley (bib31) 2013; 154
Cortellino, Xu, Sannai, Moore, Caretti, Cigliano, Le Coz, Devarajan, Wessels, Soprano (bib5) 2011; 146
Gu, Guo, Yang, Wu, Xu, Liu, Xie, Shi, He, Jin (bib14) 2011; 477
Kagiwada, Kurimoto, Hirota, Yamaji, Saitou (bib21) 2013; 32
Chen, Liu, Chen, Yang, Chen, Liu, Zhao, Mo, Song, Guo (bib2) 2011; 21
Gao, Chen, Li, Wu, Huang, Liu, Kou, Zhang, Huang, Jiang (bib11) 2013; 12
Cortázar, Kunz, Selfridge, Lettieri, Saito, MacDougall, Wirz, Schuermann, Jacobs, Siegrist (bib4) 2011; 470
Yu, Hon, Szulwach, Song, Jin, Ren, He (bib39) 2012; 7
Chen, Guo, Zhang, Wu, Yang, Liu, Wang, Hu, Gu, Zhou (bib3) 2013; 45
Epsztejn-Litman, Feldman, Abu-Remaileh, Shufaro, Gerson, Ueda, Deplus, Fuks, Shinkai, Cedar, Bergman (bib10) 2008; 15
Thiery, Acloque, Huang, Nieto (bib34) 2009; 139
Yu, Hon, Szulwach, Song, Zhang, Kim, Li, Dai, Shen, Park (bib40) 2012; 149
Goll, Bestor (bib12) 2005; 74
Inoue, Zhang (bib18) 2011; 334
Wang, Chen, Hu, Wei, Qin, Gao, Zhang, Jiang, Li, Liu (bib37) 2011; 12
Samavarchi-Tehrani, Golipour, David, Sung, Beyer, Datti, Woltjen, Nagy, Wrana (bib28) 2010; 7
Costa, Ding, Theunissen, Faiola, Hore, Shliaha, Fidalgo, Saunders, Lawrence, Dietmann (bib6) 2013; 495
Gurdon, Melton (bib15) 2008; 322
Seisenberger, Andrews, Krueger, Arand, Walter, Santos, Popp, Thienpont, Dean, Reik (bib29) 2012; 48
Li, Liang, Ni, Zhou, Qing, Li, He, Chen, Li, Zhuang (bib23) 2010; 7
Tahiliani, Koh, Shen, Pastor, Bandukwala, Brudno, Agarwal, Iyer, Liu, Aravind, Rao (bib32) 2009; 324
Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib27) 2012; 151
Ito, Shen, Dai, Wu, Collins, Swenberg, He, Zhang (bib19) 2011; 333
Li, Pu, Hirasawa, Li, Huang, Zeng, Jing, Chen, Li, Sasaki, Xu (bib22) 2007; 27
Takahashi, Yamanaka (bib33) 2006; 126
Seisenberger, Peat, Hore, Santos, Dean, Reik (bib30) 2013; 368
Tsubouchi, Soza-Ried, Brown, Piccolo, Cantone, Landeira, Bagci, Hochegger, Merkenschlager, Fisher (bib35) 2013; 152
Wang, Guo, Hong, Liu, Wei, Lu, Gao, Ye, Zhou, Chen (bib38) 2013; 110
Pastor, Aravind, Rao (bib25) 2013; 14
He, Li, Li, Liu, Wang, Tang, Ding, Jia, Chen, Li (bib17) 2011; 333
Doege, Inoue, Yamashita, Rhee, Travis, Fujita, Guarnieri, Bhagat, Vanti, Shih (bib9) 2012; 488
Maiti, Drohat (bib24) 2011; 286
Bagci, Fisher (bib1) 2013; 13
Gregory, Bert, Paterson, Barry, Tsykin, Farshid, Vadas, Khew-Goodall, Goodall (bib13) 2008; 10
Vincent, Huang, Chen, Feng, Calvopiña, Nee, Lee, Le, Yoon, Faull (bib36) 2013; 12
Piccolo, Bagci, Brown, Landeira, Soza-Ried, Feytout, Mooijman, Hajkova, Leitch, Tada (bib26) 2013; 49
Jaenisch, Bird (bib20) 2003; 33
Hackett, Sengupta, Zylicz, Murakami, Lee, Down, Surani (bib16) 2012; 339
Dawlaty, Breiling, Le, Raddatz, Barrasa, Cheng, Gao, Powell, Li, Xu (bib8) 2013; 24
Dawlaty, Ganz, Powell, Hu, Markoulaki, Cheng, Gao, Kim, Choi, Page, Jaenisch (bib7) 2011; 9
Gurdon (10.1016/j.stem.2014.01.001_bib15) 2008; 322
Yu (10.1016/j.stem.2014.01.001_bib40) 2012; 149
Cortellino (10.1016/j.stem.2014.01.001_bib5) 2011; 146
Inoue (10.1016/j.stem.2014.01.001_bib18) 2011; 334
Yu (10.1016/j.stem.2014.01.001_bib39) 2012; 7
Samavarchi-Tehrani (10.1016/j.stem.2014.01.001_bib28) 2010; 7
Costa (10.1016/j.stem.2014.01.001_bib6) 2013; 495
Thiery (10.1016/j.stem.2014.01.001_bib34) 2009; 139
Tahiliani (10.1016/j.stem.2014.01.001_bib32) 2009; 324
Maiti (10.1016/j.stem.2014.01.001_bib24) 2011; 286
Kagiwada (10.1016/j.stem.2014.01.001_bib21) 2013; 32
Gao (10.1016/j.stem.2014.01.001_bib11) 2013; 12
Polo (10.1016/j.stem.2014.01.001_bib27) 2012; 151
Goll (10.1016/j.stem.2014.01.001_bib12) 2005; 74
Seisenberger (10.1016/j.stem.2014.01.001_bib29) 2012; 48
Cortázar (10.1016/j.stem.2014.01.001_bib4) 2011; 470
Li (10.1016/j.stem.2014.01.001_bib22) 2007; 27
Dawlaty (10.1016/j.stem.2014.01.001_bib8) 2013; 24
Hackett (10.1016/j.stem.2014.01.001_bib16) 2012; 339
Pastor (10.1016/j.stem.2014.01.001_bib25) 2013; 14
Wang (10.1016/j.stem.2014.01.001_bib38) 2013; 110
Gregory (10.1016/j.stem.2014.01.001_bib13) 2008; 10
Jaenisch (10.1016/j.stem.2014.01.001_bib20) 2003; 33
Chen (10.1016/j.stem.2014.01.001_bib3) 2013; 45
Seisenberger (10.1016/j.stem.2014.01.001_bib30) 2013; 368
Chen (10.1016/j.stem.2014.01.001_bib2) 2011; 21
Ito (10.1016/j.stem.2014.01.001_bib19) 2011; 333
Li (10.1016/j.stem.2014.01.001_bib23) 2010; 7
Tsubouchi (10.1016/j.stem.2014.01.001_bib35) 2013; 152
Vincent (10.1016/j.stem.2014.01.001_bib36) 2013; 12
Dawlaty (10.1016/j.stem.2014.01.001_bib7) 2011; 9
Piccolo (10.1016/j.stem.2014.01.001_bib26) 2013; 49
Takahashi (10.1016/j.stem.2014.01.001_bib33) 2006; 126
Wang (10.1016/j.stem.2014.01.001_bib37) 2011; 12
Epsztejn-Litman (10.1016/j.stem.2014.01.001_bib10) 2008; 15
Bagci (10.1016/j.stem.2014.01.001_bib1) 2013; 13
Song (10.1016/j.stem.2014.01.001_bib31) 2013; 154
He (10.1016/j.stem.2014.01.001_bib17) 2011; 333
Doege (10.1016/j.stem.2014.01.001_bib9) 2012; 488
Gu (10.1016/j.stem.2014.01.001_bib14) 2011; 477
24702989 - Cell Stem Cell. 2014 Apr 3;14(4):417-8
References_xml – volume: 15
  start-page: 1176
  year: 2008
  end-page: 1183
  ident: bib10
  article-title: De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 139
  start-page: 871
  year: 2009
  end-page: 890
  ident: bib34
  article-title: Epithelial-mesenchymal transitions in development and disease
  publication-title: Cell
– volume: 13
  start-page: 265
  year: 2013
  end-page: 269
  ident: bib1
  article-title: DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division
  publication-title: Cell Stem Cell
– volume: 10
  start-page: 593
  year: 2008
  end-page: 601
  ident: bib13
  article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
  publication-title: Nat. Cell Biol.
– volume: 477
  start-page: 606
  year: 2011
  end-page: 610
  ident: bib14
  article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
  publication-title: Nature
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib33
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 21
  start-page: 884
  year: 2011
  end-page: 894
  ident: bib2
  article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics
  publication-title: Cell Res.
– volume: 24
  start-page: 310
  year: 2013
  end-page: 323
  ident: bib8
  article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
  publication-title: Dev. Cell
– volume: 333
  start-page: 1300
  year: 2011
  end-page: 1303
  ident: bib19
  article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
  publication-title: Science
– volume: 488
  start-page: 652
  year: 2012
  end-page: 655
  ident: bib9
  article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
  publication-title: Nature
– volume: 322
  start-page: 1811
  year: 2008
  end-page: 1815
  ident: bib15
  article-title: Nuclear reprogramming in cells
  publication-title: Science
– volume: 48
  start-page: 849
  year: 2012
  end-page: 862
  ident: bib29
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
– volume: 7
  start-page: 51
  year: 2010
  end-page: 63
  ident: bib23
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
– volume: 333
  start-page: 1303
  year: 2011
  end-page: 1307
  ident: bib17
  article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
  publication-title: Science
– volume: 324
  start-page: 930
  year: 2009
  end-page: 935
  ident: bib32
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
– volume: 495
  start-page: 370
  year: 2013
  end-page: 374
  ident: bib6
  article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
  publication-title: Nature
– volume: 7
  start-page: 2159
  year: 2012
  end-page: 2170
  ident: bib39
  article-title: Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine
  publication-title: Nat. Protoc.
– volume: 110
  start-page: 2858
  year: 2013
  end-page: 2863
  ident: bib38
  article-title: Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 8748
  year: 2007
  end-page: 8759
  ident: bib22
  article-title: Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog
  publication-title: Mol. Cell. Biol.
– volume: 14
  start-page: 341
  year: 2013
  end-page: 356
  ident: bib25
  article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  start-page: 166
  year: 2011
  end-page: 175
  ident: bib7
  article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
  publication-title: Cell Stem Cell
– volume: 286
  start-page: 35334
  year: 2011
  end-page: 35338
  ident: bib24
  article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
  publication-title: J. Biol. Chem.
– volume: 470
  start-page: 419
  year: 2011
  end-page: 423
  ident: bib4
  article-title: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
  publication-title: Nature
– volume: 12
  start-page: 373
  year: 2011
  end-page: 378
  ident: bib37
  article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors
  publication-title: EMBO Rep.
– volume: 12
  start-page: 453
  year: 2013
  end-page: 469
  ident: bib11
  article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
  publication-title: Cell Stem Cell
– volume: 49
  start-page: 1023
  year: 2013
  end-page: 1033
  ident: bib26
  article-title: Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion
  publication-title: Mol. Cell
– volume: 33
  start-page: 245
  year: 2003
  end-page: 254
  ident: bib20
  article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
  publication-title: Nat. Genet.
– volume: 12
  start-page: 470
  year: 2013
  end-page: 478
  ident: bib36
  article-title: Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells
  publication-title: Cell Stem Cell
– volume: 146
  start-page: 67
  year: 2011
  end-page: 79
  ident: bib5
  article-title: Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
  publication-title: Cell
– volume: 339
  start-page: 448
  year: 2012
  end-page: 452
  ident: bib16
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
– volume: 334
  start-page: 194
  year: 2011
  ident: bib18
  article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
  publication-title: Science
– volume: 7
  start-page: 64
  year: 2010
  end-page: 77
  ident: bib28
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
– volume: 154
  start-page: 311
  year: 2013
  end-page: 324
  ident: bib31
  article-title: MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling
  publication-title: Cell
– volume: 152
  start-page: 873
  year: 2013
  end-page: 883
  ident: bib35
  article-title: DNA synthesis is required for reprogramming mediated by stem cell fusion
  publication-title: Cell
– volume: 149
  start-page: 1368
  year: 2012
  end-page: 1380
  ident: bib40
  article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
  publication-title: Cell
– volume: 74
  start-page: 481
  year: 2005
  end-page: 514
  ident: bib12
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
– volume: 368
  start-page: 20110330
  year: 2013
  ident: bib30
  article-title: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 45
  start-page: 1504
  year: 2013
  end-page: 1509
  ident: bib3
  article-title: Vitamin C modulates TET1 function during somatic cell reprogramming
  publication-title: Nat. Genet.
– volume: 32
  start-page: 340
  year: 2013
  end-page: 353
  ident: bib21
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
– volume: 151
  start-page: 1617
  year: 2012
  end-page: 1632
  ident: bib27
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
– volume: 49
  start-page: 1023
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib26
  article-title: Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.032
– volume: 333
  start-page: 1300
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib19
  article-title: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
  publication-title: Science
  doi: 10.1126/science.1210597
– volume: 15
  start-page: 1176
  year: 2008
  ident: 10.1016/j.stem.2014.01.001_bib10
  article-title: De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1476
– volume: 470
  start-page: 419
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib4
  article-title: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
  publication-title: Nature
  doi: 10.1038/nature09672
– volume: 139
  start-page: 871
  year: 2009
  ident: 10.1016/j.stem.2014.01.001_bib34
  article-title: Epithelial-mesenchymal transitions in development and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 24
  start-page: 310
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib8
  article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.12.015
– volume: 33
  start-page: 245
  issue: Suppl
  year: 2003
  ident: 10.1016/j.stem.2014.01.001_bib20
  article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
  publication-title: Nat. Genet.
  doi: 10.1038/ng1089
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.stem.2014.01.001_bib33
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 9
  start-page: 166
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib7
  article-title: Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.07.010
– volume: 27
  start-page: 8748
  year: 2007
  ident: 10.1016/j.stem.2014.01.001_bib22
  article-title: Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01380-07
– volume: 334
  start-page: 194
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib18
  article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
  publication-title: Science
  doi: 10.1126/science.1212483
– volume: 368
  start-page: 20110330
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib30
  article-title: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2011.0330
– volume: 10
  start-page: 593
  year: 2008
  ident: 10.1016/j.stem.2014.01.001_bib13
  article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1722
– volume: 32
  start-page: 340
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib21
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.331
– volume: 14
  start-page: 341
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib25
  article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3589
– volume: 324
  start-page: 930
  year: 2009
  ident: 10.1016/j.stem.2014.01.001_bib32
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 154
  start-page: 311
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib31
  article-title: MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.026
– volume: 488
  start-page: 652
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib9
  article-title: Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
  publication-title: Nature
  doi: 10.1038/nature11333
– volume: 152
  start-page: 873
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib35
  article-title: DNA synthesis is required for reprogramming mediated by stem cell fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.012
– volume: 477
  start-page: 606
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib14
  article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
  publication-title: Nature
  doi: 10.1038/nature10443
– volume: 74
  start-page: 481
  year: 2005
  ident: 10.1016/j.stem.2014.01.001_bib12
  article-title: Eukaryotic cytosine methyltransferases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.010904.153721
– volume: 48
  start-page: 849
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib29
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 12
  start-page: 373
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib37
  article-title: Reprogramming of mouse and human somatic cells by high-performance engineered factors
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.11
– volume: 495
  start-page: 370
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib6
  article-title: NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
  publication-title: Nature
  doi: 10.1038/nature11925
– volume: 7
  start-page: 64
  year: 2010
  ident: 10.1016/j.stem.2014.01.001_bib28
  article-title: Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.015
– volume: 110
  start-page: 2858
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib38
  article-title: Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1212769110
– volume: 7
  start-page: 2159
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib39
  article-title: Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.137
– volume: 339
  start-page: 448
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib16
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
  doi: 10.1126/science.1229277
– volume: 13
  start-page: 265
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib1
  article-title: DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.08.005
– volume: 12
  start-page: 470
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib36
  article-title: Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.01.016
– volume: 333
  start-page: 1303
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib17
  article-title: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 45
  start-page: 1504
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib3
  article-title: Vitamin C modulates TET1 function during somatic cell reprogramming
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2807
– volume: 21
  start-page: 884
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib2
  article-title: Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.51
– volume: 12
  start-page: 453
  year: 2013
  ident: 10.1016/j.stem.2014.01.001_bib11
  article-title: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.02.005
– volume: 151
  start-page: 1617
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib27
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 149
  start-page: 1368
  year: 2012
  ident: 10.1016/j.stem.2014.01.001_bib40
  article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.027
– volume: 7
  start-page: 51
  year: 2010
  ident: 10.1016/j.stem.2014.01.001_bib23
  article-title: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.04.014
– volume: 286
  start-page: 35334
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib24
  article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.284620
– volume: 146
  start-page: 67
  year: 2011
  ident: 10.1016/j.stem.2014.01.001_bib5
  article-title: Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.020
– volume: 322
  start-page: 1811
  year: 2008
  ident: 10.1016/j.stem.2014.01.001_bib15
  article-title: Nuclear reprogramming in cells
  publication-title: Science
  doi: 10.1126/science.1160810
– reference: 24702989 - Cell Stem Cell. 2014 Apr 3;14(4):417-8
SSID ssj0057107
Score 2.5657299
Snippet Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 512
SubjectTerms Animals
Blotting, Western
Cell Differentiation
Cell Lineage
Cells, Cultured
Cellular Reprogramming
DNA Glycosylases - physiology
DNA Methylation
DNA-Binding Proteins - physiology
Embryo, Mammalian - cytology
Embryo, Mammalian - metabolism
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Epigenesis, Genetic
Epithelial-Mesenchymal Transition
Fibroblasts - cytology
Fibroblasts - metabolism
Flow Cytometry
Gene Expression Regulation
Immunoenzyme Techniques
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Mice
Mice, Knockout
MicroRNAs - physiology
Proto-Oncogene Proteins - physiology
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Title Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming
URI https://dx.doi.org/10.1016/j.stem.2014.01.001
https://www.ncbi.nlm.nih.gov/pubmed/24529596
https://www.proquest.com/docview/1514427605
https://www.proquest.com/docview/1534809453
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4iCF7Et_VFBG8Suo9kH0ftQxHaS1voLSTbLFa226Kr0H_vTLIrCNqDt83uLIRkMvMN-WaGkNsw9wMVpDnjOvcYNz4cKR37THtaGYX1vTVmIw-G0dOEP0_FdIt0mlwYpFXWtt_ZdGut6zftejXbq_m8PQLowUUK_o57towL2OGQJzaJb_rQWGMBHjR2N8ucoXSdOOM4XlgrGeld3JburBvD_OKc_gKf1gn198lejR7pvZvgAdky5SHZcf0k10fkc2wqqsoZHXcf6cA24TC0O7ynXYOdoteO90Z775hxBIpHAbGCHIyyl_VCFaxast4KszQK_Gr9mKV00XlJR0tb3ZV2TFFQwO2O2LUA13dMJv3euPPE6sYKLIMAp2IRHNvUT7IQsBuPMvDwsfbi2HDBOS5qDlFUkgdZpo3w8tTAGQcYo0wezswsClV4QrbLZWnOCNUK0DmmwyY64TowaZyqFGuCidyH57hF_GZFZVZXHcfmF4Vs6GWvEndB4i5Iz0eOXYvcff-zcjU3NkqLZqPkD82R4BQ2_nfT7KqEI4X3JKo0y493CSCI8yCGQG-TDOgahMYibJFTpxLfc7WX2SKNzv85swuyiyPLDwovyXb19mGuAPpU-trq9hcNUf9e
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBa6DsN6GfZu9tSA7TQI8UOy4sMOXZMuWZtcmgK5aZIjYylcJ2jcFvld-4MjJbnAgC2HAb05tmwoIkV-hD6ShHxMyzjRSV4ybsqIcRvDljIyZiYy2mqs720wG3k8yYZn_PtMzHbIrzYXBmmVwfZ7m-6sdbjTDavZXS0W3VOAHlzk4O945Mq4BGblsd3cQNy2_jLqg5A_JcnRYHo4ZKG1ACsA4jcsA8XN416RAnrhWQE-TppISssF5_jZEuKIXpkUhbEiKnMLWg6OXNsyndt5luoUvnuP3Af0IdEajGZfW_MvwGVLf5TNGU4vZOp4UhkWZ0Y-GXe1QkMnmr94w3-hXef1jh6TRwGu0gO_Ik_Ijq2fkge-geXmGbme2obqek6n_W907Lp-WNqfHNC-xdbUG0-0o4M1pjiBplOAyDAOfhU_Nxe6Ys2SDVaYFlLhU-c4HYeMLmp6unTlZOmhrSoKgYJnkl2Ar31Ozu5kuV-Q3XpZ231CjYZwAPNve6bHTWJzmesci5CJMoZr2SFxu6KqCGXOsdtGpVo-27lCKSiUgopiJPV1yOfbd1a-yMfW0aIVlPpDVRV4oa3vfWilqmAP48GMru3yaq0AdXGeSIgst41JOfxLLtIOeelV4nau7vRc5Nmr_5zZe_JwOB2fqJPR5Pg12cMnjpyUviG7zeWVfQu4qzHvnJ5T8uOuN9ZvLDU62Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tet+and+TDG+mediate+DNA+demethylation+essential+for+mesenchymal-to-epithelial+transition+in+somatic+cell+reprogramming&rft.jtitle=Cell+stem+cell&rft.au=Hu%2C+Xiao&rft.au=Zhang%2C+Lei&rft.au=Mao%2C+Shi-Qing&rft.au=Li%2C+Zheng&rft.date=2014-04-03&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=14&rft.issue=4&rft.spage=512&rft_id=info:doi/10.1016%2Fj.stem.2014.01.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon