Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator

The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hyp...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 13; no. 8; pp. 3503 - 3517
Main Authors Xiao, Qingqing, Li, Xiaotong, Liu, Chang, Jiang, Yuxin, He, Yonglong, Zhang, Wanting, Azevedo, Helena S., Wu, Wei, Xia, Yuanzheng, He, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. [Display omitted]
AbstractList The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.
The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. [Display omitted]
The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo , the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. Image 1
The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.
Author Xiao, Qingqing
He, Yonglong
Li, Xiaotong
Azevedo, Helena S.
Jiang, Yuxin
Xia, Yuanzheng
Zhang, Wanting
Wu, Wei
He, Wei
Liu, Chang
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Xiao
  fullname: Xiao, Qingqing
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 2
  givenname: Xiaotong
  surname: Li
  fullname: Li, Xiaotong
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 3
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 4
  givenname: Yuxin
  surname: Jiang
  fullname: Jiang, Yuxin
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 5
  givenname: Yonglong
  surname: He
  fullname: He, Yonglong
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 6
  givenname: Wanting
  surname: Zhang
  fullname: Zhang, Wanting
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
– sequence: 7
  givenname: Helena S.
  surname: Azevedo
  fullname: Azevedo, Helena S.
  organization: School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
– sequence: 8
  givenname: Wei
  orcidid: 0000-0002-0164-0814
  surname: Wu
  fullname: Wu, Wei
  organization: School of Pharmacy, Fudan University, Shanghai 201203, China
– sequence: 9
  givenname: Yuanzheng
  surname: Xia
  fullname: Xia, Yuanzheng
  email: xiayz@cpu.edu.cn
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
– sequence: 10
  givenname: Wei
  orcidid: 0000-0003-3075-3831
  surname: He
  fullname: He, Wei
  email: weihe@cpu.edu.cn
  organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
BookMark eNp9kk1r3DAQhk1JoWmaP9CTj73Y1ZclGwqlhH4sBHrJXYzlsVcbW3IleUv-fbXZtJAeossMmvd9GPTqbXHhvMOieE9JTQmVHw81rLGvGWGsJqomlL0qLhmjtOKt4Bf_et68Ka5jPJB8ZBar5rKYdssa_NG6qTTgDIbSLsvmfNpjgPWhPFooja8GnO0Rw6Nsj-Z-9dalsp-9uYcBS3BDmfbBL72Pq3eDdRUtB__bBZy2GZIP74rXI8wRr5_qVXH37evdzY_q9uf33c2X28qIrktV0zOkahQDNyBaEAoNl53su47JhjI6MpUb3otuVIwiVwSNlAC8hY5Ax6-K3Rk7eDjoNdgFwoP2YPXjhQ-ThpCsmVG3HZfYGGRNw4QA6HuDamCccj6qzkBmfT6z1q1fcDDoUoD5GfT5xNm9nvxRUyJk0yqWCR-eCMH_2jAmvdhocJ7Bod-iZq0kgtCW0ixtz1ITfIwBR21sgmT9CW3nzNSnrPVBn7LWp6w1UTpnna3sP-vfFV80fTqbMIdxtBh0NBbzBxhsQJPyc9mX7H8AxlDHhw
CitedBy_id crossref_primary_10_1002_smtd_202401355
crossref_primary_10_1186_s12943_024_02124_6
crossref_primary_10_1016_j_ajps_2022_11_002
crossref_primary_10_1186_s12943_024_02073_0
crossref_primary_10_1016_j_apsb_2025_02_020
crossref_primary_10_1016_j_apsb_2024_08_003
crossref_primary_10_1016_j_apsb_2024_08_014
crossref_primary_10_3390_molecules28186652
crossref_primary_10_3390_pharmaceutics15030774
crossref_primary_10_1016_j_intimp_2024_112184
crossref_primary_10_1016_j_bbadis_2024_167026
crossref_primary_10_1016_j_cclet_2023_109335
crossref_primary_10_1016_j_cclet_2023_108346
crossref_primary_10_1038_s41392_023_01668_1
crossref_primary_10_1016_j_ijpharm_2025_125508
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1021_acs_langmuir_4c02736
crossref_primary_10_3390_ijms26062448
crossref_primary_10_1016_j_jconrel_2025_02_006
crossref_primary_10_1080_17425247_2024_2374807
crossref_primary_10_1016_j_ebiom_2024_105301
crossref_primary_10_1016_j_cclet_2024_110225
Cites_doi 10.1016/j.ccell.2020.11.005
10.1016/j.jss.2004.05.015
10.1016/j.cclet.2020.11.006
10.1056/NEJMoa1507643
10.1016/j.ijpharm.2015.07.069
10.1038/s41467-017-01062-w
10.1161/ATVBAHA.120.314571
10.1021/acsnano.7b01026
10.1002/adfm.201910566
10.1021/acs.molpharmaceut.5b00952
10.1038/s41577-019-0269-6
10.1038/nrd3463
10.1021/acs.nanolett.0c00495
10.1016/j.gendis.2020.06.010
10.1038/s41375-019-0622-6
10.3389/fimmu.2019.00999
10.1038/s41586-021-04057-2
10.1126/science.aax0182
10.1056/NEJMoa1104621
10.1126/sciimmunol.aau6085
10.1172/JCI40269
10.1158/0008-5472.CAN-19-2948
10.1016/j.cell.2017.07.024
10.1038/nature21676
10.3322/caac.21596
10.3892/ol.2017.6421
10.1016/j.tips.2019.11.003
10.1016/j.cclet.2020.08.048
10.1055/s-0038-1675229
10.1186/s12935-021-02407-8
10.3892/ijo.2012.1519
10.1158/1078-0432.CCR-18-2990
10.1016/j.jconrel.2020.04.018
10.1016/j.cell.2016.12.022
10.1016/S0955-0674(00)00143-5
10.1136/jitc-2021-003427
10.1038/71517
10.7554/eLife.49020
10.1016/j.coi.2012.01.010
10.1038/cdd.2013.67
10.1016/j.apsb.2019.06.004
10.1182/blood.V97.8.2221
10.1158/0008-5472.CAN-16-1170
10.1038/s41571-020-0413-z
10.1073/pnas.1519623112
10.1038/s41401-020-0424-4
10.1038/s41392-020-00449-4
10.1172/JCI31405
10.1038/bjc.1992.326
10.1177/1758835920940928
10.1016/j.apsb.2021.04.010
10.1146/annurev.me.41.020190.000505
10.1021/acs.nanolett.1c00895
10.1093/ecco-jcc/jjv227
10.1016/j.fitote.2018.02.025
10.1038/s41568-020-00329-7
10.1146/annurev-cancerbio-030419-033635
10.1007/s11864-019-0666-x
10.1016/j.apsb.2020.12.018
10.1038/s41467-019-11782-w
10.1186/s12885-015-1074-7
10.1038/s41571-019-0308-z
ContentType Journal Article
Copyright 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Copyright_xml – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
– notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.apsb.2022.07.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 3517
ExternalDocumentID oai_doaj_org_article_8936e5ce255244aabbce7d23133f79ca
PMC10465872
10_1016_j_apsb_2022_07_012
S2211383522003240
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFUIB
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c499t-5b2e17f4d3ca48a47ec3696b99265121f272653b49f721e370ec66aa38a90a93
IEDL.DBID M48
ISSN 2211-3835
IngestDate Wed Aug 27 01:15:31 EDT 2025
Thu Aug 21 18:36:26 EDT 2025
Fri Jul 11 06:18:03 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Tue Jul 01 01:53:09 EDT 2025
Sun Apr 06 06:54:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Thrombospondin-1
Diterpenoid-based conjugate
Co-delivery
Liposomes
Checkpoint blockade
Immunotherapy
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-5b2e17f4d3ca48a47ec3696b99265121f272653b49f721e370ec66aa38a90a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors made equal contributions to this work.
ORCID 0000-0003-3075-3831
0000-0002-0164-0814
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2022.07.012
PQID 2860401811
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_8936e5ce255244aabbce7d23133f79ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10465872
proquest_miscellaneous_2860401811
crossref_citationtrail_10_1016_j_apsb_2022_07_012
crossref_primary_10_1016_j_apsb_2022_07_012
elsevier_sciencedirect_doi_10_1016_j_apsb_2022_07_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Acta pharmaceutica Sinica. B
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, He, Wang, Li, Liu (bib47) 2019; 8
Martin, Cabral, Stylianopoulos, Jain (bib69) 2020; 17
Ji, Lang, Wang, Cai, Zhang, Qi (bib29) 2017; 11
Hu, Yuan, Wang, Gao, Liu, Zhang (bib32) 2021; 32
Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins (bib44) 2017; 168
Borghaei, Paz-Ares, Horn, Spigel, Steins, Ready (bib5) 2015; 373
Miyanaga, Kato, Nakamura, Matsumura, Amaya, Horiuchi (bib57) 2002; 22
Liu, Xu, Zhou, Shen (bib22) 2020; 8
Wada-Ohno, Ito, Furue (bib24) 2019; 20
Loeffler, Juneau, Masserant (bib50) 1992; 66
Robert, Thomas, Bondarenko, O'Day, Weber, Garbe (bib25) 2011; 364
Liu, Zheng (bib43) 2020; 41
Krauss, Gao, Li, Manning, Patel, Fu (bib67) 2019; 25
Bracci, Schiavoni, Sistigu, Belardelli (bib15) 2014; 21
Galluzzi, Humeau, Buqué, Zitvogel, Kroemer (bib62) 2020; 17
Mao, Zou, Jiang, Fu (bib40) 2020; 32
Sun, Ren, Yang, Liu, Cao, Deng (bib49) 2019; 10
Lewis, Williams, Eisenbarth (bib45) 2019; 4
Seliger (bib9) 2019; 10
Cox (bib54) 2021; 21
Ward, Read, Seymour (bib38) 2001; 97
Chao, Weissman, Majeti (bib52) 2012; 24
Swann, Smyth (bib7) 2007; 117
Wei, Levine, Cogdill, Zhao, Anang, Andrews (bib33) 2017; 170
US Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma. Accessed [March 21 2022].
Xiao, Li, Li, Wu, Xu, Chen (bib1) 2021; 11
He, Kapate, Shields, Mitragotri (bib2) 2019; 165–166
Irvine, Dane (bib3) 2020; 20
Oliveira Júnior, Christiane Adrielly, Silva Almeida, Grougnet, Thiéry, Picot (bib18) 2018; 129
Venditti, Lisi, Caricato, Caputo, Capolupo, Taffon (bib26) 2015; 15
Topalian, Taube, Pardoll (bib66) 2020; 367
Kamijo, Miyagaki, Takahashi-Shishido, Nakajima, Simeonov, Oka (bib51) 2020; 34
Vafaei, Zekiy, Khanamir, Zaman, Ghayourvahdat, Azimizonuzi (bib10) 2022; 22
Maute, Gordon, Mayer, McCracken, Natarajan, Ring (bib4) 2015; 112
Jiménez, Volpert, Crawford, Febbraio, Silverstein, Bouck (bib60) 2000; 6
Cha, Lee, Ponnazhagan (bib64) 2020; 80
Sun, Hyun, Li, Wang (bib17) 2020; 41
Srivastava, Furlan, Jaeger-Ruckstuhl, Sarvothama, Berger, Smythe (bib16) 2021; 39
Chen, Yang, Liu, Gao, Dong, Lai (bib31) 2020; 20
Ramakrishnan, Assudani, Nagaraj, Hunter, Cho, Antonia (bib13) 2010; 120
Sun, Wu, Chiang, Deng, Zhang, Xiong (bib55) 2021; 599
Wu, Pusuluri, Vogus, Krishnan, Shields, Kim (bib27) 2020; 323
Li, Shi, Zhang, Yang, Cheng (bib21) 2018; 16
Xu, He, Lv, Qin, Shen, Yin (bib37) 2015; 493
Jeanne, Sarazin, Charlé, Kawecki, Kauskot, Hedtke (bib61) 2021; 41
Wang, Mohammad, Fan, Zhao, Nurunnabi, Sallam (bib28) 2021; 11
Ferreira, Goel, Ehlerding, Rosenkrans, Jiang, Sun (bib39) 2021; 21
Li, Sun, Zhang, Zhao, Zhang, Zhang (bib35) 2020; 251
Luo, Dai, Gao (bib36) 2019; 9
He, Xiao, Li, Guo, Huang, Shi (bib20) 2017; 14
He, Xing, Wang, Wu, Wu, Guo (bib34) 2020; 30
Kamijo, Miyagaki, Takahashi-Shishido, Nakajima, Oka, Suga (bib58) 2020; 34
Tang, Huang, Zhang, Hong, Bai, Liang (bib6) 2021; 6
Seif, Alidzanovic, Tischler, Ibrahim, Zagrapan, Rauscher (bib46) 2018; 118
Lawler (bib56) 2000; 12
Sade-Feldman, Jiao, Chen, Rooney, Barzily-Rokni, Eliane (bib48) 2017; 8
Esemuede, Lee, Pierre-Paul, Sumpio, Gahtan (bib30) 2004; 122
Zhang, Deng, Fu, Sun, Gong, Zhang (bib41) 2016; 13
Most, Currie, Cleaver, Salmons, Nowak, Mahendran (bib14) 2009; 4
Lu, Horner, Paul, Shang, Troncoso, Deng (bib65) 2017; 543
Kennedy, Salama (bib68) 2020; 70
Marthey, Mateus, Mussini, Nachury, Nancey, Grange (bib42) 2016; 10
Baghdadi, Wada, Nakanishi, Abe, Han, Putra (bib53) 2016; 76
Anders, Woodcock, Van Swearingen, Moore, Sambade, Laurie (bib12) 2022; vol. 10
Eynde, Baren, Baurain (bib8) 2020; 4
Zou, Zou, Zheng, Tang, Zhang, Liu (bib63) 2020; 12
Bu, Luo, Chen, Zhang, Li, Guo (bib19) 2012; 41
Sondak, Smalley, Kudchadkar, Grippon, Kirkpatrick (bib23) 2011; 10
Mosher (bib59) 1990; 41
Lewis (10.1016/j.apsb.2022.07.012_bib45) 2019; 4
Borghaei (10.1016/j.apsb.2022.07.012_bib5) 2015; 373
Sade-Feldman (10.1016/j.apsb.2022.07.012_bib48) 2017; 8
Bracci (10.1016/j.apsb.2022.07.012_bib15) 2014; 21
Ji (10.1016/j.apsb.2022.07.012_bib29) 2017; 11
Xu (10.1016/j.apsb.2022.07.012_bib37) 2015; 493
Maute (10.1016/j.apsb.2022.07.012_bib4) 2015; 112
Miyanaga (10.1016/j.apsb.2022.07.012_bib57) 2002; 22
He (10.1016/j.apsb.2022.07.012_bib2) 2019; 165–166
Galluzzi (10.1016/j.apsb.2022.07.012_bib62) 2020; 17
Kennedy (10.1016/j.apsb.2022.07.012_bib68) 2020; 70
He (10.1016/j.apsb.2022.07.012_bib20) 2017; 14
Xiao (10.1016/j.apsb.2022.07.012_bib1) 2021; 11
Zou (10.1016/j.apsb.2022.07.012_bib63) 2020; 12
Swann (10.1016/j.apsb.2022.07.012_bib7) 2007; 117
Jeanne (10.1016/j.apsb.2022.07.012_bib61) 2021; 41
Vafaei (10.1016/j.apsb.2022.07.012_bib10) 2022; 22
Li (10.1016/j.apsb.2022.07.012_bib21) 2018; 16
Spitzer (10.1016/j.apsb.2022.07.012_bib44) 2017; 168
Wang (10.1016/j.apsb.2022.07.012_bib47) 2019; 8
Anders (10.1016/j.apsb.2022.07.012_bib12) 2022; vol. 10
Venditti (10.1016/j.apsb.2022.07.012_bib26) 2015; 15
Lawler (10.1016/j.apsb.2022.07.012_bib56) 2000; 12
Seliger (10.1016/j.apsb.2022.07.012_bib9) 2019; 10
Most (10.1016/j.apsb.2022.07.012_bib14) 2009; 4
Ferreira (10.1016/j.apsb.2022.07.012_bib39) 2021; 21
Srivastava (10.1016/j.apsb.2022.07.012_bib16) 2021; 39
Kamijo (10.1016/j.apsb.2022.07.012_bib51) 2020; 34
Sun (10.1016/j.apsb.2022.07.012_bib17) 2020; 41
Topalian (10.1016/j.apsb.2022.07.012_bib66) 2020; 367
Mao (10.1016/j.apsb.2022.07.012_bib40) 2020; 32
Marthey (10.1016/j.apsb.2022.07.012_bib42) 2016; 10
Lu (10.1016/j.apsb.2022.07.012_bib65) 2017; 543
Oliveira Júnior (10.1016/j.apsb.2022.07.012_bib18) 2018; 129
Wei (10.1016/j.apsb.2022.07.012_bib33) 2017; 170
10.1016/j.apsb.2022.07.012_bib11
Li (10.1016/j.apsb.2022.07.012_bib35) 2020; 251
Ward (10.1016/j.apsb.2022.07.012_bib38) 2001; 97
Mosher (10.1016/j.apsb.2022.07.012_bib59) 1990; 41
Kamijo (10.1016/j.apsb.2022.07.012_bib58) 2020; 34
Sun (10.1016/j.apsb.2022.07.012_bib49) 2019; 10
Chao (10.1016/j.apsb.2022.07.012_bib52) 2012; 24
Eynde (10.1016/j.apsb.2022.07.012_bib8) 2020; 4
Bu (10.1016/j.apsb.2022.07.012_bib19) 2012; 41
Chen (10.1016/j.apsb.2022.07.012_bib31) 2020; 20
Hu (10.1016/j.apsb.2022.07.012_bib32) 2021; 32
Krauss (10.1016/j.apsb.2022.07.012_bib67) 2019; 25
Sondak (10.1016/j.apsb.2022.07.012_bib23) 2011; 10
Loeffler (10.1016/j.apsb.2022.07.012_bib50) 1992; 66
Baghdadi (10.1016/j.apsb.2022.07.012_bib53) 2016; 76
Wada-Ohno (10.1016/j.apsb.2022.07.012_bib24) 2019; 20
Wu (10.1016/j.apsb.2022.07.012_bib27) 2020; 323
Sun (10.1016/j.apsb.2022.07.012_bib55) 2021; 599
Liu (10.1016/j.apsb.2022.07.012_bib43) 2020; 41
Esemuede (10.1016/j.apsb.2022.07.012_bib30) 2004; 122
Luo (10.1016/j.apsb.2022.07.012_bib36) 2019; 9
Cha (10.1016/j.apsb.2022.07.012_bib64) 2020; 80
Zhang (10.1016/j.apsb.2022.07.012_bib41) 2016; 13
Tang (10.1016/j.apsb.2022.07.012_bib6) 2021; 6
Liu (10.1016/j.apsb.2022.07.012_bib22) 2020; 8
Irvine (10.1016/j.apsb.2022.07.012_bib3) 2020; 20
Jiménez (10.1016/j.apsb.2022.07.012_bib60) 2000; 6
Cox (10.1016/j.apsb.2022.07.012_bib54) 2021; 21
Ramakrishnan (10.1016/j.apsb.2022.07.012_bib13) 2010; 120
He (10.1016/j.apsb.2022.07.012_bib34) 2020; 30
Martin (10.1016/j.apsb.2022.07.012_bib69) 2020; 17
Robert (10.1016/j.apsb.2022.07.012_bib25) 2011; 364
Wang (10.1016/j.apsb.2022.07.012_bib28) 2021; 11
Seif (10.1016/j.apsb.2022.07.012_bib46) 2018; 118
References_xml – volume: 493
  start-page: 172
  year: 2015
  end-page: 181
  ident: bib37
  article-title: Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity
  publication-title: Int J Pharm
– volume: vol. 10
  year: 2022
  ident: bib12
  article-title: Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer
  publication-title: J ImmunoTher Cancer
– volume: 17
  start-page: 725
  year: 2020
  end-page: 741
  ident: bib62
  article-title: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors
  publication-title: Nat Rev Clin Oncol
– volume: 4
  start-page: 241
  year: 2020
  end-page: 256
  ident: bib8
  article-title: Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma?
  publication-title: Annu Rev Cell Biol
– volume: 15
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib26
  article-title: Ipilimumab and immune-mediated adverse events: a case report of anti-CTLA4 induced ileitis
  publication-title: BMC Cancer
– volume: 32
  start-page: 990
  year: 2020
  end-page: 998
  ident: bib40
  article-title: Erythrocyte-derived drug delivery systems in cancer therapy
  publication-title: Chin Chem Lett
– volume: 6
  start-page: 41
  year: 2000
  end-page: 48
  ident: bib60
  article-title: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1
  publication-title: Nat Med
– volume: 20
  start-page: 63
  year: 2019
  ident: bib24
  article-title: Adjuvant therapy for melanoma
  publication-title: Curr Treat Options Oncol
– volume: 10
  start-page: 3874
  year: 2019
  ident: bib49
  article-title: A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8
  publication-title: Nat Communi
– volume: 11
  start-page: 8668
  year: 2017
  end-page: 8678
  ident: bib29
  article-title: Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy
  publication-title: ACS Nano
– volume: 41
  start-page: e1
  year: 2021
  end-page: e17
  ident: bib61
  article-title: Towards the therapeutic use of thrombospondin 1/CD47 targeting TAX2 peptide as an antithrombotic agent
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 10
  start-page: 395
  year: 2016
  end-page: 401
  ident: bib42
  article-title: Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease
  publication-title: J Crohns Colitis
– volume: 17
  start-page: 251
  year: 2020
  end-page: 266
  ident: bib69
  article-title: Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges
  publication-title: Nat Rev Clin Oncol
– volume: 11
  start-page: 2585
  year: 2021
  end-page: 2604
  ident: bib28
  article-title: Delivery strategies of amphotericin B for invasive fungal infections
  publication-title: Acta Pharm Sin B
– volume: 9
  start-page: 1099
  year: 2019
  end-page: 1112
  ident: bib36
  article-title: Development and application of hyaluronic acid in tumor targeting drug delivery
  publication-title: Acta Pharm Sin B
– volume: 8
  start-page: 448
  year: 2020
  end-page: 462
  ident: bib22
  article-title: Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance
  publication-title: Genes Dis
– volume: 599
  start-page: 673
  year: 2021
  end-page: 678
  ident: bib55
  article-title: Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion
  publication-title: Nature
– volume: 39
  start-page: 193
  year: 2021
  end-page: 208
  ident: bib16
  article-title: Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade
  publication-title: Cancer Cell
– volume: 66
  start-page: 619
  year: 1992
  end-page: 622
  ident: bib50
  article-title: Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation
  publication-title: Br J Cancer
– volume: 41
  start-page: 970
  year: 2020
  end-page: 985
  ident: bib17
  article-title: Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment
  publication-title: Acta Pharmacol Sin
– volume: 364
  start-page: 2517
  year: 2011
  end-page: 2526
  ident: bib25
  article-title: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma
  publication-title: N Engl J Med
– volume: 21
  start-page: 217
  year: 2021
  end-page: 238
  ident: bib54
  article-title: The matrix in cancer
  publication-title: Nat Rev Cancer
– volume: 4
  year: 2009
  ident: bib14
  article-title: Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth
  publication-title: PLoS One
– volume: 41
  start-page: 949
  year: 2012
  end-page: 958
  ident: bib19
  article-title: Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway
  publication-title: Int J Oncol
– volume: 25
  start-page: 2685
  year: 2019
  end-page: 2690
  ident: bib67
  article-title: FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia
  publication-title: Clin Cancer Res
– volume: 10
  year: 2019
  ident: bib9
  article-title: Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity
  publication-title: Front Immunol
– volume: 41
  start-page: 85
  year: 1990
  end-page: 97
  ident: bib59
  article-title: Physiology of thrombospondin
  publication-title: Annu Rev Med
– volume: 80
  start-page: 1615
  year: 2020
  end-page: 1623
  ident: bib64
  article-title: Revisiting immunotherapy: a focus on prostate cancer
  publication-title: Cancer Res
– volume: 165–166
  start-page: 15
  year: 2019
  end-page: 40
  ident: bib2
  article-title: Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases
  publication-title: Adv Drug Deliv Rev
– volume: 22
  start-page: 2
  year: 2022
  ident: bib10
  article-title: Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier
  publication-title: Cancer Cell Int
– volume: 129
  start-page: 383
  year: 2018
  end-page: 400
  ident: bib18
  article-title: Sensitization of tumor cells to chemotherapy by natural products: a systematic review of preclinical data and molecular mechanisms
  publication-title: Fitoterapia
– volume: 168
  start-page: 487
  year: 2017
  end-page: 502
  ident: bib44
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
– volume: 32
  start-page: 1341
  year: 2021
  end-page: 1347
  ident: bib32
  article-title: The progress and perspective of strategies to improve tumor penetration of nanomedicines
  publication-title: Chin Chem Lett
– volume: 118
  start-page: 2074
  year: 2018
  end-page: 2085
  ident: bib46
  article-title: Neutrophil-mediated proteolysis of thrombospondin-1 promotes platelet adhesion and string formation
  publication-title: Thromb Haemostasis
– volume: 13
  start-page: 1800
  year: 2016
  end-page: 1808
  ident: bib41
  article-title: Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response
  publication-title: Mol Pharm
– volume: 4
  year: 2019
  ident: bib45
  article-title: Structure and function of the immune system in the spleen
  publication-title: Science Immunol
– volume: 97
  start-page: 2221
  year: 2001
  end-page: 2229
  ident: bib38
  article-title: Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy
  publication-title: Blood
– volume: 22
  start-page: 3941
  year: 2002
  end-page: 3948
  ident: bib57
  article-title: Expression and role of thrombospondin-1 in colorectal cancer
  publication-title: Anticancer Res
– volume: 21
  start-page: 4692
  year: 2021
  end-page: 4699
  ident: bib39
  article-title: Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for cancer theranostics
  publication-title: Nano Lett
– volume: 10
  start-page: 411‒12
  year: 2011
  ident: bib23
  article-title: Ipilimumab
  publication-title: Nat Rev Drug Discov
– volume: 170
  start-page: 1120
  year: 2017
  end-page: 1133
  ident: bib33
  article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
  publication-title: Cell
– volume: 120
  start-page: 1111
  year: 2010
  end-page: 1124
  ident: bib13
  article-title: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice
  publication-title: J Clin Invest
– volume: 34
  start-page: 845
  year: 2020
  end-page: 856
  ident: bib58
  article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma
  publication-title: Leukemia
– reference: US Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma. Accessed [March 21 2022].
– volume: 8
  start-page: 1136
  year: 2017
  ident: bib48
  article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation
  publication-title: Nat Communi
– volume: 21
  start-page: 15
  year: 2014
  end-page: 25
  ident: bib15
  article-title: Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer
  publication-title: Cell Death Differ
– volume: 24
  start-page: 225
  year: 2012
  end-page: 232
  ident: bib52
  article-title: The CD47-SIRP
  publication-title: Curr Opin Immunol
– volume: 76
  start-page: 6030
  year: 2016
  end-page: 6042
  ident: bib53
  article-title: Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells
  publication-title: Cancer Res
– volume: 12
  year: 2020
  ident: bib63
  article-title: Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis
  publication-title: Ther Adv Med Oncol
– volume: 8
  year: 2019
  ident: bib47
  article-title: Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction
  publication-title: Elife
– volume: 16
  start-page: 4859
  year: 2018
  end-page: 4864
  ident: bib21
  article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2
  publication-title: Exp Ther Med
– volume: 20
  start-page: 321
  year: 2020
  end-page: 334
  ident: bib3
  article-title: Enhancing cancer immunotherapy with nanomedicine
  publication-title: Nat Rev Immunol
– volume: 34
  start-page: 845
  year: 2020
  end-page: 856
  ident: bib51
  article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma
  publication-title: Leukemia
– volume: 543
  start-page: 728
  year: 2017
  end-page: 732
  ident: bib65
  article-title: Effective combinatorial immunotherapy for castration-resistant prostate cancer
  publication-title: Nature
– volume: 11
  start-page: 941
  year: 2021
  end-page: 960
  ident: bib1
  article-title: Biological drug and drug delivery-mediated immunotherapy
  publication-title: Acta Pharm Sin B
– volume: 30
  year: 2020
  ident: bib34
  article-title: Nanocarrier-mediated cytosolic delivery of biopharmaceuticals
  publication-title: Adv Funct Mater
– volume: 251
  year: 2020
  ident: bib35
  article-title: Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy
  publication-title: Carbohydr Polym
– volume: 41
  start-page: 4
  year: 2020
  end-page: 12
  ident: bib43
  article-title: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy
  publication-title: Trends Pharmacol Sci
– volume: 122
  start-page: 135
  year: 2004
  end-page: 142
  ident: bib30
  article-title: The role of thrombospondin-1 in human disease 1
  publication-title: J Surg Res
– volume: 12
  start-page: 634
  year: 2000
  end-page: 640
  ident: bib56
  article-title: The functions of thrombospondin-1 and-2
  publication-title: Curr Opin Cell Biol
– volume: 70
  start-page: 86
  year: 2020
  end-page: 104
  ident: bib68
  article-title: A review of cancer immunotherapy toxicity
  publication-title: CA Cancer J Clin
– volume: 117
  start-page: 1137
  year: 2007
  end-page: 1146
  ident: bib7
  article-title: Immune surveillance of tumors
  publication-title: J Clin Invest
– volume: 323
  start-page: 36
  year: 2020
  end-page: 46
  ident: bib27
  article-title: Design principles of drug combinations for chemotherapy
  publication-title: J Control Release
– volume: 112
  start-page: E6506
  year: 2015
  end-page: E6514
  ident: bib4
  article-title: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 367
  year: 2020
  ident: bib66
  article-title: Neoadjuvant checkpoint blockade for cancer immunotherapy
  publication-title: Science
– volume: 14
  start-page: 2499
  year: 2017
  end-page: 2504
  ident: bib20
  article-title: Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells
  publication-title: Oncol Lett
– volume: 373
  start-page: 1627
  year: 2015
  end-page: 1639
  ident: bib5
  article-title: Nivolumab
  publication-title: N Engl J Med
– volume: 6
  start-page: 72
  year: 2021
  ident: bib6
  article-title: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy
  publication-title: Signal Transduct Targeted Ther
– volume: 20
  start-page: 4177
  year: 2020
  end-page: 4187
  ident: bib31
  article-title: Nanobowl-supported liposomes improve drug loading and delivery
  publication-title: Nano Lett
– volume: 165–166
  start-page: 15
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib2
  article-title: Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases
  publication-title: Adv Drug Deliv Rev
– volume: 39
  start-page: 193
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib16
  article-title: Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.11.005
– volume: 122
  start-page: 135
  year: 2004
  ident: 10.1016/j.apsb.2022.07.012_bib30
  article-title: The role of thrombospondin-1 in human disease 1
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2004.05.015
– volume: 32
  start-page: 1341
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib32
  article-title: The progress and perspective of strategies to improve tumor penetration of nanomedicines
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2020.11.006
– volume: 373
  start-page: 1627
  year: 2015
  ident: 10.1016/j.apsb.2022.07.012_bib5
  article-title: Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1507643
– volume: 493
  start-page: 172
  year: 2015
  ident: 10.1016/j.apsb.2022.07.012_bib37
  article-title: Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2015.07.069
– volume: 8
  start-page: 1136
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib48
  article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation
  publication-title: Nat Communi
  doi: 10.1038/s41467-017-01062-w
– volume: 41
  start-page: e1
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib61
  article-title: Towards the therapeutic use of thrombospondin 1/CD47 targeting TAX2 peptide as an antithrombotic agent
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.120.314571
– volume: 11
  start-page: 8668
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib29
  article-title: Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01026
– volume: 30
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib34
  article-title: Nanocarrier-mediated cytosolic delivery of biopharmaceuticals
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201910566
– volume: 13
  start-page: 1800
  year: 2016
  ident: 10.1016/j.apsb.2022.07.012_bib41
  article-title: Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.5b00952
– volume: 20
  start-page: 321
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib3
  article-title: Enhancing cancer immunotherapy with nanomedicine
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0269-6
– volume: 10
  start-page: 411‒12
  year: 2011
  ident: 10.1016/j.apsb.2022.07.012_bib23
  article-title: Ipilimumab
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3463
– volume: 20
  start-page: 4177
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib31
  article-title: Nanobowl-supported liposomes improve drug loading and delivery
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c00495
– volume: 8
  start-page: 448
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib22
  article-title: Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance
  publication-title: Genes Dis
  doi: 10.1016/j.gendis.2020.06.010
– volume: 34
  start-page: 845
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib58
  article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47
  publication-title: Leukemia
  doi: 10.1038/s41375-019-0622-6
– volume: 10
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib9
  article-title: Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00999
– volume: 599
  start-page: 673
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib55
  article-title: Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion
  publication-title: Nature
  doi: 10.1038/s41586-021-04057-2
– volume: 34
  start-page: 845
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib51
  article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47
  publication-title: Leukemia
  doi: 10.1038/s41375-019-0622-6
– volume: 367
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib66
  article-title: Neoadjuvant checkpoint blockade for cancer immunotherapy
  publication-title: Science
  doi: 10.1126/science.aax0182
– volume: 364
  start-page: 2517
  year: 2011
  ident: 10.1016/j.apsb.2022.07.012_bib25
  article-title: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1104621
– volume: 4
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib45
  article-title: Structure and function of the immune system in the spleen
  publication-title: Science Immunol
  doi: 10.1126/sciimmunol.aau6085
– volume: 120
  start-page: 1111
  year: 2010
  ident: 10.1016/j.apsb.2022.07.012_bib13
  article-title: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI40269
– volume: 80
  start-page: 1615
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib64
  article-title: Revisiting immunotherapy: a focus on prostate cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-19-2948
– volume: 170
  start-page: 1120
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib33
  article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 543
  start-page: 728
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib65
  article-title: Effective combinatorial immunotherapy for castration-resistant prostate cancer
  publication-title: Nature
  doi: 10.1038/nature21676
– volume: 70
  start-page: 86
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib68
  article-title: A review of cancer immunotherapy toxicity
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21596
– volume: 14
  start-page: 2499
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib20
  article-title: Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells
  publication-title: Oncol Lett
  doi: 10.3892/ol.2017.6421
– volume: 41
  start-page: 4
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib43
  article-title: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2019.11.003
– volume: 32
  start-page: 990
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib40
  article-title: Erythrocyte-derived drug delivery systems in cancer therapy
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2020.08.048
– volume: 118
  start-page: 2074
  year: 2018
  ident: 10.1016/j.apsb.2022.07.012_bib46
  article-title: Neutrophil-mediated proteolysis of thrombospondin-1 promotes platelet adhesion and string formation
  publication-title: Thromb Haemostasis
  doi: 10.1055/s-0038-1675229
– volume: 22
  start-page: 2
  year: 2022
  ident: 10.1016/j.apsb.2022.07.012_bib10
  article-title: Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-021-02407-8
– volume: 41
  start-page: 949
  year: 2012
  ident: 10.1016/j.apsb.2022.07.012_bib19
  article-title: Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2012.1519
– volume: 25
  start-page: 2685
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib67
  article-title: FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-2990
– volume: 323
  start-page: 36
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib27
  article-title: Design principles of drug combinations for chemotherapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2020.04.018
– volume: 168
  start-page: 487
  year: 2017
  ident: 10.1016/j.apsb.2022.07.012_bib44
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.022
– volume: 12
  start-page: 634
  year: 2000
  ident: 10.1016/j.apsb.2022.07.012_bib56
  article-title: The functions of thrombospondin-1 and-2
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/S0955-0674(00)00143-5
– volume: vol. 10
  year: 2022
  ident: 10.1016/j.apsb.2022.07.012_bib12
  article-title: Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer
  publication-title: J ImmunoTher Cancer
  doi: 10.1136/jitc-2021-003427
– volume: 6
  start-page: 41
  year: 2000
  ident: 10.1016/j.apsb.2022.07.012_bib60
  article-title: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1
  publication-title: Nat Med
  doi: 10.1038/71517
– volume: 8
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib47
  article-title: Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction
  publication-title: Elife
  doi: 10.7554/eLife.49020
– volume: 24
  start-page: 225
  year: 2012
  ident: 10.1016/j.apsb.2022.07.012_bib52
  article-title: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2012.01.010
– volume: 21
  start-page: 15
  year: 2014
  ident: 10.1016/j.apsb.2022.07.012_bib15
  article-title: Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2013.67
– volume: 9
  start-page: 1099
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib36
  article-title: Development and application of hyaluronic acid in tumor targeting drug delivery
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2019.06.004
– volume: 97
  start-page: 2221
  year: 2001
  ident: 10.1016/j.apsb.2022.07.012_bib38
  article-title: Systemic circulation of poly(l-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy
  publication-title: Blood
  doi: 10.1182/blood.V97.8.2221
– volume: 76
  start-page: 6030
  year: 2016
  ident: 10.1016/j.apsb.2022.07.012_bib53
  article-title: Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-1170
– volume: 17
  start-page: 725
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib62
  article-title: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-020-0413-z
– volume: 112
  start-page: E6506
  year: 2015
  ident: 10.1016/j.apsb.2022.07.012_bib4
  article-title: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1519623112
– volume: 41
  start-page: 970
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib17
  article-title: Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-020-0424-4
– volume: 6
  start-page: 72
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib6
  article-title: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy
  publication-title: Signal Transduct Targeted Ther
  doi: 10.1038/s41392-020-00449-4
– volume: 117
  start-page: 1137
  year: 2007
  ident: 10.1016/j.apsb.2022.07.012_bib7
  article-title: Immune surveillance of tumors
  publication-title: J Clin Invest
  doi: 10.1172/JCI31405
– volume: 66
  start-page: 619
  year: 1992
  ident: 10.1016/j.apsb.2022.07.012_bib50
  article-title: Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1992.326
– volume: 12
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib63
  article-title: Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis
  publication-title: Ther Adv Med Oncol
  doi: 10.1177/1758835920940928
– volume: 22
  start-page: 3941
  year: 2002
  ident: 10.1016/j.apsb.2022.07.012_bib57
  article-title: Expression and role of thrombospondin-1 in colorectal cancer
  publication-title: Anticancer Res
– volume: 11
  start-page: 2585
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib28
  article-title: Delivery strategies of amphotericin B for invasive fungal infections
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.04.010
– volume: 4
  year: 2009
  ident: 10.1016/j.apsb.2022.07.012_bib14
  article-title: Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth
  publication-title: PLoS One
– volume: 41
  start-page: 85
  year: 1990
  ident: 10.1016/j.apsb.2022.07.012_bib59
  article-title: Physiology of thrombospondin
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.me.41.020190.000505
– volume: 21
  start-page: 4692
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib39
  article-title: Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for cancer theranostics
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.1c00895
– volume: 10
  start-page: 395
  year: 2016
  ident: 10.1016/j.apsb.2022.07.012_bib42
  article-title: Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease
  publication-title: J Crohns Colitis
  doi: 10.1093/ecco-jcc/jjv227
– volume: 129
  start-page: 383
  year: 2018
  ident: 10.1016/j.apsb.2022.07.012_bib18
  article-title: Sensitization of tumor cells to chemotherapy by natural products: a systematic review of preclinical data and molecular mechanisms
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2018.02.025
– ident: 10.1016/j.apsb.2022.07.012_bib11
– volume: 16
  start-page: 4859
  year: 2018
  ident: 10.1016/j.apsb.2022.07.012_bib21
  article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2
  publication-title: Exp Ther Med
– volume: 21
  start-page: 217
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib54
  article-title: The matrix in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-00329-7
– volume: 4
  start-page: 241
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib8
  article-title: Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma?
  publication-title: Annu Rev Cell Biol
  doi: 10.1146/annurev-cancerbio-030419-033635
– volume: 251
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib35
  article-title: Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy
  publication-title: Carbohydr Polym
– volume: 20
  start-page: 63
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib24
  article-title: Adjuvant therapy for melanoma
  publication-title: Curr Treat Options Oncol
  doi: 10.1007/s11864-019-0666-x
– volume: 11
  start-page: 941
  year: 2021
  ident: 10.1016/j.apsb.2022.07.012_bib1
  article-title: Biological drug and drug delivery-mediated immunotherapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2020.12.018
– volume: 10
  start-page: 3874
  year: 2019
  ident: 10.1016/j.apsb.2022.07.012_bib49
  article-title: A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control
  publication-title: Nat Communi
  doi: 10.1038/s41467-019-11782-w
– volume: 15
  start-page: 1
  year: 2015
  ident: 10.1016/j.apsb.2022.07.012_bib26
  article-title: Ipilimumab and immune-mediated adverse events: a case report of anti-CTLA4 induced ileitis
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1074-7
– volume: 17
  start-page: 251
  year: 2020
  ident: 10.1016/j.apsb.2022.07.012_bib69
  article-title: Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-019-0308-z
SSID ssj0000602275
Score 2.4219813
Snippet The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3503
SubjectTerms Checkpoint blockade
Co-delivery
Diterpenoid-based conjugate
Immunotherapy
Liposomes
Original
Thrombospondin-1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQFBALpTIS6oVGJHZix8eCqCoOqIdF6s3yx4SGlmS1u0Xaf9-ZOLvdXMqFW5TYiZMZZ94kz28Y-5jHEkwFJiucUlmpgsiMlyGLGgqF4USqMLAtfqiLn-X3q-pqr9QXccKSPHB6cJ8xniqoAiD0xa7OeR9AR0QlUjbahAEaYczbS6bSO5ik8Yi_KATp9CHOGFfMJHKXW6w8JodCDMqdhZhEpUG8fxKc9sDnlDq5F4vOn7NnI4jkZ2nwL9gT6A7ZyWVSod6c8vnDoqrVKT_hlw_61JuX7NfuQwIPZPMlb2mRyLgUa8P_to6HPotwS5yNodk1hJtF33Zr7jH43bgI3HWRU42FP74nli2GwKzgEXP6Zapu3y9fsfn5t_nXi2yst5AFzHvWWeUFFLopoySpc1dqCFTtzxsjFOKCohEaN6QvTYN5I0idQ1DKOVk7kzsjX7ODru_gDeNeBydDLkIVVRkBTBO9RmAIAdGMr_2MFdvHbcOoRU4lMW7tlnT225KJLJnI5tqiiWbs067PIilxPNr6C1lx15JUtIcd6Ft29C37L9-asWrrA3YEJAlo4KnaRy_-YeswFmcr_YJxHfR3KytqhW9NRFXFjNUTT5qMdHqka68H3W_6HV_VWrz9H_f2jj3FEcvEZTxiB-vlHbxHfLX2x8NUugem5SXZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15Kn3T7QoWSSyPWlmzJOiahIfRQAt3C3oQes4mb1F68m8L--4xkexNfcujND9kWnvHMN_LMN4R8zUIBugTNcislK6TnTDvhWVCQS3QnQvqUbfFTXvwufizL5QE5G2thYlrlYPt7m56s9XBkPrzN-bqu5784xi4iAQjUTHRMaIdFUaUivuXpfp0lk5EkL2YyxvEsXjDUzvRpXna9cRgmcp44PHM-8U-Jxn_iph7B0GkS5SOvdP6CPB_gJD3pZ_ySHEDzihxd9nzUu2O6eCiv2hzTI3r5wFS9e02u9ksK1Efpd7SO5SJDUdaO_qst9S0LcBuzN9Kwa_A367ZuttShG7yxAahtAo3dFv66NubbojNkOQ0Y3Xd9n_u2e0MW598XZxds6LzAPEZAW1Y6DrlaFUFE0nNbKPCx75_TmktECPmKK9wQrtArjCBBqAy8lNaKyurMavGWHDZtA-8Idcpb4TPuyyCLAKBXwSmEiOAR17jKzUg-vm7jB1by2Bzj1ozpZ39MFJGJIjKZMiiiGfm2v2bdc3I8Ofo0SnE_MvJppwNtd2UGhTKI2iSUHjDAQgW11jkPKiD2FWKltLczUo46YCbqibeqn3z4l1FhDH638WeMbaC92xheSbSfiK_yGakmmjSZ6fRMU18nBvD4Y76sFH__n9P6QJ7hnugTGT-Sw213B58QXG3d5_T13AOGPSWt
  priority: 102
  providerName: Elsevier
Title Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator
URI https://dx.doi.org/10.1016/j.apsb.2022.07.012
https://www.proquest.com/docview/2860401811
https://pubmed.ncbi.nlm.nih.gov/PMC10465872
https://doaj.org/article/8936e5ce255244aabbce7d23133f79ca
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKA-xPCojoV5oUGIndnxAiCKqAgIVaSvtzfJj0oYuyTa7Rey_Z5zHbiNVPXCJosRJLHsm84098w0hb2KfgspARYkRIkqFY5Gy3EVeQiLQnHDh2miLH-LkLP06y2Y7ZCh31A_g8lbXLtSTOmvm7_5erT-gwr_fxmqZxdKir8dYS8QZig7fQ8skg6J-7-F-92cOhHkhqpGxwN6H6KPPo7n9NSNb1VL6j0zWDUg6Dqi8YaGOH5IHPbSkHztZ2CM7UD0iB6cdN_X6kE63qVbLQ3pAT7es1evH5HyzvEBdkISGliF1pE_QWtM_paGujjzMQyRH2-wC3OWiLqsVtWgSL40HaipPQ-WF37YOsbdoGKOEevT0m67mfd08IdPjz9NPJ1FfhSFy6A2toswySGSReh4I0E0qwYUagFYpJhAtJAWTeMJtqgr0JoHLGJwQxvDcqNgo_pTsVnUFzwi10hnuYuYyL1IPoApvJcJFcIhxbG4nJBmGW7ueoTwUypjrIRTtlw5TpMMU6VhqnKIJebt5ZtHxc9zZ-ijM4qZl4NZuL9TNue5VVSOCE5A5QGcLhdUYax1IjziY80IqZyYkG2RA9zClgx_4qvLOj78eBEajDoeNGVNBfb3ULBf4L0WslUxIPpKkUU_Hd6ryomUDD5v0WS7Z8_9_9AW5j_3kXVzjS7K7aq7hFWKtld1v1yjw-GV2hMdvP_P9VqX-AXsHL4Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAF8RTL00ioFxptYid2fKQV1RZKVYlF2pvlx6RNW5JVdou0_55xHtvm0gO3VWJnrczE803yzTeEfI59CioDFSVGiCgVjkXKchd5CYnAcMKFa9kWp2L2O_2-yBY75HCohQm0yn7v7_b0drfuj0z7uzldluX0F8PchbcAAj0TA9MD8hDRgAz9G44XB9sXLbEIKnmByhgmRGFGXzzT8bzMcmUxT2SsFfFM2ChAtTr-ozh1B4eOWZR3wtLRU_Kkx5P0a7fkZ2QHqudk76wTpN7s0_ltfdVqn-7Rs1up6s0Lcr59p0BdMH9Dy1Av0ldlbejf0lBXRx6uA32jHXYB7mpZl9WaWoyDV8YDNZWnod3CH1sHwi1GwyihHtP7pmt0Xzcvyfzo2_xwFvWtFyKHKdA6yiyDRBap50H13KQSXGj8Z5ViAiFCUjCJP7hNVYEpJHAZgxPCGJ4bFRvFX5Hdqq7gNaFWOsNdzFzmReoBVOGtRIwIDoGNze2EJMPt1q6XJQ_dMa71wD-71MFEOphIx1KjiSbky3bOshPluHf0QbDidmQQ1G4P1M257j1KI2wTkDnADAs91BhrHUiP4JfzQipnJiQbfECP_BMvVd77558Gh9H44IavMaaC-malWS5wA0WAlUxIPvKk0UrHZ6ryopUAD1_ms1yyN_-5rI_k0Wz-80SfHJ_-eEse4xnesRrfkd11cwPvEWmt7Yf2SfoHPmEozA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+cancer+immunotherapy+via+co-delivering+checkpoint+blockade+and+thrombospondin-1+downregulator&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Xiao%2C+Qingqing&rft.au=Li%2C+Xiaotong&rft.au=Liu%2C+Chang&rft.au=Jiang%2C+Yuxin&rft.date=2023-08-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.eissn=2211-3843&rft.volume=13&rft.issue=8&rft.spage=3503&rft.epage=3517&rft_id=info:doi/10.1016%2Fj.apsb.2022.07.012&rft.externalDocID=PMC10465872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon