The Rational SPDE Approach for Gaussian Random Fields With General Smoothness

A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form , where is Gaussian white noise, L is a second-order differential operator, and is a parameter that determines the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 29; no. 2; pp. 274 - 285
Main Authors Bolin, David, Kirchner, Kristin
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.04.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
1537-2715
DOI10.1080/10618600.2019.1665537

Cover

Abstract A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form , where is Gaussian white noise, L is a second-order differential operator, and is a parameter that determines the smoothness of u. However, this approach has been limited to the case , which excludes several important models and makes it necessary to keep β fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension is applicable for any , and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function to approximate u. For the resulting approximation, an explicit rate of convergence to u in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case . Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including β. Supplementary materials for this article are available online.
AbstractList A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form , where is Gaussian white noise, L is a second-order differential operator, and is a parameter that determines the smoothness of u. However, this approach has been limited to the case , which excludes several important models and makes it necessary to keep beta fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension is applicable for any , and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function to approximate u. For the resulting approximation, an explicit rate of convergence to u in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case . Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including beta. for this article are available online.
A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form , where is Gaussian white noise, L is a second-order differential operator, and is a parameter that determines the smoothness of u. However, this approach has been limited to the case , which excludes several important models and makes it necessary to keep β fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension is applicable for any , and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function to approximate u. For the resulting approximation, an explicit rate of convergence to u in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case . Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including β. Supplementary materials for this article are available online.
A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form , where is Gaussian white noise, L is a second-order differential operator, and is a parameter that determines the smoothness of u. However, this approach has been limited to the case , which excludes several important models and makes it necessary to keep β fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension is applicable for any , and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function to approximate u. For the resulting approximation, an explicit rate of convergence to u in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case . Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including β.Supplementary materials for this article are available online.
Author Kirchner, Kristin
Bolin, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-2361-5465
  surname: Bolin
  fullname: Bolin, David
  email: david.bolin@chalmers.se
  organization: Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg
– sequence: 2
  givenname: Kristin
  orcidid: 0000-0002-3609-9431
  surname: Kirchner
  fullname: Kirchner, Kristin
  organization: Seminar for Applied Mathematics, ETH Zürich
BackLink https://gup.ub.gu.se/publication/286210$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/514046$$DView record from Swedish Publication Index
BookMark eNqFkVFr1UAQhYNUsK3-BCHgc647m91sgi-W2l6FimIrPg6TZNJsSbJxN6H037vxti-C-jTD8J3DcM5JcjS5iZPkNYgdiFK8BVFAWQixkwKqHRSF1rl5lhxDHJk0oI_iHplsg14kJyHcCSGgqMxx8vmm5_QbLdZNNKTXXz9cpGfz7B01fdo5n-5pDcHSFJmpdWN6aXloQ_rDLn2654n9phqdW_qJQ3iZPO9oCPzqcZ4m3y8vbs4_Zldf9p_Oz66yRlXVkmlgXYJkgpyNIFWpQkthBHDB2khoQUliYNMqaYiozGVbk4YG8qrTbZmfJtcH33DP81rj7O1I_gEdWfQcmHzTY9PTMLIPGBgLUSoh6xZlDQZVrRRSXgFCXkIJNbS1ouia_dX1dp0xnm7XzU2WhQQR-TcHPub1c-Ww4J1bfcwxoFRQVWByoSP17kA13oXgucPGLr8DXzzZAUHg1iI-tYhbi_jYYlTrP9RPX_1P9_6gs1OscaR754cWF3oYnO88TY0NmP_b4hfWTLNr
CitedBy_id crossref_primary_10_1007_s11222_022_10136_9
crossref_primary_10_1016_j_spasta_2022_100591
crossref_primary_10_1016_j_spasta_2023_100750
crossref_primary_10_1080_10618600_2023_2231051
crossref_primary_10_3390_math12182899
crossref_primary_10_1016_j_cma_2024_117146
crossref_primary_10_1137_21M144788X
crossref_primary_10_1016_j_spasta_2022_100599
crossref_primary_10_3150_22_BEJ1507
crossref_primary_10_1214_21_STS838
crossref_primary_10_1137_23M1567035
crossref_primary_10_3150_23_BEJ1647
crossref_primary_10_1007_s13253_024_00602_4
crossref_primary_10_1111_tbed_14627
crossref_primary_10_1177_10943420241261981
crossref_primary_10_3150_20_BEJ1317
crossref_primary_10_1007_s11222_024_10448_y
crossref_primary_10_1016_j_cma_2021_114166
crossref_primary_10_1214_21_BA1283
crossref_primary_10_1214_22_BA1342
crossref_primary_10_1137_23M1624749
crossref_primary_10_1016_j_spasta_2024_100847
crossref_primary_10_1111_rssc_12405
crossref_primary_10_1680_jgeot_22_00316
crossref_primary_10_1142_S0218202520500050
crossref_primary_10_1137_22M1494397
crossref_primary_10_1007_s10444_024_10187_8
crossref_primary_10_1007_s00158_023_03716_4
crossref_primary_10_1007_s40072_023_00316_7
crossref_primary_10_1016_j_cma_2023_116358
crossref_primary_10_1016_j_jaridenv_2023_105051
crossref_primary_10_1007_s44007_023_00077_8
crossref_primary_10_51387_25_NEJSDS78
crossref_primary_10_1007_s00366_023_01819_6
crossref_primary_10_1007_s10543_023_00986_8
crossref_primary_10_1090_mcom_3929
crossref_primary_10_1002_env_2610
crossref_primary_10_1137_21M1458880
crossref_primary_10_1111_sjos_12555
crossref_primary_10_1137_22M1529907
crossref_primary_10_1007_s13540_024_00256_6
crossref_primary_10_1137_21M1400717
crossref_primary_10_1007_s10543_018_0719_8
crossref_primary_10_2139_ssrn_4126798
crossref_primary_10_1016_j_spasta_2024_100867
crossref_primary_10_1088_1361_6420_ac3994
crossref_primary_10_1007_s00466_023_02424_6
crossref_primary_10_1214_24_STS923
crossref_primary_10_1515_cmam_2022_0237
crossref_primary_10_1016_j_cma_2021_114014
crossref_primary_10_1016_j_mechmat_2023_104821
crossref_primary_10_1002_wics_1512
crossref_primary_10_1016_j_probengmech_2022_103203
Cites_doi 10.1002/wics.1443
10.1016/j.spasta.2019.01.002
10.1111/j.1467-9868.2008.00700.x
10.1198/016214504000000241
10.1080/10618600.2014.914946
10.1070/SM1977v032n04ABEH002404
10.1002/nla.2167
10.1080/01621459.2015.1044091
10.1093/imanum/dry091
10.1111/j.1467-9868.2011.01007.x
10.1029/2009EO360002
10.1111/sjos.12141
10.1201/9780203492024
10.1198/106186006X132178
10.1080/01621459.2015.1123632
10.1111/sjos.12297
10.1007/978-1-4612-1494-6
10.1007/s10543-018-0719-8
10.1017/CBO9780511623721
10.1111/j.1467-9868.2011.00777.x
10.1137/1.9781611972030
10.18637/jss.v063.i19
10.1214/14-STS487
10.1090/mcom/2960
10.1007/s13253-018-00348-w
10.5194/npg-24-481-2017
10.1090/S0025-5718-03-01590-4
10.1090/S0025-5718-2015-02937-8
10.1016/j.spasta.2015.10.001
10.1007/s10208-014-9208-x
ContentType Journal Article
Copyright 2019 The Author(s). Published with license by Taylor & Francis Group, LLC 2019
2019 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Author(s). Published with license by Taylor & Francis Group, LLC 2019
– notice: 2019 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
JQ2
ADTPV
AOWAS
F1U
ABBSD
D8T
F1S
ZZAVC
DOI 10.1080/10618600.2019.1665537
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Computer Science Collection
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola full text
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList


ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 285
ExternalDocumentID oai_research_chalmers_se_608402bd_2b17_4b44_a391_138181b1db4a
oai_gup_ub_gu_se_286210
10_1080_10618600_2019_1665537
1665537
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
0YH
30N
4.4
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AMPGV
AMVHM
CITATION
JQ2
TASJS
07G
29K
2AX
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABQDR
ABXSQ
ACAGQ
ACDIW
ACGEE
ACHJO
ACTCW
ADODI
ADTPV
ADULT
AEUMN
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
AOWAS
BCCOT
BPLKW
C06
CRFIH
D-I
DMQIW
DQDLB
DSRWC
DWIFK
ECEWR
EJD
F1U
FEDTE
GIFXF
HGD
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NUSFT
QCRFL
RNS
SA0
TAQ
TFMCV
TOXWX
UB9
ABBSD
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c499t-51e5812ea13e70a4946520701e6e5721d142ae1e7d427aaa832dba51c139f5d83
IEDL.DBID 0YH
ISSN 1061-8600
1537-2715
IngestDate Thu Aug 21 06:11:06 EDT 2025
Thu Aug 21 06:44:35 EDT 2025
Wed Aug 13 10:48:04 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Tue Jul 01 02:05:30 EDT 2025
Wed Dec 25 09:08:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-51e5812ea13e70a4946520701e6e5721d142ae1e7d427aaa832dba51c139f5d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2361-5465
0000-0002-3609-9431
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10618600.2019.1665537
PQID 2419917305
PQPubID 29738
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2019_1665537
swepub_primary_oai_research_chalmers_se_608402bd_2b17_4b44_a391_138181b1db4a
crossref_citationtrail_10_1080_10618600_2019_1665537
crossref_primary_10_1080_10618600_2019_1665537
proquest_journals_2419917305
swepub_primary_oai_gup_ub_gu_se_286210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References R Core Team (CIT0028) 2017
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Mearns L. O. (CIT0025) 2007
CIT0014
Rasmussen C. E. (CIT0029) 2006
CIT0036
Baker G. A. (CIT0001) 1996; 59
CIT0013
CIT0035
CIT0016
Remez E. Y. (CIT0030) 1934; 10
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
Matérn B. (CIT0023) 1960; 49
CIT0021
CIT0020
CIT0022
Whittle P. (CIT0038) 1963; 40
Driscoll T. A. (CIT0010) 2014
CIT0003
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0002
  doi: 10.1002/wics.1443
– ident: CIT0003
  doi: 10.1016/j.spasta.2019.01.002
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: CIT0028
– ident: CIT0034
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: CIT0039
  doi: 10.1198/016214504000000241
– ident: CIT0027
  doi: 10.1080/10618600.2014.914946
– ident: CIT0032
  doi: 10.1070/SM1977v032n04ABEH002404
– ident: CIT0016
  doi: 10.1002/nla.2167
– ident: CIT0008
  doi: 10.1080/01621459.2015.1044091
– ident: CIT0005
  doi: 10.1093/imanum/dry091
– ident: CIT0035
  doi: 10.1111/j.1467-9868.2011.01007.x
– ident: CIT0004
– ident: CIT0024
  doi: 10.1029/2009EO360002
– volume: 10
  start-page: 41
  year: 1934
  ident: CIT0030
  publication-title: Communications de la Societé Mathématique de Kharkov,
– ident: CIT0037
  doi: 10.1111/sjos.12141
– ident: CIT0033
  doi: 10.1201/9780203492024
– volume-title: Chebfun Guide
  year: 2014
  ident: CIT0010
– ident: CIT0012
  doi: 10.1198/106186006X132178
– ident: CIT0019
  doi: 10.1080/01621459.2015.1123632
– ident: CIT0031
  doi: 10.1111/sjos.12297
– volume: 40
  start-page: 974
  year: 1963
  ident: CIT0038
  publication-title: Bulletin of the International Statistical Institute
– ident: CIT0036
  doi: 10.1007/978-1-4612-1494-6
– ident: CIT0006
  doi: 10.1007/s10543-018-0719-8
– ident: CIT0009
  doi: 10.1017/CBO9780511623721
– ident: CIT0022
  doi: 10.1111/j.1467-9868.2011.00777.x
– volume: 49
  start-page: 144
  year: 1960
  ident: CIT0023
  publication-title: Meddelanden Från Statens Skogsforskningsinstitut
– ident: CIT0015
  doi: 10.1137/1.9781611972030
– ident: CIT0021
  doi: 10.18637/jss.v063.i19
– volume-title: Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning
  year: 2006
  ident: CIT0029
– ident: CIT0014
  doi: 10.1214/14-STS487
– ident: CIT0018
  doi: 10.1090/mcom/2960
– ident: CIT0017
  doi: 10.1007/s13253-018-00348-w
– ident: CIT0020
  doi: 10.5194/npg-24-481-2017
– ident: CIT0013
  doi: 10.1090/S0025-5718-03-01590-4
– volume-title: The North American Regional Climate Change Assessment Program Dataset
  year: 2007
  ident: CIT0025
– volume: 59
  volume-title: Padé Approximants, Encyclopedia of Mathematics and Its Applications
  year: 1996
  ident: CIT0001
– ident: CIT0007
  doi: 10.1090/S0025-5718-2015-02937-8
– ident: CIT0011
  doi: 10.1016/j.spasta.2015.10.001
– ident: CIT0026
  doi: 10.1007/s10208-014-9208-x
SSID ssj0001697
Score 2.5310783
Snippet A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential...
SourceID swepub
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Approximation
approximations
Fields (mathematics)
Fractional operators
markov random-fields
Matematik
Matern covariances
Mathematical models
Mathematical sciences
Mathematics
Matérn covariances
Nonstationary Gaussian fields
Operators (mathematics)
Parameters
Partial differential equations
Smoothness
Spatial statistics
Statistical inference
Stochastic partial differential equations
Stochastic processes
White noise
Title The Rational SPDE Approach for Gaussian Random Fields With General Smoothness
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2019.1665537
https://www.proquest.com/docview/2419917305
https://gup.ub.gu.se/publication/286210
https://research.chalmers.se/publication/514046
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLYoXOgBAW3V5aU5IG6hmVceRwQsK8QiVEC0p9FMMmErlV1Esv8fO5msWKkVBy45RHEedmx_Hnk-AxzaIrEqr3SUO00FCmK4zJZkEC99rr3smmjG18noXl3-0n03YR3aKqmGrjqiiDZWk3NbV_cdcT-oiskwUVNjVn7Mk0RrmX6CNYFAkbr64t-jRTDmYb4KikQk02_i-d9tltLTEnnpMgR9SyvapqLhJmwEDMlOOqNvwYqfbsPn8YKAtd6GdQKRHQfzFxjjv8B-hlU_dntzds5OApU4wyezCzuvaS8lXjMtZ09sSF1tNXv400xYoKVmt08ztCnFxa9wPzy_Ox1FYYxCVGA500Sae41p3FsufRqjZVSiBXo694nXWACWXAnruU9LJVJrLfp46azmBYLDSpeZ_Aar09nUfwfmEqVl5YTOXKqs0lmh4iKvYmnz1FcVH4DqtWeKwDFOoy7-Gh6oSHulG1K6CUofwPFC7Lkj2XhPIH9rGtO0qxtVN4rEyHdk93o7muCvtUEcg0AZo50ewFFn28WbEAH34_zZ4KnHuam9EVgF8ngAV_-4MFA0TUwxaeff1CSQxFhGC1ca4XhqlFPKWJlzwwkuccdLp-zOBz5pF9YFLQNQQ5HYg9XmZe73ESs17qD1BjzK-PoVek0GFg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOVAOqC2ghrZ0D6g3F-_Lj2MFDQGSCvWhltNq1143SDSpauf_M2Ovo0Qq6oGr5fFjZmf2m9HsNwAfbZFYlVc6yp2mBAUxXGZLMoiXPtdedk00k7NkdKW-3-iblbMw1FZJOXTVEUW0sZqcm4rRfUvcJ0pjMtypqTMrP-ZJorVMn8MLnWE2gWs6_jVaRmMeBqygSEQy_Smefz1mbX9aYy9dx6CrvKLtXjTcgtcBRLKTzurb8MzPduDVZMnAWu_AJqHIjoT5DUxwMbDzUPZjFz-_nLKTwCXO8M3sq13UdJgS75mV8zs2pLa2ml3_bqYs8FKzi7s5GpUC41u4Gp5efh5FYY5CVGA-00Sae437uLdc-jRG06hEC3R17hOvMQMsuRLWc5-WSqTWWnTy0lnNC0SHlS4z-Q42ZvOZ3wXmEqVl5YTOXKqs0lmh4iKvYmnz1FcVH4DqtWeKQDJOsy7-GB64SHulG1K6CUofwPFS7L5j2XhKIF81jWna8kbVzSIx8gnZ_d6OJjhsbRDIIFLGcKcHcNTZdvklxMB9u7g3eOl2YWpvBKaBPB7A-JEbA0fT1BTTdgBOTQJJjHm0cKURjqdGOaWMlTk3nPASd7x0yr7_j186hJejy8nYjL-d_diDTUE1AeouEvuw0Tws_AECp8Z9aD3jL3nkCK8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA58ChULBTwAXHLEr_yOFa0S4HuqqJUcLPsxOki2t1Vk1z49cwkzqqLQD30GmWi2DMef2N9_gbgrS0Sq_JKR7nTVKAghstsSQ7x0ufay55EM50lR2fq8w89sAnrQKukGrrqhSK6XE2Le1VWAyPuPVUxGW7URMzKxzxJtJbpXbiXIDwhVp-MZ-tkzEN_FTSJyGa4xPO_z2xsTxvipZsQ9LqsaLcVTR6BGwbRM1B-jdvGjYvff-k73mqUj-FhAKpsv4-sJ3DHL3bgwXSt8lrvwDYh1V7o-SlMMeDY13C0yE5PDg7ZftArZzg89tG2NV3YxHcW5fKSTYg6V7PvP5s5C9rX7PRyiYFDyfcZnE0Ov304ikKvhqjAmqmJNPcasYK3XPo0RverRAtMJ9wnXmOVWXIlrOc-LZVIrbWYSEpnNS8QgVa6zOQubC2WC_8cmEuUlpUTOnOpskpnhYqLvIqlzVNfVXwEanCRKYKQOfXTuDA86J0OU2do6kyYuhGM12arXsnjJoP8uv9N0x2hVH2_EyNvsN0bgsWEpFAbBEuIxjGl6hG86wNo_Sek8n3ergw-Om9N7Y3AUpPHIzj-x4tBB2puinnXZKcmgyTGWl240gjHU6OcUsbKnBtOmIw7XjplX9xiSG_g_snBxBx_mn15CduCjh2IwCT2YKu5av0rxGaNe92tvj_XOyda
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Rational+SPDE+Approach+for+Gaussian+Random+Fields+With+General+Smoothness&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Bolin%2C+David&rft.au=Kirchner%2C+Kristin&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=29&rft.issue=2&rft.spage=274&rft.epage=285&rft_id=info:doi/10.1080%2F10618600.2019.1665537&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon