Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting
Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10%...
Saved in:
Published in | Journal of biomechanics Vol. 102; p. 109486 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
26.03.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading.
The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg.
Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5–10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts.
In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts. |
---|---|
AbstractList | Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading. The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg. Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5-10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts. In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts.Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading. The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg. Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5-10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts. In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts. Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading. The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg. Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5–10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts. In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts. Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading. The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg. Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5-10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts. In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts. |
ArticleNumber | 109486 |
Author | de Looze, Michiel P. Kingma, Idsart Koopman, Axel S. van Dieën, Jaap H. |
Author_xml | – sequence: 1 givenname: Axel S. orcidid: 0000-0002-1194-3288 surname: Koopman fullname: Koopman, Axel S. organization: Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands – sequence: 2 givenname: Idsart surname: Kingma fullname: Kingma, Idsart email: i.kingma@vu.nl organization: Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands – sequence: 3 givenname: Michiel P. surname: de Looze fullname: de Looze, Michiel P. organization: Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands – sequence: 4 givenname: Jaap H. surname: van Dieën fullname: van Dieën, Jaap H. organization: Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31718821$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtr3DAQhUVJaTZp_0Iw9KUv3uriiwyltIT0AoG8pM9CkkddeWVrK8lp9t9HziZ92JcUBgSj75wZ5pyhk8lPgNAFwWuCSfNxWA_K-hH0Zk0x6XKzq3jzCq0Ib1lJGccnaIUxJWVHO3yKzmIcMMZt1XZv0CkjLeGckhXaXBkDOsXCm0IWOxmjvYNCSb0t4N7HLThIfipypQ0Uyzw5WS1d4bzs7fR70S0_zv8tH1X9HJZ23I8jpGB14axJufMWvTbSRXj39J6jX9-ubi9_lNc3339efr0uddV1qawx67FivOeKSEVVy5iiEnek4QoTI1ktWWsIY6YyTC-nINRwqrvG4L4Gxc7Rh4PvLvg_M8QkRhs1OCcn8HMUlJGK1pTwOqPvj9DBz2HK2wlakRbnattMXTxRsxqhF7tgRxn24vmGGWgOgA4-xgDmH0KwWDYUg3gOSyxhiUNYWfjpSKhtksn6KQVp3cvyLwc55HPeWQgiaguTht6GHKnovX3Z4vORhXb2Md8t7P_H4AFy6siE |
CitedBy_id | crossref_primary_10_1007_s42461_025_01189_1 crossref_primary_10_1017_pds_2021_469 crossref_primary_10_1080_00140139_2022_2059106 crossref_primary_10_1080_10255842_2024_2422925 crossref_primary_10_2139_ssrn_4091270 crossref_primary_10_1016_j_autcon_2025_106035 crossref_primary_10_1080_00140139_2022_2129097 crossref_primary_10_1080_10803548_2021_1989179 crossref_primary_10_1186_s12984_021_00916_1 crossref_primary_10_1016_j_jelekin_2022_102739 crossref_primary_10_1109_TRO_2021_3112280 crossref_primary_10_1016_j_jsr_2024_09_010 crossref_primary_10_1016_j_apergo_2020_103194 crossref_primary_10_1109_ACCESS_2023_3323249 crossref_primary_10_1016_j_apergo_2020_103156 crossref_primary_10_1017_wtc_2021_11 crossref_primary_10_1017_wtc_2021_12 crossref_primary_10_1017_wtc_2021_10 crossref_primary_10_1017_wtc_2024_7 crossref_primary_10_3390_ijerph19169965 crossref_primary_10_1080_24725838_2022_2059594 crossref_primary_10_1016_j_autcon_2020_103493 crossref_primary_10_1123_jab_2022_0126 crossref_primary_10_3389_fbioe_2025_1530034 crossref_primary_10_1016_j_apergo_2023_104092 crossref_primary_10_1080_1059924X_2023_2236605 crossref_primary_10_3390_ijerph20021507 crossref_primary_10_1016_j_jbiomech_2023_111439 crossref_primary_10_1080_00140139_2023_2216408 crossref_primary_10_3390_ijerph18010161 crossref_primary_10_1080_00140139_2021_1970823 crossref_primary_10_1177_00187208231197264 crossref_primary_10_1016_j_procs_2024_01_058 crossref_primary_10_1016_j_apergo_2022_103765 crossref_primary_10_2139_ssrn_4061000 crossref_primary_10_1038_s41598_025_88471_w crossref_primary_10_1080_00140139_2020_1870162 crossref_primary_10_3390_ijerph18052677 crossref_primary_10_3390_buildings13030822 crossref_primary_10_1016_j_jbiomech_2022_111363 crossref_primary_10_3390_s23156974 crossref_primary_10_1177_00187208211007267 crossref_primary_10_1016_j_apergo_2021_103530 crossref_primary_10_1016_j_jbiomech_2023_111489 crossref_primary_10_1109_LRA_2025_3541459 crossref_primary_10_1016_j_jbiomech_2021_110317 crossref_primary_10_1016_j_jbiomech_2023_111727 crossref_primary_10_1177_00187208241311271 crossref_primary_10_3390_app13116483 crossref_primary_10_1007_s41449_023_00381_7 crossref_primary_10_3390_biomimetics9030173 crossref_primary_10_1016_j_humov_2024_103198 crossref_primary_10_1080_15459624_2023_2241536 crossref_primary_10_1177_10711813241260670 crossref_primary_10_3390_bioengineering10111328 crossref_primary_10_1016_j_apergo_2024_104407 crossref_primary_10_3390_app14010084 crossref_primary_10_3390_s23125604 crossref_primary_10_1109_TNSRE_2022_3159178 crossref_primary_10_1080_24725838_2024_2359371 crossref_primary_10_1115_1_4063455 crossref_primary_10_1080_00140139_2025_2466030 crossref_primary_10_47836_mjmhs_19_6_41 crossref_primary_10_3390_s24155067 crossref_primary_10_1016_j_jbiomech_2024_112125 crossref_primary_10_1109_LRA_2022_3183757 crossref_primary_10_3390_s21030808 crossref_primary_10_1080_10255842_2024_2350592 crossref_primary_10_1080_00140139_2023_2236817 |
Cites_doi | 10.1016/S0268-0033(98)00020-5 10.1016/S0268-0033(02)00140-7 10.1016/j.clinbiomech.2005.12.021 10.1016/S0140-6736(18)30480-X 10.1016/j.clinbiomech.2007.10.012 10.1080/00140130902915947 10.1016/S1050-6411(01)00011-6 10.1016/j.jelekin.2012.08.014 10.1016/S0021-9290(97)00083-3 10.1097/00007632-199208000-00007 10.1016/j.clinbiomech.2009.05.008 10.1016/j.apergo.2015.12.003 10.1080/001401398186667 10.1113/jphysiol.1955.sp005347 10.1016/j.jelekin.2004.06.008 10.1016/j.jbiomech.2011.03.002 10.1016/0021-9290(94)90224-0 10.1080/00140139.2015.1081988 10.1016/j.apergo.2018.09.006 10.1080/24725838.2019.1626303 10.1002/jmor.1051820107 10.1016/S1050-6411(03)00045-2 10.1016/j.jbiomech.2007.08.010 10.1002/ajim.20750 10.1016/j.jbiomech.2018.11.033 10.1016/j.jelekin.2019.05.003 10.1136/annrheumdis-2013-204428 10.5271/sjweh.877 10.1016/0021-9290(95)00148-4 10.1002/jor.1100090112 10.1080/00140130512331332918 10.1016/0268-0033(89)90071-5 10.1136/oemed-2014-102346 10.1007/s10926-012-9375-z 10.1016/S0167-9457(96)00034-6 10.1007/BF00376504 10.1080/00140139308967940 10.1016/j.jelekin.2012.08.016 10.1016/j.jbiomech.2015.09.035 10.1016/S1050-6411(97)00006-0 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. Copyright Elsevier Limited Mar 26, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Mar 26, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2019.109486 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 31718821 10_1016_j_jbiomech_2019_109486 S0021929019307365 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c499t-503d0b38d8b1ab2b733b2a09168b01fa35a37f133f4f3c101612f82c96f0d5eb3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 15:30:29 EDT 2025 Wed Aug 13 09:44:33 EDT 2025 Thu Apr 03 06:55:28 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Tue Jul 01 00:44:15 EDT 2025 Fri Feb 23 02:48:13 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Compression forces Low-back pain Mechanical loading Lifting Passive exoskeletons |
Language | English |
License | Copyright © 2019. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c499t-503d0b38d8b1ab2b733b2a09168b01fa35a37f133f4f3c101612f82c96f0d5eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1194-3288 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021929019307365 |
PMID | 31718821 |
PQID | 2417017077 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2314252185 proquest_journals_2417017077 pubmed_primary_31718821 crossref_primary_10_1016_j_jbiomech_2019_109486 crossref_citationtrail_10_1016_j_jbiomech_2019_109486 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109486 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-26 |
PublicationDateYYYYMMDD | 2020-03-26 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Kuiper, Burdorf, Frings-Dresen, Kuijer, Spreeuwers, Lotters, Miedema (b0130) 2005; 31 Alemi, Geissinger, Simon, Chang, Asbeck (b0015) 2019; 47 Marras, Davis (b0135) 1998; 41 Toxiri, S., Näf, M.B., Lazzaroni, M., Fernandez, J., Sposito, M., Poliero, T., Monica, L., Anastasi, S., Caldwell, D.G., Ortiz, J., 2019. Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Transactions on Occupational Ergonomics and Human Factors. Hartvigsen, Hancock, Kongsted, Louw, Ferreira, Genevay, Hoy, Karppinen, Pransky, Sieper, Smeets, Underwood, Workin (b0090) 2018; 391 Coenen, Kingma, Boot, Twisk, Bongers, van Dieën (b0050) 2013; 23 Waters, Putz-Anderson, Garg, Fine (b0215) 1993; 36 de Looze, Bosch, Krause, Stadler, O'Sullivan (b0060) 2016; 59 Bosch, van Eck, Knitel, de Looze (b0035) 2016; 54 Koopman, Kingma, Faber, de Looze, van Dieën (b0125) 2019; 83 Brinckmann, Biggemann, Hilweg (b0040) 1989; 4 Abdoli, Agnew, Stevenson (b0005) 2006; 21 McGill (b0145) 1991; 9 Kingma, Baten, Dolan, Toussaint, van Dieën, de Looze, Adams (b0105) 2001; 11 Woittiez, Huijing, Boom, Rozendal (b0220) 1984; 182 van Dieën (b0200) 1997; 30 Solomonow, M., Baratta, R.V., Zhou, B.H., of …, B.-E., 2003. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. Journal of …. Hoy, March, Brooks, Blyth, Woolf, Bain, Williams, Smith, Vos, Barendregt, Murray, Burstein, Buchbinder (b0095) 2014; 73 Stokes, I.A.F., Henry, S.M., biomechanics, S.-R.M., 2003. Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clinical biomechanics. Jäger (b0100) 2018; 17 Potvin, Norman, McGill (b0165) 1996; 74 McGill (b0150) 1996; 29 da Costa, Vieira (b0055) 2010; 53 Gagnon, Arjmand, Plamondon, Shirazi-Adl, Lariviere (b0085) 2011; 44 Bazrgari, Shirazi-Adl, Trottier, Mathieu (b0025) 2008; 41 Norman, Wells, Neumann, Frank, Shannon, Kerr (b0155) 1998; 13 Arjmand, Gagnon, Plamondon, Shirazi-Adl, Lariviere (b0020) 2009; 24 Faber, Kingma, Kuijer, van der Molen, Hoozemans, Frings-Dresen, van Dieën (b0075) 2009; 52 van Zandwijk (b0210) 1998 Abdoli, Stevenson (b0010) 2008; 23 Ulrey, Fathallah (b0190) 2013; 23 Marras, Granata (b0140) 1997; 7 Staudenmann, Kingma, Stegeman, van Dieën (b0175) 2005; 15 Ulrey, Fathallah (b0195) 2013; 23 Bogduk, Macintosh, Spine (b0030) 1992 Picchiotti, Weston, Knapik, Dufour, Marras (b0160) 2019; 75 Dolan, Mannion, Adams (b0070) 1994; 27 DeLuca, Merletti (b0065) 1988; 69 Floyd, Silver (b0080) 1955; 129 Kingma, deLooze, Toussaint, Klijnsma, Bruijnen (b0110) 1996; 15 Kingma, Faber, van Dieën (b0115) 2016; 49 van Dieën, Kingma (b0205) 2005; 48 Kobayashi, Nozaki (b0120) 2008 Coenen, Gouttebarge, van der Burght, van Dieën, Frings-Dresen, van der Beek, Burdorf (b0045) 2014; 71 Bazrgari (10.1016/j.jbiomech.2019.109486_b0025) 2008; 41 Gagnon (10.1016/j.jbiomech.2019.109486_b0085) 2011; 44 van Zandwijk (10.1016/j.jbiomech.2019.109486_b0210) 1998 Arjmand (10.1016/j.jbiomech.2019.109486_b0020) 2009; 24 McGill (10.1016/j.jbiomech.2019.109486_b0145) 1991; 9 Kingma (10.1016/j.jbiomech.2019.109486_b0115) 2016; 49 Potvin (10.1016/j.jbiomech.2019.109486_b0165) 1996; 74 Ulrey (10.1016/j.jbiomech.2019.109486_b0190) 2013; 23 Hartvigsen (10.1016/j.jbiomech.2019.109486_b0090) 2018; 391 Bosch (10.1016/j.jbiomech.2019.109486_b0035) 2016; 54 10.1016/j.jbiomech.2019.109486_b0180 da Costa (10.1016/j.jbiomech.2019.109486_b0055) 2010; 53 10.1016/j.jbiomech.2019.109486_b0185 de Looze (10.1016/j.jbiomech.2019.109486_b0060) 2016; 59 DeLuca (10.1016/j.jbiomech.2019.109486_b0065) 1988; 69 Hoy (10.1016/j.jbiomech.2019.109486_b0095) 2014; 73 Picchiotti (10.1016/j.jbiomech.2019.109486_b0160) 2019; 75 Coenen (10.1016/j.jbiomech.2019.109486_b0050) 2013; 23 Marras (10.1016/j.jbiomech.2019.109486_b0140) 1997; 7 Floyd (10.1016/j.jbiomech.2019.109486_b0080) 1955; 129 Marras (10.1016/j.jbiomech.2019.109486_b0135) 1998; 41 Kuiper (10.1016/j.jbiomech.2019.109486_b0130) 2005; 31 Alemi (10.1016/j.jbiomech.2019.109486_b0015) 2019; 47 Norman (10.1016/j.jbiomech.2019.109486_b0155) 1998; 13 Waters (10.1016/j.jbiomech.2019.109486_b0215) 1993; 36 Coenen (10.1016/j.jbiomech.2019.109486_b0045) 2014; 71 Staudenmann (10.1016/j.jbiomech.2019.109486_b0175) 2005; 15 Ulrey (10.1016/j.jbiomech.2019.109486_b0195) 2013; 23 van Dieën (10.1016/j.jbiomech.2019.109486_b0200) 1997; 30 Dolan (10.1016/j.jbiomech.2019.109486_b0070) 1994; 27 Kobayashi (10.1016/j.jbiomech.2019.109486_b0120) 2008 10.1016/j.jbiomech.2019.109486_b0170 van Dieën (10.1016/j.jbiomech.2019.109486_b0205) 2005; 48 McGill (10.1016/j.jbiomech.2019.109486_b0150) 1996; 29 Abdoli (10.1016/j.jbiomech.2019.109486_b0010) 2008; 23 Woittiez (10.1016/j.jbiomech.2019.109486_b0220) 1984; 182 Faber (10.1016/j.jbiomech.2019.109486_b0075) 2009; 52 Jäger (10.1016/j.jbiomech.2019.109486_b0100) 2018; 17 Kingma (10.1016/j.jbiomech.2019.109486_b0110) 1996; 15 Koopman (10.1016/j.jbiomech.2019.109486_b0125) 2019; 83 Kingma (10.1016/j.jbiomech.2019.109486_b0105) 2001; 11 Brinckmann (10.1016/j.jbiomech.2019.109486_b0040) 1989; 4 Bogduk (10.1016/j.jbiomech.2019.109486_b0030) 1992 Abdoli (10.1016/j.jbiomech.2019.109486_b0005) 2006; 21 |
References_xml | – reference: Stokes, I.A.F., Henry, S.M., biomechanics, S.-R.M., 2003. Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clinical biomechanics. – volume: 47 start-page: 25 year: 2019 end-page: 34 ident: b0015 article-title: A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting publication-title: J. Electromyogr. Kinesiol. – year: 2008 ident: b0120 article-title: Development of support system for forward tilting of the upper body publication-title: IEEE International Conference on Mechatronics and Automation – year: 1992 ident: b0030 article-title: A universal model of the lumbar back muscles in the upright position publication-title: Spine – volume: 391 start-page: 2356 year: 2018 end-page: 2367 ident: b0090 article-title: What low back pain is and why we need to pay attention publication-title: Lancet – volume: 48 start-page: 411 year: 2005 end-page: 426 ident: b0205 article-title: Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces publication-title: Ergonomics – volume: 73 start-page: 968 year: 2014 end-page: 974 ident: b0095 article-title: The global burden of low back pain: estimates from the Global Burden of Disease 2010 study publication-title: Ann. Rheum. Dis. – volume: 23 start-page: 372 year: 2008 end-page: 380 ident: b0010 article-title: The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting publication-title: Clin. Biomech. (Bristol, Avon) – volume: 7 start-page: 259 year: 1997 end-page: 268 ident: b0140 article-title: The development of an EMG-assisted model to assess spine loading during whole-body free-dynamic lifting publication-title: J. Electromyogr. Kinesiol. – volume: 129 start-page: 184 year: 1955 end-page: 203 ident: b0080 article-title: The function of the erectores spinae muscles in certain movements and postures in man publication-title: J. Physiol. – volume: 21 start-page: 456 year: 2006 end-page: 465 ident: b0005 article-title: An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks publication-title: Clin. Biomech. (Bristol, Avon) – volume: 69 year: 1988 ident: b0065 article-title: Surface myoelectric signal cross-talk among muscles of the leg publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 41 start-page: 412 year: 2008 end-page: 421 ident: b0025 article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities publication-title: J. Biomech. – volume: 52 start-page: 1104 year: 2009 end-page: 1118 ident: b0075 article-title: Working height, block mass and one- vs. two-handed block handling: the contribution to low back and shoulder loading during masonry work publication-title: Ergonomics – year: 1998 ident: b0210 article-title: The dynamics of muscle force development: An experimental and simulation study of the behaviour of human skeletal muscles – volume: 15 start-page: 833 year: 1996 end-page: 860 ident: b0110 article-title: Validation of a full body 3-D dynamic linked segment model publication-title: Hum. Movement. Sci. – volume: 23 start-page: 206 year: 2013 end-page: 215 ident: b0195 article-title: Subject-specific, whole-body models of the stooped posture with a personal weight transfer device publication-title: J. Electromyogr. Kinesiol. – volume: 23 start-page: 11 year: 2013 end-page: 18 ident: b0050 article-title: Cumulative low back load at work as a risk factor of low back pain: a prospective cohort study publication-title: J. Occup. Rehabil. – volume: 24 start-page: 533 year: 2009 end-page: 541 ident: b0020 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. (Bristol, Avon) – volume: 31 start-page: 237 year: 2005 end-page: 243 ident: b0130 article-title: Assessing the work-relatedness of nonspecific low-back pain publication-title: Scand. J. Work Environ. Health – volume: 75 start-page: 1 year: 2019 end-page: 7 ident: b0160 article-title: Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine publication-title: Appl. Ergon. – volume: 74 start-page: 119 year: 1996 end-page: 132 ident: b0165 article-title: Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – reference: Toxiri, S., Näf, M.B., Lazzaroni, M., Fernandez, J., Sposito, M., Poliero, T., Monica, L., Anastasi, S., Caldwell, D.G., Ortiz, J., 2019. Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Transactions on Occupational Ergonomics and Human Factors. – volume: 71 start-page: 871 year: 2014 end-page: 877 ident: b0045 article-title: The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis publication-title: Occup. Environ. Med. – volume: 9 start-page: 91 year: 1991 end-page: 103 ident: b0145 article-title: Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics publication-title: J. Orthop. Res. – volume: 27 start-page: 1077 year: 1994 end-page: 1085 ident: b0070 article-title: Passive tissues help the back muscles to generate extensor moments during lifting publication-title: J. Biomech. – volume: 53 start-page: 285 year: 2010 end-page: 323 ident: b0055 article-title: Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies publication-title: Am. J. Ind. Med. – volume: 13 start-page: 561 year: 1998 end-page: 573 ident: b0155 article-title: A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry publication-title: Clin Biomech (Bristol, Avon) – volume: 36 start-page: 749 year: 1993 end-page: 776 ident: b0215 article-title: Revised NIOSH equation for the design and evaluation of manual lifting tasks publication-title: Ergonomics – volume: 49 start-page: 881 year: 2016 end-page: 889 ident: b0115 article-title: Supporting the upper body with the hand on the thigh reduces back loading during lifting publication-title: J. Biomech. – volume: 29 start-page: 973 year: 1996 end-page: 977 ident: b0150 article-title: A revised anatomical model of the abdominal musculature for torso flexion efforts publication-title: J. Biomech. – volume: 23 start-page: 195 year: 2013 end-page: 205 ident: b0190 article-title: Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture publication-title: J. Electromyogr. Kinesiol. – volume: 54 start-page: 212 year: 2016 end-page: 217 ident: b0035 article-title: The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work publication-title: Appl. Ergon. – volume: 15 start-page: 1 year: 2005 end-page: 11 ident: b0175 article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study publication-title: J. Electromyogr. Kinesiol. – volume: 182 start-page: 95 year: 1984 end-page: 113 ident: b0220 article-title: A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles publication-title: J. Morphol. – volume: 11 start-page: 337 year: 2001 end-page: 345 ident: b0105 article-title: Lumbar loading during lifting: a comparative study of three measurement techniques publication-title: J. Electromyogr. Kinesiol. – volume: 30 start-page: 1095 year: 1997 end-page: 1100 ident: b0200 article-title: Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance? publication-title: J. Biomech. – volume: 59 start-page: 671 year: 2016 end-page: 681 ident: b0060 article-title: Exoskeletons for industrial application and their potential effects on physical work load publication-title: Ergonomics – volume: 44 start-page: 1521 year: 2011 end-page: 1529 ident: b0085 article-title: An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine publication-title: J. Biomech. – volume: 4 start-page: iii year: 1989 end-page: 27 ident: b0040 article-title: Prediction of the compressive strength of human lumbar vertebrae publication-title: Clin. Biomech. – volume: 17 start-page: 362 year: 2018 end-page: 385 ident: b0100 article-title: Extended compilation of autopsy-material measurements on lumbar ultimate compressive strength for deriving reference values in ergonomic work design: The revised Dortmund recommendations publication-title: Excli. J. – volume: 83 start-page: 97 year: 2019 end-page: 103 ident: b0125 article-title: Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks publication-title: J. Biomech. – reference: Solomonow, M., Baratta, R.V., Zhou, B.H., of …, B.-E., 2003. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. Journal of …. – volume: 41 start-page: 817 year: 1998 end-page: 834 ident: b0135 article-title: Spine loading during asymmetric lifting using one versus two hands publication-title: Ergonomics – volume: 13 start-page: 561 year: 1998 ident: 10.1016/j.jbiomech.2019.109486_b0155 article-title: A comparison of peak vs cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/S0268-0033(98)00020-5 – ident: 10.1016/j.jbiomech.2019.109486_b0180 doi: 10.1016/S0268-0033(02)00140-7 – volume: 21 start-page: 456 year: 2006 ident: 10.1016/j.jbiomech.2019.109486_b0005 article-title: An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2005.12.021 – volume: 391 start-page: 2356 year: 2018 ident: 10.1016/j.jbiomech.2019.109486_b0090 article-title: What low back pain is and why we need to pay attention publication-title: Lancet doi: 10.1016/S0140-6736(18)30480-X – volume: 23 start-page: 372 year: 2008 ident: 10.1016/j.jbiomech.2019.109486_b0010 article-title: The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2007.10.012 – volume: 52 start-page: 1104 year: 2009 ident: 10.1016/j.jbiomech.2019.109486_b0075 article-title: Working height, block mass and one- vs. two-handed block handling: the contribution to low back and shoulder loading during masonry work publication-title: Ergonomics doi: 10.1080/00140130902915947 – volume: 11 start-page: 337 year: 2001 ident: 10.1016/j.jbiomech.2019.109486_b0105 article-title: Lumbar loading during lifting: a comparative study of three measurement techniques publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(01)00011-6 – volume: 23 start-page: 195 year: 2013 ident: 10.1016/j.jbiomech.2019.109486_b0190 article-title: Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2012.08.014 – volume: 30 start-page: 1095 year: 1997 ident: 10.1016/j.jbiomech.2019.109486_b0200 article-title: Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance? publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00083-3 – volume: 69 year: 1988 ident: 10.1016/j.jbiomech.2019.109486_b0065 article-title: Surface myoelectric signal cross-talk among muscles of the leg publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 1992 ident: 10.1016/j.jbiomech.2019.109486_b0030 article-title: A universal model of the lumbar back muscles in the upright position publication-title: Spine doi: 10.1097/00007632-199208000-00007 – year: 2008 ident: 10.1016/j.jbiomech.2019.109486_b0120 article-title: Development of support system for forward tilting of the upper body – volume: 24 start-page: 533 year: 2009 ident: 10.1016/j.jbiomech.2019.109486_b0020 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2009.05.008 – volume: 54 start-page: 212 year: 2016 ident: 10.1016/j.jbiomech.2019.109486_b0035 article-title: The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2015.12.003 – volume: 41 start-page: 817 year: 1998 ident: 10.1016/j.jbiomech.2019.109486_b0135 article-title: Spine loading during asymmetric lifting using one versus two hands publication-title: Ergonomics doi: 10.1080/001401398186667 – volume: 129 start-page: 184 year: 1955 ident: 10.1016/j.jbiomech.2019.109486_b0080 article-title: The function of the erectores spinae muscles in certain movements and postures in man publication-title: J. Physiol. doi: 10.1113/jphysiol.1955.sp005347 – volume: 15 start-page: 1 year: 2005 ident: 10.1016/j.jbiomech.2019.109486_b0175 article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2004.06.008 – volume: 44 start-page: 1521 year: 2011 ident: 10.1016/j.jbiomech.2019.109486_b0085 article-title: An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.03.002 – volume: 27 start-page: 1077 year: 1994 ident: 10.1016/j.jbiomech.2019.109486_b0070 article-title: Passive tissues help the back muscles to generate extensor moments during lifting publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90224-0 – volume: 59 start-page: 671 year: 2016 ident: 10.1016/j.jbiomech.2019.109486_b0060 article-title: Exoskeletons for industrial application and their potential effects on physical work load publication-title: Ergonomics doi: 10.1080/00140139.2015.1081988 – volume: 75 start-page: 1 year: 2019 ident: 10.1016/j.jbiomech.2019.109486_b0160 article-title: Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2018.09.006 – ident: 10.1016/j.jbiomech.2019.109486_b0185 doi: 10.1080/24725838.2019.1626303 – volume: 182 start-page: 95 year: 1984 ident: 10.1016/j.jbiomech.2019.109486_b0220 article-title: A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles publication-title: J. Morphol. doi: 10.1002/jmor.1051820107 – ident: 10.1016/j.jbiomech.2019.109486_b0170 doi: 10.1016/S1050-6411(03)00045-2 – volume: 41 start-page: 412 year: 2008 ident: 10.1016/j.jbiomech.2019.109486_b0025 article-title: Computation of trunk equilibrium and stability in free flexion-extension movements at different velocities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.08.010 – volume: 17 start-page: 362 year: 2018 ident: 10.1016/j.jbiomech.2019.109486_b0100 article-title: Extended compilation of autopsy-material measurements on lumbar ultimate compressive strength for deriving reference values in ergonomic work design: The revised Dortmund recommendations publication-title: Excli. J. – volume: 53 start-page: 285 year: 2010 ident: 10.1016/j.jbiomech.2019.109486_b0055 article-title: Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies publication-title: Am. J. Ind. Med. doi: 10.1002/ajim.20750 – volume: 83 start-page: 97 year: 2019 ident: 10.1016/j.jbiomech.2019.109486_b0125 article-title: Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.11.033 – year: 1998 ident: 10.1016/j.jbiomech.2019.109486_b0210 – volume: 47 start-page: 25 year: 2019 ident: 10.1016/j.jbiomech.2019.109486_b0015 article-title: A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.05.003 – volume: 73 start-page: 968 year: 2014 ident: 10.1016/j.jbiomech.2019.109486_b0095 article-title: The global burden of low back pain: estimates from the Global Burden of Disease 2010 study publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2013-204428 – volume: 31 start-page: 237 year: 2005 ident: 10.1016/j.jbiomech.2019.109486_b0130 article-title: Assessing the work-relatedness of nonspecific low-back pain publication-title: Scand. J. Work Environ. Health doi: 10.5271/sjweh.877 – volume: 29 start-page: 973 year: 1996 ident: 10.1016/j.jbiomech.2019.109486_b0150 article-title: A revised anatomical model of the abdominal musculature for torso flexion efforts publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00148-4 – volume: 9 start-page: 91 year: 1991 ident: 10.1016/j.jbiomech.2019.109486_b0145 article-title: Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics publication-title: J. Orthop. Res. doi: 10.1002/jor.1100090112 – volume: 48 start-page: 411 year: 2005 ident: 10.1016/j.jbiomech.2019.109486_b0205 article-title: Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces publication-title: Ergonomics doi: 10.1080/00140130512331332918 – volume: 4 start-page: iii year: 1989 ident: 10.1016/j.jbiomech.2019.109486_b0040 article-title: Prediction of the compressive strength of human lumbar vertebrae publication-title: Clin. Biomech. doi: 10.1016/0268-0033(89)90071-5 – volume: 71 start-page: 871 year: 2014 ident: 10.1016/j.jbiomech.2019.109486_b0045 article-title: The effect of lifting during work on low back pain: a health impact assessment based on a meta-analysis publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2014-102346 – volume: 23 start-page: 11 year: 2013 ident: 10.1016/j.jbiomech.2019.109486_b0050 article-title: Cumulative low back load at work as a risk factor of low back pain: a prospective cohort study publication-title: J. Occup. Rehabil. doi: 10.1007/s10926-012-9375-z – volume: 15 start-page: 833 year: 1996 ident: 10.1016/j.jbiomech.2019.109486_b0110 article-title: Validation of a full body 3-D dynamic linked segment model publication-title: Hum. Movement. Sci. doi: 10.1016/S0167-9457(96)00034-6 – volume: 74 start-page: 119 year: 1996 ident: 10.1016/j.jbiomech.2019.109486_b0165 article-title: Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00376504 – volume: 36 start-page: 749 year: 1993 ident: 10.1016/j.jbiomech.2019.109486_b0215 article-title: Revised NIOSH equation for the design and evaluation of manual lifting tasks publication-title: Ergonomics doi: 10.1080/00140139308967940 – volume: 23 start-page: 206 year: 2013 ident: 10.1016/j.jbiomech.2019.109486_b0195 article-title: Subject-specific, whole-body models of the stooped posture with a personal weight transfer device publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2012.08.016 – volume: 49 start-page: 881 year: 2016 ident: 10.1016/j.jbiomech.2019.109486_b0115 article-title: Supporting the upper body with the hand on the thigh reduces back loading during lifting publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.035 – volume: 7 start-page: 259 year: 1997 ident: 10.1016/j.jbiomech.2019.109486_b0140 article-title: The development of an EMG-assisted model to assess spine loading during whole-body free-dynamic lifting publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(97)00006-0 |
SSID | ssj0007479 |
Score | 2.5806034 |
Snippet | Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109486 |
SubjectTerms | Adult Angular velocity Ankle Back - physiology Back Muscles - physiology Bending Biomechanical Phenomena Compression Compression forces Electromyography Exoskeleton Exoskeleton Device Exoskeletons Hoisting Horizontal loads Horizontal orientation Humans Kinematics Knee Lifting Lifts Low back pain Male Mechanical loading Muscle function Muscles Passive exoskeletons Peak load Risk analysis Risk factors Weight-Bearing Young Adult |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lD6IPolc_TqtEEN_Sy26S3exjKZYi1CcLfQv52OBd73aP3hXti3-7M9nsWUGpINzT7g7kMpOZ3yTzmxDyXjZtqKwSTOmKMxmDZBAWaqZ4sDxIr4XDDf3zz9XZhfx0qS73yMnIhcGyyuz7B5-evHV-MsuzOVvP58jxhdWGx4AN2mmFRHMpa7Tyox-_yjwALucyj4Lh13dYwoujReK4p0OJosHOShI51X8OUH8DoCkQnT4hjzOCpMfDIJ-SvbabkIPjDrLn1S39QFNNZ9osn5BHd9oNTsiD83yQfkC-Dl2LN7SP1NI1IGjwetRZf0Xb7_3mCoIRgEIKPwCIFAdvE4GSLvtUdI9y-GbZf2NJaqA70s3taoV3dHm6nEesqH5GLk4_fjk5Y_nSBeYh-dmCkkTgTuigXWFd6WoB2rKAKirteBGtUFbUETLbKKPwOI9FGXXpmyryoCA1f072u75rXxLqAmAR5XSDSZ7W0XEZePDaiaatuXdTosaZNj53JMeLMZZmLD1bmFFDBjVkBg1NyWwntx56ctwrUY-KNCPjFHykgbBxr2Szk_zNLv9J9nC0GZM9w8YAYqqxZ1FdT8m73WtY03hQY7u2v4FvRAGuFMCXmpIXg63t_ijgvQKyouLVfwzsNXlY4rYBF6ysDsn-9vqmfQPYauvepsXzE-uOIKI priority: 102 providerName: Elsevier |
Title | Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019307365 https://dx.doi.org/10.1016/j.jbiomech.2019.109486 https://www.ncbi.nlm.nih.gov/pubmed/31718821 https://www.proquest.com/docview/2417017077 https://www.proquest.com/docview/2314252185 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyE4INjyWCgrIyFubp04D-eEFtRqAXWFEJX2FvkRq2x3k4VsBb3w25lxnNADUKRIOTgTJR575pvxPAh5mRSVzVQqWCozzhJnEwZqIWcpt4rbxEih0aF_Os9mZ8n7RboIDrc2hFX2MtELatsY9JEfgabJsdZLnr_efGXYNQpPV0MLjR2yh6XLcFXni8HgwtrwIcQjYgAD-LUM4eXh0ue3-wOJqMCqSgnmU_9ZOf0NfHoldHKf3AvokU47dj8gt6p6RPanNVjO6yv6ivp4Tu8oH5G710oNjsjt03CIvk_Ou4rFLW0cVXQD6BkkHtXKXNDqR9NegCICQEjhAnBI8eOVT56kq8YH3CMdjqya78xTdamOtL1ar7E_l6GrLw6jqR-Ss5Pjz29nLDRcYAYMny0wSFiuhbRSR0rHOhfAKQWIIpOaR06JVIncgVXrEicMzmMUOxmbInPcpmCWPyK7dVNXTwjVFnBIqmWBBp6UTvPEcmukFkWVc6PHJO1nujShGjk2xViVfdjZsuw5VCKHyo5DY3I00G26ehw3UuQ9I8s-2xTkYwkq40bKYqAMeKTDGf9Fe9CvmTJIhbb8vYbH5MUwDPsZD2lUXTWX8IyIQIwC8ErH5HG31oYfBawXgUUUPf33y5-ROzF6BbhgcXZAdrffLqvnAJ22ekJ2Dn9GE79LJmRv-u7DbA73N8fzj59-ASE7GmQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INjyWChgJOBm6sR5OAeEKqDa0m5PrbQ3Y8exYLubLOxWZf8Uv5GZvOgBKJdKuSUTORl75vvseQC8jLLCJSaWPFaJ4JF3EUe3kPJYOCNclCtpaUN_fJSMTqJPk3iyAT-7XBgKq-xsYm2oXZXTHvkOepqUar2k6bvFN05do-h0tWuh0UyLg2J9jpRt-Xb_A-r3VRjufTx-P-JtVwGeI7pf4SikE1Yqp2xgbGhTicMx6DYTZUXgjYyNTD1SNx95mRO5DUKvwjxLvHAxck987zW4jo5XENlLJz3Bo1r0bUhJwBF2iAsZydM30zqfvj4ACTKq4hRR_vafneHfwG7t9Pbuwp0WrbLdZnrdg42iHMDWbolMfb5mr1kdP1pvzA_g9oXShgO4MW4P7bfgS1MheckqzwxbIFpHC8usyU9Z8aNanqLjQwDK8EIwymjwpk7WZLOqDvAnObozq855LdWkVrLlej6nfmA5m331FL19H06uRBUPYLOsyuIRMOsQ98RWZUQolfJWRE64XFmZFanI7RDi7k_rvK1-Tk04ZroLc5vqTkOaNKQbDQ1hp5dbNPU_LpVIO0XqLrsV7bFGF3WpZNZLtvinwTX_JbvdzRndWqGl_r1mhvCiv432gw6FTFlUZ_iMDNBsI9CLh_CwmWv9hyK2DJCBBY___fLncHN0PD7Uh_tHB0_gVkg7EkLyMNmGzdX3s-IpwraVfVavFQafr3px_gKsGVI_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKrggCDlEShgJOBm4l3vw3tAqNBGLaVRhajUm-vHWpAmu4GkKvlr_DrG-6IHoFwq7c07lnfHnvlmPA-AF1GW20TFnMYiYTRyNqKoFlIaM6uYjYzg2jv0D8fJ3nH04SQ-WYOfbS6MD6tsZWIlqG1pvI98iJom9bVe0nTomrCIo53R2_k36jtI-ZvWtp1GvUUO8tUFmm-LN_s7yOuXYTja_fx-jzYdBqhBpL_EFXHLNBdW6EDpUKccl6ZQhSZCs8ApHiueOjTjXOS48YZuEDoRmixxzMZoh-K8N2A99VZRD9bf7Y6PPnV6AIF6E2ASUAQh7FJ-8uT1pMqur65DgszXdIp8NvefVePfoG-lAkd34HaDXcl2vdnuwlpe9GFzu0C7fbYir0gVTVq56ftw61Khwz5sHDZX-Jvwpa6XvCClI4rMEbujvCVamTOS_ygXZ6gGEY4SfBCaEr94VaVukmlZhft7Oj8yLS9oRVUnWpLFajbz3cEMmX51Ppb7HhxfCzPuQ68oi_whEG0RBcVaZN68FMJpFllmjdA8y1Nm9ADi9k9L09RC9y05prINepvIlkPSc0jWHBrAsKOb19VArqRIW0bKNtcVpbNEhXUlZdZRNmioRjn_RbvV7hnZyKSF_H2CBvC8G0Zp4q-IVJGX5_gOD1CII-yLB_Cg3mvdhyLSDNAeCx79e_JnsIEHU37cHx88hpuhd08wTsNkC3rL7-f5E8RwS_20OSwETq_7fP4CVNpX2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+a+passive+back+exoskeleton+on+the+mechanical+loading+of+the+low-back+during+symmetric+lifting&rft.jtitle=Journal+of+biomechanics&rft.au=Koopman%2C+Axel+S&rft.au=Kingma%2C+Idsart&rft.au=de+Looze%2C+Michiel+P&rft.au=van+Die%C3%ABn%2C+Jaap+H&rft.date=2020-03-26&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=102&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109486&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |