Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator
The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hyp...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 13; no. 8; pp. 3503 - 3517 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.
[Display omitted] |
---|---|
AbstractList | The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy.The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. [Display omitted] The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo , the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. Image 1 The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor immunotherapy. The poor response of cancer cells to immune destruction is an essential contributor to the failure of checkpoint therapy. We hypothesized that combining checkpoint therapy with natural-product chemosensitizer could enhance immune response. Herein, a targeted diterpenoid derivative was integrated with the checkpoint blockade (anti-CTLA-4) to improve immunotherapy using thermosensitive liposomes as carriers. In vivo, the liposomes enabled the co-delivery of the two drug payloads into the tumor. Consequently, the regulatory T cell proliferation was restrained, the cytotoxic T cell infiltration was enhanced, and the profound immunotherapeutic effect was achieved. In addition, the immunotherapeutic effect of another clinically used checkpoint antibody, anti-PD-1, also benefited from the diterpenoid derivative. Of note, our mechanism study revealed that the targeted diterpenoid derivative increased the sensitivity of cancer cells to immune attack via THBS1 downregulation and the resultant destruction of THBS1-CD47 interaction. Collectively, co-delivering THBS1 inhibitor and checkpoint blockade is promising to boost cancer immunotherapy. We first time discovered that THBS1 suppression could strengthen checkpoint therapy. |
Author | Xiao, Qingqing He, Yonglong Li, Xiaotong Azevedo, Helena S. Jiang, Yuxin Xia, Yuanzheng Zhang, Wanting Wu, Wei He, Wei Liu, Chang |
Author_xml | – sequence: 1 givenname: Qingqing surname: Xiao fullname: Xiao, Qingqing organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 2 givenname: Xiaotong surname: Li fullname: Li, Xiaotong organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 3 givenname: Chang surname: Liu fullname: Liu, Chang organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 4 givenname: Yuxin surname: Jiang fullname: Jiang, Yuxin organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 5 givenname: Yonglong surname: He fullname: He, Yonglong organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 6 givenname: Wanting surname: Zhang fullname: Zhang, Wanting organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China – sequence: 7 givenname: Helena S. surname: Azevedo fullname: Azevedo, Helena S. organization: School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK – sequence: 8 givenname: Wei orcidid: 0000-0002-0164-0814 surname: Wu fullname: Wu, Wei organization: School of Pharmacy, Fudan University, Shanghai 201203, China – sequence: 9 givenname: Yuanzheng surname: Xia fullname: Xia, Yuanzheng email: xiayz@cpu.edu.cn organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China – sequence: 10 givenname: Wei orcidid: 0000-0003-3075-3831 surname: He fullname: He, Wei email: weihe@cpu.edu.cn organization: School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China |
BookMark | eNp9kk1r3DAQhk1JoWmaP9CTj73Y1ZclGwqlhH4sBHrJXYzlsVcbW3IleUv-fbXZtJAeossMmvd9GPTqbXHhvMOieE9JTQmVHw81rLGvGWGsJqomlL0qLhmjtOKt4Bf_et68Ka5jPJB8ZBar5rKYdssa_NG6qTTgDIbSLsvmfNpjgPWhPFooja8GnO0Rw6Nsj-Z-9dalsp-9uYcBS3BDmfbBL72Pq3eDdRUtB__bBZy2GZIP74rXI8wRr5_qVXH37evdzY_q9uf33c2X28qIrktV0zOkahQDNyBaEAoNl53su47JhjI6MpUb3otuVIwiVwSNlAC8hY5Ax6-K3Rk7eDjoNdgFwoP2YPXjhQ-ThpCsmVG3HZfYGGRNw4QA6HuDamCccj6qzkBmfT6z1q1fcDDoUoD5GfT5xNm9nvxRUyJk0yqWCR-eCMH_2jAmvdhocJ7Bod-iZq0kgtCW0ixtz1ITfIwBR21sgmT9CW3nzNSnrPVBn7LWp6w1UTpnna3sP-vfFV80fTqbMIdxtBh0NBbzBxhsQJPyc9mX7H8AxlDHhw |
CitedBy_id | crossref_primary_10_1002_smtd_202401355 crossref_primary_10_1186_s12943_024_02124_6 crossref_primary_10_1016_j_ajps_2022_11_002 crossref_primary_10_1186_s12943_024_02073_0 crossref_primary_10_1016_j_apsb_2025_02_020 crossref_primary_10_1016_j_apsb_2024_08_003 crossref_primary_10_1016_j_apsb_2024_08_014 crossref_primary_10_3390_molecules28186652 crossref_primary_10_3390_pharmaceutics15030774 crossref_primary_10_1016_j_intimp_2024_112184 crossref_primary_10_1016_j_bbadis_2024_167026 crossref_primary_10_1016_j_cclet_2023_109335 crossref_primary_10_1016_j_cclet_2023_108346 crossref_primary_10_1038_s41392_023_01668_1 crossref_primary_10_1016_j_ijpharm_2025_125508 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1021_acs_langmuir_4c02736 crossref_primary_10_3390_ijms26062448 crossref_primary_10_1016_j_jconrel_2025_02_006 crossref_primary_10_1080_17425247_2024_2374807 crossref_primary_10_1016_j_ebiom_2024_105301 crossref_primary_10_1016_j_cclet_2024_110225 |
Cites_doi | 10.1016/j.ccell.2020.11.005 10.1016/j.jss.2004.05.015 10.1016/j.cclet.2020.11.006 10.1056/NEJMoa1507643 10.1016/j.ijpharm.2015.07.069 10.1038/s41467-017-01062-w 10.1161/ATVBAHA.120.314571 10.1021/acsnano.7b01026 10.1002/adfm.201910566 10.1021/acs.molpharmaceut.5b00952 10.1038/s41577-019-0269-6 10.1038/nrd3463 10.1021/acs.nanolett.0c00495 10.1016/j.gendis.2020.06.010 10.1038/s41375-019-0622-6 10.3389/fimmu.2019.00999 10.1038/s41586-021-04057-2 10.1126/science.aax0182 10.1056/NEJMoa1104621 10.1126/sciimmunol.aau6085 10.1172/JCI40269 10.1158/0008-5472.CAN-19-2948 10.1016/j.cell.2017.07.024 10.1038/nature21676 10.3322/caac.21596 10.3892/ol.2017.6421 10.1016/j.tips.2019.11.003 10.1016/j.cclet.2020.08.048 10.1055/s-0038-1675229 10.1186/s12935-021-02407-8 10.3892/ijo.2012.1519 10.1158/1078-0432.CCR-18-2990 10.1016/j.jconrel.2020.04.018 10.1016/j.cell.2016.12.022 10.1016/S0955-0674(00)00143-5 10.1136/jitc-2021-003427 10.1038/71517 10.7554/eLife.49020 10.1016/j.coi.2012.01.010 10.1038/cdd.2013.67 10.1016/j.apsb.2019.06.004 10.1182/blood.V97.8.2221 10.1158/0008-5472.CAN-16-1170 10.1038/s41571-020-0413-z 10.1073/pnas.1519623112 10.1038/s41401-020-0424-4 10.1038/s41392-020-00449-4 10.1172/JCI31405 10.1038/bjc.1992.326 10.1177/1758835920940928 10.1016/j.apsb.2021.04.010 10.1146/annurev.me.41.020190.000505 10.1021/acs.nanolett.1c00895 10.1093/ecco-jcc/jjv227 10.1016/j.fitote.2018.02.025 10.1038/s41568-020-00329-7 10.1146/annurev-cancerbio-030419-033635 10.1007/s11864-019-0666-x 10.1016/j.apsb.2020.12.018 10.1038/s41467-019-11782-w 10.1186/s12885-015-1074-7 10.1038/s41571-019-0308-z |
ContentType | Journal Article |
Copyright | 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2022.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 3517 |
ExternalDocumentID | oai_doaj_org_article_8936e5ce255244aabbce7d23133f79ca PMC10465872 10_1016_j_apsb_2022_07_012 S2211383522003240 |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFUIB AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c499t-5b2e17f4d3ca48a47ec3696b99265121f272653b49f721e370ec66aa38a90a93 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:15:31 EDT 2025 Thu Aug 21 18:36:26 EDT 2025 Fri Jul 11 06:18:03 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 01:53:09 EDT 2025 Sun Apr 06 06:54:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Thrombospondin-1 Diterpenoid-based conjugate Co-delivery Liposomes Checkpoint blockade Immunotherapy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-5b2e17f4d3ca48a47ec3696b99265121f272653b49f721e370ec66aa38a90a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0003-3075-3831 0000-0002-0164-0814 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2022.07.012 |
PQID | 2860401811 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8936e5ce255244aabbce7d23133f79ca pubmedcentral_primary_oai_pubmedcentral_nih_gov_10465872 proquest_miscellaneous_2860401811 crossref_citationtrail_10_1016_j_apsb_2022_07_012 crossref_primary_10_1016_j_apsb_2022_07_012 elsevier_sciencedirect_doi_10_1016_j_apsb_2022_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, He, Wang, Li, Liu (bib47) 2019; 8 Martin, Cabral, Stylianopoulos, Jain (bib69) 2020; 17 Ji, Lang, Wang, Cai, Zhang, Qi (bib29) 2017; 11 Hu, Yuan, Wang, Gao, Liu, Zhang (bib32) 2021; 32 Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins (bib44) 2017; 168 Borghaei, Paz-Ares, Horn, Spigel, Steins, Ready (bib5) 2015; 373 Miyanaga, Kato, Nakamura, Matsumura, Amaya, Horiuchi (bib57) 2002; 22 Liu, Xu, Zhou, Shen (bib22) 2020; 8 Wada-Ohno, Ito, Furue (bib24) 2019; 20 Loeffler, Juneau, Masserant (bib50) 1992; 66 Robert, Thomas, Bondarenko, O'Day, Weber, Garbe (bib25) 2011; 364 Liu, Zheng (bib43) 2020; 41 Krauss, Gao, Li, Manning, Patel, Fu (bib67) 2019; 25 Bracci, Schiavoni, Sistigu, Belardelli (bib15) 2014; 21 Galluzzi, Humeau, Buqué, Zitvogel, Kroemer (bib62) 2020; 17 Mao, Zou, Jiang, Fu (bib40) 2020; 32 Sun, Ren, Yang, Liu, Cao, Deng (bib49) 2019; 10 Lewis, Williams, Eisenbarth (bib45) 2019; 4 Seliger (bib9) 2019; 10 Cox (bib54) 2021; 21 Ward, Read, Seymour (bib38) 2001; 97 Chao, Weissman, Majeti (bib52) 2012; 24 Swann, Smyth (bib7) 2007; 117 Wei, Levine, Cogdill, Zhao, Anang, Andrews (bib33) 2017; 170 US Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma. Accessed [March 21 2022]. Xiao, Li, Li, Wu, Xu, Chen (bib1) 2021; 11 He, Kapate, Shields, Mitragotri (bib2) 2019; 165–166 Irvine, Dane (bib3) 2020; 20 Oliveira Júnior, Christiane Adrielly, Silva Almeida, Grougnet, Thiéry, Picot (bib18) 2018; 129 Venditti, Lisi, Caricato, Caputo, Capolupo, Taffon (bib26) 2015; 15 Topalian, Taube, Pardoll (bib66) 2020; 367 Kamijo, Miyagaki, Takahashi-Shishido, Nakajima, Simeonov, Oka (bib51) 2020; 34 Vafaei, Zekiy, Khanamir, Zaman, Ghayourvahdat, Azimizonuzi (bib10) 2022; 22 Maute, Gordon, Mayer, McCracken, Natarajan, Ring (bib4) 2015; 112 Jiménez, Volpert, Crawford, Febbraio, Silverstein, Bouck (bib60) 2000; 6 Cha, Lee, Ponnazhagan (bib64) 2020; 80 Sun, Hyun, Li, Wang (bib17) 2020; 41 Srivastava, Furlan, Jaeger-Ruckstuhl, Sarvothama, Berger, Smythe (bib16) 2021; 39 Chen, Yang, Liu, Gao, Dong, Lai (bib31) 2020; 20 Ramakrishnan, Assudani, Nagaraj, Hunter, Cho, Antonia (bib13) 2010; 120 Sun, Wu, Chiang, Deng, Zhang, Xiong (bib55) 2021; 599 Wu, Pusuluri, Vogus, Krishnan, Shields, Kim (bib27) 2020; 323 Li, Shi, Zhang, Yang, Cheng (bib21) 2018; 16 Xu, He, Lv, Qin, Shen, Yin (bib37) 2015; 493 Jeanne, Sarazin, Charlé, Kawecki, Kauskot, Hedtke (bib61) 2021; 41 Wang, Mohammad, Fan, Zhao, Nurunnabi, Sallam (bib28) 2021; 11 Ferreira, Goel, Ehlerding, Rosenkrans, Jiang, Sun (bib39) 2021; 21 Li, Sun, Zhang, Zhao, Zhang, Zhang (bib35) 2020; 251 Luo, Dai, Gao (bib36) 2019; 9 He, Xiao, Li, Guo, Huang, Shi (bib20) 2017; 14 He, Xing, Wang, Wu, Wu, Guo (bib34) 2020; 30 Kamijo, Miyagaki, Takahashi-Shishido, Nakajima, Oka, Suga (bib58) 2020; 34 Tang, Huang, Zhang, Hong, Bai, Liang (bib6) 2021; 6 Seif, Alidzanovic, Tischler, Ibrahim, Zagrapan, Rauscher (bib46) 2018; 118 Lawler (bib56) 2000; 12 Sade-Feldman, Jiao, Chen, Rooney, Barzily-Rokni, Eliane (bib48) 2017; 8 Esemuede, Lee, Pierre-Paul, Sumpio, Gahtan (bib30) 2004; 122 Zhang, Deng, Fu, Sun, Gong, Zhang (bib41) 2016; 13 Most, Currie, Cleaver, Salmons, Nowak, Mahendran (bib14) 2009; 4 Lu, Horner, Paul, Shang, Troncoso, Deng (bib65) 2017; 543 Kennedy, Salama (bib68) 2020; 70 Marthey, Mateus, Mussini, Nachury, Nancey, Grange (bib42) 2016; 10 Baghdadi, Wada, Nakanishi, Abe, Han, Putra (bib53) 2016; 76 Anders, Woodcock, Van Swearingen, Moore, Sambade, Laurie (bib12) 2022; vol. 10 Eynde, Baren, Baurain (bib8) 2020; 4 Zou, Zou, Zheng, Tang, Zhang, Liu (bib63) 2020; 12 Bu, Luo, Chen, Zhang, Li, Guo (bib19) 2012; 41 Sondak, Smalley, Kudchadkar, Grippon, Kirkpatrick (bib23) 2011; 10 Mosher (bib59) 1990; 41 Lewis (10.1016/j.apsb.2022.07.012_bib45) 2019; 4 Borghaei (10.1016/j.apsb.2022.07.012_bib5) 2015; 373 Sade-Feldman (10.1016/j.apsb.2022.07.012_bib48) 2017; 8 Bracci (10.1016/j.apsb.2022.07.012_bib15) 2014; 21 Ji (10.1016/j.apsb.2022.07.012_bib29) 2017; 11 Xu (10.1016/j.apsb.2022.07.012_bib37) 2015; 493 Maute (10.1016/j.apsb.2022.07.012_bib4) 2015; 112 Miyanaga (10.1016/j.apsb.2022.07.012_bib57) 2002; 22 He (10.1016/j.apsb.2022.07.012_bib2) 2019; 165–166 Galluzzi (10.1016/j.apsb.2022.07.012_bib62) 2020; 17 Kennedy (10.1016/j.apsb.2022.07.012_bib68) 2020; 70 He (10.1016/j.apsb.2022.07.012_bib20) 2017; 14 Xiao (10.1016/j.apsb.2022.07.012_bib1) 2021; 11 Zou (10.1016/j.apsb.2022.07.012_bib63) 2020; 12 Swann (10.1016/j.apsb.2022.07.012_bib7) 2007; 117 Jeanne (10.1016/j.apsb.2022.07.012_bib61) 2021; 41 Vafaei (10.1016/j.apsb.2022.07.012_bib10) 2022; 22 Li (10.1016/j.apsb.2022.07.012_bib21) 2018; 16 Spitzer (10.1016/j.apsb.2022.07.012_bib44) 2017; 168 Wang (10.1016/j.apsb.2022.07.012_bib47) 2019; 8 Anders (10.1016/j.apsb.2022.07.012_bib12) 2022; vol. 10 Venditti (10.1016/j.apsb.2022.07.012_bib26) 2015; 15 Lawler (10.1016/j.apsb.2022.07.012_bib56) 2000; 12 Seliger (10.1016/j.apsb.2022.07.012_bib9) 2019; 10 Most (10.1016/j.apsb.2022.07.012_bib14) 2009; 4 Ferreira (10.1016/j.apsb.2022.07.012_bib39) 2021; 21 Srivastava (10.1016/j.apsb.2022.07.012_bib16) 2021; 39 Kamijo (10.1016/j.apsb.2022.07.012_bib51) 2020; 34 Sun (10.1016/j.apsb.2022.07.012_bib17) 2020; 41 Topalian (10.1016/j.apsb.2022.07.012_bib66) 2020; 367 Mao (10.1016/j.apsb.2022.07.012_bib40) 2020; 32 Marthey (10.1016/j.apsb.2022.07.012_bib42) 2016; 10 Lu (10.1016/j.apsb.2022.07.012_bib65) 2017; 543 Oliveira Júnior (10.1016/j.apsb.2022.07.012_bib18) 2018; 129 Wei (10.1016/j.apsb.2022.07.012_bib33) 2017; 170 10.1016/j.apsb.2022.07.012_bib11 Li (10.1016/j.apsb.2022.07.012_bib35) 2020; 251 Ward (10.1016/j.apsb.2022.07.012_bib38) 2001; 97 Mosher (10.1016/j.apsb.2022.07.012_bib59) 1990; 41 Kamijo (10.1016/j.apsb.2022.07.012_bib58) 2020; 34 Sun (10.1016/j.apsb.2022.07.012_bib49) 2019; 10 Chao (10.1016/j.apsb.2022.07.012_bib52) 2012; 24 Eynde (10.1016/j.apsb.2022.07.012_bib8) 2020; 4 Bu (10.1016/j.apsb.2022.07.012_bib19) 2012; 41 Chen (10.1016/j.apsb.2022.07.012_bib31) 2020; 20 Hu (10.1016/j.apsb.2022.07.012_bib32) 2021; 32 Krauss (10.1016/j.apsb.2022.07.012_bib67) 2019; 25 Sondak (10.1016/j.apsb.2022.07.012_bib23) 2011; 10 Loeffler (10.1016/j.apsb.2022.07.012_bib50) 1992; 66 Baghdadi (10.1016/j.apsb.2022.07.012_bib53) 2016; 76 Wada-Ohno (10.1016/j.apsb.2022.07.012_bib24) 2019; 20 Wu (10.1016/j.apsb.2022.07.012_bib27) 2020; 323 Sun (10.1016/j.apsb.2022.07.012_bib55) 2021; 599 Liu (10.1016/j.apsb.2022.07.012_bib43) 2020; 41 Esemuede (10.1016/j.apsb.2022.07.012_bib30) 2004; 122 Luo (10.1016/j.apsb.2022.07.012_bib36) 2019; 9 Cha (10.1016/j.apsb.2022.07.012_bib64) 2020; 80 Zhang (10.1016/j.apsb.2022.07.012_bib41) 2016; 13 Tang (10.1016/j.apsb.2022.07.012_bib6) 2021; 6 Liu (10.1016/j.apsb.2022.07.012_bib22) 2020; 8 Irvine (10.1016/j.apsb.2022.07.012_bib3) 2020; 20 Jiménez (10.1016/j.apsb.2022.07.012_bib60) 2000; 6 Cox (10.1016/j.apsb.2022.07.012_bib54) 2021; 21 Ramakrishnan (10.1016/j.apsb.2022.07.012_bib13) 2010; 120 He (10.1016/j.apsb.2022.07.012_bib34) 2020; 30 Martin (10.1016/j.apsb.2022.07.012_bib69) 2020; 17 Robert (10.1016/j.apsb.2022.07.012_bib25) 2011; 364 Wang (10.1016/j.apsb.2022.07.012_bib28) 2021; 11 Seif (10.1016/j.apsb.2022.07.012_bib46) 2018; 118 |
References_xml | – volume: 493 start-page: 172 year: 2015 end-page: 181 ident: bib37 article-title: Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity publication-title: Int J Pharm – volume: vol. 10 year: 2022 ident: bib12 article-title: Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer publication-title: J ImmunoTher Cancer – volume: 17 start-page: 725 year: 2020 end-page: 741 ident: bib62 article-title: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors publication-title: Nat Rev Clin Oncol – volume: 4 start-page: 241 year: 2020 end-page: 256 ident: bib8 article-title: Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? publication-title: Annu Rev Cell Biol – volume: 15 start-page: 1 year: 2015 end-page: 5 ident: bib26 article-title: Ipilimumab and immune-mediated adverse events: a case report of anti-CTLA4 induced ileitis publication-title: BMC Cancer – volume: 32 start-page: 990 year: 2020 end-page: 998 ident: bib40 article-title: Erythrocyte-derived drug delivery systems in cancer therapy publication-title: Chin Chem Lett – volume: 6 start-page: 41 year: 2000 end-page: 48 ident: bib60 article-title: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1 publication-title: Nat Med – volume: 20 start-page: 63 year: 2019 ident: bib24 article-title: Adjuvant therapy for melanoma publication-title: Curr Treat Options Oncol – volume: 10 start-page: 3874 year: 2019 ident: bib49 article-title: A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8 publication-title: Nat Communi – volume: 11 start-page: 8668 year: 2017 end-page: 8678 ident: bib29 article-title: Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy publication-title: ACS Nano – volume: 41 start-page: e1 year: 2021 end-page: e17 ident: bib61 article-title: Towards the therapeutic use of thrombospondin 1/CD47 targeting TAX2 peptide as an antithrombotic agent publication-title: Arterioscler Thromb Vasc Biol – volume: 10 start-page: 395 year: 2016 end-page: 401 ident: bib42 article-title: Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease publication-title: J Crohns Colitis – volume: 17 start-page: 251 year: 2020 end-page: 266 ident: bib69 article-title: Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges publication-title: Nat Rev Clin Oncol – volume: 11 start-page: 2585 year: 2021 end-page: 2604 ident: bib28 article-title: Delivery strategies of amphotericin B for invasive fungal infections publication-title: Acta Pharm Sin B – volume: 9 start-page: 1099 year: 2019 end-page: 1112 ident: bib36 article-title: Development and application of hyaluronic acid in tumor targeting drug delivery publication-title: Acta Pharm Sin B – volume: 8 start-page: 448 year: 2020 end-page: 462 ident: bib22 article-title: Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance publication-title: Genes Dis – volume: 599 start-page: 673 year: 2021 end-page: 678 ident: bib55 article-title: Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion publication-title: Nature – volume: 39 start-page: 193 year: 2021 end-page: 208 ident: bib16 article-title: Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade publication-title: Cancer Cell – volume: 66 start-page: 619 year: 1992 end-page: 622 ident: bib50 article-title: Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation publication-title: Br J Cancer – volume: 41 start-page: 970 year: 2020 end-page: 985 ident: bib17 article-title: Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment publication-title: Acta Pharmacol Sin – volume: 364 start-page: 2517 year: 2011 end-page: 2526 ident: bib25 article-title: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma publication-title: N Engl J Med – volume: 21 start-page: 217 year: 2021 end-page: 238 ident: bib54 article-title: The matrix in cancer publication-title: Nat Rev Cancer – volume: 4 year: 2009 ident: bib14 article-title: Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth publication-title: PLoS One – volume: 41 start-page: 949 year: 2012 end-page: 958 ident: bib19 article-title: Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway publication-title: Int J Oncol – volume: 25 start-page: 2685 year: 2019 end-page: 2690 ident: bib67 article-title: FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia publication-title: Clin Cancer Res – volume: 10 year: 2019 ident: bib9 article-title: Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity publication-title: Front Immunol – volume: 41 start-page: 85 year: 1990 end-page: 97 ident: bib59 article-title: Physiology of thrombospondin publication-title: Annu Rev Med – volume: 80 start-page: 1615 year: 2020 end-page: 1623 ident: bib64 article-title: Revisiting immunotherapy: a focus on prostate cancer publication-title: Cancer Res – volume: 165–166 start-page: 15 year: 2019 end-page: 40 ident: bib2 article-title: Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases publication-title: Adv Drug Deliv Rev – volume: 22 start-page: 2 year: 2022 ident: bib10 article-title: Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier publication-title: Cancer Cell Int – volume: 129 start-page: 383 year: 2018 end-page: 400 ident: bib18 article-title: Sensitization of tumor cells to chemotherapy by natural products: a systematic review of preclinical data and molecular mechanisms publication-title: Fitoterapia – volume: 168 start-page: 487 year: 2017 end-page: 502 ident: bib44 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell – volume: 32 start-page: 1341 year: 2021 end-page: 1347 ident: bib32 article-title: The progress and perspective of strategies to improve tumor penetration of nanomedicines publication-title: Chin Chem Lett – volume: 118 start-page: 2074 year: 2018 end-page: 2085 ident: bib46 article-title: Neutrophil-mediated proteolysis of thrombospondin-1 promotes platelet adhesion and string formation publication-title: Thromb Haemostasis – volume: 13 start-page: 1800 year: 2016 end-page: 1808 ident: bib41 article-title: Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response publication-title: Mol Pharm – volume: 4 year: 2019 ident: bib45 article-title: Structure and function of the immune system in the spleen publication-title: Science Immunol – volume: 97 start-page: 2221 year: 2001 end-page: 2229 ident: bib38 article-title: Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy publication-title: Blood – volume: 22 start-page: 3941 year: 2002 end-page: 3948 ident: bib57 article-title: Expression and role of thrombospondin-1 in colorectal cancer publication-title: Anticancer Res – volume: 21 start-page: 4692 year: 2021 end-page: 4699 ident: bib39 article-title: Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for cancer theranostics publication-title: Nano Lett – volume: 10 start-page: 411‒12 year: 2011 ident: bib23 article-title: Ipilimumab publication-title: Nat Rev Drug Discov – volume: 170 start-page: 1120 year: 2017 end-page: 1133 ident: bib33 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell – volume: 120 start-page: 1111 year: 2010 end-page: 1124 ident: bib13 article-title: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice publication-title: J Clin Invest – volume: 34 start-page: 845 year: 2020 end-page: 856 ident: bib58 article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma publication-title: Leukemia – reference: US Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma. Accessed [March 21 2022]. – volume: 8 start-page: 1136 year: 2017 ident: bib48 article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation publication-title: Nat Communi – volume: 21 start-page: 15 year: 2014 end-page: 25 ident: bib15 article-title: Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer publication-title: Cell Death Differ – volume: 24 start-page: 225 year: 2012 end-page: 232 ident: bib52 article-title: The CD47-SIRP publication-title: Curr Opin Immunol – volume: 76 start-page: 6030 year: 2016 end-page: 6042 ident: bib53 article-title: Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells publication-title: Cancer Res – volume: 12 year: 2020 ident: bib63 article-title: Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis publication-title: Ther Adv Med Oncol – volume: 8 year: 2019 ident: bib47 article-title: Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction publication-title: Elife – volume: 16 start-page: 4859 year: 2018 end-page: 4864 ident: bib21 article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2 publication-title: Exp Ther Med – volume: 20 start-page: 321 year: 2020 end-page: 334 ident: bib3 article-title: Enhancing cancer immunotherapy with nanomedicine publication-title: Nat Rev Immunol – volume: 34 start-page: 845 year: 2020 end-page: 856 ident: bib51 article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma publication-title: Leukemia – volume: 543 start-page: 728 year: 2017 end-page: 732 ident: bib65 article-title: Effective combinatorial immunotherapy for castration-resistant prostate cancer publication-title: Nature – volume: 11 start-page: 941 year: 2021 end-page: 960 ident: bib1 article-title: Biological drug and drug delivery-mediated immunotherapy publication-title: Acta Pharm Sin B – volume: 30 year: 2020 ident: bib34 article-title: Nanocarrier-mediated cytosolic delivery of biopharmaceuticals publication-title: Adv Funct Mater – volume: 251 year: 2020 ident: bib35 article-title: Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy publication-title: Carbohydr Polym – volume: 41 start-page: 4 year: 2020 end-page: 12 ident: bib43 article-title: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy publication-title: Trends Pharmacol Sci – volume: 122 start-page: 135 year: 2004 end-page: 142 ident: bib30 article-title: The role of thrombospondin-1 in human disease 1 publication-title: J Surg Res – volume: 12 start-page: 634 year: 2000 end-page: 640 ident: bib56 article-title: The functions of thrombospondin-1 and-2 publication-title: Curr Opin Cell Biol – volume: 70 start-page: 86 year: 2020 end-page: 104 ident: bib68 article-title: A review of cancer immunotherapy toxicity publication-title: CA Cancer J Clin – volume: 117 start-page: 1137 year: 2007 end-page: 1146 ident: bib7 article-title: Immune surveillance of tumors publication-title: J Clin Invest – volume: 323 start-page: 36 year: 2020 end-page: 46 ident: bib27 article-title: Design principles of drug combinations for chemotherapy publication-title: J Control Release – volume: 112 start-page: E6506 year: 2015 end-page: E6514 ident: bib4 article-title: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging publication-title: Proc Natl Acad Sci U S A – volume: 367 year: 2020 ident: bib66 article-title: Neoadjuvant checkpoint blockade for cancer immunotherapy publication-title: Science – volume: 14 start-page: 2499 year: 2017 end-page: 2504 ident: bib20 article-title: Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells publication-title: Oncol Lett – volume: 373 start-page: 1627 year: 2015 end-page: 1639 ident: bib5 article-title: Nivolumab publication-title: N Engl J Med – volume: 6 start-page: 72 year: 2021 ident: bib6 article-title: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy publication-title: Signal Transduct Targeted Ther – volume: 20 start-page: 4177 year: 2020 end-page: 4187 ident: bib31 article-title: Nanobowl-supported liposomes improve drug loading and delivery publication-title: Nano Lett – volume: 165–166 start-page: 15 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib2 article-title: Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases publication-title: Adv Drug Deliv Rev – volume: 39 start-page: 193 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib16 article-title: Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.11.005 – volume: 122 start-page: 135 year: 2004 ident: 10.1016/j.apsb.2022.07.012_bib30 article-title: The role of thrombospondin-1 in human disease 1 publication-title: J Surg Res doi: 10.1016/j.jss.2004.05.015 – volume: 32 start-page: 1341 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib32 article-title: The progress and perspective of strategies to improve tumor penetration of nanomedicines publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2020.11.006 – volume: 373 start-page: 1627 year: 2015 ident: 10.1016/j.apsb.2022.07.012_bib5 article-title: Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1507643 – volume: 493 start-page: 172 year: 2015 ident: 10.1016/j.apsb.2022.07.012_bib37 article-title: Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2015.07.069 – volume: 8 start-page: 1136 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib48 article-title: Resistance to checkpoint blockade therapy through inactivation of antigen presentation publication-title: Nat Communi doi: 10.1038/s41467-017-01062-w – volume: 41 start-page: e1 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib61 article-title: Towards the therapeutic use of thrombospondin 1/CD47 targeting TAX2 peptide as an antithrombotic agent publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.120.314571 – volume: 11 start-page: 8668 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib29 article-title: Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b01026 – volume: 30 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib34 article-title: Nanocarrier-mediated cytosolic delivery of biopharmaceuticals publication-title: Adv Funct Mater doi: 10.1002/adfm.201910566 – volume: 13 start-page: 1800 year: 2016 ident: 10.1016/j.apsb.2022.07.012_bib41 article-title: Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.5b00952 – volume: 20 start-page: 321 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib3 article-title: Enhancing cancer immunotherapy with nanomedicine publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0269-6 – volume: 10 start-page: 411‒12 year: 2011 ident: 10.1016/j.apsb.2022.07.012_bib23 article-title: Ipilimumab publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3463 – volume: 20 start-page: 4177 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib31 article-title: Nanobowl-supported liposomes improve drug loading and delivery publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c00495 – volume: 8 start-page: 448 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib22 article-title: Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance publication-title: Genes Dis doi: 10.1016/j.gendis.2020.06.010 – volume: 34 start-page: 845 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib58 article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47 publication-title: Leukemia doi: 10.1038/s41375-019-0622-6 – volume: 10 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib9 article-title: Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity publication-title: Front Immunol doi: 10.3389/fimmu.2019.00999 – volume: 599 start-page: 673 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib55 article-title: Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion publication-title: Nature doi: 10.1038/s41586-021-04057-2 – volume: 34 start-page: 845 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib51 article-title: Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47 publication-title: Leukemia doi: 10.1038/s41375-019-0622-6 – volume: 367 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib66 article-title: Neoadjuvant checkpoint blockade for cancer immunotherapy publication-title: Science doi: 10.1126/science.aax0182 – volume: 364 start-page: 2517 year: 2011 ident: 10.1016/j.apsb.2022.07.012_bib25 article-title: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1104621 – volume: 4 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib45 article-title: Structure and function of the immune system in the spleen publication-title: Science Immunol doi: 10.1126/sciimmunol.aau6085 – volume: 120 start-page: 1111 year: 2010 ident: 10.1016/j.apsb.2022.07.012_bib13 article-title: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice publication-title: J Clin Invest doi: 10.1172/JCI40269 – volume: 80 start-page: 1615 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib64 article-title: Revisiting immunotherapy: a focus on prostate cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-19-2948 – volume: 170 start-page: 1120 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib33 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 543 start-page: 728 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib65 article-title: Effective combinatorial immunotherapy for castration-resistant prostate cancer publication-title: Nature doi: 10.1038/nature21676 – volume: 70 start-page: 86 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib68 article-title: A review of cancer immunotherapy toxicity publication-title: CA Cancer J Clin doi: 10.3322/caac.21596 – volume: 14 start-page: 2499 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib20 article-title: Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells publication-title: Oncol Lett doi: 10.3892/ol.2017.6421 – volume: 41 start-page: 4 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib43 article-title: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2019.11.003 – volume: 32 start-page: 990 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib40 article-title: Erythrocyte-derived drug delivery systems in cancer therapy publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2020.08.048 – volume: 118 start-page: 2074 year: 2018 ident: 10.1016/j.apsb.2022.07.012_bib46 article-title: Neutrophil-mediated proteolysis of thrombospondin-1 promotes platelet adhesion and string formation publication-title: Thromb Haemostasis doi: 10.1055/s-0038-1675229 – volume: 22 start-page: 2 year: 2022 ident: 10.1016/j.apsb.2022.07.012_bib10 article-title: Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier publication-title: Cancer Cell Int doi: 10.1186/s12935-021-02407-8 – volume: 41 start-page: 949 year: 2012 ident: 10.1016/j.apsb.2022.07.012_bib19 article-title: Oridonin enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling pathway publication-title: Int J Oncol doi: 10.3892/ijo.2012.1519 – volume: 25 start-page: 2685 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib67 article-title: FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2990 – volume: 323 start-page: 36 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib27 article-title: Design principles of drug combinations for chemotherapy publication-title: J Control Release doi: 10.1016/j.jconrel.2020.04.018 – volume: 168 start-page: 487 year: 2017 ident: 10.1016/j.apsb.2022.07.012_bib44 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2016.12.022 – volume: 12 start-page: 634 year: 2000 ident: 10.1016/j.apsb.2022.07.012_bib56 article-title: The functions of thrombospondin-1 and-2 publication-title: Curr Opin Cell Biol doi: 10.1016/S0955-0674(00)00143-5 – volume: vol. 10 year: 2022 ident: 10.1016/j.apsb.2022.07.012_bib12 article-title: Evaluating the efficacy of a priming dose of cyclophosphamide prior to pembrolizumab to treat metastatic triple negative breast cancer publication-title: J ImmunoTher Cancer doi: 10.1136/jitc-2021-003427 – volume: 6 start-page: 41 year: 2000 ident: 10.1016/j.apsb.2022.07.012_bib60 article-title: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1 publication-title: Nat Med doi: 10.1038/71517 – volume: 8 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib47 article-title: Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction publication-title: Elife doi: 10.7554/eLife.49020 – volume: 24 start-page: 225 year: 2012 ident: 10.1016/j.apsb.2022.07.012_bib52 article-title: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2012.01.010 – volume: 21 start-page: 15 year: 2014 ident: 10.1016/j.apsb.2022.07.012_bib15 article-title: Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer publication-title: Cell Death Differ doi: 10.1038/cdd.2013.67 – volume: 9 start-page: 1099 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib36 article-title: Development and application of hyaluronic acid in tumor targeting drug delivery publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.06.004 – volume: 97 start-page: 2221 year: 2001 ident: 10.1016/j.apsb.2022.07.012_bib38 article-title: Systemic circulation of poly(l-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy publication-title: Blood doi: 10.1182/blood.V97.8.2221 – volume: 76 start-page: 6030 year: 2016 ident: 10.1016/j.apsb.2022.07.012_bib53 article-title: Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-1170 – volume: 17 start-page: 725 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib62 article-title: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-0413-z – volume: 112 start-page: E6506 year: 2015 ident: 10.1016/j.apsb.2022.07.012_bib4 article-title: Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1519623112 – volume: 41 start-page: 970 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib17 article-title: Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-020-0424-4 – volume: 6 start-page: 72 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib6 article-title: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy publication-title: Signal Transduct Targeted Ther doi: 10.1038/s41392-020-00449-4 – volume: 117 start-page: 1137 year: 2007 ident: 10.1016/j.apsb.2022.07.012_bib7 article-title: Immune surveillance of tumors publication-title: J Clin Invest doi: 10.1172/JCI31405 – volume: 66 start-page: 619 year: 1992 ident: 10.1016/j.apsb.2022.07.012_bib50 article-title: Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation publication-title: Br J Cancer doi: 10.1038/bjc.1992.326 – volume: 12 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib63 article-title: Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis publication-title: Ther Adv Med Oncol doi: 10.1177/1758835920940928 – volume: 22 start-page: 3941 year: 2002 ident: 10.1016/j.apsb.2022.07.012_bib57 article-title: Expression and role of thrombospondin-1 in colorectal cancer publication-title: Anticancer Res – volume: 11 start-page: 2585 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib28 article-title: Delivery strategies of amphotericin B for invasive fungal infections publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.04.010 – volume: 4 year: 2009 ident: 10.1016/j.apsb.2022.07.012_bib14 article-title: Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth publication-title: PLoS One – volume: 41 start-page: 85 year: 1990 ident: 10.1016/j.apsb.2022.07.012_bib59 article-title: Physiology of thrombospondin publication-title: Annu Rev Med doi: 10.1146/annurev.me.41.020190.000505 – volume: 21 start-page: 4692 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib39 article-title: Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for cancer theranostics publication-title: Nano Lett doi: 10.1021/acs.nanolett.1c00895 – volume: 10 start-page: 395 year: 2016 ident: 10.1016/j.apsb.2022.07.012_bib42 article-title: Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease publication-title: J Crohns Colitis doi: 10.1093/ecco-jcc/jjv227 – volume: 129 start-page: 383 year: 2018 ident: 10.1016/j.apsb.2022.07.012_bib18 article-title: Sensitization of tumor cells to chemotherapy by natural products: a systematic review of preclinical data and molecular mechanisms publication-title: Fitoterapia doi: 10.1016/j.fitote.2018.02.025 – ident: 10.1016/j.apsb.2022.07.012_bib11 – volume: 16 start-page: 4859 year: 2018 ident: 10.1016/j.apsb.2022.07.012_bib21 article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2 publication-title: Exp Ther Med – volume: 21 start-page: 217 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib54 article-title: The matrix in cancer publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-00329-7 – volume: 4 start-page: 241 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib8 article-title: Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? publication-title: Annu Rev Cell Biol doi: 10.1146/annurev-cancerbio-030419-033635 – volume: 251 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib35 article-title: Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy publication-title: Carbohydr Polym – volume: 20 start-page: 63 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib24 article-title: Adjuvant therapy for melanoma publication-title: Curr Treat Options Oncol doi: 10.1007/s11864-019-0666-x – volume: 11 start-page: 941 year: 2021 ident: 10.1016/j.apsb.2022.07.012_bib1 article-title: Biological drug and drug delivery-mediated immunotherapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2020.12.018 – volume: 10 start-page: 3874 year: 2019 ident: 10.1016/j.apsb.2022.07.012_bib49 article-title: A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control publication-title: Nat Communi doi: 10.1038/s41467-019-11782-w – volume: 15 start-page: 1 year: 2015 ident: 10.1016/j.apsb.2022.07.012_bib26 article-title: Ipilimumab and immune-mediated adverse events: a case report of anti-CTLA4 induced ileitis publication-title: BMC Cancer doi: 10.1186/s12885-015-1074-7 – volume: 17 start-page: 251 year: 2020 ident: 10.1016/j.apsb.2022.07.012_bib69 article-title: Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-019-0308-z |
SSID | ssj0000602275 |
Score | 2.4219813 |
Snippet | The use of checkpoint-blockade antibodies is still restricted in several malignancies due to the modest efficacy, despite considerable success in anti-tumor... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3503 |
SubjectTerms | Checkpoint blockade Co-delivery Diterpenoid-based conjugate Immunotherapy Liposomes Original Thrombospondin-1 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQFBALpTIS6oVGJHZix8eCqCoOqIdF6s3yx4SGlmS1u0Xaf9-ZOLvdXMqFW5TYiZMZZ94kz28Y-5jHEkwFJiucUlmpgsiMlyGLGgqF4USqMLAtfqiLn-X3q-pqr9QXccKSPHB6cJ8xniqoAiD0xa7OeR9AR0QlUjbahAEaYczbS6bSO5ik8Yi_KATp9CHOGFfMJHKXW6w8JodCDMqdhZhEpUG8fxKc9sDnlDq5F4vOn7NnI4jkZ2nwL9gT6A7ZyWVSod6c8vnDoqrVKT_hlw_61JuX7NfuQwIPZPMlb2mRyLgUa8P_to6HPotwS5yNodk1hJtF33Zr7jH43bgI3HWRU42FP74nli2GwKzgEXP6Zapu3y9fsfn5t_nXi2yst5AFzHvWWeUFFLopoySpc1dqCFTtzxsjFOKCohEaN6QvTYN5I0idQ1DKOVk7kzsjX7ODru_gDeNeBydDLkIVVRkBTBO9RmAIAdGMr_2MFdvHbcOoRU4lMW7tlnT225KJLJnI5tqiiWbs067PIilxPNr6C1lx15JUtIcd6Ft29C37L9-asWrrA3YEJAlo4KnaRy_-YeswFmcr_YJxHfR3KytqhW9NRFXFjNUTT5qMdHqka68H3W_6HV_VWrz9H_f2jj3FEcvEZTxiB-vlHbxHfLX2x8NUugem5SXZ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15Kn3T7QoWSSyPWlmzJOiahIfRQAt3C3oQes4mb1F68m8L--4xkexNfcujND9kWnvHMN_LMN4R8zUIBugTNcislK6TnTDvhWVCQS3QnQvqUbfFTXvwufizL5QE5G2thYlrlYPt7m56s9XBkPrzN-bqu5784xi4iAQjUTHRMaIdFUaUivuXpfp0lk5EkL2YyxvEsXjDUzvRpXna9cRgmcp44PHM-8U-Jxn_iph7B0GkS5SOvdP6CPB_gJD3pZ_ySHEDzihxd9nzUu2O6eCiv2hzTI3r5wFS9e02u9ksK1Efpd7SO5SJDUdaO_qst9S0LcBuzN9Kwa_A367ZuttShG7yxAahtAo3dFv66NubbojNkOQ0Y3Xd9n_u2e0MW598XZxds6LzAPEZAW1Y6DrlaFUFE0nNbKPCx75_TmktECPmKK9wQrtArjCBBqAy8lNaKyurMavGWHDZtA-8Idcpb4TPuyyCLAKBXwSmEiOAR17jKzUg-vm7jB1by2Bzj1ozpZ39MFJGJIjKZMiiiGfm2v2bdc3I8Ofo0SnE_MvJppwNtd2UGhTKI2iSUHjDAQgW11jkPKiD2FWKltLczUo46YCbqibeqn3z4l1FhDH638WeMbaC92xheSbSfiK_yGakmmjSZ6fRMU18nBvD4Y76sFH__n9P6QJ7hnugTGT-Sw213B58QXG3d5_T13AOGPSWt priority: 102 providerName: Elsevier |
Title | Improving cancer immunotherapy via co-delivering checkpoint blockade and thrombospondin-1 downregulator |
URI | https://dx.doi.org/10.1016/j.apsb.2022.07.012 https://www.proquest.com/docview/2860401811 https://pubmed.ncbi.nlm.nih.gov/PMC10465872 https://doaj.org/article/8936e5ce255244aabbce7d23133f79ca |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCKA-xPCojoV5oUGIndnxAiCKqAgIVaSvtzfJj0oYuyTa7Rey_Z5zHbiNVPXCJosRJLHsm84098w0hb2KfgspARYkRIkqFY5Gy3EVeQiLQnHDh2miLH-LkLP06y2Y7ZCh31A_g8lbXLtSTOmvm7_5erT-gwr_fxmqZxdKir8dYS8QZig7fQ8skg6J-7-F-92cOhHkhqpGxwN6H6KPPo7n9NSNb1VL6j0zWDUg6Dqi8YaGOH5IHPbSkHztZ2CM7UD0iB6cdN_X6kE63qVbLQ3pAT7es1evH5HyzvEBdkISGliF1pE_QWtM_paGujjzMQyRH2-wC3OWiLqsVtWgSL40HaipPQ-WF37YOsbdoGKOEevT0m67mfd08IdPjz9NPJ1FfhSFy6A2toswySGSReh4I0E0qwYUagFYpJhAtJAWTeMJtqgr0JoHLGJwQxvDcqNgo_pTsVnUFzwi10hnuYuYyL1IPoApvJcJFcIhxbG4nJBmGW7ueoTwUypjrIRTtlw5TpMMU6VhqnKIJebt5ZtHxc9zZ-ijM4qZl4NZuL9TNue5VVSOCE5A5QGcLhdUYax1IjziY80IqZyYkG2RA9zClgx_4qvLOj78eBEajDoeNGVNBfb3ULBf4L0WslUxIPpKkUU_Hd6ryomUDD5v0WS7Z8_9_9AW5j_3kXVzjS7K7aq7hFWKtld1v1yjw-GV2hMdvP_P9VqX-AXsHL4Y |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAF8RTL00ioFxptYid2fKQV1RZKVYlF2pvlx6RNW5JVdou0_55xHtvm0gO3VWJnrczE803yzTeEfI59CioDFSVGiCgVjkXKchd5CYnAcMKFa9kWp2L2O_2-yBY75HCohQm0yn7v7_b0drfuj0z7uzldluX0F8PchbcAAj0TA9MD8hDRgAz9G44XB9sXLbEIKnmByhgmRGFGXzzT8bzMcmUxT2SsFfFM2ChAtTr-ozh1B4eOWZR3wtLRU_Kkx5P0a7fkZ2QHqudk76wTpN7s0_ltfdVqn-7Rs1up6s0Lcr59p0BdMH9Dy1Av0ldlbejf0lBXRx6uA32jHXYB7mpZl9WaWoyDV8YDNZWnod3CH1sHwi1GwyihHtP7pmt0Xzcvyfzo2_xwFvWtFyKHKdA6yiyDRBap50H13KQSXGj8Z5ViAiFCUjCJP7hNVYEpJHAZgxPCGJ4bFRvFX5Hdqq7gNaFWOsNdzFzmReoBVOGtRIwIDoGNze2EJMPt1q6XJQ_dMa71wD-71MFEOphIx1KjiSbky3bOshPluHf0QbDidmQQ1G4P1M257j1KI2wTkDnADAs91BhrHUiP4JfzQipnJiQbfECP_BMvVd77558Gh9H44IavMaaC-malWS5wA0WAlUxIPvKk0UrHZ6ryopUAD1_ms1yyN_-5rI_k0Wz-80SfHJ_-eEse4xnesRrfkd11cwPvEWmt7Yf2SfoHPmEozA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+cancer+immunotherapy+via+co-delivering+checkpoint+blockade+and+thrombospondin-1+downregulator&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Xiao%2C+Qingqing&rft.au=Li%2C+Xiaotong&rft.au=Liu%2C+Chang&rft.au=Jiang%2C+Yuxin&rft.date=2023-08-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.eissn=2211-3843&rft.volume=13&rft.issue=8&rft.spage=3503&rft.epage=3517&rft_id=info:doi/10.1016%2Fj.apsb.2022.07.012&rft.externalDocID=PMC10465872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |