The Effect of Xialiqi Capsule on Testosterone-Induced Benign Prostatic Hyperplasia in Rats
Benign prostatic hyperplasia (BPH) is common among elderly men, of which inflammation, oxidative stress, proliferative, and apoptotic changes play important roles. Xialiqi (XLQ) capsule, a traditional Chinese herbal formula, is used as a potential drug in treating BPH. This study aims to evaluate th...
Saved in:
Published in | Evidence-based complementary and alternative medicine Vol. 2018; no. 2018; pp. 1 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Benign prostatic hyperplasia (BPH) is common among elderly men, of which inflammation, oxidative stress, proliferative, and apoptotic changes play important roles. Xialiqi (XLQ) capsule, a traditional Chinese herbal formula, is used as a potential drug in treating BPH. This study aims to evaluate the therapeutic effect of XLQ capsule on testosterone propionate- (TP-) induced BPH in rats. Fifty male Sprague-Dawley rats were randomly divided into 5 groups: sham control, BPH model, high and low dose of XLQ, and finasteride as a positive control group. All groups were treated with appropriate drugs/normal saline for 28 consecutive days. Prostate weights were recorded; histopathological changes and content of IL-8, TNF-α, DHT, SOD, MDA, caspase-3, and PCNA of the prostate were determined. Animals with BPH demonstrated significantly increased prostate weights and prostate index, higher levels of IL-8, TNF-α, DHT, MDA, and PCNA, but lower activity of SOD and reduced expression of caspase-3. After treatment with XLQ, significant reductions of prostate weights, prostate index, IL-8, TNF-α, DHT, MDA, and PCNA, increased activity of SOD, and higher level of caspase-3 were shown. The present study indicates that XLQ can effectively prevent the development of TP-induced BPH model through mechanisms of anti-inflammation, antioxidation, antiproliferation, and proapoptosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Chang G. Son |
ISSN: | 1741-427X 1741-4288 |
DOI: | 10.1155/2018/5367814 |